(完整版)图形与坐标练习+知识点
第三章图形与坐标知识点总结
第三章 图形与坐标知识点总结1、点的对称性:关于x 轴对称的点,纵坐标相反,横坐标不变;关于y 轴对称的点,横坐标相反,纵坐标不变;关于原点对称的点,横、纵坐标都相反。
例如:若直角坐标系内一点P (a ,b ),则P 关于x 轴对称的点为P 1(a ,-b ),P 关于y轴对称的点为P 2(-a ,b ),关于原点对称的点为P 3(-a ,-b )。
解题方法:相等时用“=”连结,相反时两式相加=0。
2、坐标平移: 左右平移:右加左减横坐标,纵坐标不变;上下平移:横坐标不变,上加下减纵坐标。
3、不同位置的点的坐标的特征(1)、各象限内点的坐标的特征:点P(x,y)在第一象限0,0>>⇔y x ; 点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x ; 点P(x,y)在第四象限0,0<>⇔y x(2)、坐标轴上的点的特征:点P(x,y)在x 轴上0=⇔y ,x 为任意实数;点P(x,y)在y 轴上0=⇔x ,y 为任意实数;点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0)。
(3)、两条坐标轴夹角平分线上点的坐标的特征:点P(x,y)在第一、三象限夹角平分线(直线y=x )上⇔x 与y 相等; 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数。
(4)、和坐标轴平行的直线上点的坐标的特征:位于平行于x 轴的直线上的各点的纵坐标相同;位于平行于y 轴的直线上的各点的横坐标相同。
4、点到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y(2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +。
图形与坐标(含答案)
第26课时图形与坐标【基础知识梳理】 1.位置的确定一般地,在平面内确定物体的位置需要个数据. 2.平面直角坐标系 在平面内,两条互相垂直有的数轴组成平面直角坐标系。
通常把其中水平的一条数轴叫做(或),取为正方向;铅直的数轴叫做(或),取为正方向;x 轴和y 轴统称为,它们的公共原点O 叫做直角坐标系的。
3.a 、b 分别叫做点P 4._______x (3)(4)点点点5.(1)x (2)y (3). 6.(1). (2)关于(3)横向拉长(压缩)坐标不变,坐标分别乘以1(1)n n n〉或;纵向拉长(压缩)坐标不变,坐标分别乘以1(1)n n n 〉或.【基础诊断】1、在平面直角坐标系xOy 中,点P(3-,5)关于y 轴的对称点的坐标为() A .(3-,5-)B .(3,5)C .(3.5-)D .(5,3-)2、在平面直角坐标系中,将点A(-2,1)向左平移2个单位到点Q ,则点Q 的坐标为A.(-2,3) B.(0,1) C.(-4,1) D.(-4,-1)3、如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为()A.(1,2).B.(2,1).C.(2,2).D.(3,1).【精典例题】例1如果点P(-3,2m-1)关于原点的对称点在第四象限,求m的取值范围;如果Q(m+1,3m-5)到x轴的距离与到y轴的距离相等,求m的值。
号为正,的值。
要例2、(为.【点拨】并1,纵例3△ABC①把△②以原点平【1A2(A)(-3图23、若点P(a,a﹣2)在第四象限,则a的取值范围是()A 、﹣2<a <0B 、0<a <2C 、a >2D 、a <04、在平面直角坐标系中,?AB CD 的顶点A 、B 、C 的坐标分别是(0,0)、(3,0)、(4.2),则顶点D 的坐标为()A.(7,2)B.(5,4)C.(1,2)D.(2,1)5、以平行四边形ABCD 的顶点A 为原点,直线AD 为x 轴建立直角坐标系,已知B 、D 点的坐标分别为(1,3),(4,0),把平行四边形向上平移2个单位,那么C 点平移后相应的点的坐标是() A 、(3,3)B 、(5,3)C 、(3,5)D 、(5,5)6则点A A .(-47.已知点8.点(1P 9.已知点5,那么点N 10.三、解答题11、△ABC 在平面直角坐标系中的位置如图所示.(1)作出△ABC 关于x 轴对称的的坐标; (22C .12的中心在直角坐标系的原点,一条边AD 与x 轴平行,已知点的坐标分别是(-13、(夹角为B 提升训练 一、选择题1、点P (m -1,2m +1)在第二象限,则m 的取值范围是()A.121>->m m 或B.121<<-m C.m<1D.21->m第6题图第10题图第10题2、点M (﹣sin60°,cos60°)关于x 轴对称的点的坐标是() A.12)B.(12-)C.(12)D.(12-, 3、在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为()??三、解答题11、如图,已知平行四边形ABCD 的对角线AC 、BD 相交于坐标原点O ,AC 与x 轴夹角∠COF =30°,DC ∥x 轴,AC =8,BD =6.求平行四边形ABCD 的四个顶点的坐标.12.如图,把矩形纸片OABC 放入平面直角坐标系中,使OA ,OC 分别落在x 轴、y 轴上,连接AC ,将矩形纸片OABC 沿AC 折叠,使点B 落在点D 的位置,若B (1,2),求点D 的坐标. 13、【阅读】 第8题图 第10题第9题图在平面直角坐标系中,以任意两点P(x1,y1)、Q(x2,y2)为端点的线段中点坐标为(,).【运用】(1)如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为______;(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C 第261、B2、7、-1811、12、B(13.∵矩形BE=2∴则点B,)B提升训练一、选择题1、B2、B3、B4、D5、D二、填空题6、-4或67、18、(3,4)9、(12,)10、210三、解答题11、55,-2) 12、过点D 作DF⊥OA 于F ,∵四边形OABC 是矩形,∴OC∥AB 。
初中数学知识点精讲精析 图形与坐标
23.6 图形与坐标学习目标1.会用合适的方法描述物体的位置,用坐标的方法描述图形的运动变换。
2.能运用图形的变换与坐标的内在联系解决一些简单的生活实际问题。
知识详解1.用坐标确定位置有了平面直角坐标系,我们可以毫不费力地在平面上确定一个点的位置。
现实生活中我们能看到许多这种方法的应用:如用经度和纬度来表示一个地点在地球上的位置,电影院的座位用几排几座来表示,国际象棋中竖条用字母表示、横条用数字表示等。
除了用坐标形式表示物体的位置之外,我们还经常用到的还有用一个方向的角度和距离来表示一个点的位置。
建立直角坐标系后,平面上的点可以用坐标来描述,在平面上由于建立的坐标系不同,单位长度选定不同,所以同一个点描述的坐标也可能不同。
平面上的点也可以用一个角度来描述其位置。
2.图形的变换与坐标一个图形沿x轴左、右平移,它们的纵坐标都不变,横坐标有变化。
向右平移几个单位,横坐标就增加几个单位;向左平移几个单位,横坐标就减少几个单位。
关于x轴或y轴成对称的对应点的坐标的关系:关于x轴对称的对称点的横坐标相同,纵坐标互为相反数。
关于y轴对称的对称点的纵坐标相同,横坐标互为相反数。
在同一直角坐标系中,图形经过平移、轴对称、放大、缩小的变化,其对应顶点的坐标也发生了变化。
【典型例题】例1:2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是()A.北纬31°B.东经103.5°C.金华的西北方向上D.北纬31°,东经103.5°【答案】D【解析】根据地理上表示某个点的位的方法可知选项D符合条件.例2:如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,那么(10,20)表示的位置是()A.点AB.点BC.点CD.点D【答案】B【解析】根据题意可得:小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(﹣40,﹣30)表示,即向西走为x轴负方向,向南走为y轴负方向;则(10,20)表示的位置是向东10,北20;即点B所在位置。
九年级数学图形与坐标知识点分析
图形与坐标情境切入学海导航完全解读知能点1、用坐标确定位置知能点2、图形的变换与坐标(一)平移变换与坐标变化(1)点的平移在平面直角坐标系中,将点(),x y 向右或向左平移()0a a >个单位长度,可以得到对应点(),x a y +或(),x a y -;向上或向下平移()0b b >个单位长度,可以得到对应点(),x y b +或(),.x y b -(2)图形的平移在平面直角坐标系内,如果把一个图形各个点的横坐标都加上(或减去)一个正数k ,相应的新图形就是把原图形向右(或向左)平移k 个单位长度;如果把它各点的纵坐标都加上(或减去)一个正数k ,相应的新图形就是把原图形向上(或向下)平移k 个单位长度.反之,也成立,即将一个图形向上(或向下)平移k 个单位后,其图形上各点的横坐标不变,纵坐标加上(或减去)k 个单位;将一个图形向右(或向左)平移k 个单位后,其图形上各点的纵坐标不变,横坐标加上(或减去)k 个单位.(二)对称变换与坐标变化(1)一个图形沿x 轴对折,则翻折前后两个图形的对应顶点坐标之间的关系是:横标相等,纵坐标互为相反数.(2)一个图形沿y 轴对折,则翻折前后两个图形的对应顶点坐标之间的关系是:横标互为相反数,横坐标相等.(3)在同一直角坐标系中,一个图形绕原点旋转180°,旋转前后两个图形对应顶点之间的关系是:横坐标和纵坐标都互为相反数. (三)图形放大或缩小与坐标变化在同一象限内,把一个图形放大或缩小,变换前后两个图形对应顶点之间的关系是:对应顶点的同名坐标的比等于相似比;不在同一象限内,把一个图形放大或缩小,变换后的图形的顶点坐标可比照上述方法并结合图形求解.友情提醒:(1)在直角坐标系中,求图形运动(就换)后的点的坐标.应先根据题意画出图形,利用图形的直观性求解;(2)求点的坐标应注意各象限内点的坐标的符号特征.特别是在坐标平面内放大(或缩小)的图形的点的坐标.例3、如图,四边形ABCD 的坐标分别为()()()()6,6,8,2,4,0,2,4A B C D ----,画出它的一个以原点O 为位似中心,相似比为12的位似图形.思维点击:问题的关键是要确定位似图形各个顶点的坐标,根据前面的规律,点A 的对应点A’的坐标为116,622⎛⎫-⨯⨯ ⎪⎝⎭,即()3,3-,类似的,可以确定其他顶点的坐标.解:如上图,利用位似变换中对应点的坐标的变化规律,分别取点()()()()----,依次连结点',',',''3,3,'4,1,'2,0,'1,2A B C DA B C D,四边形''''A B C D 就是要求的四边形ABCD的位似图形.温馨提示:位似图形还可能在第四象限,这时四边形的顶点坐标为()()()()A B C D---,作图请同学们自己完成.'3,3,'4,1,'2,0,'1,2X例探究★基础思维探究探究点1、用坐标确定位置例1、建立适当的平面直角坐标系,表示出图中各点的坐标。
专题七:图形与几何《图形与位置》(知识清单)六年级数学下学期期末核心考点集训(人教版)
2023-2024学年期末核心考点集训专题讲义专题07:图形与几何——图形与位置考点01 位置与方向考点02 数对考点03方向和距离考点01 位置与方向知识点一:位置与方向1.生活中辨认方向的方法借助太阳辨认方向。
早晨,面向太阳,前面是东,后面是西,左面是北,右面是南。
傍晚,面向太阳,前面是西,后面是东,左面是南,右面是北。
2.地图上辨认方向的方法上北下南,左西右东。
东——西、南——北、东北——西南、东南——西北。
3.方向是相对的4.辨认东北、西北、东南、西南四个方向的方法①利用指南针辨认。
②只要知道东、南、西、中的任意一个方向, 其余的七个方向就可以确认了。
5.位置的相对性观察点(中心)不同,方向的确定就不同。
6.确定物体位置的两个要素:方向和距离注意:东偏北30°也可说成北偏东60°,但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。
【例题1】如图,下列说法正确的是( B) 。
A.学校在公园南偏东45°方向上B.公园在学校东偏南45°方向上C.学校在公园南偏西45°方向上解析:本题考查的是用方向来确定位置。
我们首先要明确图中正北方向的指向,然后再用方向来描述位置。
本题中学校在公园北偏西45°方向上,而公园在学校南偏东或东偏南45°方向上。
所以正确答案是B。
以广场为观察点,学校在北偏西30度的方向上,下图中正确的是( )。
考点02 数对知识点一:数对用数对表示物体的位置先列(竖排)后行(横排),用小括号把列数和行数相对应的数字括起来,并用逗号隔开,即(列数,行数)。
注:确定第几列一般从左往右数,确定第几行一般从前往后数。
【例题1】下图是南苑小区的平面示意图。
(1)用数对表示各场所的位置。
小超市( 2 ,2 ) A幢( 3 ,4 )大 门 ( 6 ,0 ) B幢( 5 ,7 )(2)车库的位置(6,3)、篮球场的位置(9,6),请在图中标出来。
初中数学图形的坐标与变换知识点归纳
初中数学图形的坐标与变换知识点归纳初中数学中,图形的坐标与变换是一个重要且基础的知识点。
它涉及到平面直角坐标系、图形的平移、旋转、翻转等概念和运算。
下面,我们将对初中数学中相关的知识点进行归纳,帮助大家更好地理解和掌握这些内容。
1. 平面直角坐标系平面直角坐标系是研究平面上点的位置关系的工具。
它由两条互相垂直的数轴(x轴和y轴)组成,原点为坐标原点,分别与x轴和y轴的正方向上的单位长度为1的线段为坐标轴。
2. 点的坐标表示在平面直角坐标系中,每个点都可以表示为一个有序数对(x, y),其中x表示点在x轴上的坐标,y表示点在y轴上的坐标。
这种用数对表示点的方法称为点的坐标。
3. 图形的平移平移是指图形在平面上沿着一定的方向移动一定的距离,但形状和大小保持不变。
平移可以用坐标表示,对于平移向量(a, b),图形上的每个点(x, y)移动到新位置(x+a, y+b)。
4. 图形的旋转旋转是指图形绕一个固定点旋转一定的角度。
对于顺时针旋转θ度的情况,图形上的每个点(x, y)绕旋转中心点O旋转θ度后的新位置为(x', y'),通过一定的数学公式可以得到旋转后的新坐标。
5. 图形的翻转翻转是指图形相对于某个轴对称的操作。
包括水平翻转和垂直翻转两种情况。
水平翻转是指图形相对于x轴对称,垂直翻转是指图形相对于y轴对称。
翻转后图形上的每个点(x, y)的新坐标可以通过一定的变换公式得到。
6. 点的对称性在平面直角坐标系中,点的对称性也是一个重要的概念。
对称点是指两个在坐标系中关于某个点对称的点,就是它们关于这个点的连线的中点。
7. 图形的对称性除了点的对称性,图形的对称性也是一种重要的性质。
图形如果存在一个中心对称轴,当图形上的每一个点关于该对称轴与对应的对称点重合时,我们说图形具有中心对称性。
如果一个图形既有中心对称性,又有轴对称性,则称为既有中心对称性又有轴对称性。
通过对初中数学中图形的坐标与变换知识点的归纳,我们可以更好地理解和应用这些知识,解决与图形相关的问题。
专题20 图形的变换与坐标(学生版)
知识点01:轴对称变换【高频考点精讲】1、轴对称图形把一个图形沿一条直线折叠,直线两边的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,折叠后重合的对应点,叫做对称点。
常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等。
2、轴对称性质(1)关于直线对称的两个图形是全等图形。
(2)对称轴是对应点连线的垂直平分线。
(3)如果两个图形的对应点连线被同一直线垂直平分,那么这两个图形关于这条直线对称。
3、关于x轴、y轴对称的点的坐标(1)关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y);(2)关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y)。
4、最短路线问题在直线l上方有两个点A、B,确定直线l上到A、B的距离之和最短的点,可以通过轴对称来确定,即作出其中一点关于直线l的对称点,对称点与另一点的连线与直线l的交点即为所求。
知识点02:平移变换【高频考点精讲】1、把一个图形整体沿某一直线方向移动一定的距离,得到一个新的图形,图形的这种移动,叫做平移。
2、平移的两个要素:(1)图形平移的方向;(2)图形平移的距离。
3、平移性质:对应点所连线段平行且相等。
4、平移变换与坐标变化(1)坐标点P(x,y)向右平移a个单位,得出P(x+a,y);(2)坐标点P(x,y)向左平移a个单位,得出P(x﹣a,y);(3)坐标点P(x,y)向上平移b个单位,得出P(x,y+b);(4)坐标点P(x,y)向下平移b个单位,得出P(x,y﹣b)。
知识点03:旋转变换【高频考点精讲】1、将一个图形绕一个定点沿某个方向转动一定的角度,这样的图形变换叫做旋转,这个定点叫做旋转中心,转动的角度叫做旋转角。
2、旋转性质(1)对应点到旋转中心的距离相等.(2)对应点与旋转中心所连线段的夹角等于旋转角。
第3章图形与坐标+专题练习:点的坐标变化规律探究习题课件+2023-2024学年湘教版数学八年级下册
返回
13.[中考·潍坊]在平面直角坐标系中,点A1从原点出发, 沿如图所示的方向运动,到达位置的坐标依次为A2(1, 0),A3(1,1),A4(-1,1),A5(-1,-1),A6(2,-1), A7(2,2),…,若到达终点An(506,-505),则n的值为 ___2_0_2_2__.
返回
5.在平面直角坐标系xOy中,对于点P(x,y),我们把点
P(-y+1,x+1)叫作点P的伴随点.已知点A1的伴随 点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…, 这样依次得到点A2,A3,…,An.例如:点A1的坐标为 (3,1),则点A2的坐标为(0,4),….若点A1的坐标为(a, b),则点A2 023的坐标为( B ) A.(-b+1,a+1) B.(-a,-b+2)
返回
8.如图,在平面直角坐标系内,点A,B,C的坐标分别为(1,0),(0,
1),(-1,0).电动跳蚤从坐标原点O出发,第一次跳跃到点P1, 使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点 P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点 P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于 点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成 中心对称;…依次重复,则点P2 023的坐标为( C ) A.(2,0) B.(-2,2)
第三章 图形与坐标 专题练习:点的坐标变化规律探究
习题课件
1.已知点 A1(0,0),A2(1,1),A3(2, 2),A4(3, 3),A5(4, 2),A6(5, 5),…,这些点的坐标具有一定的规律,按照 它们的规律,写出 A2 023 的坐标为( A ) A.(2 022, 2 022) B.(2 023, 2 023) C.(2 024,2 506) D.(2 025,45)
图形与坐标小结与复习
-3 -4
(x,-2)
●
一,三象限角平分线上的点:(a,a) 二,四象限角平分线上的点:(a,-a)
对称点的坐标
(到x轴.y轴和原点的距离)
y
B(-a,b)
P(a,b)
1 -1 0 1 -1 x
C(-a,-b)
A(a,-b)
知识一:读点与描点
例1 写出图中A、B、C、D、E、F、O各 点的坐标 . y G 4 解:A(2, 3); E(4, 0); A 3 B(3, 2); F(0, -3); 2 B C(-2, 1); O(0, 0). C 1 D(-1, -2). E 例2 在平面直角坐标系 -2 -1 0 1 2 3 4 -1 中画出点G(1,4),H(5,2)。 注:坐标是有序的实数 对,横坐标写在前面
0 Dx
结
束
y
y
(-1,3)
0
0
x
x
y
已知,如图,求四边形ABCD的面积。 C(14,8) B(3,6) 6 8 2 11 F 14 D(16,0)
x
3 A(0,0)
E3
2.点A,B在坐标系中的位置如图所示 (1)写出点A,B的坐标; (2)若将线段AB向右平移4个单位长度,再向上 平移3个单位长度得到线段CD,试写出点C,D 的坐标; y C (3)求四边形ABDC的面积. 解:(1) A( - 3,3), B(- 4,0) (2) C(1,6), D(0,3)
2.已知AB∥x轴,A点的坐标为(3,2),并且 (8,2) 或(-2,2) AB=5,则B的坐标为 。
知识三:特殊位置点的坐标
(2)关于坐标轴、原点对称的点的坐标 y P(x,y)关于x轴的对称点P(x,-y) P(x,y)关于y轴的对称点P(-x, C (-3,2) 3 y) 2 P(x,y)关于原点的对称点P(1 x,-y) -3 -2 -1 0
第四章-图形与坐标讲义
一、要点回顾、热身练习 二、典例剖析4.1 探索确定位置的方法知识目标:1.用有序数对表示物体位置。
2.用方向与位置表示坐标。
例1:如图,以灯塔A 为观测点,小岛B 在灯塔A•的北偏东45°方向上,•距灯塔A 20km 处,则以B 为观测点,灯塔A 在小岛B 的______方向上,距小岛B______km 处.练习1:如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( ) A 、(1,0) B 、(-1,0) C 、(-1,1) D 、(1,-1)练习2:已知B 港在离A 点的正北10海里处,一船从B 港出发向正东方向匀速航行,第二次测得该船在A 点的北偏东30°的M 处,半小时后,又测得该船在A 地的北偏东60°的N 处,先画出图形, 再求该船的速度.姓 名 罗 森学科 数 学 上课时间 2014年12月 日学生姓名年级八 学校本周 课程名称 图形与坐标上周 课程内容不等式同步 教学内容 基础题型巩固与提高教学重点课前检查作业完成情况:优□ 良□ 中□ 差□ 建议__________________________________________教学内容练习3:某船上午8点观察到小岛在北偏东450方向,它以每小时20千米的速度向正东航行,上午10点观察到小岛在北偏东300方向,此时船离小岛的距离是多少千米?练习4:将自然数按下图的规律排列.14这个数位于第4行第3列记作(4,3),那么127这个数应记作________.练习5:如图,一个机器人从O点出发,向正东方向走到达点,再向正北方向走到达点,再向正西方向走到达点,再向正南方向走到达点,再向正东方向走到达点.按如此规律走下去,当机器人走到点时,离O点的距离是()A. 10B. 12mC. 15mD. 20m4.2 平面直角坐标系知识要点:1.绘制和建立直角坐标系。
知识点4 坐标与图形的变化(含解析)
知识点4 坐标与图形的变化知识链接1、坐标与图形变化---对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y).(2)关于y轴对称纵坐标相等,横坐标互为相反数.即点P(x,y)关于y轴的对称点P′的坐标是(-x,y).(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m-a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n-b)2、坐标与图形变化---平移(1)平移变换与坐标变化向右平移a个单位,坐标P(x,y)⇒P(x+a,y)向左平移a个单位,坐标P(x,y)⇒P(x-a,y)向上平移b个单位,坐标P(x,y)⇒P(x,y+b)向下平移b个单位,坐标P(x,y)⇒P(x,y-b)(2)在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)3 坐标与图形变化---旋转(1)关于原点对称的点的坐标.即点P(x,y)关于原点O的对称点是P′(-x,-y).(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.同步练习1.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A.(1,3)B.(2,2)C.(2,4)D.(3,3)考点:坐标与图形变化-平移.分析:根据向上平移,横坐标不变,纵坐标加解答.解答:∵点(2,3)向上平移1个单位,∴所得到的点的坐标是(2,4).故选:C.2.(2014•呼伦贝尔)将点A(-2,-3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限考点:坐标与图形变化-平移.分析:先利用平移中点的变化规律(横坐标右移加,左移减;纵坐标上移加,下移减) ,,求出点B的坐标,再根据各象限内点的坐标特点即可判断点B所处的象限.解答:点A(-2,-3)向右平移3个单位长度,得到点B的坐标为为(1,-3),故点在第四象限.故选D.3.(2014•牡丹江)如图,把ABC经过一定的变换得到△A′B′C′,如果△ABC上点P的坐标为(x,y),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(-x,y-2)B.(-x,y+2)C.(-x+2,-y)D.(-x+2,y+2)考点:坐标与图形变化-平移.分析:先观察△ABC和△A′B′C′得到把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,然后把点P(x,y)向上平移2个单位,再关于y轴对称得到点的坐标为(-x,y+2),即为P′点的坐标.解答:∵把△ABC向上平移2个单位,再关于y轴对称可得到△A′B′C′,∴点P(x,y)的对应点P′的坐标为(-x,y+2).故选:B.4.(2014•潍坊)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换,如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2012,2)B.(-2012,-2)C.(-2013,-2)D.(-2013,2)考点:翻折变换(折叠问题);正方形的性质;坐标与图形变化-对称、平移.专题:规律型.分析:首先由正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1),然后根据题意求得第1次、2次、3次变换后的对角线交点M的对应点的坐标,即可得规律:第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),继而求得把正方形ABCD连续经过2014次这样的变换得到正方形ABCD的对角线交点M的坐标.解答:∵正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).∴对角线交点M的坐标为(2,2),根据题意得:第1次变换后的点M的对应点的坐标为(2-1,-2),即(1,-2),第2次变换后的点M的对应点的坐标为:(2-2,2),即(0,2),第3次变换后的点M的对应点的坐标为(2-3,-2),即(-1,-2),第n次变换后的点M的对应点的为:当n为奇数时为(2-n,-2),当n为偶数时为(2-n,2),∴连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为(-2012,2).故选:A.点评:此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的对角线交点M的对应点的坐标为:当n为奇数时为(2-n,-2),当n 为偶数时为(2-n,2)是解此题的关键.5.(2014•昆明)如图,在平面直角坐标系中,点A坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O′A′,则点A的对应点A′的坐标为.考点:坐标与图形变化-平移.分析:根据点向左平移a个单位,坐标P(x,y)⇒P(x-a,y)进行计算即可.解答:∵点A坐标为(1,3),∴线段OA向左平移2个单位长度,点A的对应点A′的坐标为(1-2,3),即(-1,3),故答案为:(-1,3).6.(2014•宜宾)在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是.考点:坐标与图形变化-平移;关于x轴、y轴对称的点的坐标.分析:首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.解答:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,-2),故答案为:(2,-2).7.(2014•厦门)在平面直角坐标系中,已知点O(0,0),A(1,3),将线段OA向右平移3个单位,得到线段O1A1,则点O1的坐标是,A1的坐标是.考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,纵坐标不变解答.解答:∵点O (0,0),A (1,3),线段OA 向右平移3个单位,∴点O 1的坐标是(3,0),A 1的坐标是(4,3).故答案为:(3,0),(4,3).*8.(2014•巴中)如图,直线y =−34x +4与x 轴、y 轴分别交于A 、B 两点,把△A 0B 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是 .考点:坐标与图形变化-旋转.分析:首先根据直线AB 来求出点A 和点B 的坐标,B ′的横坐标等于OA +OB ,而纵坐标等于OA ,进而得出B ′的坐标.解答:直线y =-34x +4与x 轴,y 轴分别交于A (3,0),B (0,4)两点, ∵旋转前后三角形全等,∠O ′AO =90°,∠B ′O ′A =90°∴OA =O ′A ,OB =O ′B ′,O ′B ′∥x 轴,∴点B ′的纵坐标为OA 长,即为3,横坐标为OA +OB =OA +O ′B ′=3+4=7,故点B ′的坐标是(7,3),故答案为:(7,3).点评:本题主要考查了对于图形翻转的理解,其中要考虑到点B 和点B ′位置的特殊性,以及点B ′的坐标与OA 和OB 的关系.9.(2013•梅州)如图,在平面直角坐标系中,A (-2,2),B (-3,-2)(1)若点C 与点A 关于原点O 对称,则点C 的坐标为______;(2)将点A 向右平移5个单位得到点D ,则点D 的坐标为______;(3)由点A ,B ,C ,D 组成的四边形ABCD 内(不包括边界)任取一个横、纵坐标均为整数的点,求所取的点横、纵坐标之和恰好为零的概率.考点:关于原点对称的点的坐标;坐标与图形变化-平移;概率公式.分析:(1)根据关于原点的对称点,横纵坐标都互为相反数求解即可;(2)把点A 的横坐标加5,纵坐标不变即可得到对应点D 的坐标;(3)先找出在平行四边形内的所有整数点,再根据概率公式求解即可.解答:(1)∵点C 与点A (-2,2)关于原点O 对称,∴点C 的坐标为(2,-2);(2)∵将点A 向右平移5个单位得到点D ,∴点D 的坐标为(3,2);(3)由图可知:A (-2,2),B (-3,-2),C (2,-2),D (3,2),∵在平行四边形ABCD 内横、纵坐标均为整数的点有15个,其中横、纵坐标和为零的点有3个,即(-1,1),(0,0),(1,-1),∴P =153=51. 点评:本题考查了关于原点对称的点的坐标,坐标与图形变化-平移,概率公式.难度适中,掌握规律是解题的关键.10.(黄冈)在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A 、B 、C 的对应点分别是A 1、B 1、C 1,若点A 1的坐标为(3,1).则点C 1的坐标为______.考点:坐标与图形变化-平移.分析:首先根据A 点平移后的坐标变化,确定三角形的平移方法,点A 横坐标加5,纵坐标减2,那么让点C 的横坐标加5,纵坐标-2即为点C 1的坐标.解答:由A (-2,3)平移后点A 1的坐标为(3,1),可得A 点横坐标加5,纵坐标减2,则点C 的坐标变化与A 点的变化相同,故C 1(2+5,0-2),即(7,-2). 故答案为:(7,-2).点评:本题主要考查图形的平移变换,解决本题的关键是根据已知对应点找到所求对应点之间的变化规律.11.(北京)操作与探究:(1)对数轴上的点P 进行如下操作:先把点P 表示的数乘以31,再把所得数对应的点向右平移1个单位,得到点P 的对应点P ′.点A ,B 在数轴上,对线段AB 上的每个点进行上述操作后得到线段A ′B ′,其中点A ,B 的对应点分别为A ′,B ′.如图1,若点A 表示的数是-3,则点A ′表示的数是______;若点B ′表示的数是2,则点B 表示的数是______;已知线段AB 上的点E 经过上述操作后得到的对应点E ′与点E 重合,则点E 表示的数是______.(2)如图2,在平面直角坐标系xOy 中,对正方形ABCD 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′C ′D ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′.已知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,求点F 的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质.。
画相似图形、位似图形及图形与坐标知识点
画相似图形及图形与坐标
一、位似图形的定义:如果两个图形不仅形状相同,而且每组对应顶点的连线相交于一点,对应边相
互平行(或在同一直线上),那么这样的两个相似图形是位似图形。
辨析:(1)位似图形与相似图形的关系:位似图形是具有特殊位置关系的相似图形,位似图形一定是相似图形,但相似图形不一定是位似图形。
(2)两个位似图形的位似中心只有一个。
例1判断每组图形中两个图形是不是位似图形,如果是指出位似中心
二、位似图形的性质——如果两个图形位似,那么他们的相似比就是相似比。
(1)位似图形上的任意一对对应点到位似中心的距离之比等于相似比。
(2)位似图形对应点的连线或延长线交于一点。
(3)位似图形对应线段平行(或在同一条直线上)且成比例。
(4)位似图形的对应角相等。
三、位似图形的画法
四、确定物体位置的方法
方法1:用坐标确定位置。
先选取某点为坐标原点,建立平面直角坐标系,然后用一对有序实数来表示一个点的位置,即为某物体的位置。
方法2:用一个角度和距离确定点的位置。
先选定某个参照物和某个方向,然后用一个角度和距离来表示一个点的位置,即为某物体的位置。
这种方法在军事和地理中经常用到。
注意:用此方法确定点的位置时,角度与距离二者缺一不可。
五、图形的变换与坐标
1.在平移过程中(1)左右移,横坐标变,纵坐标不变.
(2)上下移,纵坐标变,横坐标不变.
2.关于x轴对称的图形对应点的横坐标不变,纵坐标互为相反数;
关于y轴对称的图形对应点的纵坐标不变,横坐标互为相反数.
3.位似中心是原点的位似变换中,坐标扩大或缩小相同的倍数.。
图形与坐标练习+知识点
图形与坐标练习+知识点1、有序数对:我们把这种有顺序的两个数a 与b 组成的数队,叫做有序实数对。
记作(a ,b ); 注意:a 、b 的先后顺序对位置的影响。
2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向 竖直的数轴称为y 轴或纵轴,取向上方向为正方向 两坐标轴的交点为平面直角坐标系的原点 3、象限:坐标轴上的点不属于任何象限 P (x ,y )第一象限:x>0,y>0 即(+,+) 第二象限:x<0,y>0 即(-,+) 第三象限:x<0,y<0 即(-,-) 第四象限:x>0,y<0 即(+,-) 横坐标轴上的点:(x,0) 即:x 轴上的点,纵坐标y 等于0; 纵坐标轴上的点:(0,y ) 即:y 轴上的点,横坐标x 等于0; 坐标轴上的点不属于任何象限;平行于x 轴(或横轴)的直线上的点的纵坐标相同;平行于y 轴(或纵轴)的直线上的点的横坐标相同。
4、距离问题:点(x,y )距x 轴的距离为︱y ︱距y 轴的距离为︱x ︱距原点的距离为22x y +坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为 ︱x 1-x 2︱点A (0,y 1)点B (0,y 2),则AB 距离为 ︱y 1-y 2︱坐标系中任意两点(x 1,y 1),(x 2,y 2)之间距离为22)()(2121y y x x -+-6、角平分线问题:若点(x,y )在一、三象限角平分线上,则x=y (第一、三象限角平分线上的点的横纵坐标相同;)若点(x,y )在二、四象限角平分线上,则x=-y (第二、四象限角平分线上的点的横纵坐标相反。
)7、对称问题:两点关于x 轴对称,则x 同,y 反(关于x 轴对称的点的横坐标相同,纵坐标互为相反数)关于y 轴对称,则y 同,x 反(关于y 轴对称的点的纵坐标相同,横坐标互为相反数)关于原点对称,则x 反,y 反(关于原点对称的点的横坐标、纵坐标都互为相反数 8、中点坐标 :点A (x 1,0)点B (x 2,0),则AB 中点坐标为 (2x 21x + ,0)点A (x 1,y 1)点B (x 2,y 2),则AB 中点坐标为 (2x 21x + ,2y 21y +) 9、平移:在平面直角坐标系中,将点(x,y )向右平移a 个单位长度,可以得到对应点(x+a,y )向左平移a 个单位长度,可以得到对应点(x-a,y ) 向上平移a 个单位长度,可以得到对应点(x,y+a ) 向下平移a 个单位长度,可以得到对应点(x,y-a ) 10、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:建立坐标系,按条件选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
(完整版)八年级数学上知识点+习题+答案
(一)三角形部分一、知识点汇总1. 三角形的定义定义:不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC用符号表示为△ABC。
三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b 表示,顶点A所对的边BC可用a表示。
注意:(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)△ABC是三角形ABC的符号标记,单独的没有意义.2、(1)三角形按边分类:(2)三角形按角分类:3、三角形的三边关系三角形的任意两边之和大于第三边. 三角形的任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是:任意两边之和大于第三边.4、和三角形有关的线段:(1)三角形的中线三角形中,连结一个顶点和它对边中点的线段表示法:1、AD是△ABC的BC上的中线. 2、BD=DC=0.5BC。
3、AD是ABC的中线;注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角与交点之间的线段。
表示法:1、AD是△ABC的∠BAC的平分线.2、∠1=∠2=0。
5∠BAC。
3、AD平分BAC,交BC于D注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;(3)三角形的高三角形的高:从三角形的一顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高,表示法:1、AD是△ABC的BC上的高。
2、AD⊥BC于D。
3、∠ADB=∠ADC=90°.4、AD是△ABC的高.注意:①三角形的高是线段:高与垂线不同,高是线段,垂线是直线.②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在三角形外;三角形三条高所在直线交于一点.(而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。
七年级图形坐标知识点
七年级图形坐标知识点图形坐标作为数学中的一个重要知识点,是数学学习中必须掌握的基础内容。
在初中数学中,这一知识点又被归为几何的相关章节,因此需要特别重视。
本文将从图形坐标的概念、基本性质和应用方面进行详细介绍。
一、图形坐标的概念图形坐标是指平面直角坐标系中的点坐标。
在平面直角坐标系中,数轴水平表示x轴,数轴垂直表示y轴。
每一个点在平面直角坐标系中均有一个唯一的坐标来标识。
在平面直角坐标系中,水平向右为正方向,垂直向上也为正方向,点的坐标为(x, y),其中x为横坐标,y为纵坐标。
平面直角坐标系中的点坐标可以用坐标点表示,也可以用向量来表示。
坐标与向量在数学上都有广泛的应用。
二、图形坐标的基本性质1. 对称性:在平面直角坐标系中,点关于某一坐标轴的对称点坐标,只有坐标中该轴的数值相反。
比如,点A(2,4)关于x轴对称的点为A'(2,-4)。
2. 距离公式:在平面直角坐标系中,两个点之间的距离公式为√(x2-x1)²+(y2-y1)²。
其中,(x1, y1)和(x2, y2)是两个点的坐标。
3. 中点公式:若平面直角坐标系中A(x1,y1)和B(x2,y2)两点的坐标分别为(x1,y1)和(x2,y2),则它们的中点坐标为((x1+x2)/2,(y1+y2)/2)。
三、图形坐标的应用1. 直线的方程:在平面直角坐标系中,一条直线可以用方程y=kx+b来表示。
其中,k是斜率,b是截距。
斜率表示直线的倾斜程度,所以需特别关注斜率的正负和数值大小。
2. 曲线的方程:曲线在平面直角坐标系中可以是抛物线、双曲线、圆等等。
每种曲线的方程都有一定的特征,学生应当掌握这些特征,以便快速分辨和求解。
3. 图形的位置关系:平面直角坐标系中的各种图形之间有不同的位置关系,例如平行、垂直、相交、内含、外离等。
在作题时,首先应该清楚各个图形之间的位置关系,再进行具体的计算。
四、总结图形坐标是初中数学中的一个基础知识点,它不仅在几何、代数等知识领域中得到应用,而且在后续的学科学习中也具有重要作用。
图形与坐标常考知识点
例 1 ( ) 平 面 直 角 坐 标 系 中 , P( 1 3 位 于 ( 1在 点 一 ,)
( 0 0年 金 华 卷 ) 21
) .
A. 一 象 限 第 C. 三 象 限 第
B. 二 象 限 第 D. 四象 限 第 ) 21 .( 0 0年 泉 州卷 )
D.( , ) 3 5
( ) 角 坐 标 系 内点 P 一 3 关 于 原 点 的 对 称 点 p 的 坐标 为 2直 ( 2, ) ( ) 21 .( 0 0年 綦 江 卷 )
A.( 一 2, 3) C 一 ,) .( 2 3 B 2, ) .( 3 D 一 一 ) .( 2, 3
位 , 向右 平 移 3个 单 位 , Ⅳ 的 坐标 为 ( 4 . 再 点 2, )
温 馨 ,提 示 : 图 形 的 平 移 中 . j 、 在 图形 上每 点 移 动 的 力 向 和 离
当 ㈣的 .
囡‘ 幽
目■囡■衄
考 点 四 图形 的旋 转 与点 的 坐标 例 4 . ( 0 0年 毕 节 卷 )正 方 形 21
解 ( ) D; 2 选 A. 1选 ()
温 馨 小提 示 : 称 点 的 坐标 问题 , 于 容 易题 .点 P “ b) 对 属 (, 关
于 轴 对 称 的 点 的 坐 标 为 (1 一 , 美 于 v轴 对 称 的 点 的 坐 标 为 e, b)
( , b) 关 于 原 点 的 对 称 点 的 坐 标 为 ( , ) 一,, , 一 一
( 如 果 点 P在 第 二 象 限 内 , P到 轴 的 距 离 是 4, Y轴 2) 点 到 的距 离 是 3 那 么 点 P的坐 标 为 ( ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 平面直角坐标系知识点归纳
1、有序数对:我们把这种有顺序的两个数a 与b 组成的数队,叫做有序实数对。
记作(a ,b ); 注意:a 、b 的先后顺序对位置的影响。
2、平面直角坐标系:我们可以在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向 竖直的数轴称为y 轴或纵轴,取向上方向为正方向 两坐标轴的交点为平面直角坐标系的原点 3、象限:坐标轴上的点不属于任何象限 P (x ,y )
第一象限:x>0,y>0 即(+,+) 第二象限:x<0,y>0 即(-,+) 第三象限:x<0,y<0 即(-,-) 第四象限:x>0,y<0 即(+,-) 横坐标轴上的点:(x ,0) 即:x 轴上的点,纵坐标y 等于0; 纵坐标轴上的点:(0,y ) 即:y 轴上的点,横坐标x 等于0; 坐标轴上的点不属于任何象限;
平行于x 轴(或横轴)的直线上的点的纵坐标相同;
平行于y 轴(或纵轴)的直线上的点的横坐标相同。
4、距离问题:点(x ,y )距x 轴的距离为︱y ︱
距y 轴的距离为︱x ︱
距原点的距离为22x y +
坐标轴上两点间距离:点A (x 1,0)点B (x 2,0),则AB 距离为 ︱x 1-x 2︱
点A (0,y 1)点B (0,y 2),则AB 距离为 ︱y 1-y 2︱
坐标系中任意两点(x 1,y 1),(x 2,y 2)之间距离为
22)()(2121y y x x -+-
6、角平分线问题:若点(x ,y )在一、三象限角平分线上,则x=y (第一、三象限角平分线上的点的横纵坐标相同;)
若点(x ,y )在二、四象限角平分线上,则x=-y (第二、四象限角平分线上的点的横纵坐标相反。
)
7、对称问题:两点关于x 轴对称,则x 同,y 反(关于x 轴对称的点的横坐标相同,纵坐标互为相反数)
关于y 轴对称,则y 同,x 反(关于y 轴对称的点的纵坐标相同,横坐标互为相反数)关于原点对称,则x 反,y 反(关于原点对称的点的横坐标、纵坐标都互为相反数 8、中点坐标 :点A (x 1,0)点B (x 2,0),则AB 中点坐标为 (
2
x 2
1x + ,0) 点A (x 1,y 1)点B (x 2,y 2),则AB 中点坐标为 (
2x 21x + ,2
y 2
1y +)
9、平移:
在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x+a ,y )
向左平移a 个单位长度,可以得到对应点(x-a ,y ) 向上平移a 个单位长度,可以得到对应点(x ,y+a ) 向下平移a 个单位长度,可以得到对应点(x ,y-a ) 10、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:
建立坐标系,按条件选择一个适当的参照点为原点,确定x 轴、y 轴的正方向; 根据具体问题确定适当的比例尺,在坐标轴上标出单位长度; 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
练习:
1.平面直角坐标系中点P (1-,2)所在的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.点P 的横坐标是3-,且到x 轴的距离是5,则P 点的坐标是( )
A.(5,3-) 或(5-,3-)
B.(3-,5) 或(3-,5-)
C.(3-,5)
D.(3-,5-) 3.在平面直角坐标系中,点P (3-,4)关于y 轴对称点的坐标为( )
A.(3-,4)
B.(3,4)
C.(3,-4)
D.(3-,-4)
4.如图是株洲市的行政区域平面地图,下列关于方位的说法明显错误..
的是 A .炎陵位于株洲市区南偏东约35︒的方向上 B .醴陵位于攸县的北偏东约16︒的方向上 C .株洲县位于茶陵的南偏东约40︒的方向上 D .株洲市区位于攸县的北偏西约21︒的方向上
5.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的一半,则点A 的对应点的坐标是( )
A.(4-,3)
B.(4,3)
C.(2-,6)
D.(2-,3)
6.如图,把△ABC 经过一定的变换得到△A /B /C /
,如果△ABC 上的点
P 的坐标为(a ,b ),那么这个点在△A /B /C /上的对应点P /
的坐标为( ) A.(2-a ,3-b ) B.(3-a ,2-b ) C.(3+a ,2+b ) D.(2+a ,3+b )
7.根据生物学研究结果,青春期男女生身高增长速度呈现如下图规律,由图可以判断,下列说法错误的是( )
A .男生在13岁时身高增长速度最快
B .女生在10岁以后身高增长速度放慢
C .11岁时男女生身高增长速度基本相同
D .女生身高增长的速度总比男生慢
第5题图 第4题图 .
.醴陵
.攸县
.茶陵
.炎陵
·
株洲市区 株洲县
北
南
东
西
8.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是( ) A .6
B .7
C .8
D .9
9.在平面直角坐标系中,点P (1-a ,a )是第二象限内的点,则a 的取值范围
是 。
10.已知点A (a ,4-),B (3,b )关于原点对称,则a = ,b = 。
11.将点P (2-,1)先向左平移1个单位长度,再向上平移2个单位长度得到点Q ,则Q 点的坐标是 。
12.点M (2-,4-)到x 轴的距离是 ,到y 轴的距离是 ,到原点的距离是 。
13.在平面直角坐标系中,△ABC 的顶点坐标分别为A (6,6),B (-3,3),C (3,3)△ABC 的面积是 。
14.如图,12时我鱼政船在H 岛30海里的A 处,渔政船以每小时40海里的速度向东航行,13时到达B 处,并测得H 岛的方向是北偏西54°。
则BC= 海里,此时渔政船在H 岛南偏东 °的方向,距H 岛 海里。
15.如图,在平面直角坐标系中,△ABC 是边长为2的等边三角形,则A 、B 、C 三个顶点的坐标分别是A ,B ,C 。
16.在平面直角坐标系中,已知点A (2,2)、B (2,3),点P 在y 轴上,且三角形APB 为直角三角形,则点P 的坐标是 。
简答题:
17.如图,写出平面直角坐标系中点A ,B ,C ,D ,E ,F 的坐标。
年龄/岁
7 8 9
10 11 12 13 14 15 16 17 18
8 7 6 5 4 3 2 1
增长速度(厘米/
男
女
女
男 B A
第8题图
第6题图 第七题图
18.孔明和爸爸、妈妈到人民公园游玩,回到家后,他利用平面直角坐标系画出公园的景区地图,如图所示,可是他忘记了在图中标出原点和x 轴、y 轴。
只知道游乐园D 的坐标为(2,2-),请你为他画出坐标系,并求写出各景点的坐标。
19.在如图所示的平面直角坐标系中,描出A (2,1), B (0,3-),C (4,4-)三点,依次连接各点得到△ABC ,分别作出△ABC 关于x 轴和y 轴对称的图形,并写出它们各顶点的坐标。
20.如图,已知A (3,4-),B (4,3-),C (5,0),求四边形ABCO 的面积。