图像平滑与锐化处理

合集下载

图像的平滑与锐化

图像的平滑与锐化

昆明理工大学(数字图像处理)实验报告实验名称:图像的平滑与锐化专业:电子信息科学与技术姓名:学号:成绩:[实验目的]1、理解图像平滑与锐化的基本原理。

2、掌握图像滤波的基本定义及目的。

3、理解空间域滤波的基本原理及方法。

4、编程实现图像的平滑与锐化。

[实验原理]空间滤波器都是基于模板卷积,其主要工作步骤是:1)将模板在图中移动,并将模板中心与图中某个像素位置重合;2)将模板上的系数与模板下对应的像素相乘;3)将所有乘积相加;4)将和(模板的输出响应)赋给图中对应模板中心位置的像素。

1、图像的平滑目的:减少噪声方法:空域法:邻域平均法、低通滤波、多幅图像求平均、中值滤波(1)邻域平均(均值滤波器)所谓的均值滤波是指在图像上对待处理的像素给一个模板,该模板包括了其周围的邻近像素。

将模板中的全体像素的均值来替代原来的像素值的方法。

(2)中值滤波(统计排序滤波)一般地 , 设有一个一维序列 f1 , f2 , f3 ,…, fn ,取该窗口长度(点数)为 m (m为奇数 ),对一维序列进行中值滤波,就是从序列中相继抽取m 个数 fi-v , … , fi-1, fi,fi+1 , … , fi+v;其中 fi 为窗口的中心点值 ,v = ( m - 1 )/ 2 。

再将这 m 个点 值按 其数值大小排序,取中间的 那个数作为滤波输出 ,用数学公式表示为:yi = med fi-v,…,fi-1,fi,fi+1,…,fi+v其中i ∈Z,v=(m-1)/2 。

中值滤波一般采用一个含有奇数个点的滑动窗口,将窗口中各点灰度值的中值来替代指定点(一般是窗口的中心点)的灰度值。

二维中值滤波可有下式表示 :yi = med { fij }中值滤波的性质有 :(1) 非线性 , 两序列 f ( r ) , g ( r )med{ f ( r ) + g ( r ) } ≠ med{ f ( r ) } + med{ g ( r ) }(2) 对尖峰性干扰效果好,即保持边缘的陡度又去掉干扰,对高斯分 布噪声效果差;(3) 对噪声延续距离小于W/2的噪声抑制效果好,W 为窗口长度。

图像的平滑处理与锐化处理

图像的平滑处理与锐化处理

数字图像处理作业题目:图像的平滑处理与锐化处理姓名:***学号:************专业:计算机应用技术1.1理论背景现实中的图像由于种种原因都是带噪声的,噪声恶化了图像质量,使图像模糊,甚至淹没和改变特征,给图像分析和识别带来了困难。

一般数字图像系统中的常见噪声主要有:高斯噪声、椒盐噪声等。

图像去噪算法根据不通的处理域,可以分为空间域和频域两种处理方法。

空间域处理是在图像本身存在的二维空间里对其进行处理。

而频域算法是用一组正交函数系来逼近原始信号函数,获得相应的系数,将对原始信号的分析转动了系数空间域。

在图像的识别中常需要突出边缘和轮廓信息,图像锐化就是增强图像的边缘和轮廓。

1.2介绍算法图像平滑算法:线性滤波(邻域平均法)对一些图像进行线性滤波可以去除图像中某些类型的噪声。

领域平均法就是一种非常适合去除通过扫描得到的图像中的噪声颗粒的线性滤波。

领域平均法是空间域平滑噪声技术。

对于给定的图像()j i f,中的每个像素点()nm,,取其领域S。

设S含有M个像素,取其平均值作为处理后所得图像像素点()nm,处的灰度。

用一像素领域内各像素灰度平均值来代替该像素原来的灰度,即领域平均技术。

领域S的形状和大小根据图像特点确定。

一般取的形状是正方形、矩形及十字形等,S 的形状和大小可以在全图处理过程中保持不变,也可以根据图像的局部统计特性而变化,点(m,n)一般位于S 的中心。

如S 为3×3领域,点(m,n)位于S 中心,则()()∑∑-=-=++=1111,91,i j j n i m f n m f 假设噪声n 是加性噪声,在空间各点互不相关,且期望为0,方差为2σ,图像g 是未受污染的图像,含有噪声图像f 经过加权平均后为 ()()()()∑∑∑+==j i n M j i g M j i f M n m f ,1,1,1, 由上式可知,经过平均后,噪声的均值不变,方差221σσM =,即方差变小,说明噪声强度减弱了,抑制了噪声。

数字图像处置图像平滑和锐化

数字图像处置图像平滑和锐化

数字图像处理
21
CTArray< plex > CImageProcessing::Low_pass_filter( CTArray< plex > original_signal ){ long dimension = original_signal.GetDimension(); double threshold = 0; for( int index = 0; index < dimension; index ++ ) { double magnitude = sqrt( original_signal[ index ].m_re * original_signal[ index ].m_re + original_signal[ index ].m_im * original_signal[ index ].m_im ); if( magnitude > threshold ) threshold = magnitude; } threshold /= 100; for( int index = 0; index < dimension; index ++ ) { double magnitude = sqrt( original_signal[ index ].m_re * original_signal[ index ].m_re + original_signal[ index ].m_im * original_signal[ index ].m_im ); double eplon = 1.0 / sqrt( 1 + ( threshold / magnitude ) * ( threshold / magnitude ) ); original_signal[ index ].m_re *= eplon; original_signal[ index ].m_im *= eplon; } return original_signal;}

图像锐化算法实现

图像锐化算法实现
实时性较差
算法原理:通过将图像分解成多个频带,对每个频带进行滤波处理,再合并处理后的频带得到 锐化图像。
算法特点:能够更好地保留图像细节,提高图像清晰度,适用于各种类型的图像。
算法步骤:频带分解、滤波处理、频带合并、锐化图像。
算法应用:广泛应用于图像处理领域,如医学影像、遥感图像、安全监控等。
算法原理:根据图像局部特性自适 应调整滤波器系数,以提高图像边 缘清晰度
优点:对噪声具有较好的鲁棒性, 能够自适应地处理不同场景下的图 像锐化
添加标题
添加标题
常用实现方法:Laplacian、 Unsharp Masking等
添加标题
添加标题
适用场景:适用于各种类型的图像, 尤其适用于存在噪声和模糊的图像
图像锐化的实现步 骤
将彩色图像转换为灰度图像 增强图像对比度 突出图像边缘信息 减少图像数据量,加速处理速度
边缘检测是图像 锐化的重要步骤, 通过检测图像中 的边缘信息,可 以对图像进行清 晰化处理。
常见的边缘检测 算法包括Sobel、 Prewitt、Canny 等,这些算法通 过不同的方式检 测图像中的边缘 信息。
在边缘检测之后, 通常需要进行阈 值处理,将边缘 信息与阈值进行 比较,保留重要 的边缘信息,去 除不必要的噪声。
经过边缘检测和 阈值处理后,可 以对图像进行锐 化处理,使其更 加清晰。
对图像进行滤波处理,去除噪声和干扰 选择合适的滤波器,如高斯滤波器、中值滤波器等 对滤波后的图像进行锐化处理,增强边缘和细节 可根据实际需求选择不同的滤波器和参数,以达到最佳效果
对图像进行滤波处理,去除噪声 对图像进行边缘检测,突出边缘信息 对图像进行对比度增强,提高图像的清晰度 对图像进行细节增强,增强图像的纹理和细节信息

浅谈图像平滑滤波和锐化的区别及用途总结

浅谈图像平滑滤波和锐化的区别及用途总结

浅谈图像平滑滤波和锐化的区别及⽤途总结空域滤波技术根据功能主要分为与滤波。

能减弱或消除图像中的⾼频率分量⽽不影响低频分量,⾼频分量对应图像中的区域边缘等值具有较⼤变化的部分,可将这些分量滤去减少局部起伏,使图像变得⽐较平滑。

也可⽤于消除噪声,或在提取较⼤⽬标前去除太⼩的细节或将⽬标的⼩间断连接起来。

滤波正好相反,滤波常⽤于增强被模糊的细节或⽬标的边缘,强化图像的细节。

⼀、基本的灰度变换函数1.1.图像反转适⽤场景:增强嵌⼊在⼀幅图像的暗区域中的⽩⾊或灰⾊细节,特别是当⿊⾊的⾯积在尺⼨上占主导地位的时候。

1.2.对数变换(反对数变换与其相反)过程:将输⼊中范围较窄的低灰度值映射为输出中较宽范围的灰度值。

⽤处:⽤来扩展图像中暗像素的值,同时压缩更⾼灰度级的值。

特征:压缩像素值变化较⼤的图像的动态范围。

举例:处理傅⾥叶频谱,频谱中的低值往往观察不到,对数变换之后细节更加丰富。

1.3.幂律变换(⼜名:伽马变换)过程:将窄范围的暗⾊输⼊值映射为较宽范围的输出值。

⽤处:伽马校正可以校正幂律响应现象,常⽤于在计算机屏幕上精确地显⽰图像,可进⾏对⽐度和可辨细节的加强。

1.4.分段线性变换函数缺点:技术说明需要⽤户输⼊。

优点:形式可以是任意复杂的。

1.4.1.对⽐度拉伸:扩展图像的动态范围。

1.4.2.灰度级分层:可以产⽣⼆值图像,研究造影剂的流动。

1.4.3.⽐特平⾯分层:原图像中任意⼀个像素的值,都可以类似的由这些⽐特平⾯对应的⼆进制像素值来重建,可⽤于压缩图⽚。

1.5.直⽅图处理1.5.1直⽅图均衡:增强对⽐度,补偿图像在视觉上难以区分灰度级的差别。

作为⾃适应对⽐度增强⼯具,功能强⼤。

1.5.2直⽅图匹配(直⽅图规定化):希望处理后的图像具有规定的直⽅图形状。

在直⽅图均衡的基础上规定化,有利于解决像素集中于灰度级暗端的图像。

1.5.3局部直⽅图处理:⽤于增强⼩区域的细节,⽅法是以图像中的每个像素邻域中的灰度分布为基础设计变换函数,可⽤于显⽰全局直⽅图均衡化不⾜以影响的细节的显⽰。

图像锐化报告

图像锐化报告

一,实验目的。

1、掌握图像锐化的主要原理和常用方法2、掌握常见的边缘提取算法3、利用C#实现图像的边缘检测二,实验原理。

图像锐化就是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,亦分空域处理和频域处理两类。

图像平滑往往使图像中的边界、轮廓变的模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。

图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。

从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。

在水下图像的增强处理中除了去噪,对比度扩展外,有时候还需要加强图像中景物的边缘和轮廓。

而边缘和轮廓常常位于图像中灰度突变的地方,因而可以直观地想到用灰度的差分对边缘和轮廓进行提取。

图像边缘锐化的基本方法:微分运算,梯度锐化,边缘检测。

微分运算微分运算应用在图像上,可使图像的轮廓清晰。

微分运算有:纵向微分运算,横向微分运算,双方向一次微分运算。

单向微分运算双向微分微分运算作用:相减的结果反映了图像亮度变化率的大小。

像素值保持不变的区域,相减的结果为零,即像素为黑;像素值变化剧烈的区域,相减后得到较大的变化率,像素灰度值差别越大,则得到的像素就越亮,图像的垂直边缘得到增强。

梯度锐化: 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像鋭化技术,使边缘变得清晰。

梯度锐化常用的方法有:直接以梯度值代替;辅以门限判断;给边缘规定一个特定的灰度级;给背景规定灰度级;根据梯度二值化图像。

边缘检测边缘检测算子检查每个像素的邻域并对灰度变化率进行量化,通常也包括方向的确定。

大多数是基于方向导数模板求卷积的方法。

将所有的边缘模板逐一作用于图像中的每一个像素,产生最大输出值的边缘模板方向,表示该点边缘的方向,如果所有方向上的边缘模板接近于零,该点处没有边缘;如果所有方向上的边缘模板输出值都近似相等,没有可靠边缘方向。

数字图像处理-图像平滑和锐化变换处理

数字图像处理-图像平滑和锐化变换处理

图像平滑和锐化变换处理一、实验容和要求1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。

2、空域平滑:box、gauss模板卷积。

3、频域平滑:低通滤波器平滑。

4、空域锐化:锐化模板锐化。

5、频域锐化:高通滤波器锐化。

二、实验软硬件环境PC机一台、MATLAB软件三实验编程及调试1、灰度变换:灰度拉伸、直方图均衡、伽马校正、log变换等。

①灰度拉伸程序如下:I=imread('kids.tif');J=imadjust(I,[0.2,0.4],[]);subplot(2,2,1),imshow(I);subplot(2,2,2),imshow(J);subplot(2,2,3),imhist(I);subplot(2,2,4),imhist(J);②直方图均衡程序如下:I=imread('kids.tif');J=histeq(I);Imshow(I);Title('原图像');Subplot(2,2,2);Imshow(J);Title('直方图均衡化后的图像') ;Subplot(2,2,3) ;Imhist(I,64);Title('原图像直方图') ;Subplot(2,2,4);Imhist(J,64) ; Title('均衡变换后的直方图') ;③伽马校正程序如下:A=imread('kids.tif');x=0:255;a=80,b=1.8,c=0.009;B=b.^(c.*(double(A)-a))-1;y=b.^(c.*(x-a))-1;subplot(3,2,1);imshow(A);subplot(3,2,2);imhist(A);imshow(B);subplot(3,2,4);imhist(B);subplot(3,2,6);plot(x,y);④log变换程序如下:Image=imread('kids.tif');subplot(1,2,1);imshow(Image);Image=log(1+double(Image)); subplot(1,2,2);imshow(Image,[]);2、空域平滑:box、gauss模板卷积。

第8章 图像平滑和锐化

第8章 图像平滑和锐化
净点。
因为正态分布的均值为0,所以根据统计数学,均值可以消
除噪声。
精选可编辑ppt
41
在MATLAB图像处理工具箱中,实现中值滤波的函数是
medfilt2,其常用的调用方法如下:
B=medfilt2(A,[m n])
其中A是输入图像,[m,n]是邻域窗口的大小,默认
值为[3,3],B为滤波后图像。

噪声可以理解为“妨碍人们感觉器官对所
接收的信源信息理解的因素”。
精选可编辑ppt
2
噪声来源
数字图像的噪声主要来源于图像的获取和传输过程
图像获取的数字化过程,如图像传感器的质量和
环境条件
图像传输过程中传输信道的噪声干扰,如通过无
线网络传输的图像会受到光或其它大气因素的干扰
精选可编辑ppt
3
图像噪声特点
1. 噪声在图像中的分布和大小不规则
2. 噪声与图像之间具有相关性
3. 噪声具有叠加性
精选可编辑ppt
4
图像噪声分类
一.
按其产生的原因可分为:外部噪声和内部
噪声。
二.
从统计特性可分为:平稳噪声和非平稳噪
声。
三.
按噪声和信号之间的关系可分为:加性噪
声和乘性噪声。
精选可编辑ppt
5
按其产生的原因

外部噪声:指系统外部干扰从电磁波或经电
源传进系统内部而引起的噪声。

内部噪声:

由光和电的基本性质所引起的噪声。

电器的机械运动产生的噪声。

元器件材料本身引起的噪声。

系统内部设备电路所引起的噪声。
精选可编辑ppt
6
按统计特性

数字图形处理 实验 图像的平滑与锐化

数字图形处理 实验 图像的平滑与锐化

XXXXXXXX 大学(数字图形处理)实验报告 实验名称 图像的平滑与锐化 实验时间 年 月 日专 业 姓 名 学 号 预 习 操 作 座 位 号 教师签名 总 评一、实验目的:1.了解图像平滑的邻域平均和中值滤波以及锐化的梯度法和Sobel 法的基本思想;2.掌握图像平滑的邻域平均和中值滤波以及锐化的梯度法和Sobel 法的基本步骤;二、实验原理:1. 邻域平均法的思想是用像素及其指定邻域内像素的平均值或加权平均值作为该像素的新值,以便去除突变的像素点,从而滤除一定的噪声。

邻域平均法的数学含义可用下式表示:∑∑==⎪⎭⎫ ⎝⎛=mn i imn i i i w z w y x g 11),( (1) 上式中:i z 是以),(y x 为中心的邻域像素值;i w 是对每个邻域像素的加权系数或模板系数; m n 是加权系数的个数或称为模板大小。

邻域平均法中常用的模板是:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡*=11111111191Box T (2) 为了解决邻域平均法造成的图像模糊问题,采用阈值法(又叫做超限邻域平均法,如果某个像素的灰度值大于其邻域像素的平均值,且达到一定水平,则判断该像素为噪声,继而用邻域像素的均值取代这一像素值;否则,认为该像素不是噪声点,不予取代),给定阈值0T :⎩⎨⎧≥-<-=00),(),(),(),(),(),(),(T y x g y x f y x g T y x g y x f y x f y x h (3) (3)式中,),(y x f 是原始含噪声图像,),(y x g 是由(1)式计算的平均值,),(y x h 滤波后的像素值。

2.中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。

方法是去某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。

图像平滑与图像锐化

图像平滑与图像锐化

图像平滑与图像锐化邻域运算,一阶微分算子,二阶拉普拉斯算子,卷积模板,,3某3的模板,均值滤波,高斯噪声,椒盐噪声,中值滤波程序,均值滤波,模板尺寸邻域运算一、实验目的1.巩固对图像增强的认识,明确图像空域处理的类型2.理解图像平滑与图像锐化的概念3.掌握图像模板卷积运算的实现方法4.锻炼编程开发图像处理算法的能力二、实验准备1.了解图像处理点运算和邻域运算的区别2.学习利用模板卷积的方法进行图像邻域运算3.复习均值滤波和中值滤波的原理4.列出常用的模板形式,思考中值滤波要用到的简单排序方法5.分析对比图像平滑和图像锐化模板的差异三、实验内容与步骤1.列出常用的卷积模板2.基于3某3的模板,编写均值滤波的处理程序,处理含有加性高斯噪声和椒盐噪声的图像,观察处理结果3.编写中值滤波程序,处理相同的图像与均值滤波进行比较;改变模板尺寸观察处理结果4.编程实现利用一阶微分算子和二阶拉普拉斯算子进行图像锐化的程序5.对比不同的邻域运算结果,体会图像锐化与图像平滑的区别四、实验报告与思考题1.总结实验内容及步骤方法完成实验报告,报告中要求有关键代码的注释说明及程序运行和图像处理结果2.实验报告中回答以下问题(1)均值滤波和中值滤波分别适用于处理哪类图像?(2)图像平滑和图像锐化所采用的模板有什么不同?(3)邻域运算的模板尺寸对处理结果有什么影响?邻域运算,一阶微分算子,二阶拉普拉斯算子,卷积模板,,3某3的模板,均值滤波,高斯噪声,椒盐噪声,中值滤波程序,均值滤波,模板尺寸实验4邻域运算,一阶微分算子,二阶拉普拉斯算子,卷积模板,,3某3的模板,均值滤波,高斯噪声,椒盐噪声,中值滤波程序,均值滤波,模板尺寸。

4平滑,锐化滤波-PPT资料51页

4平滑,锐化滤波-PPT资料51页

中的低频分量,但不 影响高频分量。
平滑滤波主要应用
平滑图像,减小噪声
去除噪声
•锐化滤波主要应用
增加反差,增强被模 糊的细节或边缘
分类1: (1) 平滑:模糊,消除噪声 (2) 锐化:增强被模糊的细节
分类2: (1) 线性:如邻域平均 (2) 非线性:如中值滤波
功能
特点
平滑(低通)
锐化(高通)
例子:使用3*3的模板对图像进行中值滤波
1 21 4 3 1 22 3 4 5 76 8 9 5 76 8 8 5 67 8 9
答案:
1 21 4 3 1 22 3 4 5 76 8 9 5 76 8 8 5 67 8 9
12143 1 22 23 34 4 5 75 66 86 9 5 76 67 88 8 56789
d2 f dx2
d(df ) / dx dx
d( f (x1) f (x))/dx
[ f (x1) f (x)][ f (x) f (x1)]
f (x1) f (x1)2f (x)
一、基于一阶微分的图像增强--梯度法(非线性)
•在图像处理中,一阶微分是通过梯度法来实现的。对 于函数f(x,y),其在(x,y)处的梯度是通过一个二维向量 来定义的:
4.5.2 线性平滑滤波器
2、加权平均
•用邻域内灰度值及本点灰度 加权值来代替该点灰度值
1 2 1
1 16

2
1
4 2
2

1
中心系数大 周围系数小
k4
k3
k2
1
k5
k0
k1
1
k6
k7
k8
1
R

数据图像处理期末复习

数据图像处理期末复习

数据图像处理期末复习1.1数字图像处理及特点1、什么是数字图像?什么是数字图像处理?数字图像:数字图像是物体的一个数字表示,是以数字格式存放的图像,它传递着物理世界事物状态的信息,是人类获取外界信息的主要途径。

数字图像处理:它指将图像信号转换成数字信号并利用计算机对其进行处理的过程,已提高图像的实用性,达到人们所要求的的预期结果。

2、图像处理的目的①提高图像的视觉质量,以达到赏心悦目的目的。

②提取图像中所包含的某些特征或特殊信息,便于计算机分析。

③对图像数据进行变换、编码和压缩,便于图像的存储和传输。

3、数字图像的特点①处理信息量很大②数字图像处理占用的频带较宽③数字图像中各个像素相关性大1.2数字图像处理系统1、数字图像处理系统的组成(结构)数字图像处理系统由输入设备、输出设备、存储、处理组成。

图像输入设备将图像输入的模拟物理量转变为数字化的电信号,以供计算机处理。

图像输出设备则是将图像处理的中间结果或最后结果显示或打印记录。

图像处理计算机系统是以软件方式完成对图像的各种处理和识别,是数字图像处理系统的核心部分。

由于图像处理的信息量大,还必须有存储设备。

2、数字图像处理的优点①精度高②再现性好③通用性、灵活性强1.3数字图像处理的主要研究内容1、数字图像处理的主要研究内容①图像增强②图像编码③图像复原④图像分割⑤图像分类⑥图像重建1.4数字图像处理的应用和发展1、举例说明数字图像处理有哪些应用和发展?①航天和航空技术方面的应用②生物医学工程方面的应用③通信工程方面的应用④工业和工程方面的应用⑤军事、公安方面的应用⑥文化艺术方面的应用⑦其他方面的应用2、数字图像处理领域的发展方向①图像处理的发展向着高速率、高分辨率、立体化、多媒体化、智能化和标准化方向发展。

②图像、图形结合朝着三维成像或多维成像的方向发展③结合多媒体技术,硬件芯片越来越多,把图像处理的众多功能固化在芯片上将会有更加广阔的应用领域④在图像处理领域近年来引入了一些新的理论并提出了一些新的算法,如神经网络。

图像处理锐化平滑.ppt

图像处理锐化平滑.ppt

其它变换
类似傅立叶变换的其它离散线性变换, 如离散余弦变换、离散正弦变换、方波 型变换等等。
图像的线性操作及卷积
线性操作:主要是指图像处理操作中,
输出图像的像素值是输出图像的多像素 的线性组合。 可将线性操作看作是: 输入线性系统输出 的一个操作过程。 下面分析线性系统应具有的特性。
再将积函数作二维积分,得到卷积结果。
离散二维卷积:
对于一幅数字图像F和一个二维卷积模板 G,它们的二维卷积为:
H F *G
H (i, j) F(m, n)G(i m, j n)
mn
由于F和G仅在有限范围内非零,因此求 和计算只需在非零部分重叠的区域上进 行。
值为0,方差为

n 2

则原图像f(m,n)被噪声污染后为:
g(m, n) f (m, n) (m, n)
对上述图像求邻域平均得:
g(m, n) 1 g(i, j)
M i, jS
其中S为一个包含g(m,n)有M个像素的邻 域。

g(m, n) 1 f (i, j) 1 (i, j)
线性系统也称线性移不变系统,具有以 下性质:
1. 线性:
定义 T[] 为一个系统,即一种运算。
设输入信号 x(t) 经系统 T[] 输出信号 y(t)
即 y(t) T[x(n)]
令 y1(t) T[x1(t)] y2 (t) T[x2 (t)]
若 ay1(t) by2 (t) T[ax1(t) bx2 (t)]
二维卷积
二维卷积的表达式为:

h(x, y) f * g

锐化滤波和平滑滤波

锐化滤波和平滑滤波

锐化滤波和平滑滤波锐化滤波和平滑滤波是数字图像处理中常用的两种滤波方法。

它们可以用来提高图像质量、减少噪声或者改变图像外观。

本文将详细介绍这两种滤波方法的原理和应用。

一、锐化滤波锐化滤波是一种增强图像细节和边缘的方法。

它是通过加强图像的高频部分来实现的。

在数字图像中,高频部分指的是像素值变化幅度较大的区域,也就是图像中的边缘和细节。

我们可以使用一些特定的算子来实现锐化滤波。

这些算子一般被称为锐化滤波器或者边缘增强算子。

常见的锐化滤波器包括拉普拉斯算子、索贝尔算子、普瑞瓦特算子等。

这些算子可以通过卷积运算来实现。

卷积运算是指将一个算子和图像中的每一个像素做乘积,并将相邻像素的乘积相加。

具体来说,假设我们需要使用一个3x3的拉普拉斯算子:0 101 -4 10 10对一个灰度图像进行锐化滤波。

我们需要将该算子与图像中的每一个像素进行卷积运算。

运算公式为:f(x,y) = ∑g(i,j)h(x-i,y-j)其中,f(x,y)表示卷积运算后的像素值,g(i,j)表示图像中位置为(i,j)的像素值,h(i,j)表示拉普拉斯算子中位置为(i,j)的元素值。

在运用锐化滤波器时需要注意,过强的锐化可能会使图像出现噪点。

此外,图像中一些边缘和细节可能会被误认为噪声而被消除,从而使图像质量降低。

二、平滑滤波平滑滤波又称为模糊滤波,是一种减少图像噪声和平滑图像细节的方法。

它是通过对图像进行低频滤波来实现的。

低频部分指的是像素值变化比较缓慢或者连续性比较强的区域,也就是图像中的平滑区域或者背景。

我们可以使用一些特定的算子来实现平滑滤波。

这些算子一般被称为平滑滤波器或者模糊滤波器。

常见的平滑滤波器包括均值滤波器、中值滤波器、高斯滤波器等。

这些滤波器也可以通过卷积运算来实现。

均值滤波器就是最简单的平滑滤波器之一。

它是将像素周围的值取平均数,用平均值来代替该像素的值。

假设我们需要使用一个3x3的均值滤波器:1 1 11 1 11 1 1对一个灰度图像进行平滑滤波。

遥感图像处理平滑与锐化方(详细)法.

遥感图像处理平滑与锐化方(详细)法.

任何方向的边缘都将被突出.
拉普拉斯模板
0 1 0 t (m,n)= 1 -4 1 0 1 0
即上下左右四个相邻像元的亮度值相加,然后减 去中心像元值的4倍,作为该中心像元的新值。 均匀的变化将被忽略;用于检测变化率的变化率 即二阶微分。
例2: 拉普拉斯模板应用
t (m,n)= 设窗口像元值为 2 3 5 4 6 8
索伯尔梯度锐化模板, 两个模板同时使用:
1 2 1 t1(m,n)= 0 0 0 -1 -2 -1 -1 0 1 t2(m,n)= -2 0 2 -1 0 1 先用模板t1卷积,结果取绝对 值(获得南北向梯度);再 用t2计算,结果也取绝对值 (获东西向梯度);然后两 个绝对值相加(得总梯度), 写在窗口中心。
m 1 n 1
M
N
图像的卷积运算:
窗口的中心像 元的像元值
窗口上第m列, 第n行的像元值
模板上第m列, 第n行的像元值出现不该有的 亮点,为了抑制噪声和使亮度平缓,所采用的 方法称为平滑 包括:均值平滑与中值滤波

均值平滑
在以像元为中心的领域内 取均值来取代该像元。 常用四邻域或八邻域的模 板
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 8 8 0
0 0 0 0 0 0 24 32 32 24 32 32 0 0 0
定向边缘检测模板
检测垂直边界: 设计特殊模板,可以检测特 定方向的边缘。
t (m,n)=
检测水平边界:
-1 0 1 -1 0 1 -1 0 1
或 t (m,n)=
对比度拉伸的效果
3.非线性变换

1.
当变换函数为非线性时,即为非线性变换。 非线性变换函数很多,常用的有两种方法:

三种不同灰度图像增强算法对比

三种不同灰度图像增强算法对比

三种不同灰度图像增强算法对比一、摘要本文主要是运用直方图均衡化、平滑、锐化三种常见的图像增强算法对图像进行处理,并在此基础上分别用这 3 种算法处理的灰度图像进行比较,比对它们对图像的处理效果, 分析 3 种方法在图像增强处理能力的优劣之处。

结果发现,直方图均衡化可以均衡图像的灰度等级, 经过直方图的均衡化,图像的细节更加清楚了,但是由于直方图均衡化没有考虑图像的内容,只是简单的将图像进行直方图均衡,提高图像的对比度,使图像看起来亮度过高,使图像细节受到损失;图像平滑的目的是减少或消除图像的噪声, 图像平滑可以使图像突兀的地方变得不明显, 但是会使图像模糊,这也是图像平滑后不可避免的后果,只能尽量减轻,尽量的平滑掉图像的噪声又尽量保持图像细节,这也是图像平滑研究的主要问题;图像锐化使图像的边缘、轮廓变得清晰,并使其细节清晰,常对图像进行微分处理,但是图像的信噪比有所下降。

关键词: 图像增强 灰度图 直方图 平滑 锐化二、三种图像增强算法图像预处理是相对图像识别、图像理解而言的一种前期处理,主要是指按需要进行适当的变换突出某些有用的信息,去除或削弱无用的信息,在对图像进行分析之前, 通常要对图像质量进行改善,改善的目的就是要使处理后的图像比原始图像更适合特定的应用。

影响图像清晰度的因素很多,主要有光照不足、线路传输收到干扰等。

现存的图像增强技术主要分为空间域法和频率域法两类,其中的增强方法主要有直方图的修正、灰度变换、图像平滑、图像锐化、伪彩色和假彩色处理等。

下面主要采用直方图均衡化、图像平滑、图像线性锐化对图像进行增强处理, 对比他们的处理效果,分析 3 种方法的在图像增强处理方面的优劣。

1、直方图均衡化直方图均衡化也称为直方图均匀化,是一种常见的灰度增强算法,是将原图像的直方图经过变换函数修整为均匀直方图,然后按均衡后的直方图修整原图像。

为方便研究,先将直方图归一化,然后图像增强变换函数需要满足2个条件。

实验三图像的平滑与锐化

实验三图像的平滑与锐化

实验三 图像的平滑与锐化一.实验目的1.掌握图像滤波的基本定义及目的;2.理解空域滤波的基本原理及方法;3.掌握进行图像的空域滤波的方法。

二.实验基本原理图像噪声从统计特性可分为平稳噪声和非平稳噪声两种。

统计特性不随时间变化的噪声称为平稳噪声;统计特性随时间变化的噪声称为非平稳噪声。

另外,按噪声和信号之间的关系可分为加性噪声和乘性噪声。

假定信号为S (t ),噪声为n (t ),如果混合叠加波形是S (t )+n (t )形式,则称其为加性噪声;如果叠加波形为S (t )[1+n (t )]形式, 则称其为乘性噪声。

为了分析处理方便,往往将乘性噪声近似认为加性噪声,而且总是假定信号和噪声是互相独立的。

1.均值滤波均值滤波是在空间域对图像进行平滑处理的一种方法,易于实现,效果也挺好。

设噪声η(m,n)是加性噪声,其均值为0,方差(噪声功率)为2σ,而且噪声与图像f(m,n)不相关。

除了对噪声有上述假定之外,该算法还基于这样一种假设:图像是由许多灰度值相近的小块组成。

这个假设大体上反映了许多图像的结构特征。

∑∈=s j i j i f M y x g ),(),(1),( (3-1)式(2-1)表达的算法是由某像素领域内各点灰度值的平均值来代替该像素原来的灰度值。

可用模块反映领域平均算法的特征。

对模板沿水平和垂直两个方向逐点移动,相当于用这样一个模块与图像进行卷积运算,从而平滑了整幅图像。

模版内各系数和为1,用这样的模板处理常数图像时,图像没有变化;对一般图像处理后,整幅图像灰度的平均值可不变。

(a) 原始图像 (b) 邻域平均后的结果图3-1 图像的领域平均法2.中值滤波中值滤波是一种非线性处理技术,能抑制图像中的噪声。

它是基于图像的这样一种特性:噪声往往以孤立的点的形式出现,这些点对应的象素很少,而图像则是由像素数较多、面积较大的小块构成。

在一维的情况下,中值滤波器是一个含有奇数个像素的窗口。

空域滤波技术根据功能主要分为平滑滤波与锐化滤波1

空域滤波技术根据功能主要分为平滑滤波与锐化滤波1

空域滤波技术根据功能主要分为平滑滤波与锐化滤波,平滑滤波能减弱或消除图像中的高频率分量而不影响低频分量。

因为高频分量对应图像中的区域边缘等灰度值具有较大变化的部分,平滑滤波可将这些分量滤去减少局部灰度起伏,是图像变得比较平滑。

实际应用中,平滑滤波还可用于消除噪声,或在提取较大目标前去除太小的细节或将目标的小间断连接起来。

锐化滤波正好相反,实际应用中锐化滤波常用于增强被模糊的细节或目标的边缘。

空域滤波是在图像空间通过邻域操作完成的,实现的方式基本都是利用模板(窗)进行卷积来进行,实现的基本步骤为:1、将模板中心与图中某个像素位置重合;2、将模板的各个系数与模板下各对应像素的灰度值相乘;3、将所有乘积相加,再除以模板的系数个数;4、将上述运算结果赋给图中对应模板中心位置的像素。

常见的空域滤波器:1、邻域平均:将一个像素邻域平均值作为滤波结果,此时滤波器模板的所有系数都取为1。

2、加权平均:对同一尺寸的模板,可对不同位置的系数采用不同的数值。

实际应用中,常取模板周边最小的系数为1,而取内部的系数成比例增加,中心系数最大。

加权平均模板示例:1 2 12 4 21 2 13、高斯分布:借助杨辉三角对高斯函数进行近似。

高斯模板系数:11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 14、中值滤波:中值滤波是一种非线性滤波方式,可用如下步骤完成。

(1)将模板在图中漫游,并将模板中心与图中某个像素位置重合;(2)读取模板下各对应像素的灰度值;(3)将这些灰度值从小到大进行排序;(4)找出中间值并赋给对应模板中心位置的像素。

一般情况下中值滤波的效果要比邻域平均处理的低通滤波效果好,主要特点是滤波后图像中的轮廓比较清晰。

5、最频值滤波:通过直方图统计中心像素点的灰度分布情况,将出现次数最多的灰度值(即直方图波峰位置)赋给中心位置的像素。

如果直方图是对称的且仅有一个峰,那么均值、中值和最频值相同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图像平滑与锐化处理
1 图像平滑处理
打开Image Interpreter/Utilities/Layer Stack对话框,如图1-1
图1-1 打开Layer Stack对话框
在Input File中打开tm_striped.img,在Layer中选择1,在Output File中输入输出文件名band1.img,单击Add按钮。

忽略零值,单击OK(如图1-2所示)。

图1-2 Layer Stack对话框设置
打开Interpreter>Spatial Enhancement>Convolution对话框。

如图1-3
图1-3 打开Convolution对话框
在Input File中选择band1.img。

在Output File中选择输出的处理图像,命名为lowpass.img。

在Kernel中选择7*7Low Pass,忽略零值。

单击OK完成图像的增强处理(如图1-4所示)。

图1-4 卷积增强对话框(Convolution)
平滑后的图像去掉噪音的同时造成了图像模糊,特别是对图像的边缘和细节消弱很多。

而且随着邻域范围的扩大,在去噪能力增强的同时模糊程度越严重(如图1-5)。

图1-5 处理前后的对比
为了保留图像的边缘和细节信息,可对上述算法进行改进,引入阈值T,将原有图像灰度值f(i,j),和平均值g(i,j)之差的绝对值与选定的阈值进行比较,根据比较结果决定像元(i,j)的最后灰度值G(i,j)。

当差小于阈值的时候取原值;差大于阈值的时候取平均值。

这里通过查询得T取4,其表达式为下:
g(i,j),当| f(i,j)-g(i,j)|>4
G(i,j)=
f(i,j),当| f(i,j)-g(i,j)|<=4
具体操作步骤:在图标控制面板工具栏中点击空间建模Modeler>Model Maker选项。

先放置对象图形,依次连接每个对象图形,然后定义对象,最后定义函数并运行模型(如图
1-6,1-7,1-8,1-9,1-10,1-11所示)。

图1-6 定义第一个对象
图1-7 定义第二个对象
图1-8 定义函数
图1-9 定义输出对象
图1-10 最终模型
图1-11 平滑处理后图像
2.图像的锐化处理
为了突出边缘和轮廓、线状目标信息可以采用锐化的方法。

锐化可使图像上的边缘与线性目标的反差提高,因此也称为边缘增强。

2.1 加载原图像
在Viewer#1中打开原图像atl_spotp_92.img(如图2-1所示)。

图2-1 打开原图像
2.2.卷积增强处理
卷积增强是将整个图像按像元分块处理,用于改变图像的空间频率特征。

卷积增强处理的关键是卷积核—系数矩阵的选取。

此处卷积核选择边缘检测(Edge detect),边缘检测又称邻值滤波,即核中所有系数和为零,可以将低频区域平滑或变成零,高频核将边界变成高亮度,而不一定将其他物体消去。

具体操作为打开Spatial Enhancement中的Convolution,在Input File中选择atl_spotp_92.img。

在Output File中选择输出的处理图像,命名为ruihua.img。

在Kernel
中选择5*5 Edge Detect,忽略零值。

单击OK完成图像的增强处理(如图2-2,2-3所示)。

图2-2 打开Convolution
图2-3 卷积增强对话框
图2-4 利用5*5 Edge Detect模板处理后的图像
2.3.设置非负阈值T
上述处理得到图像的原图像失去了原图像的面目而成为了边缘图像,为了在突出边缘信息的同时保留图像原背景,设置一个非负阈值T进行处理。

在edgedetect.img查找阈值,将
阈值设为130(如图2-5所示)。

图2-5 查找边缘灰度值,确定阈值
2.4空间建模
2.4.1 公式5.26
在图标控制面板工具栏中点击空间建模Modeler>Model Maker选项。

先放置对象图形,依次连接每个对象图形,然后定义对象,最后定义函数并运行模型(如图2-6,2-7,2-8,2-9,2-10,2-11所示)。

图2-6 定义第一个对象
图2-7定义第二个对象
适当选取T(阈值),使梯度值>=T的个点的灰度值等于该点的梯度值,其他的则保留原始灰度值,形成背景。

即由公式5.26知,当阈值大于等于T时选取锐化后的图像,其他情况选择原图像。

由2.3可知T为130。


| gradf(x,y)|,| gradf(x,y)|>=130
g(x,y)=
f(x,y),其它
图2-8 函数的定义
图2-9 定义输出对象
图2-10 Model结果
图2-11 所得处理图像
2.4.2 公式5.27
根据需要指定一个灰度级L G,例如,令L G=255。

以Lg表示边缘,其他保留原背景值。

由公式5.27知,当阈值大于等于T时选取灰度值为255,其他情况选择原图像。

T依旧取130。


L G,| gradf(x,y)|>=130
g(x,y)=
f(x,y),其它
具体操作步骤:在图标控制面板工具栏中点击空间建模Modele>Model Maker选项。

先放置对象图形,依次连接每个对象图形,然后定义对象,最后定义函数并运行模型(如图2-12,2-13所示)。

图2-12 定义函数
2-13 所得处理图像
2.4.2 公式5.28
指定一个灰度级Lb表示背景,例如,令L B=0,形成黑背景,保留边缘梯度变化。

由公式5.28知,当阈值小于T时选取灰度值为0,其他情况选择5*5 Edge Detect模板处理后的图像。

T依旧为130。


| gradf(x,y)|,| gradf(x,y)|>=130
g(x,y)=
L B,其他
具体操作步骤:在图标控制面板工具栏中点击空间建模Modele>Model Maker选项。

先放置对象图形,依次连接每个对象图形,然后定义对象,最后定义函数并运行模型(如图2-14,2-15所示)。

图2-14 定义函数
图2-15 所得处理图像
利用空间模型得到的处理后的图像的背景都变成黑色即灰度值为0。

无需做进一步图像辐射增强处理。

2.4.2 公式5.29
将边缘与灰度图像分别以灰度级L G和L B表示,例如,255表示边缘,0表示背景,形成二值图像。

由公式5.28知,当阈值小于T时选取灰度值为0,其他情况选择5*5 Edge Detect 模板处理后的图像。

T依旧为130。


L G,| gradf(x,y)|>=130
g(x,y)=
L B,其它
具体操作步骤:在图标控制面板工具栏中点击空间建模Modele>Model Maker选项。

先放置对象图形,依次连接每个对象图形,然后定义对象,最后定义函数并运行模型(如图
2-16,2-17所示)。

图2-16 定义函数
2-17 所得处理图像
利用空间模型得到的处理后的图像的背景都变成黑色即灰度值为0。

无需做进一步图像辐射增强处理。

2.5辐射增强
2.5.1 公式5.26
利用空间模型得到的处理后的图像的背景部分显示不理想,因此需要做进一步图像辐射增强处理。

打开灰度值统计表,发现背景灰度值集中在20到60之间(如图2-12所示),所以可以使用分段线性变换进行辐射增强。

具体步骤:打开Raster>Contrast>BreakPoints选项,点击按钮,打开Gray Look UpTable修改灰度值。

(如图2-18,2-19,2-20所示)
图2-18 BreakPoints Editor对话框
图2-19 修改断点灰度值
图2-20 属性表
图2-21 最终成图
2.5.2 公式5.27
利用分段线性变换进行辐射增强的步骤和公式5.26一样(如图:2-22所示)。

图2-22 辐射增强成图。

相关文档
最新文档