解直角三角形(仰角和俯角)讲义

合集下载

26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)

26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)
解:如图,α = 30° , β= 60°,AD=120. ∵ , ∴BD=AD·tanα=120×tan30︒, =120× =40 . CD=AD·tanβ=120×tan60︒, =120× =120 . ∴BC=BD+CD=40 +120 =160 ≈277(m).答:这栋楼高约为277m.
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习

解直角三角形(仰角、俯角)讲

解直角三角形(仰角、俯角)讲
在RtABC中,C 90
2 2 2

A b
90度
1.三边关系 a b c (勾股定理 ) 2.锐角关系 3. 边角关系
c
A B 90

C
a
B
a b sin A , cos A , tan A c c b a sin B , cos A , tan B c c
P
A
B
(2007淄博)王英同学从A地沿北偏西60º 方向走 100m到B地,再从B地向正南方向走200m到C地, 此时王英同学离A地多少距离?
北 E B 西 D
100m 600
东 A
200m
南 C
例4.海中有一个小岛A,它的周围8海里范围内有暗礁, 渔船跟踪鱼群由西向东航行,在B点测得小岛A在北偏 东60°方向上,航行12海里到达D点,这时测得小岛A 在北偏东30°方向上,如果渔船不改变航线继续向东 航行,有没有触礁的危险?
筑物BC上有一旗杆AB,由距BC 40m的D处 观察旗杆顶部A的仰角为60°,观察底部B的 仰角为45°,求旗杆的高度(精确到0.1m)
A
B
D
C
40
例:国外船只,除特许外,不得进入我国海洋100海 里以内的区域,如图,设A、B是我们的观察站,A和 B 之间的距离为150海里,海岸线是过A、B的一条直 线,一外国船只在P点,在A点测得∠BAP=450,同时 在B点测得∠ABP=600,问此时是否要向外国船只发 出警告,令其退出我国海域.
A A
D
300
60
0
B
8 m
600 4m
B
1、在山脚C处测得山顶A的仰角为45°。 问题如下:(1)沿着水平地面向前300 米到达D点,在D点测得山顶A的仰角为 600 , 求山高AB。

解直角三角形的应用(仰角和俯角问题)

解直角三角形的应用(仰角和俯角问题)
角函数求解
计算角度证结果:检 查计算结果是 否满足三角形 内角和为180
度的条件
添加标题
确定已知条件:已知三角形的边长和角度
添加标题
利用正弦定理:sin/ = sinB/b = sinC/c
添加标题
利用余弦定理:cos = (b^2 + c^2 - ^2) / (2bc)
正弦定理:在直角三角形中 任意一边的长度等于其对角 的正弦值乘以斜边的长度
余弦定理:在直角三角形中 任意两边长度的平方和等于 斜边的平方
正切定理:在直角三角形中 任意一边的长度等于其对角 的正切值乘以斜边的长度
余切定理:在直角三角形中 任意两边长度的平方差等于 斜边的平方
正割定理:在直角三角形中 任意一边的长度等于其对角 的正割值乘以斜边的长度
确保测量工具的 准确性和稳定性
避免在危险区域 进行测量如高空、
高压电等
遵守操作规程确 保人身安全
做好防护措施如 佩戴安全帽、手
套等
及时清理现场避 免杂物影响测量
结果
遇到突发情况及 时停止操作并寻
求帮助
仰角和俯角为0度:此时三角形退化为直线无法求解
仰角和俯角为90度:此时三角形退化为直角三角形可以直接求解
全站仪等
测量误差:注 意测量误差对 仰角和俯角测 量结果的影响
测量环境:注 意测量环境的 影响如温度、 湿度、风速等
测量方法:注 意测量方法的 选择如直接测 量、间接测量

测量误差:测量工具的精度、测量人员的操作水平等
计算误差:计算过程中的舍入误差、公式使用错误等
环境误差:温度、湿度、光照等环境因素对测量结果的影响
添加文档副标题
目录
01.
02.

解直角三角形(仰角与俯角)

解直角三角形(仰角与俯角)
的对边 A邻边
cos
A
A的邻边 斜边
仰角:在视线与水平线所形成的角中,视线在水平线上方的角.
视线

仰角
水平线
垂 俯角
线
视线
俯角:在视线与水平线所形成的角中,视线在水平线下方的角.
例3: 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变 轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地 球表面上P点的正上方时,从飞船上最远能直接看到地球上的点在什么位置? 这样的最远点与P点的距离是多少?(地球半径约为6 400km,结果精确到 0.1km)

OQ COS a = =
6400
≈ 0.948
OF 6400+350
a 18
∴ PQ的长为
F
P Q
α O·
18 6400 3.14 640 2009.6
180
当飞船在P点正上方时,从飞船观测地球时的最远点距离P点约 2009.6km
例2:热气球的探测器 显示,从热气球看一栋 高楼顶部的仰角为 30°,看这栋高楼底部 的俯角为60°,热气球 与高楼的水平距离为 120m,这栋高楼有多 高? (结果保留小数 点后一位)
1.什么叫解直角三角形?
在直角三角形中,由已 知元素求未知元素的过程, 叫做解直角三角形.
2.直角三角形(除直角外)五元素的 关系是什么?
(1)三边之间的关系: a2 + b2 = c2 (勾股定理)
(2)锐角之间的关系: ∠A + ∠B = 90°
(3)边角之间的关系
sin
A
A的对边 斜边
tan
分析:从飞船上能最远直接 看到的地球上的点,应是视 线与地球相切时的切点.

解直角三角形(仰角和俯角)

解直角三角形(仰角和俯角)

解直角三角形(仰角和俯角)教学目标1.理解仰角、俯角的含义,准确运用这些概念来解决一些实际问题.2.培养学生将实际问题抽象成数学模型并进行解释与应用的能力.3、通过本章的学习培养同学们的分析、研究问题和解决问题的能力.4、在探究学习过程中,注重培养学生的合作交流意识,体验从实践中来到实践中去的辩证唯物主义思想,激发学生学习数学的兴趣.教学重点理解仰角和俯角的概念.教学难点能解与直角三角形有关的实际问题.教学过程一、情境导入,初步认识如图,为了测量旗杆的高度BC,小明站在离旗杆10米的A处,用高1.50米的测角仪DA测得旗杆顶端C的仰角α=52°,然后他很快就算出旗杆BC的高度了.(精确到0.1米)你知道小明是怎样算出的吗?二、思考探究,获取新知想要解决刚才的问题,我们先来了解仰角、俯角的概念.学生观察、分析、归纳仰角、俯角的概念.分析在Rt△CDE中,已知一角和一边,利用解直角三角形的知识即可求出CE的长,从而求出CB的长.解:在Rt△CDE中,∵CE=DE•tanα=AB•tanα=10×tan52°≈12.80,∴BC=BE+CE=DA+CE≈12.80+1.50=14.3(米).答:旗杆的高度约为14.3米.例如图,两建筑物的水平距离为32.6m,从点A测得点D的俯角α为35°12′,测得点C的俯角β为43°24′,求这两个建筑物的高.(精确到0.1m)解:过点D作DE⊥AB于点E,则∠ACB=β=43°24′,∠ADE=35°12′,DE=BC=32.6m.在Rt△ABC中,∵tan∠ACB= ,∴AB=BC•tan∠ACB=32.6×tan43°24′≈30.83(m).在Rt△ADE中,∵tan∠ADE= ,∴AE=DE•tan∠ADE=32.6×tan35°12′≈23.00(m).∴DC=BE=AB-AE=30.83-23.00≈7.8(m)答:两个建筑物的高分别约为30.8m,7.8m.教学说明:关键是构造直角三角形,分清楚角所在的直角三角形,然后将实际问题转化为几何问题解决.三、运用新知,深化理解1.如图,一只运载火箭从地面L处发射,当卫星达到A点时,从位于地面R处的雷达站测得AR的距离是6km,仰角为43°,1s后火箭到达B点,此时测得BR的距离是6.13km,仰角为45.54°,这个火箭从A到B的平均速度是多少?(精确到0.01km/s)2.如图所示,当小华站在镜子EF前A处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B处,这时他看到自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:3≈1.73)答案:1.0.28km/s 2.1.4米四、师生互动,课堂小结1.这节课你学到了什么?你有何体会?2.这节课你还存在什么问题?五.布置作业:1、从教材相应练习和“习题24.4”中选取.2.完成练习册中本课时练习.。

数学解直角三角形(仰角俯角方位角坡度坡角)课件(人教新课标九级下)资料

数学解直角三角形(仰角俯角方位角坡度坡角)课件(人教新课标九级下)资料
速度向南偏东60°方向航行,那么渔轮到达小岛O的正东方 向是什么时间?(精确到1分)
B
2、(2012广安)如图2012年4月10日,中国渔民在中国南 海黄岩岛附近捕鱼作业,中国海监船在A地侦查发现,在南 偏东60°方向的B地,有一艘某国军舰正以每小时13海里的 速度向正西方向的C地行驶,企图抓捕正在C地捕鱼的中国 渔民。此时,C地位于中国海监船的南偏东45 °方向的10 海里处,中国海监船以每小时30海里的速度赶往C地救援我 国渔民,能不能及时赶到?
塔楼AB的高. (参考数据:tan 40 21 , tan 55 7 )
25
5
答案:空中塔楼AB高
A 约为105米

河 55° 40°
B
C 50m D
1.如图,某飞机于空中 A处探测到目标C,此时 飞行高度AC=1200米, 从飞机上看地平面控制 点B的俯角α=16031`,求 飞机A到控制点B的距 离.(精确到1米)
tanA=
a b

bC
利用解直角三角形的知识解决实际问题的一般 过程是:
(1)将实际问题抽象为数学问题(画出平面图 形,转化为解直角三角形的问题);
(2)根据条件的特点,适当选用锐角三角形函 数等去解直角三角形;
(3)得到数学问题的答案;
(4)得到实际问题的答案.
爬坡图1
爬 坡 图
2
爬坡图1
解:由题意得,在Rt△PAO与Rt△PBO中
PAO 30, PBO 45
PO tan 30, PO tan 45 P
OA
OB
α β
OA 450 450 3, tan 30
450米
OB 450 450 tan 45
AB OA OB (450 3 450)(m)O

解直角三角形(2)仰角与俯角、方位角、坡角(比)问题(知识讲解)2022-2023学年九年级数学下册

解直角三角形(2)仰角与俯角、方位角、坡角(比)问题(知识讲解)2022-2023学年九年级数学下册

专题1.11解直角三角形(2)——仰角与俯角、方位角、坡角(比)问题(知识讲解)【学习目标】1.理解用三角函数解决实际问题的有关概念;2.理解并解决实际问题中转化为三角函数模型解决实际问题。

【要点梳理】解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD 的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.特别说明:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形的应用——仰角和俯角问题1.在一次综合实践活动中,某小组对一建筑物进行测量.如图,在山坡坡脚C处测得该建筑物顶端B 的仰角为60°,沿山坡向上走20m 到达D 处,测得建筑物顶端B 的仰角为30°.已知山坡坡度3:4i =,即3tan 4θ=,请你帮助该小组计算建筑物的高度AB .(结果精确到0.1m 1.732≈)在Rt CDE △中,90E ∠=︒∴222DE CE CD +=∴222(3)(4)20x x +=∴4x =(负值舍去)∴12DE =,16CE =举一反三:【变式1】如图,小文在数学综合实践活动中,利用所学的数学知识测量居民楼的高度AB ,在居民楼前方有一斜坡,坡长15m CD =,斜坡的倾斜角为α,4cos 5α=.小文在C 点处测得楼顶端A 的仰角为60︒,在D 点处测得楼顶端A 的仰角为30°(点A ,B ,C ,D 在同一平面内).(1)求C ,D 两点的高度差;(2)求居民楼的高度AB .(结果精确到1m 1.7≈)AFDF 4三角函数的定义是解答本题的关键.【变式2】如图,希望中学的教学楼AB和综合楼CD之间生长着一棵高度为12.88米的白杨树EF,且其底端B,D,F在同一直线上,BF=FD=40米.在综合实践活动课上,小明打算借助这棵树的高度测算出综合楼的高度,他在教学楼顶A处测得点C的仰角为9°,点E的俯角为16°.问小明能否运用以上数据,得到综合楼的高度?若能,请求出其高度(结果精确到0.01米);若不能,说明理由.(解答过程中可直接使用表格中的数据哟!)【答案】能,综合楼的高度约是37.00米.【分析】在Rt△AEG中,利用正切函数求得AG的长,在Rt△ACH中,利用正切函数求得CH的长,据此求解即可得到综合楼的高度.解:小明能运用以上数据,得到综合楼的高度,理由如下:作EG⊥AB,垂足为G,作AH⊥CD,垂足为H,如图:·类型二、解直角三角形的应用——方位角问题2.小明学了《解直角三角形》内容后,对一条东西走向的隧道AB进行实地测量.如图所示,他在地面上点C处测得隧道一端点A在他的北偏东15︒方向上,他沿西北方向前进D,此时测得点A在他的东北方向上,端点B在他的北偏西60︒方向上,(点A、B、C、D在同一平面内)(1)求点D与点A的距离;(2)求隧道AB的长度.(结果保留根号)举一反三:【变式1】如图,我国某海域有A,B,C三个港口,B港口在C港口正西方向33.2nmile (nmile是单位“海里”的符号)处,A港口在B港口北偏西50°方向且距离B港口40nmile 处,在A港口北偏东53°方向且位于C港口正北方向的点D处有一艘货船,求货船与A港口之间的距离.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)由题意得:EF=BC=33.2海里,【变式2】如图,AB 为东西走向的滨海大道,小宇沿滨海大道参加“低碳生活·绿色出行”健步走公益活动.小宇在点A 处时,某艘海上观光船位于小宇北偏东68︒的点C 处,观光船到滨海大道的距离CB 为200米.当小宇沿滨海大道向东步行200米到达点E 时,观光船沿北偏西40︒的方向航行至点D 处,此时,观光船恰好在小宇的正北方向,求观光船从C处航行到D 处的距离.(参考数据:sin 400.64︒≈,cos 400.77︒≈,tan 400.84︒≈,sin 680.93︒≈,cos680.37︒≈,tan 68 2.48︒≈)类型三、解直角三角形的应用——坡度坡比问题来的37°减至30°,已知原电梯坡面AB的长为8米,更换后的电梯坡面为AD,点B延伸至点D,求BD的长.(结果精确到0.1米.参考数据:︒︒︒)≈≈≈≈sin370.60,cos370.80,tan37 1.73【答案】约为1.9米【分析】根据正弦的定义求出AC,根据余弦的定义求出BC,根据正切的定义求出CD,结合图形计算,得到答案.举一反三:【变式1】如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =求背水坡新起点A 与原起点B 之间的距离. 1.41≈ 1.73≈.结果精确到0.1m)【变式2】宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1≈)1.7≈ 1.4【点拨】本题考查了解直角三角形的实际应用,掌握三角形中的边角关系是解题的关键.类型四、解直角三角形的应用——其他问题4.2022年6月5日,“神舟十四号”载人航天飞船搭载“明星”机械臂成功发射.如图是处于工作状态的某型号手臂机器人示意图,OA 是垂直于工作台的移动基座,AB 、BC 为机械臂,1OA =m ,5AB =m ,2BC =m ,143ABC ∠=︒.机械臂端点C 到工作台的距离6CD =m .(1)求A 、C 两点之间的距离;(2)求OD 长.(结果精确到0.1m ,参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈ 2.24≈)【答案】(1)6.7m(2)4.5m【分析】(1)连接AC ,过点A 作AH BC ⊥,交CB 的延长线于H ,根据锐角三角函数定义和勾股定理即可解决问题.(2)过点A 作AG DC ⊥,垂足为G ,根据锐角三角函数定义和勾股定理即可解决问题..∴==m.OD AG4.5答:OD的长为4.5m.【点拨】求角的三角画数值或者求线段的长时,我们经常通过观察图形将所求的角成者线段转化到直角三角形中(如果没有直角三角形,设法构造直角三角形),再利用锐角三角画数求解【变式1】某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留≈).1.7∠=︒FDB45,∴=,DF FB【变式2】小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN ,MN 与墙面AB 所成的角∠MNB =118°,厂房高AB =8m ,房顶AM 与水平地面平行,小强在点M 的正下方C 处从平面镜观察,能看到的水平地面上最远处D 到他的距离CD 是多少?(结果精确到0.1m ,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)【答案】11.8m【分析】过M 点作ME ⊥MN 交CD 于E 点,证明四边形ABCM 为矩形得到CM=AB =8,∠NMC =180°-∠BNM=62°,利用物理学入射光线与反射光线之间的关系得到∠EMD =∠EMC ,且∠CME =90°-∠CMN =28°,进而求出∠CMD =56°,最后在Rt △CMD 中由tan ∠CMD 即可求解.解:过M 点作ME ⊥MN 交CD 于E 点,如下图所示:∵C点在M点正下方,∴CM⊥CD,即∠MCD=90°,∵房顶AM与水平地面平行,∴四边形AMCB为矩形,【点拨】本题借助平面镜入射光线与反射光线相关的物理学知识考查了解直角三角形,解题的关键是读懂题意,利用数形结合的思想解答.。

28.2.2利用仰俯角解直角三角形(教案)

28.2.2利用仰俯角解直角三角形(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了仰角和俯角的基本概念,以及如何利用它们解直角三角形。通过实践活动和小组讨论,我们加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调仰角和俯角的测量方法,以及如何运用正弦、余弦和正切函数这两个重点。对于难点部分,我会通过实际案例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与利用仰俯角解直角三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。比如,通过测量学校旗杆的仰角和水平距离,计算旗杆的高度。
-在使用三角函数时,学生可能会混淆各函数的使用条件,教师需要通过具体例题和图表,指导学生如何根据题目条件选择正确的三角函数。
-在解决实际问题时,学生可能难以确定哪些是已知量,哪些是未知量。教师应指导学生通过画图、列方程等方式,清晰地表达问题中的数学关系,例如在测量距离或高度时,如何利用已知的仰俯角和边长来求解。
4.通过小组合作、交流讨论,发展学生的团队协作和沟通表达能力,培养合作共赢的意识。
这些核心素养目标与新教材要求相契合,旨在全面提升学生的数学学科素养和综合素质。
三、教学难点与重点
1.Байду номын сангаас学重点
-理解仰角和俯角的概念及其在实际问题中的应用。
-掌握在直角三角形中,运用正弦、余弦和正切函数求解未知角度和边长的方法。
本章节内容紧密结合教材,旨在让学生通过具体实例,掌握解直角三角形在实际生活中的应用,提高问题解决能力。

九年级数学下册解直角三角形_仰角、俯角课件

九年级数学下册解直角三角形_仰角、俯角课件

P
A
B
4、如图,为了测量高速公路的保护石堡坎与地面 的倾斜角∠BDC是否符合建筑标准,用一根长为 10m的铁管AB斜靠在石堡坎B处,在铁管AB上量 得AF长为1.5m,F点离地面的距离为0.9m,又量 出石堡坎顶部B到底部D的距离为 m ,这样能计 算出∠BDC吗?若能,请计算出∠BDC的度数,若 不能,请说明理由。
在进行测量时,从下向上看,视线与水平线 的夹角叫做仰角; 从上往下看,视线与水平线的夹角叫做俯角.
视线
铅 仰角 直 线 俯角
水平线
视线
1、如图,为了测量电线杆的高度AB,在离 电线杆22.7米的C处,用高1.20米的测角仪 CD测得电线杆顶端B的仰角a=22°,求电 线杆AB的高.(精确到0.1米)
=220 1.20
22.7
2、在山脚C处测得山顶A的仰角为45°。问 题如下: 1)沿着水平地面向前300米到达D点,在D点 测得山顶A的仰角为600 , 求山高AB。
A
3x
45° 60°
C
D xB
2、在山脚C处测得山顶A的仰角为450。问题如 下:
变式: 沿着坡角为30 °的斜坡前进300米到达D 点,在D点测得山顶A的A仰角为600 ,求山高AB。
D xF
30°
C
Ex B
3、在山顶上处D有一铁塔,在塔顶B处测得地面上一 点A的俯角α=60o,在塔底D测得点A的俯角β=45o, 已知塔高BD=30米,求山高CD。
B α
D
β
C
A
1.如图,某飞机于空中 A处探测到目标C,此时 飞行高度AC=1200米, 从飞机上看地平面控制 点B的俯角α=16031`, 求飞机A到控制点B的距 离.(精确到1米)

第1课时 仰角、俯角与解直角三角形

第1课时 仰角、俯角与解直角三角形

课题第1课时仰角、俯角与解直角三角形授课人教学目标知识技能理解仰角、俯角的概念,并能通过作高构造直角三角形进而解直角三角形.数学考虑结合实际问题,弄清仰角、俯角的概念,通过解直角三角形,获得解决物体的高、宽等一些测量经历.问题解决要求学生擅长将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,通过解直角三角形解决实际问题.情感态度运用数形结合思想,把实际问题转化为数学问题,培养学生的自主探究精神,并进步合作交流的才能,培养学数学用数学的思想.教学重点利用俯角、仰角计算物体的高和宽等.教学难点把实际问题转化为数学模型.授课类型新授课课时教具多媒体教学活动教学步骤师生活动设计意图回忆1.解直角三角形的主要根据是什么?2.解直角三角形主要有哪两种类型?[答案]1.两锐角的关系、三边之间的关系、边角之间的关系.2.(1)两条边;(2)一条边和一个锐角.回忆以前所学内容,为本节课的教学内容做好准备.活动一:创设情境导入新课【课堂引入】2012年6月18日,“神舟〞九号载人航天飞船与“天宫〞一号目的飞行器成功实现交会对接.“神舟〞九号与“天宫〞一号的组合体在离地球外表343 k m的圆形轨道上运行,如图28-2-37,当组合体运行到地球外表点P的正上方时,从中能直接看到的地球外表最远的点在什么位置?最远点与点P的间隔是多少(地球半径约为6400 k m, π取3.142,结果取整数)?图28-2-37通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,通过求解,初步体会解直角三角形的内涵,引入课题.活动二:理论探究交流新知1.解决问题:师生活动:老师引导学生分析问题,将实际问题转化为数学问题,并画出示意图.分析问题:从组合体中能直接看到的地球外表最远点,是视线与地球相切时的切点.如图28-2-38,本例可以抽象为以地球中心为圆心、地球半径为半径的⊙O的有关问题:其中点F是组合体的位置,FQ是⊙O的切线,切点Q是从组合体中观测地球时的最远点,PQ︵的长就是地球外表上P,Q两点间的间隔.为计算PQ︵的长需先求出∠POQ(即α)的度数.2.仰角、俯角的应用:例题:热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的程度间隔为120 m.这栋楼有多高(结果取整数)?仰角与俯角:在视线与程度线所成的角中,视线在程度线上方的是仰角,视线在程度线下方的是俯角.如图28-2-38,仰角α=30°,俯角β=60°. 图28-2-38在Rt△ABD中,α=30°,AD=120,所以可以利用解直角三角形的知识求出BD;类似地,可以求出CD,进而求出BC的长度.设置的实际问题都是从现实生活中提取出来而又高于现实的,既丰富了学生的知识,使他们更有兴趣学习,又让学生进一步经历用三角函数解决实际问题的过程,进步学生运用所学知识解决实际问题的才能.活动三:开放训练表达应用【应用举例】例1如图28-2-39,小明想测量河对岸的一幢高楼AB的高度,在河边C处测得楼顶A的仰角是60°,在距C处60米的E处有幢楼房,小明从该楼房间隔地面20米的D处测得高楼顶端A的仰角是30°(点B,C,E在同一直线上,且AB,DE均与地面BE垂直),求楼AB的高度. 图28-2-39分析:过点D作DF⊥AB于点F.设AB的高度为x米,那么AF=(x-20)米.在Rt△ABC和Rt△ADF中分别求出BC和DF的长度,然后根据CE=BE-BC,代入数值求出x的值.例1主要考察理解直角三角形的应用,解答此题的关键是根据仰角构造直角三角形,培养学生解决实际问题的才能.【拓展提升】例2如图28-2-40,为了测量顶部不能到达的建筑物AB的高度,如今地平面上取一点C,用测量仪测得点A的仰角为45°,再向前进20米取一点D,使点D在BC的延长线上,此时测得点A的仰角为30°.测量仪的高为1.5米,求建筑物AB的高度. 图28-2-40[答案](10 3+11.5)米例2主要是通过两次解直角三角形建立一元一次方程,通过解方程,求出相应的线段,从而解决求建筑物高的问题.(续表)。

解直角三角形(仰角、俯角)

解直角三角形(仰角、俯角)

解直角三角形(2)学习目标:1、知道仰角、俯角的概念,能根据直角三角形的知识解决实际问题.2、逐步培养学生分析问题、解决问题的能力.3、渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识学习重点:能根据直角三角形的知识解决实际问题.学习难点:实际问题转化成数学模型学习过程:一、复习引入:1.解直角三角形指什么?2.解直角三角形主要依据什么?二、新课学习:仰角、俯角当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角.三、尝试运用:例3 2003年10月15日“神舟”5号载人航天飞船发射成功.当飞船完成变轨后,就在离地球表面350km的圆形轨道上运行.如图,当飞船运行到地球表面上P点的正上方时,从飞船上最远能直接看到的地球上的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6 400 km,结果精确到0. 1 km)B A DC例4热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30o ,看这栋离楼底部的俯角为60o ,热气球与高楼的水平距离为120 m.这栋高楼有多高(结果精确到0.1m)?对应练习:课本89页 练习 第1 、2题四、达标练习:1、如图,两建筑物的水平距离是36米,从A 点测得D 点的俯角α=30°,C 点的俯角β为45°,求两个建筑物的高AB 和CD 。

2、如图,在离铁塔150米的A处,用测角仪测得塔顶的仰角为30度,已知测角仪高AD=1.5米,求铁塔高BE.五、课堂小结:本节课我的收获: 。

六、作业布置:课本第92页习题28.2复习巩固第3、4题。

1.解直角三角形在方向角,仰角、俯角中的应用课件

1.解直角三角形在方向角,仰角、俯角中的应用课件

∴AB≈4×136.67≈546.7(m).
即AB的长约为546.7 m.
新课讲授
练一练
如图,AB是斜靠在墙上的长梯,D是梯上一点, 梯脚B与墙脚的距离为1.6 m(即BC的长),点D与墙 的距离为1.4 m(即DE的长),BD长为0.55 m,则梯 子的长为( B ) A.4.50 m B.4.40 m C.4.00 m D.3.85 m
典例分析
例 1.如图, 一艘海轮位于灯塔P的 北偏东 65°方向,距离灯塔80 n mile的A处, 它沿正南方向航行一段时间后,到达

A
65°
位于灯塔P的南偏东34°方向上的B处.
P
C
这时,B处距离灯塔 P有多远(结果
34°
取整数)?
B
新课讲授
解:如图,在Rt△APC中,
PC =PA • cos(90°-65°) =80 × cos 25° ≈72. 505.
新课讲授
解:设正午时刻太阳光线正好照在楼Ⅰ 一楼的窗台处,此 时新建居民楼Ⅱ高 EG=x m,如图 1-5-5,过 C 作 CF ⊥ EG 于 F,则 FG=CM=2 m.
在 Rt △ ECF 中, EF=( x-2) m, FC=30 m, ∠ECF=30°, tan 30 EF x 2 ,
FC 30 x 10 3 2.
即新建楼Ⅱ 最高只能建 10 3 2m.
新课讲授
1 如图,AB是伸缩式遮阳棚,CD是窗户,要想在夏 至的正午时刻阳光刚好不能射入窗户,则AB的长 是____3____米.(假设夏 至的正午时刻阳光与地 平面的夹角为60°)
新课讲授
2 如图,已知电线杆AB直立于地面上,它的影子恰好 照在土坡的坡面CD和地面BC上,如果CD与地面成 45°,∠A=60°,CD=4 m,BC=(4 6 -2 2 ) m,则电线杆AB的长为__6__2____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解直角三角形(仰角和俯角)
一、知识点讲解
1、仰角和俯角的定义:
在进行测量时,从下向上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角。

二、典例分析
利用解直角三角形解决仰角、俯角问题
例1 一数学兴趣小组为了测量河对岸树AB的高,在河岸边选择一点C,从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得A的仰角为30°,求树高.(结果精确到0.1米,参考数据:≈1.414,≈1.732)
变式练习:
1、如图,为了测得电视塔的高度AB,在D处用高为1米的测角仪CD,测得电视塔顶端A的仰角为30°,再向电视塔方向前进100米达到F处,又测得电视塔顶端A的仰角为60°,则这个电视塔的高度AB(单位:米)为
A、50
B、51
C、50+1
D、101
第1题第2题第3题
2、如图,从坡顶C处测得地面A、B两点的俯角分别为30°、45°,如果此时C处的高度CD为150米,且点
A、D、B在同一直线上,则AB两点间距离是米。

3、如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)
4、如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,则楼房CD 的高度m(结果保留根号)
反馈练习 基础夯实
1、如图,某飞机在空中A 处探测到它的正下方地平面上目标C ,此时飞行高度AC =1200m ,从飞机上看地平面 A 、 1200m B 、 1200m C .、 1
200m D 、 2400m
第1题 第2题 第3题 第4题
2、如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,、 米
B D 的仰角为α,从点A 测得点D 的仰角为β,已知甲、乙两建筑物之间的距离为a ,则甲建筑物的高AB 为 。

(用含α、β、a 的式式表示)
4、如图,某建筑物BC 上有一旗杆AB ,从与BC 相距38m 的D 处观测旗杆顶部A 的仰角为50°,观测旗杆底部B 的仰角为45°,则旗杆的高度均为 m .(结果精确到0.1m ,参考数据:sin 50°≈0.77,cos 50°≈0.64,tan 50°≈1.19)
5、观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房
的底端A 点处观测观光塔顶端C 处的仰角是60°,然后爬到该楼房顶端B 点处观测
观光塔底部D 处的俯角是30°.已知楼房高AB 约是45m ,根据以上观测数据可求
观光塔的高CD 是 m .
6、国家海洋局将中国钓鱼岛最高峰命名为“高华峰”,并对钓鱼岛进行常态化立体巡航。

如图1,在一次巡航过程中,巡航飞机飞行高度为2001米,在点A 测得高华峰顶点F 的俯角为30°,保持方向不变前进1200米到达B 点后测得峰顶点F 的俯角为45°,如图2,请根据此计算钓鱼岛的最高海拔高度为多少米。

(结果保留整数,参考数值:732.13≈,414.12≈)
能力提升
1、如图,登山缆车从点A 出发,途经点B 后到达终点C ,其中AB 段与BC 段的运行路程均为200m ,且AB 段的运行路线与水平面的夹角为30°,BC 段的运行路线与水平面的夹角为42°,求缆车从点A 运行到点C 的垂直上升的距离.(参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)
2、已知如图,在山脚的C 处测得山顶A 的仰角为45°,沿着坡度为30°的斜坡前进400米到达D 处,测得A 的仰角为60°,求山的高度AB 。

3、如图,在楼房AB 和塔CD 之间有一棵树EF ,从楼顶A 处经过树顶E 点恰好看到塔的底部D 点,且俯角α为45°.从距离楼底B 点1米的P 点处经过树顶E 点恰好看到塔的顶部C 点,且仰角β为30°.已知树高EF =6米,求塔CD 的高度.(结果保留根号)【326+】
4、小方与同学一起去郊游,看到一棵大树斜靠在一小土坡上,他想知道树有多长,于是他借来测角仪和卷尺.如图,他在点C 处测得树AB 顶端A 的仰角为30°,沿着CB 方向向大树行进10米到达点D ,测得树AB 顶端A 的仰角为45°,又测得树AB 倾斜角∠1=75°.
(1)求AD 的长.【2565+】
(2)求树长AB .【210】
思维拓展
1、为了给学生提供更好的学习生活环境,重庆一中寄宿学校2015年对校园进行扩建,某天一台塔吊正对新建教学楼进行封顶施工,工人在楼顶A 处测得吊钩D 处的俯角α=22°,测得塔吊B 、C 两点的仰角分别为β=27°,γ=50°,此时B 与C 相距3米,塔吊需向A 处吊运材料,吊钩需向右、向上分别移动多少米才能将材料送达A 处?(参考数据:tan 27°≈0.5,tan 50°≈1.2,tan 22°≈0.4)【右715,上7
6】
2、“一柱香”是闻名中外的恩施大峡谷的著名景点,某校综合实践活动小组先在峡谷对面的广场上的A 处测得“香项”N 的仰角为45°,此时,他们刚好与“香底”D 在同一水平线上,然后沿着坡度为30°的斜坡正对着“一柱香”前进110米,到过B 处,测得“香顶”N 的仰角为60°,根据以上条件求出“一柱香”的高度。

(测角器的高度忽略不计,结果精确到1米,参考数据:732.13,414.12≈≈)。

相关文档
最新文档