浙教版九上第三章《圆的基本性质》word单元测试
浙教版九年级数学上册第三章圆的基本性质单元测试(含答案)

第 3 章圆的基天性质( 3.1 — 3.7 )测试一、选择题(每题 4 分,共28 分)1、在数轴上,点 A 所表示的实数为3,点B 所表示的实数为a,⊙ A 的半径为2,以下说法中不正确的选项是()A 、当a< 5 时,点B 在⊙ A内 B 、当1< a< 5 时,点 B 在⊙ A内C、当a< 1 时,点 B 在⊙ A外 D 、当a> 5 时,点 B 在⊙ A外2、以下命题中不正确的选项是()A 、圆有且只有一个内接三角形B 、三角形只有一个外接圆C、三角形的外心是这个三角形随意两边的垂直均分线的交点D、等边三角形的外心也是三角形的三条中线、高、角均分线的交点3、⊙ O内一点M 到圆的最大距离为10cm,最短距离为8cm,那么过M 点的最短弦长为()A 、1cmB 、85 cm C、41 cm D、 9cm4、如图,梯形ABCD中, AB∥ DC ,AB⊥ BC, AB= 2cm, CD=4cm,以BC上一点O 为圆心的圆经过A、 D两点,且∠AOD = 90°,则圆心O 到弦AD的距离是()A 、 6 cm B、10 cm C、2 3cmD 、25 cm(第 4 题图)(第5 题图)(第 6 题图)(第7 题图)5、如下图,以O 为圆心的两个齐心圆中,小圆的弦AB 的延伸线交大圆于C,若AB= 3,BC= 1,则与圆环的面积最靠近的整数是()A 、9B 、 10C、 15D、 136、如图,圆上由⌒⌒7 A、B、C、D 四点,此中∠ BAD = 80°,若ABC,ADC的长度分别为,⌒的长度为()11 ,则BADA 、4B 、8C、10D、157、如图,在平面直角坐标系中,⊙P 的圆心是( 2, a)( a> 2),半径为 2,函数 y= x 的图象被⊙ P 截得的弦 AB 的长为2 3 ,则a的值是()A 、2 3B 、2 2 2C、22 D 、23二、填空题(每题 4 分,共 60 分)8、如图,⊙ O 的半径 OA=6,以 A 为圆心, OA 为半径的弧交⊙O 于 B、 C,则 BC 的长是.(第 8 题图)(第9题图)(第12题图)⌒9、如图,点 A、B、C、D 都在⊙ O 上,CD的度数等于84°,CA 是∠ OCD 的均分线,则∠ ABD+∠ CAO=.10、已知, A、 B、 C 是⊙ O 上不一样的三点,∠AOC= 100 °,则∠ABC =.11、在⊙ O 中,弦 CD 与直径 AB 订交于点E,且∠ AEC= 30°, AE= 1cm, BE= 5cm,那么弦 CD 的弦心距OF=cm,弦 CD 的长为cm.12、如图,小量角器的零度线在大批角器的零度线上,且小量角器的中心在大批角器的外缘边上.假如它们外缘边上的公共点P 在校量角器上对应的度数为65°,那么在大批角器上对应的度数为(只要写出0°~90°的角度).13、如图,在以 AB 为直径的半圆中,有一个边长为 1 的内接正方形CDEF ,则 AC=,BC=.(第 13 题)(第14题)(第15题)14、在圆柱形油槽内装有一些油,截面如图,油面宽AB 为 6 分米,假如再注入一些油后,油面 AB 上涨 1 分米,油面宽变成 8 分米,圆柱形油槽的直径MN 为 .15、如图 AB 、CD 是⊙ O 的两条相互垂直的弦,∠AOC = 130 °,AD 、CB 的延伸线订交于点P ,∠ P =.16、如图,弦 ⌒ ⌒.AB 、 CD 订交于点 E , AD =60°, BC = 40°,则∠ AED =(第 16 题图) (第 17 题图) (第 18 题图) (第 19 题图)17、如图,弦 CD ⊥ AB 于 P , AB = 8, CD =8,⊙ O 半径为 5,则 OP 的长为 .18、如图,矩形 ABCD 的边 AB 过⊙ O 的圆心, E 、F 分别为 AB 、CD 与⊙ O 的交点,若 AE= 3cm , AD = 4cm , DF =5cm ,则⊙ O 的直径等于.⌒的中点, E 是 BA延伸线上一19、如图,⊙ O 是△ ABC 的外接圆, AO ⊥ BC 于 F ,D 为 AC 点,∠ DAE = 114°,则∠ CAD 等于.20、半径为 R 的圆内接正三角形的面积是.21、一个正多边形的全部对角线都相等,则这个正多边形的内角和为.22、AC 、BD 是⊙ O 的两条弦,且 AC ⊥ BD ,⊙O 的半径为 1,则 AB 2CD 2 的值为 .2三、解答题(共 32 分)23、( 10 分)某地有一座圆弧形拱桥, 桥下水面宽度 AB 为 7.2m ,拱顶超出水面 2.4m ,OC ⊥ AB ,现有一艘宽 3m ,船舱顶部为正方形并超出水面 2m 的货船要经过这里,此货船能顺利经过这座桥吗?24、( 10 分)已知,如,△ ABC 内接于⊙ O,AB 直径,∠ CBA 的均分交 AC 于点 F ,交⊙ O 于点 D,DE⊥ AB 于点 E,且交 AC 于点 P,接 AD.(1)求:∠ DAC=∠ DBA ;(2)求: P 是段 AF 的中点.25、( 12 分)如,AD是⊙ O 的直径.(1)如①,垂直于AD的两条弦B1C1, B 2 C 2把周 4 均分,∠B1的度数是,∠ B 2的度数是.(2)如②,垂直于 AD 的三条弦B1C1,B2C2,B3C3把周 6 均分,分求∠B1,∠B2,∠ B 3的度数;(3)如③,垂直于 AD 的 n 条弦B1C1,B2C2,B3C3,⋯,B n C n把周 2n 均分,你用含 n 的代数式表示∠B n的度数(只要直接写出答案).参照答案1~7: AABBDCC8、6 39、48°10、 50°或 130 °11、1cm4 2 cm12、50°515114、 10分米15、 40°16、 50°17、3 2 13、2218、 10cm19、 38°20、 3 3R221、360 °或 540°22、 1423、解:如图,连结ON, OB,∵OC⊥ AB, D 为 AB 中点,∵ AB= 7.2m,∴BD =1AB= 3.6m,又∵ CD= 2.4m,2设OB= OC= ON=r,则 OD =( r- 2.4) m,在 Rt△ BOD 中,依据勾股定理得:r 2(r 2.4) 2 3.6 2,解得:r=3.9∵CD = 2.4m,船舱顶部为正方形并超出水面2m,∴ CH = 2.4- 2= 0.4m,∴OH = r - CH= 3.9- 0.4= 3.5m,在 Rt△ OHN 中,HN2ON 2OH 2 3.92 3.52 2.96,∴HN = 2.96 m,∴ MN = 2HN =2×2.96 ≈3.44m>3m.∴此货船能顺利经过这座桥.24、证明:( 1)∵ BD 均分∠ CBA ,∴∠ CBD =∠ DBA ,∵∠ DAC 与∠ CBD 都是弧 CD 所对的圆周角,∴∠DAC=∠ CBD,∴∠ DAC =∠ DBA .( 2 )∵ AB为直径,∴∠ ADB=90°,又∵ DE⊥AB于点 E ,∴∠ DEB = 90°,∴∠ADE +∠EDB =∠ABD+∠EDB=90°,∴∠ADE=∠ABD =∠DAP ,∴PD =PA ,又∵∠ DFA +∠ DAC =∠ADE +∠ PDF =90°且∠ ADE =∠ DAP ,∴∠ PDF =∠PFD ,∴ PD =PF ,∴PA =PF ,即 P 是点段 AF 的中点.25、( 1)∠B1=22.5 °,∠B2= 67.5 °(; 2)∠B1= 15°,∠B2= 45°,∠B3= 75°;(3)B n C n把圆周 2n 均分,则弧B n D 的度数是360,则∠ B n AD =360,4n8n∴∠ B n=90°-360=90°-45 8n n7、我们各样习惯中再没有一种象战胜骄傲那麽难的了。
浙教版数学九上第3章《圆的基本性质》单元测试卷

第3章 圆的基本性质 单元测试一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.已知⊙O 的半径为5厘米,A 为线段OP 的中点,当OP =6厘米时,点A 与⊙O 的位置关系是( ) A.点A 在⊙O 内B.点A 在⊙O 上C.点A 在⊙O 外D.不能确定2.下列命题中不正确的是( ) A.圆有且只有一个内接三角形;B.三角形的外心是这个三角形任意两边的垂直平分线的交点;C.三角形只有一个外接圆;D.等边三角形的外心也是三角形的三条中线、高、角平分线的交点. 3.过⊙内一点M 的最长弦长为10cm ,最短弦长为8cm ,那么OM 的长为( )(A )3cm (B )6cm (C )cm (D )9cm4.如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是( ) A 、AB ⊥CD B 、∠AOB =4∠ACD C 、D 、PO =PD5.如图所示,以O 为圆心的两个同心圆中,小圆的弦AB 的延长线交大圆于C ,若AB =3,BC =1,则与圆环的面积最接近的整数是( ) A.9B.10C.15D.13D(第4题) (第5题) (第6题)6.下图中BOD ∠的度数是( )A 、550B 、1100C 、1250D 、15007.如图,圆锥的底面半径为3cm ,母线长为5cm ,则它的侧面积为( ) A. 60πcm 2 B. 45πcm 2 C. 30πcm 2 D15πcm 2P(第7题) (第8题) (第9题)8.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA、OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为 ( )A.12个单位B.10个单位C.4个单位D.15个单位9.如图,有一块边长为6 cm的正三角形ABC木块,点P是边CA延长线上的一点,在A、P之间拉一细绳,绳长AP为15 cm.握住点P,拉直细绳,把它紧紧缠绕在三角形ABC木块上(缠绕时木块不动),则点P运动的路线长为(精确到0.1厘米,π≈3.14)( )A.28.3 cmB.28.2 cmC.56.5 cmD.56.6 cm10.如图所示,⊙O的弦AB垂直于直径MN,C为垂足,若OA=5厘米,下面四个结论中可能成立的是( )A.AB=12厘米B.OC=6厘米C.MN=8厘米D.AC=2.5厘米A(第10题) (第11题) (第13题)二、填空题(本大题共5小题,每小题4分,共20分)11.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C,则BC= . 12.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,另一条弦长为6厘米,则两弦之间的距离为_______.7厘米或1厘米13.如图,矩形ABCD中,86AB AD==,,将矩形ABCD在直线l上按顺时针方向不滑动的每秒转动90,转动3秒后停止,则顶点经过的路线长为.14.如图,矩形ABCD与与圆心在AB上的⊙O交于点G、B、F、E,GB=8cm,AG=1cm,DE=2cm,则EF= cm .(第14题) (第15题)15.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为m4的半圆,其边缘AB = CD =m20,点E在CD上,CE =m2,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为 .(边缘部分的厚度忽略不极,结果保留整数)三、解答题(本大题共6小题,共50分.解答应写出文字说明,证明过程或演算步骤)16.(本题6分)已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以C为圆心,CA长为半径的圆交AB于D,求的度数.A17.(本题8分)“圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图3-2-16所示,CD为⊙O的直径,弦AB⊥CD,垂足为E, CE=1寸,求直径CD的长.”C18.(本题8分)如图所示,OA 、OB 、OC 都是圆O 的半径,∠AOB =2∠BOC . 求证:∠ACB =2∠BAC .CBAO19.(本题8分)如图,这是一个由圆柱体材料加工而成的零件,它是以圆柱体的上底面为底面,在其内部“掏取”一个与圆柱体等高的圆锥体而得到的,其底面直径AB =cm 12,高BC =cm 8,求这个零件的表面积.结果保留)14. (l5分)如图,已知AB为⊙O的直径,弦CD⊥AB,垂足为H .(l)求证:AH·AB=AC2 ;(2)若过A的直线AF与弦CD(不含端点)相交于点E,与⊙O相交于点F、求证:AE·AF =AC2 ;(3)若过A的直线AQ与直线CD相交于点P,与⊙O相交于点Q,判断AP·AQ=AC2是否成立(不必证明).15.(15分)如图,AM是⊙O的直径,过⊙O上一点B作BN⊥AM,垂足为N,其延长线交⊙O于点C,弦CD交AM于点E.(1)如果CD⊥AB,求证:EN=NM(2)如果弦CD交AB于点F,且CD=AB,求证:CE2=EF·ED(3)如果弦CD、AB的延长线交于点F,且CD=AB,那么(2)的结论是否还成立?若成立,请证明;若不成立,请说明理由.参考答案1.A 2.A 3.A 4.D 5.D 6.B 7.D 8.B 9.C 10.A 11.36 12.7厘米或1厘米 13.12π 14.6 15.22 16.50° 17.26寸18.求证圆周角∠ACB =2∠BAC ,只要证明弧AB 的度数是弧BC 度数的两倍即可,由已知条件∠AOB =2∠BOC 容易得到.19.这个零件的表面积为:ππππ192609636=++.。
最新浙教版九年级数学上学期《圆的基本性质》单元测试卷及答案解析.docx

九年级上数学圆的基本性质单元测试卷班级 姓名一、选择题1、下列命题中不正确的是( ) A.圆有且只有一个内接三角形;B.三角形的外心是这个三角形任意两边的垂直平分线的交点;C.三角形只有一个外接圆;D.等边三角形的外心也是三角形的三条中线、高、角平分线的交点. 2、过⊙内一点M 的最长弦长为10cm ,最短弦长为8cm ,那么OM 的长为( )(A )3cm (B )6cm (C )cm (D )9cm3、如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠BOC =110°,AD ∥OC ,则∠AOD =( ) A70° B 、60° C 、50° D 、40°4、如图,弧AD 是以等边三角形ABC 一边AB 为半径的四分之一圆周,P 为弧AD 上任意一点,若AC =5,则四边形ACBP 周长的最大值是( )A 、15B 、20C 、2515+D 、5515+(第3题) (第4题) (第5题) (第6题) 5、如图,点A 、B 、C 、D 为圆O 的四等分点,动点P 从圆心O 出发,沿O —C —D —O 的路线作匀速运动,设运动时间为t 秒,∠APB 的度数为y 度,则下列图象中表示y 与t 之间函数关系最恰当的是()A B C D6、如图,在Rt△ABC中,∠C=90°,AB=10,若以点C为圆心,CB长为半径的圆恰好经过AB的中点D,则AC的长等于()A、35B、5 C、25D、67.如图,圆锥的底面半径为3cm,母线长为5cm,则它的侧面积为()A. 60πcm2B. 45πcm2C. 30πcm2D15πcm2ABCP15c m3c m9c m(第7题) (第8题) (第9题)8.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA、OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A.12个单位B.10个单位C.4个单位D.15个单位9.如图,有一块边长为6 cm的正三角形ABC木块,点P是边CA延长线上的一点,在A、P 之间拉一细绳,绳长AP为15 cm.握住点P,拉直细绳,把它紧紧缠绕在三角形ABC木块上(缠绕时木块不动),则点P运动的路线长为(精确到0.1厘米,π≈3.14)( )A.28.3 cmB.28.2 cmC.56.5 cmD.56.6 cm10、如图,Rt △ABC 中,∠ACB =90°,∠CAB =30°,BC =2,O ,H 分别为边AB 、AC 的中点,将△ABC 绕点B 顺时针旋转120°到△11BC A 的位置,则整个旋转过程中线段OH 所扫过部分的面积(即阴影部分的面积)为( )A 、38737-π B 、38734+π C 、π D 、334+π (第10题)二、填空题(每题4分,共32分)11.在半径为5厘米的圆内有两条互相平行的弦,一条弦长为8厘米,另一条弦长为6厘米,则两弦之间的距离为_______.12.同圆的内接正三角形与内接正方形的边长的比是______.13. 如图,△ABC 是等腰直角三角形,BC 是斜边,点P 是△ABC 内的一点,将△ABP 绕点A 逆时针旋转后与△ACP ′重合.如果AP=3,那么线段PP ′的长是______.(第13题) (第14题)14.如图,三角形ABC 是等边三角形,以BC 为直径作圆交AB ,AC 于点D ,E ,若BC=1,则DC=________.(第16题)14、如图,两正方形彼此相邻,且内接于半圆,若小正方形的面积为162cm ,则该半圆的半径为 .15、一根水平放置的圆柱形输水管道横截面中有水部分水面宽312米,半径为12米,则积水部分面积为 .16、如图所示,在⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为 .17、在平面直角坐标系中,已知一圆弧点A (-1,3),B (-2,-2),C (4,-2),则该圆弧所在圆的圆心坐标为 .18、如图⊙O 的半径为1cm ,弦AB ,CD 的长度分别为2cm ,1cm ,则弦AC ,BD 相交所夹的锐角 = . 三、解答题(第18题)19、已知:如图,在△ABC 中,∠ACB=90°,∠B=25°,以C 为圆心,CA 长为半径的圆交AB 于D,求的度数.DCBAE DCBA O(第19题)20、 “圆材埋壁”是我国古代数学著作《九章算术》中的一个问题,“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图3-2-16所示,CD 为⊙O 的直径,弦AB ⊥CD,垂足为E, CE=1寸,求直径CD 的长.”(第20题)21、如图所示,OA 、OB 、OC 都是圆O 的半径,∠AOB=2∠BOC . 求证:∠ACB=2∠BAC.CBAO(第21题)22、如图所示,BC 是⊙O 的直径,AD ⊥BC ,垂足为D ,AB =AF ,BF 和AD 相交于E ;求证:BE =AE .(第22题)23、(1)如图1,AB为⊙O的直径,弦CD⊥AB,垂足为点E,连结OC,若AB=10,CD=8,求AE的长;(2)如图2,∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=4,求PD的长度.24、如图,⊙O是△ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DE∥BC,DE交AB的延长线于点E,连结AD、BD.(1)求证:∠ADB=∠E;(2)当AB=5,BC=6,求⊙O的半径.(第24题)25、如图所示,已知⊙O的直径为32,AB为⊙O的弦,且AB=4,P是⊙O上一动点,问是否存在以A,P,B为顶点的面积最大的三角形,试说明理由,若存在,求出这个三角形的面积.第25题26、如图所示,⊙O的直径AB=12 cm,有一条定长为8 cm的动弦CD在AB上滑动(点C与A不重合,点D与B不重合),且CE⊥CD交AB于点E,DF⊥CD交AB于点F. (1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDFE的面积是否为定值?若是定值,请给出说明,并求出这个定值;若不是,请说明理由.第26题27、一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与C D是水平的,BC与水平面的夹角为600,其中AB=60cm,CD=40cm,BC=40cm,请你做出该小朋友将圆盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度.40cm40cm60cm DCB A 60O参考答案:1~5:AADCC 6~10:ADBCC11. 7厘米或1厘米 12.6213.32 点拨:由旋转的性质,知∠PAP ′等于90°,AP ′=AP=3,所以PP ′=22AP AP '+ =2233+=32. 14.3215、33648-π16、2017、(1,0)18、75°19、50°20、26寸21、求证圆周角∠ACB=2∠BAC,只要证明弧AB 的度数是弧BC 度数的两倍即可,由已知条件∠AOB=2∠BOC 容易得到.22、证明:∵BC 是⊙O 的直径,∴∠BAC =90°,∵AD ⊥BC ,∴∠BAD +∠CAD =∠CAD +∠C =90°,∴∠BAD =∠C ,∵AB =AF ,∴∠ABF =∠C ,∴∠BAD =∠ABF ,∴BE =AE23、解:(1)∵AB 为⊙O 的直径,弦CD ⊥AB ,∴CE =DE ,∵AB =10,CD =8,∴OC =5,CE =4,∴OE =3,∴AE =2(2)224、(1)证明:∵AB =AC ,点D 在弧BC 上运动,过点D 作DE ∥BC ,∴AB⌒ =AC ⌒ , ∠ABC =∠AED ,∠ABC =∠ACB ,∠ADB =∠ACB ,∴∠ADB =∠E ;(2)解:连结AO 并延长交BC 于F ,连结OB ,OC ,∵AB =AC ,OB =OC ,∴AO 垂直平分BC ,∴BF =CF =21BC =21×6=3, 在直角△ABF 中,由勾股定理可得AF =4,设⊙O 的半径为r ,在直角△OBF 中,OB =r ,BF =3,OF =4-r ,∴222)4(3r r -+=,解得825=r ,∴⊙O 的半径是825 25.解:存在以A ,P ,B 为顶点的面积最大的三角形.如答图6所示,作PD ⊥AB 于点D ,∵当点P 在优弧AB 上时,PD 可能大于⊙O 的半径,当点P 在劣弧AB 上时,PD 一定小于⊙O 的半径,且AB 的长为定值,∴当点P 在优弧AB 上且为优弧AB 的中点时△APB 的面积最大,此时PD 经过圆心O.作⊙O 的直径AC ,连结BC ,则∠ABC=90°.∴BC=22AC AB -=22(32)4-=2.∵AO=OC,AD=BD ,∴OD 为△ABC 的中位线,OD=12BC =22.∴PD=PO+OD=322+22=22.∴APB S =12AB ·PD=12×4×22=42. 26.(1)证明:过点O 作OH ⊥CD 于点H ,∴H 为CD 的中点.∵CE ⊥CD ,DF ⊥CD ,∴EC ∥OH ∥FD,则O 为EF 的中点,OE=OF.又∵AB 为直径,∴OA=OB ,∴AE=OA-OE=OB-OF=BF,即AE=BF.(2)解:四边形CDFE 的面积为定值,是216 5 cm .理由:∵动弦CD 在滑动过程中,条件EC ⊥CD ,FD ⊥CD 不变,∴CE ∥DF 不变.由此可知,四边形CDFE 为直角梯形或矩形,∴CDFE S 四边形=OH ·CD.连结OC.∴OH=22OC CH -=2212822⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=25(cm ).又∵CD 为定值8 cm,∴CDFE S 四边形=OH ·CD=25×8=165(2cm ),是常数.即四边形CDFE 的面积为定值.27.示意图略,路线的长度为140-π3103320+。
浙教版九年级数学上册 第3章 圆的基本性质 单元测试卷(含解析)

浙教版九年级数学上册第3章圆的基本性质单元测试卷题号一二三总分得分一、选择题(本大题共11小题,共33分)1.已知⊙O的半径为4cm,点A到圆心O的距离为3cm,则点A与⊙O的位置关系是()A. 点A在⊙O内B. 点A在⊙O上C. 点A在⊙O外D. 不能确定2.如图,AB是⊙O的直径,C、D是⊙O上两点,∠AOC=130°,则∠D等于()A. 65°B. 35°C. 25°D. 15°3.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A. 80°B. 90°C. 100°D. 无法确定4.已知正六边形的边长为6,则它的边心距()A. 3√3B. 6C. 3D. √35.如图,☉O的半径为3,四边形ABCD内接于☉O,连接OB,OD,若∠BCD=∠BOD,则BD⌢的长为()π C. 2π D. 3πA. πB. 326.如图,在圆内接正五边形ABCDE中,对角线AC和BD相交于点P,则∠APB等于()A. 36∘B. 60∘C. 72∘D. 108∘7.如图,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A. 5B. 7C. 9D. 118.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5∘,OC=4,CD的长为()A. 2√2B. 4C. 4√2D. 89.半径为3,圆心角为120°的扇形的面积是()A. 3πB. 6πC. 9πD. 12π10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为()A. 16πB. 12πC. 10πD. 8π11.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG.DE,FG,AC⏜,BC⏜的中点分别是M,N,P,Q.若MP+NQ= 14,AC+BC=18,则AB的长为()C. 13D. 16A. 9√2B. 907二、填空题(本大题共9小题,共35分)12.如图,⊙O的内接四边形ABCD中,∠BOD=140°,则∠A等于______°.13.正五边形每个外角的度数是______.14.在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为_______.15.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果AC⏜=CD⏜,则∠ACD的度数是______.16.有一张矩形的纸片,AB=3cm,AD=4cm,若以A为圆心作圆,并且要使点D在⊙A内,而点C在⊙A外,⊙A的半径r的取值范围是______.17.如图,⊙O是△ABC的外接圆,∠A=45°,BC=4,则⊙O的直径为______.18.如图,在直角坐标系中,已知点A(−3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形1、2、3、4….则三角形2016的直角顶点坐标为______ .19.如图,CD是⊙O的直径,点A是半圆上的三等分点,B是弧AD的中点,P点为直线CD上的一个动点,当CD=6时,AP+BP的最小值为______.20.在Rt△ABC中,∠C=90°,AC=BC=1,将其放入平面直角坐标系,使A点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为______.三、解答题(本大题共4小题,共52分)21.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)22.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD//BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.23.如图,AB是⊙O的直径,点C是圆上一点,连接CA,CB,过点O作弦BC的垂线,交BC⌢于点D,连接AD.(1)求证:∠CAD=∠BAD;(2)若⊙O的半径为1,∠B=50°,求AC⌢的长.24.如图,AB是⊙O的直径,点C是⊙O上一点,连接BC,AC,OD⊥BC于E.(1)求证:OD//AC;(2)若BC=8,DE=3,求⊙O的直径.答案和解析1.【答案】A【解析】解:∵圆的半径是4cm,点A到圆心的距离是3cm,小于圆的半径,∴点A在圆内.故选A.根据点到圆心的距离与圆的半径大小的比较,确定点与圆的位置关系.本题考查的是点与圆的位置关系,点A到圆心的距离是3cm,比圆的半径4cm小,可以判断点A就在圆内.2.【答案】C【解析】【分析】∠BOC,求出∠BOC即可.根据圆周角定理:∠D=12本题考查圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型.【解答】解:∵∠BOC=180°−∠AOC,∠AOC=130°,∴∠BOC=50°,∠BOC=25°,∴∠D=12故选:C.3.【答案】B【解析】解:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.故选B.由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB= 90°.此题考查了圆周角定理.此题比较简单,解题的关键是观察图形,得到∠AOB与∠ACB是优弧AB所对的圆周角.【解析】解:如图所示,此正六边形中AB=6,则∠AOB=60°;∵OA=OB,∴△OAB是等边三角形,∵OG⊥AB,∴∠AOG=30°,=3√3,∴OG=OA⋅cos30°=6×√32故选:A.已知正六边形的边长为6,欲求边心距,可通过边心距、边长的一半和内接圆半径构造直角三角形,通过解直角三角形求解即可.此题主要考查正多边形的计算问题,属于常规题.解答时要注意以下问题:①熟悉正六边形和正三角形的性质;②作出半径和边心距,构造出直角三角形,利用解直角三角形的知识解答.5.【答案】C【解析】【分析】本题主要考查了弧长公式,圆内接四边形的性质,圆周角定理;熟练掌握圆内接四边形的性质和圆周角定理,求出∠BOD=120°是解决问题的关键.由圆内接四边形的性质和圆周角定理求出∠A=60°,得出∠BOD=120°,再由弧长公式即可得出答案.【解答】解:∵四边形ABCD内接于⊙O,∴∠BCD+∠A=180°,∵∠BOD=2∠A,∠BOD=∠BCD,∴2∠A+∠A=180°,解得:∠A=60°,∴∠BOD=120°,∴BD⏜的长.故选C.【解析】【分析】本题考查了正多边形和圆的知识,题目中还用到了三角形的外角的性质及正多边形的性质等,比较简单.首先根据正五边形的性质得到AB=BC,∠ABC=108°,∠ACB=36°,最后利用三角形的外角的性质得到∠APB=∠PBC+∠ACB.【解答】解:∵五边形ABCDE是正五边形,∴∠ABC=108∘,BA=BC,∴∠ACB=36∘.同理∠PBC=36∘,∴∠APB=∠PBC+∠ACB=72∘.故选C.7.【答案】A【解析】【分析】本题考查垂径定理与勾股定理的综合应用,解题的关键是明确垂径定理的内容,利用垂径定理解答问题.根据⊙O的半径为13,弦AB的长度是24,ON⊥AB,可以求得AN的长,再根据勾股定理求得ON的长.【解答】解:由题意可得,OA=13,∠ONA=90∘,AB=24,∴AN=1AB=12.在Rt△OAN中,ON=√OA2−AN2=√132−122=5.2故选A.8.【答案】C【解析】【分析】本题考查圆周角定理,垂径定理,等腰直角三角形的判定,勾股定理.先由圆周角定理求出∠BOC=45°,再由垂径定理得出∠OEC=90°,CD=2CE,则△OCE为等腰直角三角形,由勾股定理求出CE的长,即可得出CD长.【解答】解:∵∠A=22.5∘,∴∠BOC=2∠A=45∘,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,OC=2√2,∴CD=2CE=4√2.∴CE=√22故选C.9.【答案】A【解析】【分析】把已知数据代入S=nπR2,计算即可.360是解题的关键.本题考查的是扇形面积的计算,掌握扇形的面积公式:S=nπR2360【解答】=3π,解:半径为3,圆心角为120°的扇形的面积是:120π×32360故选A.10.【答案】D【解析】解:根据题意画图如下,在Rt△ABC中,AB=√AC2−BC2=√172−152=8,π⋅42=8π.则S半圆=12故选D.首先根据勾股定理求出AB的长,再根据半圆的面积公式解答即可.此题考查了勾股定理,用到的知识点是勾股定理以及圆的面积公式,关键是根据勾股定理求出半圆的半径.11.【答案】C【解析】解:连接OP,OQ,∵DE,FG,AC⏜,BC⏜的中点分别是M,N,P,Q,∴OP⊥AC,OQ⊥BC,∴H、I是AC、BC的中点,(AC+BC)=9,∴OH+OI=12∵MH+NI=AC+BC=18,MP+NQ=14,∴PH+QI=18−14=4,∴AB=OP+OQ=OH+OI+PH+QI=9+4=13,故选C.连接OP,OQ,根据DE,FG,AC⏜,BC⏜的中点分别是M,N,P,Q得到OP⊥AC,OQ⊥BC,(AC+BC)=9和从而得到H、I是AC、BC的中点,利用中位线定理得到OH+OI=12PH+QI,从而利用AB=OP+OQ=OH+OI+PH+QI求解.本题考查了中位线定理,解题的关键是正确的作出辅助线,题目中还考查了垂径定理的知识,难度不大.12.【答案】110【解析】【分析】根据圆周角定理求出∠C,根据圆内接四边形的性质计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.【解答】∠BOD=70°,解:由圆周角定理得,∠C=12∵四边形ABCD内接于⊙O,∴∠A=180°−∠C=110°,故答案为:110.第18页,共18页 13.【答案】72°【解析】解:360°÷5=72°.故答案为:72°.利用正五边形的外角和等于360度,除以边数即可求出答案.本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.14.【答案】3【解析】【分析】本题考查了垂径定理和勾股定理.作OC ⊥AB 于C ,连接OA ,根据垂径定理得到AC =BC =12AB =3,然后在Rt △AOC 中利用勾股定理计算OC 即可. 【解答】解:作OC ⊥AB 于C ,连结OA ,如图,∵OC ⊥AB ,∴AC =BC =12AB =12×8=4, 在Rt △AOC 中,OA =5,∴OC =√OA 2−AC 2=3,即圆心O 到AB 的距离为3.故答案为3.15.【答案】60°【解析】解:∵AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∴AC⏜=AD ⏜, ∵AC⏜=CD ⏜, ∴AC⏜=CD ⏜=AD ⏜, 即AC ⏜、CD ⏜、AD ⏜的度数是13×360°=120°,∴∠ACD=1×120°=60°,2故答案为:60°.根据垂径定理求出AC⏜=CD⏜,求出AC⏜、CD⏜、AD⏜的度数,即可求出答案.本题考查了垂径定理,圆周角定理,圆心角、弧、弦之间的关系等知识点,能求出AD⏜的度数是解决此题的关键.16.【答案】4cm<r<5cm【解析】解:∵矩形的纸片,AB=3cm,AD=4cm,∴AC=5cm,∴以A为圆心作圆,并且要使点D在⊙A内,而点C在⊙A外,⊙A的半径r的取值范围为4cm<r<5cm.故答案为4cm<r<5cm.先利用勾股数得到AC=5cm,然后根据点与圆的位置关系,要使点D在⊙A内,则r>4;要使点C在⊙A外,则r<5,然后写出它们的公共部分即可.本题考查了点与圆的位置关系:点与圆的位置关系有3种,设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.17.【答案】4√2【解析】解:如图,连接OB,OC,∵∠A=45°,∴∠BOC=90°,∴△BOC是等腰直角三角形,又∵BC=4,∴BO=CO=BC⋅cos45°=2√2,∴⊙O的直径为4√2,故答案为:4√2.连接OB,OC,依据△BOC是等腰直角三角形,即可得到BO=CO=BC⋅cos45°=2√2,进而得出⊙O的直径为4√2.本题主要考查了三角形的外接圆以及圆周角定理的运用,三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.18.【答案】(8064,0)【解析】解:∵A(−3,0),B(0,4),∴OA=3,OB=4,∴AB=√32+42=5,∴△ABC的周长=3+4+5=12,∵△OAB每连续3次后与原来的状态一样,∵2016=3×672,∴三角形2016与三角形1的状态一样,∴三角形2016的直角顶点的横坐标=672×12=8064,∴三角形2016的直角顶点坐标为(8064,0).故答案为(8064,0).先利用勾股定理计算出AB,从而得到△ABC的周长为12,根据旋转变换可得△OAB的旋转变换为每3次一个循环,由于2016=3×672,于是可判断三角形2016与三角形1的状态一样,然后计算672×12即可得到三角形2016的直角顶点坐标.本题考查了坐标与图形变化−旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是确定循环的次数.19.【答案】3√2【解析】【分析】本题考查了轴对称最短线段问题,垂径定理和勾股定理等知识,由轴对称的性质正确确定P点的位置是解题的关键.设A′是A关于CD的对称点,连接A′B,与CD的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.【解答】解:作点A关于CD的对称点A′,连接A′B,交CD于点P,此时PA+PB=A′B是最小值,连接OA′,AA′.第18页,共18页∵点A与A′关于CD对称,点A是半圆上的一个三等分点,∴∠A′OD=∠AOD=60°,PA=PA′,∵点B是弧AD的中点,∴∠BOD=30°,∴∠A′OB=∠A′OD+∠BOD=90°,又∵OA=OA′=OB=3,∴A′B=3√2.∴PA+PB=PA′+PB=A′B=3√2.故答案为:3√2.20.【答案】π+12【解析】解:∵∠C=90°,AC=BC=1,∴AB=√12+12=√2;根据题意得:√2△ABC绕点B顺时针旋转135°,BC落在x轴上;△ABC再绕点C顺时针旋转90°,AC落在x轴上,停止滚动;∴点A的运动轨迹是:先绕点B旋转135°,再绕点C旋转90°;如图所示:∴点A经过的路线与x轴围成的图形是:一个圆心角为135°,半径为√2的扇形,加上△ABC,再加上圆心角是90°,半径是1的扇形;∴点A经过的路线与x轴围成图形的面积=135×π×(√2)2360+12×1×1+90×π×12360=π+12.故答案为:π+12.由勾股定理求出AB,由题意得出点A经过的路线与x轴围成的图形是一个圆心角为135°,半径为√2的扇形,加上△ABC,再加上圆心角是90°,半径是1的扇形;由扇形的面积和三角形的面积公式即可得出结果.本题考查了旋转的性质、扇形面积的计算公式;根据题意得出点A经过的路线与x轴围成的图形由三部分组成是解决问题的关键.21.【答案】解:(1)如图.△A1B1C1即为所求三角形;(2)由勾股定理可知OA=√22+22=2√2,线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,则.答:扫过的图形面积为2π.【解析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)先根据勾股定理求出OA的长,再根据线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,利用扇形的面积公式得出结论即可;本题考查的是作图−旋转变换、扇形的面积公式,熟知图形旋转后所得图形与原图形全等的性质是解答此题的关键.22.【答案】解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD//BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°−∠B=90°−70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO=1800−∠AOD2=1800−7002=55°,∴∠CAD=∠DAO−∠CAB=55°−20°=35°;(2)在直角△ABC中,BC=√AB2−AC2=√42−32=√7.∵OE⊥AC,第18页,共18页∴AE=EC,又∵OA=OB,∴OE=12BC=√72.又∵OD=12AB=2,∴DE=OD−OE=2−√72.【解析】本题考查了圆周角定理以及三角形的中位线定理,正确证明OE是△ABC的中位线是关键.(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.23.【答案】解:(1)证明:∵O是圆心,OD⊥BC,∴弧CD=弧BD,∴∠CAD=∠BAD;(2)连接CO,∵∠B=50°,∴∠AOC=100°,∴弧AC的长:nπr180=100×π×1180=5π9.【解析】本题考查了垂径定理及圆周角定理,弧长的计算.(1)利用垂径定理及圆周角定理即可证明;(2)连接CO,先求得∠AOC=100°,再利用弧长公式计算即可.24.【答案】(1)证明:∵AB是⊙O的直径,∴∠C=90°,∵OD⊥BC,∴∠OEB=∠C=90°,∴OD//AC;(2)解:令⊙O的半径为r,则OE=r−3∵OD⊥BCBC=4,根据垂径定理可得:BE=CE=12在ΔOBE中由勾股定理得:r2=42+(r−3)2,,解得:r=256.所以⊙O的直径为253【解析】本题考查了垂径定理、勾股定理、圆周角定理;熟练掌握圆周角定理和垂径定理,由勾股定理得出方程是解决问题(2)的关键.(1)由圆周角定理得出∠C=90°,再由垂径定理得出∠OEB=∠C=90°,即可得出结论;BC=4,由勾股定理得出方程,解(2)令⊙O的半径为r,由垂径定理得出BE=CE=12方程求出半径,即可得出⊙O的直径.第18页,共18页。
精编浙教版数学九年级上学期第3单元《圆的基本性质》word检测题

第3章圆的基本性质检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°2.(2015·杭州中考)圆内接四边形ABCD中,已知∠A=70°,则∠C=()A. 20°B. 30°C. 70°D. 110°3.(2014·浙江温州中考)如图,已知点A,B,C在⊙O上,为优弧,下列选项中与∠AOB相等的是()A.2∠CB.4∠BC.4∠AD.∠B+∠C4.如图所示,已知BD是⊙O的直径,点A,C在⊙O上,弧AB =弧BC,∠AOB=60°,则∠BDC的度数是()A.20°B.25°C.30°D.40°5.如图,在⊙中,直径垂直弦于点,连接,已知⊙的半径为2,32,则∠的大小为( )A. B. C. D.6.(2014·呼和浩特中考)已知⊙O的面积为2π,则其内接正三角形的面积为( )7.(2014·成都中考)在圆心角为120°的扇形AOB中,半径OA=6 cm,则扇形AOB的面积是()A.6π cm2B.8π cm2C.12π cm2D.24π cm28.如图,在Rt△ABC中,∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是( )A.点P 在⊙O 内B.点P 在⊙O 上C.点P 在⊙O 外D.无法确定9. (2015·浙江温州中考)如图,C 是以AB 为直径的半圆O 上一点,连接AC ,BC ,分别以AC ,BC 为边向外作正方形ACDE ,BCFG ,DE ,FG ,,的中点分别是M ,N ,P ,Q .若MP +NQ =14,AC +BC =18,则AB 的长是( ) A. 29 B.790C. 13D. 16 10.如图,长为4 cm ,宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( ) A.10 cm B.C.27D.25二、填空题(每小题3分,共24分)11.如图所示,AB 是⊙O 的弦,OC ⊥AB 于C .若AB =,OC =1,则半径OB 的长为 .12. (2015•浙江绍兴中考)在Rt △ABC 中,∠C =90°,BC =3,AC =4,点P 在以点C 为圆心,5为半径的圆上,连接PA ,PB .若PB =4,则PA 的长为_________.13.(2014·山东枣庄中考)如图,将四个圆两两相切拼接在一起,它们的半径均为1 cm ,则中间阴影部分的面积为 cm 2.14.如图,⊙O 的半径为10,弦AB 的长为12,OD ⊥AB ,交AB 于点D ,交⊙O 于点C ,则OD =_______,CD=_______.第9题图15.如图,在△ABC 中,点I 是外心,∠BIC =110°,则∠A =_______.16.(2015·浙江丽水中考)如图,圆心角∠AOB =20°,将旋转n 得到,则的度数是_________度.17.如图,一条公路的转弯处是一段圆弧(图中的),点O 是这段弧的圆心,C 是上一点,,垂足为,则这段弯路的半径是_________.18.用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是 .三、解答题(共46分)19.(5分)如图所示,在⊙O 中,直径AB ⊥CD 于点E ,连接CO 并延长交AD 于点F ,且CF ⊥AD .求∠D 的度数.20.(6分)(2014·武汉中考)如图,AB 是⊙O 的直径,C ,P 是»AB 上两点,AB =13,AC =5. (1)如图(1),若点P 是»AB 的中点,求PA 的长; (2)如图(2),若点P 是¼BC的中点,求PA 的长. 21.(6分)(2014·天津中考)已知⊙O的直径为第21题图第20题图10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(1)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(2)如图②,若∠CAB=60°,求BD的长.22.(6分)(2015·杭州中考)如图①,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”,如图②,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.图①图②第22题图23.(5分)如图,已知都是⊙O的半径,且试探索与之间的数量关系,并说明理由.24.(6分)如图是一跨河桥的示意图,桥拱是圆弧形,跨度AB为16米,拱高CD为4米,求:⑴桥拱的半径;⑵若大雨过后,桥下河面宽度EF为12米,求水面涨高了多少?25.(6分)如图,已知圆锥的底面半径为3,母线长为9,C为母线PB的中点,求在圆锥的侧面上从A点到C点的最短距离.26.(6分)如图,把半径为r的圆铁片沿着半径OA、OB剪成面积比为1︰2的两个扇形、,把它们分别围成两个无底的圆锥.设这两个圆锥的高分别为、,试比较与的大小关系.第3章 圆的基本性质检测题参考答案一、选择题1. D 解析:∠ABC =∠AOC =×160°=80°或∠ABC =×(360°-160°)=100°.2. D 解析:在圆内接四边形ABCD 中,∵ ∠A +∠C =180°,∠A =70°,∴ ∠C =110°.3.A 解析:根据圆周角定理得AB 所对的圆心角∠AOB 的度数等于它所对的圆周角∠C 的度数的两倍,所以∠AOB =2∠C .4. C 解析:连接OC ,由弧AB =弧BC ,得∠BOC =∠AOB =60°,故∠BDC =∠BOC =×60°=30°.5.A 解析:由垂径定理得∴,∴.又∴.6.C 解析:如图所示,设⊙O 的半径为r ,则πr 2=2π,∴ OC =r 在Rt △ODC 中,30°,∴ OD =12OC =122∴ CD 2∴ BC =2CD AD =AO +OD 22,∴ S △ABC =12BC ·AD =12×2=2.7.C 解析:S 扇形=2120π6360⨯⨯=12π(cm 2).点拨:扇形面积公式是S =2π360n r = 12lr (n 为扇形圆心角的度数,l 为扇形的弧长,r 为扇形的半径).8.A 解析:因为OA =OC ,AC =6,所以OA =OC =3.又CP =PD ,连接OP ,可知OP 是△ADC 的中位线,所以OP =2125,所以OP <OC ,即点P 在⊙O 内.9.C 解析:如图,连接OP 、OQ ,分别交AC 、BC 于点H 、I .∵ P 、Q 分别为、的中点,∴ AC PH ⊥,且H 为AC 的中点,连接MH ,则四边形DMHC 为矩形, ∴ MH AC ⊥.又AC PH ⊥, ∴ M ,P ,H ,O 四点在同一条直线上. 同理可证O ,I ,Q ,N 四点在同一条直线上, ∴ ,.MH DC AC NI BC === ∵ O 为AB 的中点,H 为AC 的中点, ∴ OH 为△ACB 的中位线, ∴ .21BC OH =同理OI 为△ABC 的中位线,∴ 12OI AC =. ∵ ,18=+BC AC ∴ 9OI OH +=.∵ 14=+NQ MP ,∴ ()()18144PH QI AC BC MP NQ +=+-+=-=. 设圆的半径为R ,则QI R OI PH R OH -=-=,,∴ )(2QI PH R OI OH +-=+,即9=2R -4,∴ 2R =13,即AB =13.10.C 解析:第一次转动是以点B 为圆心,AB 为半径,圆心角是90度,所以弧长=90π55π1802⋅=(cm),第二次转动是以点C 为圆心,A 1C 为半径,圆心角为60度,所以弧长=π1803π60=⋅(cm),所以走过的路径长为5π2+π=27(cm).二、填空题11. 2 解析:∵ BC =AB =,∴ OB ===2.12. 3或73 解析:以点B 为圆心,4为半径作圆,则与⊙C 交于两点1P ,2P ,如图(1)所示,则点P 的位置有两种情况.(1)如图(1),连接1CP ,则1CP =5.在△BC 中,4,31==B P BC ,图(1) 图(2) 则.∴ △BC 是直角三角形,且190PBC ∠=︒,∴ B P 1∥AC . 又∵41==AC B P ,∴ 四边形BCA P 1是平行四边形.又∵ 1AB CP =,∴ 平行四边形BCA P 1是矩形.∴ 31==BC A P . (2)如图(2),连接C P 2,则52=CP ,在△BC 中,4,32==B P BC , 则,∴ △BC 是直角三角形,∠BC =90°,∴2,P B ,1P 三点共线.∴812=P P . 在Rt △A 中,31=AP ,821=P P ,∴2AP ===.∴ PA 的长为3或73.13.(4-π) 解析:如图,∵ 半径为1 cm 的四个圆两两相切,∴ 四边形是边长为2 cm 的正方形,正方形内四个扇形的面积和为一个圆的面积,为π cm 2,阴影部分的面积=2×2-π=(4-π)cm 2,故答案为4-π. 点拨:本题解题的关键是能看出阴影部分的面积为边长为2的正方形面积减去4个扇形的面积(一个圆的面积). 14.8;2 解析:因为OD ⊥AB ,由垂径定理得,故,.15.55° 解析:根据同弧所对的圆周角等于圆心角的一半可得.16. 20 解析:和是同一个圆的两段弧,且是由旋转n ︒得到的,∴=,∴和的度数相等,∴的度数是20°.17.250 解析:依据垂径定理和勾股定理可得. 18. 4解析:扇形的弧长l ==4π(cm ),所以圆锥的底面半径为4π÷2π=2(cm ),所以这个圆锥形纸帽的高为= 4(cm ).三、解答题19.分析:连接BD ,易证∠BDC =∠C ,∠BOC =2∠BDC =2∠C , ∴ ∠C =30°, 从而∠ADC =60°.解:连接BD .∵ AB 是⊙O 的直径,∴ BD ⊥AD . 又∵ CF ⊥AD ,∴ BD ∥CF .∴ ∠BDC =∠C . 又∵ ∠BDC =∠BOC ,∴ ∠C =∠BOC . ∵ AB ⊥CD ,∴ ∠C =30°,∴ ∠ADC =60°.点拨:直径所对的圆周角等于90°,在同一个圆中,同一条弧所对的圆心角等于圆周角的2倍.20.解:(1)如图①,连接PB . ∵ AB 是⊙O 的直径,P 是的中点,∴ PA =PB ,∠APB =90°.∵ AB =13,∴ PA =2= 2. (2)如图②,连接BC ,OP ,且它们交于点D ,连接PB .∵ P 是¼BC的中点, ∴ OP ⊥BC ,BD =CD .∵ OA =OB ,∴ OD =12AC =52.∵ OP =12AB =132,∴ PD =OP -OD =132-52=4. ∵ AB 是⊙O 的直径,∴ ∠ACB =90°.∵ AB =13,AC =5,∴ BC =12.∴ BD =12BC =6.∴ PB . ∵ AB 是⊙O 的直径,∴ ∠APB =90°.∴ PA =.21.分析:(1)由BC 为直径,得∠CAB =∠BDC =90°.在Rt △CAB 中应用勾股定理求AC .由AD 为∠CAB 的平分线,得CD =BD ,在Rt △BDC 中应用勾股定理求解.(2)连接OB 、OD ,证明△OBD 是等边三角形,利用等边三角形的性质求BD 的长.解:(1)由已知,BC 为⊙O 的直径,得∠CAB =∠BDC =90°. 在Rt △CAB 中,BC =10,AB =6, ∴ AC∵ AD 平分∠,∴=,∴ CD =BD .在Rt △中,BC =10,CD 2+BD 2=BC 2,∴ BD 2=CD 2=50.∴ BD =CD =(2)如图,连接OB ,OD .∵ AD 平分∠CAB ,且∠CAB =60°,∴ ∠DAB =12∠CAB =30°,∴ ∠DOB =2∠DAB =60°. 又∵ ⊙O 中,OB =OD , ∴ △OBD 是等边三角形.∵ ⊙O 的直径为10,∴ OB =5,∴ BD =5.22解:∵ ⊙O 的半径为4,点A ′,B ′分别是点A ,B 关于⊙O 的反演点,点B 在⊙O 上,OA =8,∴ OA ′·OA =,OB ′·OB=,即OA ′·8=,OB ′·4=,∴OA ′=2,OB ′=4.∴ 点B 关于⊙O 的反演点B ′与点B 重合. 如图所示,设OA 交⊙O 于点M ,连接B ′M ,∵ OM =OB ′,∠BOA =60°,∴ △OB ′M 是等边三角形.. ∴ 在Rt △OB ′A ′中,由勾股定理得B ′A ′===2.23.分析:由圆周角定理,得,,已知,联立三式可得. 解:.理由如下: ∵ ,,又,∴.24.解:(1)已知桥拱的跨度AB =16米,拱高CD =4米,第22题答图∴AD=8米.利用勾股定理可得,解得OA=10(米).故桥拱的半径为10米.(2)如图,当河水上涨到EF位置时,∵∥,∴,∴(米).连接OE,则OE=10米,(米).又,所以(米),即水面涨高了2米.25.分析:最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.解:由题意可知圆锥的底面周长是,则,∴n=120,即圆锥侧面展开图的圆心角是120°.∴∠APB=60°.在圆锥侧面展开图中,AP=9,PC=4.5,可知∠ACP=90°,∴.故在圆锥的侧面上从A点到C点的最短距离为239.26.分析:利用圆锥侧面展开图的弧长=底面周长得到圆锥底面半径和母线长的关系,进而利用勾股定理可求得各个圆锥的高,比较即可.解:设扇形做成圆锥的底面半径为,由题意知,扇形的圆心角为240°,则它的弧长=,解得,.....由勾股定理得,.设扇形做成圆锥的底面半径为,由题意知,扇形的圆心角为120°,则它的弧长=,解得,由勾股定理得.所以>......。
浙教新版九年级数学上册 第3章圆的基本性质 单元测试

浙教新版九年级数学上册《第3章圆的基本性质》单元测试一.选择题(共10小题)1.如图,在△ABC中,∠C=90°,AB=4,以C点为圆心,2为半径作⊙C,则AB的中点O与⊙C的位置关系是()A.点O在⊙C外B.点O在⊙C上C.点O在⊙C内D.不能确定2.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°3.如图,已知点平面直角坐标系内三点A(3,0)、B(5,0)、C(0,4),⊙P经过点A、B、C,则点P的坐标为()A.(6,8)B.(4,5)C.(4,)D.(4,)4.如图,四边形ABCD内接于⊙O,E是BC延长线上一点,若∠BAD=100°,则∠DCE的大小是()A.115°B.105°C.100°D.95°5.已知一个扇形的面积为9π,其圆心角为90°,则扇形的弧长为()A.3πB.9πC.12πD.16π6.一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4B.5C.6D.67.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为4,∠B=135°,则劣弧AC的长()A.8B.4C.2πD.π8.如图,将△ABC放在每个小正方形边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面半径是()A.B.C.2D.9.在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,﹣2)10.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为m,则鱼竿转过的角度是()A.60°B.45°C.15°D.90°二.填空题(共6小题)11.如图,BD是⊙O的直径,∠CBD=30°,则∠A的度数为.12.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=1,则⊙O的半径为.13.如图,△ABC的外接圆O的半径为2,∠C=30°,则扇形AOB的面积是.14.如图,一下水管道横截面为圆形,直径为100cm,下雨前水面宽为60cm,一场大雨过后,水面宽为80cm,则水位上升cm.15.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=45°,点D、E 分别是AC、BC的中点,若⊙O的半径为4,则线段DE的长为.16.如果一个正多边形的中心角为72°,那么这个正多边形的边数是.三.解答题(共7小题)17.如图,在⊙O中,AB是直径,点D是⊙O上一点,点C是的中点,弦CM ⊥AB于点F,连接AD,交CF于点P,连接BC,∠DAB=30°.(1)求∠ABC的度数;(2)若CM=8,求长度(结果保留π).18.如图,在边长为1的正方形网格中,△ABC为格点三角形(顶点都是格点),(1)画出将△ABC先向左平移4格,再向上平移5格后的△A1B1C1.(2)将△ABC绕点A按逆时针方向旋转90°得到△AB2C2.画出;并求出旋转过程中动点B所经过的路径长.19.如图,有一座拱桥是圆弧形,它的跨度AB=60米,拱高PD=18米.(1)求圆弧所在的圆的半径r的长;(2)当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PE=4米时,是否要采取紧急措施?20.如图,以AB为直径的⊙O与弦CD相交于点E,若AC=2,AE=3,CE=,求弧BD的长度.(保留π)21.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.22.如图,在⊙O中,弦AC,BD相交于点M,且∠A=∠B(1)求证:AC=BD;(2)若OA=4,∠A=30°,当AC⊥BD时,求:①弧CD的长;②图中阴影部分面积.23.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E、F.(1)当∠E=∠F时,则∠ADC=°;(2)当∠A=55°,∠E=30°时,求∠F的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α、β的代数式表示∠A的大小.参考答案一.选择题1.B.2.D.3.C.4.C.5.A.6.D.7.C.8.A.9.A.10.C.二.填空题11.60°.12.5.13.π.14.10或70.15.2.16.5.三.解答题17.解:(1)如图,连接BD,∵AB为⊙O的直径,∴∠ADB=90°,∵∠DAB=30°,∴∠ABD=90°﹣30°=60°.∵C是的中点,∴∠ABC=∠DBC=∠ABD=30°.(2)如图,连接OC,则∠AOC=2∠ABC=60°,∵CM⊥直径AB于点F,∴CF=CM=4.∴在Rt△COF中,CO=CF=×4=8,∴的长度为=.18.解:(1)如图,△A1B1C1即为所求的图形.(2)如图,△AB2C2即为所求的图形.在△ABC中,∠ACB=90°,AC=4,BC=3,根据勾股定理,AB===5.旋转过程中点B所经过的路线长为=2.5π.19.解:(1)连结OA,由题意得:AD=AB=30,OD=(r﹣18)在Rt△ADO中,由勾股定理得:r2=302+(r﹣18)2,解得,r=34;(2)连结OA′,∵OE=OP﹣PE=30,∴在Rt△A′EO中,由勾股定理得:A′E2=A′O2﹣OE2,即:A′E2=342﹣302,解得:A′E=16.∴A′B′=32.∵A′B′=32>30,∴不需要采取紧急措施.20.解:∵AC=2,AE=3,CE=,∴AE2+CE2=AC2,∴△ACE是直角三角形,∠AEC=90°,∴CD⊥AB,sin∠A==,∴,∠A=30°,连接OC,如图所示:则∠BOC=2∠A=60°,OC===2,∴的长度=的长度==π.21.解:(1)设⊙O的半径为x,则OE=x﹣8,∵CD=24,由垂径定理得,DE=12,在Rt△ODE中,OD2=DE2+OE2,x2=(x﹣8)2+122,解得:x=13.(2)∵OM=OB,∴∠DOE=2∠M,又∠M=∠D,∴∠D=30°,在Rt△OED中,∵DE=12,∠D=30°,∴OE=4.22.(1)证明:延长AO交⊙O于点F,连接CF,延长BO交⊙O于点E,连接DE,∵BE,AF是⊙O的直径,∴∠EDB=∠FCA=90°.在△DEB与△CFA中,∴△DEB≌△CFA(AAS),∴AC=BD;解:(2)延长AO交⊙O于点F,连接CF,延长BO交⊙O于点E,连接DE,CD,OD,OC,∵∠A=30°,OA=OC,∴∠COA=180°﹣30°﹣30°=120°.∵∠A=∠B=30°,AC⊥BD,∴∠EOA+∠A=60°,∴∠EOA=30°,∴∠DOE=60°,∴∠COD=30°,∴l==π;(3)过O作OG⊥AC于G,OH⊥BD于H,连接OM,则AG=AC,BH=BD,∵AC=BD,∴OG=OH,AG=BH,∴四边形OGMH是正方形,∴GM=HM=OG=OH,∵OA=4,∠A=30°,∴AG=2,GM=HM=OG=OH=2,∴AM=BM=2+2,在Rt △AGO 与Rt △BHO 中, ∴Rt △AGO ≌Rt △BHO ,∴∠B=∠A=30°,∴∠AOG=∠BOH=60°,∴∠AOB=150°,∴S 阴影=S 扇形+S △AOM +S △BOM =+2×(2+2)×2=+4+4. 23.解:(1)∵∠E=∠F ,∠DCE=∠BCF ,∠ADC=∠E +∠DCE ,∠ABC=∠BCF +∠F ,∴∠ADC=∠ABC ,∵四边形ABCD 是⊙O 的内接四边形,∴∠ADC +∠ABC=180°,∴∠ADC=90°.故答案为:90°;(2)∵在△ABE 中,∠A=55°,∠E=30°,∴∠ABE=180°﹣∠A ﹣∠E=95°,∴∠ADF=180°﹣∠ABE=85°,∴在△ADF 中,∠F=180°﹣∠ADF ﹣∠A=40°;(3)∵∠ADC=180°﹣∠A ﹣∠F ,∠ABC=180°﹣∠A ﹣∠E ,∵∠ADC +∠ABC=180°,∴180°﹣∠A ﹣∠F +180°﹣∠A ﹣∠E=180°,∴2∠A +∠E +∠F=180°,∴∠A=90°﹣=90°﹣.。
浙教版九年级数学上册第3章圆的基本性质单元测试卷(含解析)

浙教版九年级数学上册第3章圆的基本性质单元测试卷题号—• 二 三 总分得分1133 1.已知O0的半径为4皿 点A 到圆心0的距离为3,7小则点A 与O0的位宜关系是D ・无法确立 4. 已知正六边形的边长为6,则它的边心距()A. 3逅B. 6C. 3D. V55. 如图,囹0的半径为3,四边形ABCD 内接于囹O,连接OB, OD,若厶BCD =厶BOD,则亦的长为()6. 如图,在圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P,则"P3等于2. A.点A 在O0内 B.点A 在上 C •点A 在0 0外 如图,AB 是O0的直径,C 、D 是O 0上两点,"0C = 130°, 则乙D 等于()A. 65°B. 35°C. 25°如图,已知经过原点的OP 与X 、y 轴分别交于仏B 两点,C 是劣弧OB 上一点,则"CB = ()A. 80°B. 90°C. 100°A. nD. 3nA. 36°B. 60°C. 72°D. 108°7.如图,OO的半径为13,弦AB的长度是24, ON k AB.垂足为N,贝lj0N =()如图OO的直径AB垂直于弦CD垂足为E," = 22.5。
,0C = 4, CD的长为()A. 2\/2B. 4C. 4\/2D. 89.半径为3,圆心角为120。
的扇形的而积是()A. 3nB. 6nC. 9TTD. 12TT10.在Rt △力BC中,乙B = 90。
, EC = 15, AC = 179以AB为直径作半圆,则此半圆的而积为()A. 1671B. 12nC. 10nD. 8n11.如图,c是以AB为直径的半圆O上一点,连结AC, BC,分别以AC, BC为边向外作正方形ACDE, BCFG.DE, FG,碇,氐的中点分别是M, N, P, Q.若MP + NQ = 14, AC + BC = 18,则AB 的长为()A. 5B.7C.9DECGC. 13D. 16二、填空题(本大题共9小题,共35分)12.如图,G>0的内接四边形ABCD中,z_BOD = 140°,则"等于13.正五边形每个外角的度数是14.在O0中,已知半径为5,弦AB的长为&那么圆心O到AB的距离为_______ .15.如图,AB是O O的直径,弦CD丄加于点E,如果碇=CD.则"CD的度数是_______ ・16.有一张矩形的纸片,AB = 3cmt AD = 4cm*若以A为圆心作圆, 并且要使点D在GM内,而点C在GM外,GM的半径厂的取值范围是______17.如图,G)O是△SBC的外接圆,乙力= 45。
浙教版九年级上册第3章《圆的基本性质》测试卷(含答案)

九年級上冊第3章《圓の基本性質》測試卷滿分100分,考試時間90分鐘一、選擇題(每小題3分,共30分) 1.下列命題中,是真命題の為( ) A .同弦所對の圓周角相等 B .一個圓中只有一條直徑C .圓既是軸對稱圖形,又是中心對稱圖形D .同弧所對の圓周角與圓心角相等2.已知⊙O の半徑為5釐米,A 為線段OP の中點,當OP =6釐米時,點A 與⊙O の位置關係是( ) A .點A 在⊙O 內 B .點A 在⊙O 上 C .點A 在⊙O 外 D .不能確定 3.已知弧の長為3πcm ,弧の半徑為6cm ,則圓弧の度數為( ) A .45° B .90 ° C .60 ° D .180° 4.如圖,OAB △繞點O 逆時針旋轉80°得到OCD △,若110A ∠=°,40D ∠=°,則∠αの度數是( ) A .30° B .40° C .50° D .60°5.如圖,圓O の直徑CD 過弦EF の中點G ,∠DCF =20°,則∠EOD 等於( ) A .10° B .20°C .40°D .80°第5題圖6.鐘面上の分針の長為1,從9點到9點30分,分針在鐘面上掃過の面積是( ) A .12πB .14πC .18πD .π7.如圖,一種電子遊戲,電子螢幕上有一正六邊形ABCDEF ,點P 沿直線AB 從右向左移動,當出現點P 與正六邊形六個頂點中の至少兩個頂點距離相等時,就會發出警報,則直線AB 上會發出警報の點P 有( ) A .3個 B .4個 C .5個 D .6個第10题E CDFP8.如圖,A、B、P是半徑為2の⊙O上の三點,∠APB=45°,則弦ABの長為()A.2B.2 C.22D.4第8題圖9.如圖,在平面直角坐標系中,⊙A經過原點O,並且分別與x軸、y軸交於B、C兩點,已知B(8,0),C(0,6),則⊙Aの半徑為()A.3 B.4 C.5 D.8第9題圖10.如圖,⊙Oの半徑OD⊥弦AB於點C,連結AO並延長交⊙O於點E,連結E C.若AB=8,CD=2,則ECの長為()A.215B.8 C.210D.213第10題圖二、填空題(每小題3分,共30分)11.一條弧所對の圓心角為72°,則這條弧所對圓周角為°.12.已知⊙Oの面積為36π,若PO=7,則點P在⊙O.13.一紙扇柄長30cm,展開兩柄夾角為120°,則其面積為cm2.14.如圖,AB為⊙Oの直徑,弦CD⊥AB於點E,若CD=6,且AE:BE =1:3,則AB= .第14題圖15.如圖,AB是⊙Oの直徑,點C是圓上一點,∠BAC=70°,則∠OCB= °.第15題圖16.已知:如圖,圓內接四邊形ABCD中,∠BCD =110°,則∠BAD = °.第16題圖17.如圖,OC是⊙Oの半徑,AB是弦,且OC⊥AB,點P在⊙O上,∠APC=26°,則∠BOC= .第17題圖18.如圖,⊙O中,弦AB、DCの延長線相交於點P,如果∠AOD=120°,∠BDC=25°,那麼∠P= °.第18題圖19.如圖,AD、AC分別是直徑和絃,∠CAD=30°,B是AC上一點,BO⊥AD,垂足為O,BO=5cm,則CD 等於cm.第19題圖20.如圖:在⊙O中,AB、AC為互相垂直且相等の兩條弦,OD⊥AB,OE⊥AC,垂足分別為D、E,若AC =2 cm,則⊙Oの半徑為cm.第20題圖三、解答題(共40分) 21.(6分)某居民社區一處圓柱形の輸水管道破裂,維修人員為更換管道,需確定管道圓形截面の半徑,下圖是水準放置の破裂管道有水部分の截面. (1)請你補全這個輸水管道の圓形截面;(2)若這個輸水管道有水部分の水面寬AB =16cm ,水面最深地方の高度為4cm ,求這個圓形截面の半徑.22.(6分)如圖所示,AB =AC ,AB 為⊙O の直徑,AC 、BC 分別交⊙O 於E 、D ,連結ED 、BE .(1) 試判斷DE 與BD 是否相等,並說明理由; (2) 如果BC =6,AB =5,求BE の長.23.(6分)如圖,⊙O の直徑AB 為10cm ,弦AC 為6cm ,∠ACB の平分線交⊙O 於D ,求BC ,AD ,BDの長.24.(6分)如圖,將小旗ACDB 放於平面直角坐標系中,得到各頂點の座標為A (-6,12),B (-6,0),C (0,6),D (-6,6).以點B 為旋轉中心,在平面直角坐標系內將小旗順時針旋轉90°. (1)畫出旋轉後の小旗A ′C ′D ′B ′,寫出點C ′の座標; (2)求出線段BA 旋轉到B ′A ′時所掃過の扇形の面積.AOBCDE25.(8分)如圖,AB為⊙Oの直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA與⊙Oの另一個交點為E,連接AC,CE.(1)求證:∠B=∠D;(2)若AB=4,BC-AC=2,求CEの長.26.(8分)在⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB於點D,連結CD.(1)如圖1,若點D與圓心O重合,AC=2,求⊙Oの半徑r;(2)如圖2,若點D與圓心O不重合,∠BAC=25°,請直接寫出∠DCAの度數.资料内容仅供您学习参考,如有不当之处,请联系改正或者删除九年級上冊第3章《圓の基本性質》測試卷1.C2.A3.B4.C5.C6.A7.C资料内容仅供您学习参考,如有不当之处,请联系改正或者删除20.221.(1)圖略;(2)10cm .22.(1)連結AD . ∵AB 是⊙O の直徑,∴AD ⊥BC ,BE ⊥AC .∵AB=AC ,∴BD=CD ,∴DE=BD .(2)由畢氏定理,得BC 2-CE 2=BE 2=AB 2-AE 2.設AE =x ,則62-(5-x )2=52-x 2,解得x =75.∴BE 22245AB AE -=. 23.∵ AB 是直徑.∴ ∠ACB =∠ADB =90°.在Rt △ABC 中,BC 22221068AB AC -=-=(cm ).∵ CD平分∠ACB ,∴ AD BD =.∴ AD =BD .又在Rt △ABD 中,AD 2+BD 2=AB 2,∴ AD =BD =52(cm ). 24.(1)圖略,C ′(0,-6);(2)∵A (-6,12),B (-6,0),∴AB =12.∴線段BA 旋轉到B ′A ′時所掃過の扇形の面積=2901236360⋅π⋅=π.25.(1)∵AB 為⊙O の直徑,∴∠ACB =90°,∴AC ⊥BC ,∵DC =CB ,∴AD =AB ,∴∠B =∠D ;(2)解:設BC =x ,則AC =x -2,在Rt △ABC 中,AC 2+BC 2=AB 2,∴(x -2)2+x 2=42,解得:x 17x 2=17,∵∠B =∠E ,∠B =∠D ,∴∠D =∠E ,∴CD =CE ,∵CD =CB ,∴CE =CB 7. 26.(1)過點O 作OE ⊥AC 於E ,則AE =21AC =21×2=1,∵翻折後點D 與圓心O 重合,∴OE =21r ,在Rt △AOE 中,AO 2=AE 2+OE 2,即r 2=12+(21r )2,解得r 233(2)連接BC ,∵AB 是直徑,∴∠ACB =90°,∵∠BAC =25°,∴∠B =90°-∠BAC =90°-25°=65°,根據翻折の性質,⌒AC 所對の圓周角等於ADC 所對の圓周角,∴∠DCA =∠B -∠A =65°-25°=40°.。
(完整版)浙教版数学九年级上册第3章圆的基本性质单元测试

浙教版数学九上第3章圆的基本性质单元测评卷一、选择题(共10小题,每题4分)1.如图,△ ABC的顶点A、B、C均在OO上,若/ ABC/ AOC=90,则/ AOC的大小是()A. 30°B. 45°C. 60°D. 70°2•如图,■- •、丁J、;亍、均为以O点为圆心所画出的四个相异弧,其度数均为3•已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为(A. B. 2n C. 3n 60°,且G在OA上, C、E 在AGD. 12 n4.如图,在OO 中,AB是直径, BC是弦,点P AB=5 BC=3A. 3B. 4 D. 525•有一直圆柱状的木棍,今将此木棍分成甲、乙两段直圆柱状木棍,且甲的高为乙的高的积分别为S i 、S 2,甲、乙的体积分别为V i 、V 2,则下列关系何者正确?(在半径为2的圆中,弦AB 的长为2,则「,的长等于(圆锥的母线长为 4,底面半径为2,则此圆锥的侧面积是(9倍.若甲、乙的表面A. S i > 9S 2B. S v 9S 2C. V >9V 2D. V v 9V 26. 如图所示,点A ,B ,C 在圆 O 上,/ A=64°,则/ BOC 的度数是( A. 26°B. 116°C. 128°7. A.B. 71~2C. 8. A.B. 8 nC.D. 16n9. A. 60°B. 120°C .150° D. 180°10.已知扇形的圆心角为 60°,半径为1,则扇形的弧长为()A.旦B. nC .D •匹\263二、填空题(共6小题, 每题5分)(结果保留n )12.如图,A 、B C 是OO 上的三点,/ AOB=100,则/ ACB=度.D.一个扇形的半径为 8cm,弧长为 )11.已知圆锥的底面半径是 4,母线长是5,则该圆锥的侧面积是 L 亢cm,则扇形的圆心角为(三、解答题(共10小题,选答题8题,每题10分)17. 如图,AB 是OO 的直径,弦 CDLAB 于点E ,点M 在OO 上, MD 恰好经过圆心 0,(1) 若 CD=16 BE=4,求OO 的直径;(2) 若/ M=/ D,求/D 的度数.14 .在半径为2的圆中, 弦AC 长为1, M 为AC 中点,过M 点最长的弦为 BD,则四边形 ABCD的面积15.如图,已知A B 、C 三点在OO 上,ACLBO 于D,Z B=55,则/ BOC 的度数是16.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为 连接MBAE18. 已知A, B, C, D是OO上的四个点.(1) 如图1,若/ ADC M BCD=90 , AD=CD 求证:ACLBD;(2) 如图2,若AC L BD垂足为E, AB=2, DC=4求0O的半径.19. 如图,00是厶ABC的外接圆,弦BD交AC于点E,连接CD且AE=DE BC=CE(1)求/ ACB的度数;(2)过点0作OI L AC于点F,延长F0交BE于点G, DE=3 EG=2求AB的长.DFB20. 如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ ABC的三个顶点A, B, C都在格点上,将△ ABC绕点A按顺时针方向旋转90°得到△ AB C .(1)在正方形网格中,画出△ AB C';(2)计算线段AB在变换到AB的过程中扫过区域的面积.21. 如图,AB是OO的直径,弦CDLAB于点E,点P在OO上,PB与CD交于点F,/ PBC=/ C.(1)求证:CB// PD(2)若/ PBC=22.5 , OO 的半径R=2,求劣弧AC的长度.22. 如图,A、B是圆0上的两点,/ AOB=120 , C是AB弧的中点.(1)求证:AB平分/ OAC(2)延长OA至P使得OA=AP连接PC若圆O的半径R=1,求PC的长.23. 如图,点D是线段BC的中点,分别以点B, C为圆心,BC长为半径画弧,两弧相交于点A连接AB, AC, AD,点E为AD上一点,连接BE, CE(1)求证:BE=CE(2)以点E为圆心,ED长为半径画弧,分别交BE, CE于点F, G.若BC=4, / EBD=30,求图中阴影部分(扇形)的面积.24 .如图,AB是半圆0的直径,C D是半」圆0上的两点,且OD BQ OD与AC交于点E.(1)若/ B=70,求/ CAD的度数;(2)若AB=4, AC=3 求DE的长.25. 已知OO的直径为10,点A点B,点C在OO上,/ CAB的平分线交OO 于点D.圍①囹②(I)如图①,若BC为OO的直径,AB=6求AC, BD, CD的长;(H)如图②,若/ CAB=60,求BD的长.26. 如图,G)Oi的圆心在00的圆周上,00和OOi交于A, B, AC切O0于A,连接CB, BD是00的直径,Z D=40 , 求:Z AOiB, / ACB 和 / CAD的度数.浙教版九上第3章圆的基本性质单元测评卷参考答案与试题解析分析: 先根据圆周角定理得到/ ABC=2/ AOC 由于/ ABC / AOC=90,所以 2 / AOC 乂 AOC=90,然后解方程即可.而/ ABC / AOC=90 ,•••占/AOC / AOC=90 , •••/ AOC=60 . 故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的 一半.、选择题(共10小题)1.如图,△ ABC 的顶点A 、B 、C 均在OO 上,若/ ABC y AOC=90,则/ AOC 的大小是(A. 30°B. 45C. 60D. 702.如图,O 点为圆心所画出的四个相异弧,其度数均为60°,且 G 在 OA 上, C 、E 在 AG专题:计算题.解答:上,若AC=EG OG=1 AG=2则E5与五两弧长的和为何?A. nB.二_3 C. 3JI考点:弧长的计算.分析: 设AC-EG-a 用a 表示出CE=2- 2a , CO=3- a , EO-1+a 利用扇形弧长公式计算即可.解答: 解:设 AC=EG=a CE=2- 2a , CO=3- a , E0=1+a——60°60q 兀 qjl:汁,=2n ( 3 - a 二一+2n (仏)。
浙教版九上数学 第3章 圆的基本性质 单元试卷(含解析)

① 平分 ,② , ,③ .
以此三个中的两个为条件,另一个为结论,可构成三个命题,即:
①② ③,①③ ②,②③ ①.
试判断上述三个命题是否正确(直接作答);
请证明你认为正确的命题.
26.如图 ,边长均为 的正 和正 原来完全重合.如图 ,现保持正 不动,使正 绕两个正三角形的公共中心点 按顺时针方向旋转,设旋转角度为 .(注:除第 题中的第②问,其余各问只要直接给出结果即可)
【详解】∵四边形ABCD为正方形,且面积为3
∴∠D=∠B=∠BAD=90°,AD=AB=BC=CD= ,且AE=AF,
①当F在线段BC上时,如图1,
在Rt△ADE和Rt△ABF中,
,
∴Rt△ADE≌Rt△ABF(HL),
∴∠DAE=∠BAF,BF=DE=1,
又∵在Rt△ADE中,DE=1,AD= ,
二、填空题(共10小题,每小题3分,共30分)
11.如图,正方形 的面积为 ,点 是 边上一点, ,将线段 绕点 旋转,使点 落在直线 上,落点记为 ,则 ________, 的长为________.
【答案】(1).30°或90°;(2). -1或 +1.
【解析】
【分析】
当点F在线段BC上时,由旋转的性质可得△ADE≌△ABF,可得到BF=DE,∠DAE=∠BAF=30°,可求得答案;当点F在线段CB的延长线上时,可证得△ABF≌△ADE,则可求得∠EAF=90°,此时FC=BF+BC,可求得答案.
8.如图,已知 为 的外心, 为 上的高, , ,则 为( )
A.32°B.26°C.28°D.34°
9.一个直角三角形两条直角边为 , ,分别以它的两条直角边所在直线为轴,旋转一周,得到两个几何体,它们的表面面积相应地记为 和 ,则有( )
浙教版九上第三章《圆的基本性质》word单元测试

圆的基本性质专项练习3 姓名:1.如图,已知AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,则下列结论正确的个数是( D ) ①AD ⊥BC ,②∠EDA =∠B ,③OA = 12AC ,④DE 是⊙O 的切线.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,点D 、E 是圆的三等分点,AE 、BD 的延长线交于点C ,若CE=2,则⊙O 中阴影部分的面积是( A ) A.43π-B .23πC.23πD .13π3.如图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°,的度数为100°,则∠AEC 等于( C ) A. 60° B. 100° C. 80° D. 130° 4.如图,BD 是⊙O 的直径,∠CBD=30,则∠A 的度数为( C ).A.30B.45C.60D.755.已知⊙O 1的半径为5cm ,⊙O 2的半径为3cm ,圆心距O 1O 2=2,那么⊙O 1与⊙O 2的位置关系是( D )A .相离B .外切C .相交D .内切6.如图,A B C D ,,,为⊙O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是(C7.如图,圆心为A 、B、C 的三个圆彼此相切,且均与直线l 相切,若⊙A 、⊙B 、⊙C 的半径分别为a,b,c,(0<c <a <b),则a 、b 、c 一定满足的关系式为( D )=BC第第4题第6题A B C D OPB .D .A .C .C.111c a b =+=+ 第8题 8.如图,一种圆管的横截面是同心圆的圆环面,大圆的弦AB 切小圆于点C ,大圆弦AD 交小圆于点E 和F .为了计算截面(图中阴影部分)的面积,甲、乙、丙三位同学分别用刻度尺测量出有关线段的长度.甲测得AB 的长,乙测得AC 的长,丙测得AD 的长和EF 的长.其中可以算出截面面积的同学是( C )A .甲、乙B .丙C .甲、乙、丙D .无人能算出9. 如图,已知AB 是半圆O 的直径,∠BAC=32º,D 是弧AC 的中点,那么∠DAC 的度数是( B )A.25ºB.29ºC.30ºD.32°10.四个半径为r 的圆如图放置,相邻两个圆交点之间的距离也为r ,不相邻两个圆的圆周上两点间的最短距离等于2,则r 的值是( A )A2 B .2 C.2 D3 11.如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为218cm π12.如图,已知⊙O 的半径为R ,AB 是⊙O 的直径,D 是AB 延长线上一点, DC 是⊙O 的切C 是切点,连接AC,若∠CAB=300,则BD 的长为 R 13.如图,点P 在y 轴上,P 交x 轴于AB ,两点,连结BP 并延长交P 于C ,过点C 的直线2y x b =+交x 轴于D ,且⊙P,4AB =.若函数ky x=(x<0)的图象过C 点,则k=___-4____. 14.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上, 如果∠P=50°,那么∠ACB 等于____65°15.如右图,直角三角形ABC 中,∠C=90°,∠A=30°,点0在斜 边AB 上,半径为2的⊙O 过点B ,切AC 边于点D ,交BC 边于点E , 则由线段CD ,CE及弧DE围成的隐影部分的面积为π32233- 第13题第12题DA第14题16.已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是( C )A . 0,1,2,3 B. 0,1,2,4 C. 0,1,2,3,4 D. 0,1,2,4,5 17.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( C )A. (4 cmB. 9 cmC. cmD.cm18.如图,圆O 的直径AB 长为10,弦AC 长为6,∠ACB 的平分线交⊙O 于D ,则CD 的长为( B ) 第18题A 、7B 、C 、D 、9 19.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则P A+PB 的最小值为( B )A .22B .2C .1D .2第19题20.如图,已知AB 是⊙O 的直径,C 是⊙O 上的一点,连结AC ,过点C 作直线AB 于点D,E是O B上的一点,直线CE 与⊙O 交于点F ,连结AF 交直线CD 于点G 则AG ·AF 是( D )A.10 B.12 C.16 D.8 第20题21.如图,一圆弧过方格的格点A 、B 、C ,试在方格中建立平面直角坐标系,使点A 的坐标为(-2,4),则该圆弧所在圆的圆心坐标是( C ) A. (-1,2)B. (1,-1)C. (-1,1)D. (2,1)第22题A CBD CAO第24 题22.芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图1,他在边长为1的正方形ABCD内作等边三角形BCE,并与正方形的对角线交于F、G点,制成如图2的图标.则图标中阴影部分图形AFEGD的面积=_________ _.23.如图,△ABC是⊙O的内接三角形,点D是弧BC的中点,已知∠AOB=98°,∠COB=120°.则∠ABD是101°度.24.如图⊙O的半径为1cm,弦AB、CD,1cm,则弦AC、BD所夹的锐角α=75°.25.如图,AB为⊙O的直径,点C,D在⊙O上.若∠AOD=30°,则∠BCD的度数是105°.第26题第27题第29题第30题第31题26如图,⊙O的两弦AB、CD交于点P,连接AC、BD,得S△ACP:S△DBP=16:9,则AC:BD=27.如图,AB是⊙O的直径,弦DC与AB相交于点E,若∠ACD=60°,∠ADC=50°,则∠ABD= 60 ,∠CEB= 100 。
浙教版数学九年级上第3章圆的基本性质练习题(Word版)

浙教版数学九年级上第3章圆的基本性质练习题(Word 版)一、选择题(每题 4 分,共 32 分)1.到圆心的距离不大于半径的一切点必在(D )A .圆的外部B .圆的外部C .圆上D .圆的外部或圆上2.有以下说法:①半径是弦;②半圆是弧,但弧不一定是半圆;③面积相等的两个圆是等 圆.其中正确的有(C )A .0 个B .1 个C .2 个D .3 个3.假设直角三角形的两条直角边长区分为 3和 1,那么它的外接圆直径是(B )A .1B .2C .3D .44.圆弧形蔬菜大棚的剖面图如下图,AB =6 m ,∠CAD =30°,那么大棚的高度 CD 约为(B )(第 4 题)A .3 mB .1.7 mC .3.4 mD .5.2 m【解】 设点 O 为该圆弧的圆心,连结 OC ,OA . ∵AC =BC ,∴OC ⊥AB .∵CD ⊥AB ,∴C ,D ,O 三点共线.∴AD =12AB =3 m. ∵∠CAD =30°,∴CD =12AC . 在Rt △ACD 中,AC 2=AD 2+CD 2,即(2CD )2=32+CD 2,解得 CD 1.7(m).5.如图,在平面直角坐标系 xOy 中,△A ′B ′C ′由△ABC 绕点 P 旋转失掉,那么点 P 的坐 标为(B )A .(0,1)B .(1,-1)C .(0,-1)D .(1,0) (第 5 题)【解】 如图,对应点的连线 CC ′,AA ′的垂直平分线的交点是(1,-1),依据旋转变换 的性质,点(1,-1)即为旋转中心.6.如图,在⊙O 中,AB ,AC 是相互垂直的两条弦,OD ⊥AB 于点 D ,OE ⊥AC 于点 E ,且 AB =8 cm ,AC =6 cm ,那么⊙O 的半径 OA 长为(C )A .3 cmB .4 cmC .5 cmD .6 cm(第 6 题)【解】 ∵OD ⊥AB ,OE ⊥,∴AE =12AC =12×6=3(cm),AD =12AB =12×8=4(cm),∠OEA =∠ODA =90°. ∵AB ,AC 是相互垂直的两条弦,∴∠BAC =90°,∴四边形 OEAD 是矩形, ∴OD =AE =3 cm , 在 Rt △OAD 中,OA =5 cm.7.如图,在△ABC 中,∠BAC =90°,AD ⊥BC 于点 D ,假定△ABC ,△ABD ,△ACD 的外 接圆半径区分为 R ,R 1,R 2,那么(D )A .R =R 1+R 2B .R =122R RC .R 2=R 1R 2D .R 2=R 12 +R 22【解】 ∵∠BAC =90°,AD ⊥BC ,∴R =12BC ,R 1=12AB ,R 2=12AC .∵BC2=AB2+AC2,∴R2=R2+R 2.1(第7 题) (第8 题)8.如图,▱ABCD 中,AE⊥BC 于点E,以点B 为中心,取旋转角等于∠ABC,把△BAE 顺时针旋转失掉△BA′E′,连结DA′.假定∠ADC=60°,∠ADA′=50°,那么∠DA′E′的度数为(C)A.130°B.150°C.160°D.170°【解】∵四边形ABCD 是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°.∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°.∵AE⊥BC 于点E,∴∠BAE=30°.∵△BAE 顺时针旋转失掉△BA′E′,∴∠BA′E′=∠BAE=30°,∴∠DA′E′=∠DA′B+∠BA′E′=160°.二、填空题(每题4 分,共24 分)9.如图,EF 所在的直线垂直平分线段AB,应用这样的工具最少运用2 次,就可以找到圆形工件的圆心.(第9 题) (第10 题)10.如图,在⊙O 中,点A,O,D 以及点B,O,C 区分在一条直线上,那么图中的弦有3条.11.赵州桥是我国修建史上的一大创举,它距今约1400 年,历经有数次洪水冲击和8 次地震却平安无事.如图,假定桥跨度AB 约为40 m,主拱高CD 约为10 m,那么桥弧AB 所在圆的半径R 约为25m.(第11 题)【解】设桥弧AB 所在圆圆心为O,连结OC,OA.由题意,得AC=BC,∴OC⊥AB.∵CD⊥AB,∴C,D,O 三点共线,AD=12AB=20 m.在Rt△AOD 中,∵OD=(R-10)m,AO2=AD2+OD2,∴R2=202+(R-10)2,解得R=25(m).12.如图,将Rt△ABC 绕直角顶点C 顺时针旋转90°失掉△A′B′C,连结AA′.假定∠1=20°,那么∠B 的度数是65°.【解】提示:∠CAA′=45°,从而失掉∠B=∠A′B′C=65°.(第12 题) (第13 题)13.如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,假定要求另外三个顶点A,B,C 中至少有一个点在圆内,且至少有一个点在圆外,那么r 的取值范围是3<r<5.【解】连结BD.在Rt△ABD 中,AB=4,AD=3,那么BD=32+42=5.由图可知3<r<5.14.圆的两弦AB,CD 的长是方程x2-42x+432=0 的两根,且AB∥CD.假定两弦之间的距离为3,那么圆的半径是15.【解】解方程x2-42x+432=0,得x1=24,x2=18.设AB=24,CD=18,圆的半径是r,作OM⊥AB 于点M,ON⊥CD 于点N,连结OA,OC.那么AM=12,CN=9,OM=OA2-AM2=r2-122=r2-144,ON=OC2-CN2=r2-92=r2-81.如解图①,当AB 与CD 在圆心的两边时,OM+ON=3,即r2-144+r2-81=3,方程无解.如解图②,当AB 与CD 在圆心的同侧时,ON-OM=3,即r2-81-r2-144=3,解得r=15.综上所述,圆的半径是15.(第14 题解)三、解答题(共44 分)BC(如图),用直尺和圆规求作⊙O,使⊙O 经过B,15.(10 分)△ABC 和线段a,且a>12C 两点,且半径为a,并说出可以作出几个圆(要求写出作法).(第15 题) (第15 题解)【解】如解图.①作△ABC 的边BC 的垂直平分线DE.②以点B 为圆心,a 为半径画弧,交DE 于O,O′两点.③区分以点O 和O′为圆心,a 为半径画圆.那么⊙O 和⊙O′就是所要求作的圆.可以作出两个圆(即⊙O 和⊙O′).16.(10 分)如图,在⊙O 中,CD 是直径,AB 是弦,AB⊥CD 于点M,CD=15 cm.假定OM∶OC =3∶5,求弦AB 的长.(第16 题)【解】连结OA.由垂径定理,得AM=BM.∵CD=15 cm,∴OA=OC=12CD=7.5 cm.又∵OM∶OC=3∶5,∴OM=4.5 cm.在Rt△AOM 中,由勾股定理,得AM=OA2-OM2=6 cm,∴AB=2AM=12 cm.17.(10 分)如图,在△ABC 和△AEF 中,∠B=∠E,AB=AE,BC=EF,∠BAE=25°,∠F=60°. (1)求证:∠CAF=∠BAE.(2)△ABC 可以经过图形变换失掉△AEF,请你描画这个变换.(3)求∠AMB 的度数.(第17 题)【解】(1)∵∠B=∠E,AB=AE,BC=EF,∴△ABC≌△AEF.∴∠BAC=∠EAF.∴∠BAC-∠P AF=∠EAF-∠P AF,即∠CAF=∠BAE.(2)经过观察可知,△ABC 绕点A 顺时针旋转25°失掉△AEF.(3)由(1)知,∠C =∠F =60°,∠CAF =∠BAE =25°,∴∠AMB =∠C +∠CAF =60°+25°=85°.18.(14 分)如图①,⊙O 的半径为 1,PQ 是⊙O 的直径,n 个相反的正三角形沿 PQ 排 成一列,一切正三角形都关于 PQ 对称,其中第一个△A 1B 1C 1 的顶点 A 1 与点 P 重合,第二 个△A 2B 2C 2 的顶点 A 2 是 B 1C 1 与 PQ 的交点……最后一个△A n B n C n 的顶点 B n ,C n 在圆上. (第 18 题)(1)如图②,当 n =1 时,求正三角形的边长 a 1. (2)如图③,当 n =2 时,求正三角形的边长 a 2. (3)如图①,求正三角形的边长 a n (用含 n 的代数式表示).【解】 (1)易知△A 1B 1C 1的高为32,那么边长为3,∴a 1=3 (2)设△A 1B 1C 1 的高为 h ,那么 A 2O =1-h ,连结 B 2O ,设 B 2C 2 与 PQ 交于点 F ,那么有 OF =2h -1.∵B 2O 2=B 2F 2+OF 2,∴1=(12+a 2) 2 +(2h -1)2.,∴1=14a 2 2+ a -1)2解得 a 2=13 (3)同(2),连结 B n O ,设 B n C n 与 PQ 交于点 F ,那么有 B n O 2=B n F 2+OF 2,即 1=(1a n ) 2 +(n h -1)2.∵h=2 a ,∴1=14a n 2+(2 a -1)2解得 a n =231n。
浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案

浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案一、单选题1.如图,图中的弦共有( )A .1条B .2条C .3条D .4条2.平面直角坐标系中,O 为坐标原点,点A 的坐标为( 3,1),将OA 绕原点O 按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .(1, 3 )B .(-1, 3)C .(- 3 ,1)D .( 3 ,-1)3.如图,⊙O 的直径为10,AB 为弦,OC ⊙AB ,垂足为C ,若OC =3,则弦AB 的长为( )A .8B .6C .4D .104.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是⊙ABC 的( )A .三条高的交点B .重心C .内心D .外心5.如图,点A ,B ,C 是⊙O 上的三点,已知⊙AOB=100°,那么⊙ACB 的度数是( )A .30°B .40°C .50°D .60°6.半径为 a 的圆的内接正六边形的边心距是( )A .2aB .22aC 3aD .a7.如图所示,在O 中30AB AC A ︒=∠=,,则B ∠的度数为( ).A.150︒B.75︒C.60︒D.15︒8.下列语句中,正确的有( )(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧(4) 圆是轴对称图形,任何一条直径都是对称轴A.0个B.1个C.2个D.3个9.下列说法不正确的是()A.过不在同一直线上的三点能确定一个圆B.平分弦的直径垂直于弦C.圆既是轴对称图形又是中心对称图形D.相等的弧所对的弦相等10.如图,在Rt⊙ABC中,⊙ACB=90°,将⊙ABC绕顶点C逆时针旋转得到⊙A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,⊙BAC=30°,则线段PM的最大值是()A.4B.3C.2D.1二、填空题11.如图,在梯形ABCD中,AD⊙BC,将这个梯形绕点D按顺时针方向旋转,使点C落在边AD上的点C′处,点B落在点B′处,如果直线B′C′经过点C,那么旋转角等于度.12.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且⊙EDF=45°,将⊙DAE绕点D逆时针旋转90°,得到⊙DCM.若AE=1,则FM的长为.13.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD 于点E.若AB=6,则⊙AEC的面积为.14.如图,在扇形BOC中,⊙BOC=60°,点D是BC的中点,点E,F分别为半径OC,OB上的动点.若OB=2,则⊙DEF周长的最小值为.三、解答题15.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.16.如图,AB是⊙O的直径,弦CD⊙AB于E,⊙CDB=30°,CD=3,求阴影部分的面积.17.如图,在平面直角坐标系中,⊙ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出⊙A1B1C1,使⊙A1B1C1与⊙ABC关于x轴对称;(2)将⊙ABC绕点O逆时针旋转90°,画出旋转后得到的⊙A2B2C2,并直接写出点B旋转到点B2所经过的路径长.18.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,⊙APC=⊙CPB=60°.判断⊙ABC 的形状,并证明你的结论;19.如图,射线PG 平分⊙EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与⊙EPF 两边相交于A 、B 和C 、D ,连结OA ,此时有OA⊙PE(1)求证:AP=AO ;(2)若弦AB=12,求tan⊙OPB 的值.四、综合题20.如图,在⊙ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =CD ,过点D 作⊙O 的切线交边AC 于点F.(1)求证:DF⊙AC ;(2)若⊙O 的半径为5,⊙CDF =30°,求弧BD 的长(结果保留π).21.如图,在 O 中 AC CB = , CD OA ⊥ 于点D , CE OB ⊥ 于点E.(1)求证: CD CE = ;(2)若 120,2AOB OA ∠=︒= ,求四边形 DOEC 的面积.22.如图,将矩形ABCD 绕点B 旋转得到矩形BEFG ,点E 在AD 上,延长DA 交GF 于点H.(1)求证:ABE FEH ≅;(2)连接BH ,若30EBC ∠=︒,求ABH ∠的度数.23.如图1,⊙O 的直径AB 为4,C 为⊙O 上一个定点,⊙ABC=30°,动点P 从A 点出发沿半圆弧 AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:⊙ABC⊙⊙PDC(2)如图2,当点P 到达B 点时,求CD 的长;(3)设CD 的长为 x .在点P 的运动过程中, x 的取值范围为(请直接写出案).答案解析部分1.【答案】B【解析】【解答】解:图形中有弦AB和弦CD,共2条故答案为:B.【分析】由连接圆上任意两点间的距离就是弦即可判断得出答案.2.【答案】B【解析】【解答】过点B作BC⊙x轴于点C,过点B作BC⊙y轴于点F∵点A的坐标为( 3,1),将OA绕原点O逆时针旋转90°到OB的位置∴BC 3=,CO=1∴点B的坐标为:(﹣1,3).故答案为:B.【分析】先根据旋转的性质作图,利用图象则可求得点B的坐标.3.【答案】A【解析】【解答】解:连接OA∵OA=5,OC=3,OC⊙AB∴AC=22-=4OA OC∵OC⊙AB∴AB=2AC=2×4=8.故答案为:A.【分析】连接OA,利用勾股定理求出AC的长,根据垂径定理可得AB=2AC,从而求出AB的长. 4.【答案】D【解析】【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等∴凳子应放在⊙ABC 的三条垂直平分线的交点最适当.故答案为:D .【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.5.【答案】C【解析】【解答】解:∵⊙AOB 与⊙ACB 都对 AB ,且⊙AOB=100°∴⊙ACB= 12 ⊙AOB=50°故选C【分析】根据图形,利用圆周角定理求出所求角度数即可.6.【答案】C【解析】【解答】解:如图,连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距.∵六边形ABCDEF 为正六边形∴60AOB ∠=︒ ,OA=OB=AB=a ,AH=BH= 2a ∴2222233()24aOH OA AH a a =-=-== 即半径为 a 3a . 故答案为:C.【分析】连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距,根据正六边形的性质用勾股定理可求解.7.【答案】B【解析】【解答】解:∵AB AC =∴AB=AC∴⊙B=⊙C=12(180°-⊙A)=12(180°-30°)=75°.故答案为B:.【分析】利用同圆和等圆中,相等的弧所对的弦相等,可证得AB=AC,利用等边对等角及三角形的内角和定理可求出⊙B的度数.8.【答案】A【解析】【解答】(1)、不符合题意,需要添加前提条件,即在同圆或等圆中;(2)、不符合题意,平分的弦不能是直径;(3)、不符合题意,等弧是指长度和度数都相等的弧;(4)、不符合题意,圆的对称轴是直径所在的直线.故答案为:A.【分析】在同圆或等圆中,相等的圆心角所对的弧相等,据此判断(1);平分弦(不是直径)的直径垂直于弦,据此判断(2);能重合的弧叫做等弧,据此判断(3);圆是轴对称图形,任何一条直径所在的直线都是对称轴,据此判断(4).9.【答案】B【解析】【解答】解:A、过不在同一直线上的三点能确定一个圆,正确,不符合题意;B、平分弦(不是直径)的直径垂直于弦,故原命题错误,符合题意;C、圆既是轴对称图形又是中心对称图形,正确,不符合题意;D、相等的弧所对的弦相等,正确,不符合题意.故答案为:B.【分析】根据确定圆的条件可判断A;根据垂径定理可判断B;根据轴对称图形、中心对称图形的概念可判断C;根据弧、弦的关系可判断D.10.【答案】B【解析】【解答】解:如图连接PC.在Rt⊙ABC中,∵⊙A=30°,BC=2∴AB=4根据旋转不变性可知,A′B′=AB=4∴A′P=PB′∴PC=12A′B′=2∵CM=BM=1又∵PM≤PC+CM,即PM≤3∴PM的最大值为3(此时P、C、M共线).故答案为:B.【分析】连接PC,根据⊙A=30°,BC=2,可知AB的值,根据旋转的性质可知A′B′=AB,进而可知A′P、PB′、PC的知,结合图形和三角形三边关系即可得出PM的取值范围,进而可知P、C、M共线时,PM值最大,即可选出答案.11.【答案】60【解析】【解答】解:连接CC′,如图所示:则B′、C′、C在一条直线上由旋转的性质得:⊙1=⊙2,DC′=DC∴⊙3=⊙4∵A′D′⊙B′C′∴⊙2=⊙3∴⊙1=⊙3=⊙4∴⊙CDC′是等边三角形∴⊙CDC′=60°;故答案为:60.【分析】根据旋转的性质“对应点与旋转中心连线所成的角度都等于旋转的角度”可求解。
浙教版九年级数学上册 第三章 圆的基本性质单元测试(含答案)

二、填空题(每题 4 分,共 60 分) 8、如图,⊙O 的半径 OA=6,以 A 为圆心,OA 为半径的弧交⊙O 于 B、C,则 BC 的长 是 .
(第 8 题图)
(第 9 题图)
(第 12 题图)
⌒ CD 9、如图,点 A、B、C、D 都在⊙O 上, 的度数等于 84°,CA 是∠OCD 的平分线,则 ∠ABD+∠CAO= . .
21、一个正多边形的所有对角线都相等,则这个正多边形的内角和为 22、AC、BD 是⊙O 的两条弦,且 AC⊥BD,⊙O 的半径为 . 三、解答题(共 32 分)
1ห้องสมุดไป่ตู้,则 AB 2 CD 2 的值为 2
23、(10 分)某地有一座圆弧形拱桥,桥下水面宽度 AB 为 7.2m,拱顶高出水面 2.4m,OC⊥AB,现有一艘宽 3m,船舱顶部为正方形并高出水面 2m 的货船要经过这里, 此货船能顺利通过这座桥吗?
18、如图,矩形 ABCD 的边 AB 过⊙O 的圆心,E、F 分别为 AB、CD 与⊙O 的交点,若 AE=3cm,AD=4cm,DF=5cm,则⊙O 的直径等于 19、如图,⊙O 是△ABC 的外接圆,AO⊥BC 于 F,D 为 点,∠DAE=114°,则∠CAD 等于 20、半径为 R 的圆内接正三角形的面积是 . . . ⌒ AC . 的中点,E 是 BA 延长线上一
(2)如图②,垂直于 AD 的三条弦 B1C1 , B 2 C 2 , B 3 C 3 把圆周 6 等分,分别求 ∠ B1 ,∠ B 2 ,∠ B 3 的度数; (3)如图③,垂直于 AD 的 n 条弦 B1C1 , B 2 C 2 , B 3 C 3 ,…, B n C n 把圆周 2n 等分, 请你用含 n 的代数式表示∠ B n 的度数(只需直接写出答案).
第3章 圆的基本性质数学九年级上册-单元测试卷-浙教版(含答案)

第3章圆的基本性质数学九年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,两个全等的长方形ABCD与CDEF,旋转长方形ABCD能和长方形CDEF重合,则可以作为旋转中心的点有()A.1个B.2个C.3个D.无数个2、下随有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦;并且平分弦所对的弧,④圆内接四边形对角互补.其中错误的结论有()A.1个B.2个C.3个D.4个3、如图,一块等腰直角的三角板,在水平桌面上绕点按顺时针方向旋转到的位置,使三点共线,那么旋转角度的大小为( )A. B. C. D.4、如图,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,AC=2,则四边形ABCD的面积为()A.1B.C.D.45、下列四个命题中,属于真命题的共有( )①相等的圆心角所对的弧相等②若,则a、b都是非负实数③相似的两个图形一定是位似图形④三角形的内心到这个三角形三边的距离相等A.1个B.2个C.3个D.4个6、已知⊙O的半径是4,OP=3,则点P与⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定7、在平移、旋转和轴对称这些图形变换下,它们共同具有的特征是()A.图形的形状、大小没有改变,对应线段平行且相等B.图形的形状、大小没有改变,对应线段垂直,对应角相等C.图形的形状、大小都发生了改变,对应线段相等,对应角相等D.图形的形状、大小没有改变,对应线段相等,对应角相等8、如图,∠ACB是⊙O的圆周角,若⊙O的半径为10,∠ACB=45°,则扇形AOB的面积为()A.5πB.12.5πC.20πD.25π9、下列说法正确的个数有 ( )①平分弦的直径垂直于弦; ②三点确定一个圆;③等腰三角形的外心一定在它的内部; ④同圆中等弦对等弧A.0个B.1个C.2个D.3个10、如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35°C.45°D.60°11、如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠C的度数为( )A.116°B.58°C.42°D.32°12、如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠BAC=20°,=,则∠DAC的度数是( )A.30°B.35°C.45°D.70°13、已知一条弧长为,它所对圆心角的度数为,则这条弦所在圆的半径为A. B. C. D.14、如图,△ABC内接于⊙O,∠A=60°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55°B.65°C.60°D.75°15、如图,直线AB,AD与⊙O相切于点B,D,C为⊙O上一点,且∠BCD=140°,则∠A的度数是()A.70°B.105°C.100°D.110°二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点的坐标为________.17、如图,在等腰直角△ABC中,AC=BC,∠ACB=90°,点O分斜边AB为BO:OA=1:.将△BOC绕C点顺时针方向旋转到△AQC的位置,则∠AQC=________ .18、圆内接四边形ABCD中,∠A:∠B:∠C=1:2:4,则∠D=________度.19、如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长为________(保留π)20、如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转90°得到△OA1B1,若AB=2,则点B走过的路径长为________.21、如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为________.22、如图,已知△ABC,AC=2AB,延长AB至点D,使得BD=AB,连结CD,若CD与△ABC的外接圆⊙O相切,则cos∠OAC=________。
浙教版九上第三章《圆的基本性质》word单元测试

1.如图,已知 AB 是O O 的直径,O O 交BC 的中点于D, DEL AC 于E ,连接AD 则下列结论C①AD 丄BC ②/ EDA=Z B ,③OA=寺^AC ④DE 是O O 的切线.A. 1 个 B . 2 个 C是(D圆的基本性质专项练习3姓名:正确的个数是(D )2.如图,AB 是OO 的直径,点E 是圆的三等分点,CE=2,则OO 中阴影部分的面积是( AA. 4二一 333.如图,已知OO2B .3的弦AB CD 相交于点E,则/ AEC 等于()A. 60°4.如图,BD 是OO 的直径, / CBD=30 , 则/A A.30B.45C.60D.755.已知OO i 的半径为5cm, OO 2的半径为 3cm, A.相离 B.外切C.相交D.内切7.如图,圆心为A B 、C 的三个圆彼此相切,且均与直线BO C 的半径分别为a,b,c,(0 v c v av b ),则a 、b 、c 一定满足的关系式为A.2b=a+cB.D BEO圆心距 0Q = 2,那么OO i 与OO 2的位置关系 的度数为B.2—2 3■'''的度数A , B, C , D 为O O 的四等分点,动点 P 从圆心O 出发,沿O-C-D-O 路线6.如图, I 相切,若O A 、O第7题8.如图,一种圆管的横截面是同心圆的圆环面,大圆的弦AB 切小圆于点C,大圆弦AD 交小圆于点E 和F .为了计算截面(图中阴影部分)的面积,甲、乙、丙三位同学分别用刻度尺 测量出有关线段的长度. 甲测得AB 的长,乙测得AC 的长,丙测得AD 的长和EF 的长.其1 1 1.-cabD.11 1.c 、, a 、. b中可以算出截面面积的同学是(C )A.甲、乙 B .丙 C . 甲、乙、丙 D •无人能算出9.如图,已知AB是半圆0的直径,/ 〈BAC=32?, D是弧AC的中点,那么/ DAC的度数是(B )A.25OB.29 oC.30 oD.3210.四个半径为r的圆如图放置,相邻两个圆交点之间的距离也为r,不相邻两个圆的圆周上两点间的最短距离等于2,则r的值是(A )A.「6 2 B . 、,6 -2 C . 2-、. 6 D . , 6 311.如果圆锥的母线长为6cm,底面圆半径为3cm,则这个圆锥的侧面积为18 二cm212.如图,已知O O的半径为R, AB是O O的直径, D是AB延长线上一点,DC是O O的切C是切点,连接AC,若/ CAB=30,贝U BD的长为R 第12题13.如图,点P在y轴上,L P交x轴于A, B两点,连结BP并延长交L P于C ,过点C的直线y =2x • b交x轴于D,且O P的半径为.5 , AB =4 .若函数ky =—(x<0)的图象过C点,贝U k= _-4 .x14.如图,PA PB是OO的切线,切点分别为A、B,点C在OO 上,如果/ P=50°,那么/ ACB等于______ 65°__15.如右图,直角三角形ABC中,/ C=9C°,/ A=30°,点0在斜边AB上,半径为2的OO过点B,切AC边于点D,交BC边于点E,则由线段CD , CE及弧DE围成的隐影部分的面积为生§ - 2二2 3第13题6、、2 cm16.已知三角形的三边长分别为 3,4,5,况是(C )A . 0, 1, 2, 3B. 0, 1, 2,17. 如图,两正方形彼此相邻且内接于则它的边与半径为1的圆的公共点个数所有可能的情 C. 0, 1, 2,3, ,若小正方形的面A. (4 • 5) cmB. 9 cmC. 4,5 cm18.如图,圆长为(的直径AB 长为 第18题10,弦AC 长为6,/ ACB 的平分线交O 则CD 的C 、D 、9MN 是半径为1的O O 的直径,点 19.如图,弧的中点,点P 是直径MN 上一个动点,则A 在O O 上,/ AMN=30 ° , PA+PB 的最小值为( B 第19题20.如图,已知 AB 是O O 的直径,C 是O O 上的一点,连结 AC ,过点C 作直线CD 丄AB 交 旳向 角10题图AB于点D, E 是O E 上的一点,直线CE 与O O 交于点F ,连结AF 交直线CD 于点G,AC=2;2 , 则 AG • AF 是( D )A .10 B第20题21.如图,一圆弧过方格的格点 A 、B C,试在方格中建立平面直角坐标系,使点A 的坐标为(一2, 4),则该圆弧所在圆的圆心坐标是(C )A. (- 1, 2)B. (1,- 1)C. (- 1 , 1)D. ( 2, 1)I I >l> I . I I■ ■ A : .12 16第22题D. 0, 1, 2, 4, 5D.PD AB 为AN)D . 2 MO GI - 1 —r114 4 I I « f 广-1* _书 lit# | |l dl II "'rI ・ IK Ii i t«CABCD内作等边三角形图标中阴影部分图形AFEGD的面积= ______________ 23•如图,△ ABC是O O的内接三角形,点D 是弧BC的中点,已知/ AOB=98° / COB=120° •则/ ABD 是101°度.24.如图O O的半径为1cm,弦AB、CD的长度分别为.2cm,1cm,则弦AC、BD所夹的锐25.如图,AB为O O的直径,点C,D在O O上.若/ AOD = 30 °则/ BCD的度数是105 °第31题26 如图,O O 的两弦AB、CD 交于点P,连接AC、BD,得&ACP:S^DBP=16:9,贝U AC : BD= ____________27.如图,AB是O O的直径,弦DC与AB相交于点E,若/ ACD=60。
度第一学期浙教版九年级数学上册_第三章__圆的基本性质__单元检测试卷

2019-2019学年度第一学期浙教版九年级数学上册_第三章_ 圆的基本性质 _单元检测试卷考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.如图所示,已知中,弦,相交于点,,,,则的长是()A. B. C. D.2.下列说法正确的是()A.各边相等的多边形是正多边形B.各角相等的多边形是正多边形C.各边相等的圆内接多边形是正多边形D.各角相等的圆内接多边形是正多边形3.一段铁路弯成圆弧形,圆弧的半径是,一列火车以每小时的速度行驶,经过通过弯道,那么弯道所对的圆心角的度数为()A. B. C. D.4.平面上不共线的四点,可以确定圆的个数为()A.个或个B.个或个C.个或个或个D.个或个或个或个5.在半径为的圆中,圆心角所对的弧长为()A. B. C. D.6.下列语句中正确的是()A.经过三个点一定可以作一个圆B.平分弦的直径垂直于弦C.菱形的四边中点在同一个圆上D.三角形的外心到三边的距离相等7.扇形的周长为,圆心角为,则扇形的面积为()A. B. C. D.8.已知的半径分别是,点到圆心的距离为,则点与的位置关系是()A.点在圆内B.点在圆上C.点在圆外D.无法确定9.如图,在四边形中,,若的外接圆为,则点在()A.上B.内C.外D.无法确定10.下列说法不正确的是()A.圆是轴对称图形,它有无数条对称轴B.圆的半径、弦长的一半、弦上的弦心距能组成一直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等D.垂直于弦的直径平分这条弦,并且平分弦所对的弧二、填空题(共 10 小题,每小题 3 分,共 30 分)11.如图,在梯形中,,将这个梯形绕点按顺时针方向旋转,使点落在边上的点处,点落在点处,如果直线经过点,那么旋转角等于________度.12.已知矩形的两边长分别为和,则矩形的四个顶点在以________为圆心,以________为半径的圆上.13.如图,在中,,,,边在直线第 1 页上,将绕点顺时针旋转,使边落在直线上的处,则、、三点在旋转过程中所走过的路程之和为________.14.如图,的斜边在轴上,且,.将绕原点逆时针旋转一定的角度,使直角边落在轴的负半轴上得到相应的,则点的坐标是________.15.已知的两直角边的长分别为和,则它的外接圆的半径为________.16.已知点的坐标为,为坐标原点,连接,将线段绕点旋转得,则点的坐标为________.17.如图,在半径为的中,如果弦的长为,那么它的弦心距等于________.18.如图,已知,图中的每个小正方形的边长为;的长等于________;先将向右平移个单位得到,在图中画出,并写出点的对应点的坐标是________;再将绕点按逆时针方向旋转后得到,在图中画出,并写出点对应点的坐标是________.19.如图所示,点是半圆上一个三等分点,点是的中点,点是直径上一动点,若的直径为,则的最小值是________.20.如图,半径为的中,弦,所对的圆心角分别是,.已知,,则圆心到的距离等于________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.已知:如图,在中,弦.求证:弧弧;.22.如图,为的直径,于,是上一动点,连接分别交、于点,.当时,求证:;当点在什么位置时,?证明你的结论.23.如图,在中,,以为直径的经过点.过点作的切线交的延长线于点.点为圆上一点,且,弦的延长线交切线于点,连接.判断和的数量关系,并说明理由;若的半径为,求的长.24.如图,是半圆的直径,、是半圆上的两点,且,与交于点.若,求的度数;若,,求的长.25.如图,是的直径,点、是圆上两点,且,与交于点.求证:为的中点;若,,求的长度.26.如图,是外接圆的直径,是的边上的高,,为垂足.求证:;若,,,求的直径.答案1.D2.C3.C4.C5.D6.C7.A8.C9.A10.C11.12.对角线交点13.14.15.16.或17.18.解:;的坐标是,向右平移个单位长度是;并写出点对应点的坐标是.19.20.21.证明: ∵在中,弦,∴弧弧,∵弧弧,∴弧弧; ∵弧弧,∴ .22.证明:连接,∵ 为的直径,∴ .又∵ ,∴∴ .第 3 页∵,∴ .∴ .∴ .当弧弧时,.证明:∵弧弧,∴ .∴ .即,∵ ,∴ .∴ .23.解:.理由:连接,∵ 切于点,∴ ,∵ ,,∴ ,∴ ,∴ ,在中,;由得,∵ 的半径是,∴ ,∵,∴ ,∴ ,∵ ,∴ ,在中,.24.解: ∵ 是半圆的直径,∴ ,又,∴ ,∵ ,∴ ,又,∴ ,∴ ,∴的度数是; ∵ ,∴ ,又,∴ ,∵ ,,∴ ,∴.25.解: ∵ 是半圆的直径,∴ ,∵ ,∴ ,∴ ,∴ ,∴ 为的中点;设圆的半径为,则,,∵,在中,,∴ ,解得,∴.26.证明:过作于,则;∵ ,,,∴ ,又∵ ,∴ ,故,即.解:连接,则;在中,,,由勾股定理得:;同理可求得:.∵ ,,∴ ,∴,即,解得;即的直径为.第 5 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的基本性质专项练习3 姓名:1.如图,已知AB 是⊙O 的直径,⊙O 交BC 的中点于D ,DE ⊥AC 于E ,连接AD ,则下列结论正确的个数是( D )①AD ⊥BC ,②∠EDA =∠B ,③OA = 12AC ,④DE 是⊙O 的切线.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,点D 、E 是圆的三等分点,AE 、BD 的延长线交于点C ,若CE=2,则⊙O 中阴影部分的面积是( A ) A .433π-B .23πC .223π-D .13π3.如图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°,的度数为100°,则∠AEC 等于( C ) A. 60° B. 100° C. 80° D. 130° 4.如图,BD 是⊙O 的直径,∠CBD=30,则∠A 的度数为( C ).A.30B.45C.60D.755.已知⊙O 1的半径为5cm ,⊙O 2的半径为3cm ,圆心距O 1O 2=2,那么⊙O 1与⊙O 2的位置关系是( D )A .相离B .外切C .相交D .内切6.如图,A B C D ,,,为⊙O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( C )7.如图,圆心为A 、B 、C 的三个圆彼此相切,且均与直线l 相切,若⊙A 、⊙B 、⊙C 的半径分别为a,b,c,(0<c <a <b),则a 、b 、c 一定满足的关系式为( D )A.2b=a+cB.b a c =+AOBCD E O DBCEA第第4题第6题A B C D OPB .ty 045 90 D .ty 045 90 A .ty 0 4590 C .ty 045 90 第7题C.111c a b =+ D.c a b=+ 第8题 8.如图,一种圆管的横截面是同心圆的圆环面,大圆的弦AB 切小圆于点C ,大圆弦AD 交小圆于点E 和F .为了计算截面(图中阴影部分)的面积,甲、乙、丙三位同学分别用刻度尺测量出有关线段的长度.甲测得AB 的长,乙测得AC 的长,丙测得AD 的长和EF 的长.其中可以算出截面面积的同学是( C )A .甲、乙B .丙C .甲、乙、丙D .无人能算出9. 如图,已知AB 是半圆O 的直径,∠BAC=32º,D 是弧AC 的中点,那么∠DAC 的度数是( B )A.25ºB.29ºC.30ºD.32°10.四个半径为r 的圆如图放置,相邻两个圆交点之间的距离也为r ,不相邻两个圆的圆周上两点间的最短距离等于2,则r 的值是( A )A .62+B . 62-C .26-D .63+ 11.如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为218cm π12.如图,已知⊙O 的半径为R ,AB 是⊙O 的直径,D 是AB 延长线上一点, DC 是⊙O 的切C 是切点,连接AC,若∠CAB=300,则BD 的长为 R 13.如图,点P 在y 轴上,P 交x 轴于AB ,两点,连结BP 并延长交P 于C ,过点C 的直线2y x b =+交x 轴于D ,且⊙P 的半径为5,4AB =.若函数ky x=(x<0)的图象过C 点,则k=___-4____. 14.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,点C 在⊙O 上, 如果∠P=50°,那么∠ACB 等于____65°15.如右图,直角三角形ABC 中,∠C=90°,∠A=30°,点0在斜 边AB 上,半径为2的⊙O 过点B ,切AC 边于点D ,交BC 边于点E , 则由线段CD ,CE及弧DE围成的隐影部分的面积为π32233- 第13题DC第12题O BDCA第14题NMB A第10题图P OGDO A C E16.已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是( C )A . 0,1,2,3 B. 0,1,2,4 C. 0,1,2,3,4 D. 0,1,2,4,5 17.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( C )A. (45) cmB. 9 cmC. 45cmD.62cm18.如图,圆O 的直径AB 长为10,弦AC 长为6,∠ACB 的平分线交⊙O 于D ,则CD 的长为( B ) 第18题A 、7B 、72C 、82D 、9 19.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,点P 是直径MN 上一个动点,则P A+PB 的最小值为( B )A .22B .2C .1D .2第19题20.如图,已知AB 是⊙O 的直径,C 是⊙O 上的一点,连结AC ,过点C 作直线CD ⊥AB 交AB 于点D,E是O B上的一点,直线CE 与⊙O 交于点F ,连结AF 交直线CD 于点G ,AC =22,则AG ·AF 是( D )A.10 B.12 C.16 D.8 第20题21.如图,一圆弧过方格的格点A 、B 、C ,试在方格中建立平面直角坐标系,使点A 的坐标为(-2,4),则该圆弧所在圆的圆心坐标是( C ) A. (-1,2)B. (1,-1)C. (-1,1)D. (2,1)第22题A CBD CBAO第24 题22.芜湖国际动漫节期间,小明进行了富有创意的形象设计.如图1,他在边长为1的正方形ABCD 内作等边三角形BCE ,并与正方形的对角线交于F 、G 点,制成如图2的图标. 则图标中阴影部分图形AFEGD 的面积=_________ _.23.如图,△ABC 是⊙O 的内接三角形,点D 是弧BC 的中点,已知∠AOB =98°,∠COB =120°.则∠ABD 是 101° 度.24.如图⊙O 的半径为1cm ,弦AB 、CD 2,1cm cm ,则弦AC 、BD 所夹的锐角α= 75° .25.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上.若∠AOD =30°,则∠BCD 的度数是 105° .第26题 第27题 第29题 第30题第31题26如图,⊙O 的两弦AB 、CD 交于点P ,连接AC 、BD ,得S △ACP :S △DBP =16:9,则AC :BD=27.如图,AB 是⊙O 的直径,弦DC 与AB 相交于点E ,若∠ACD=60°,∠ADC=50°,则∠ABD= 60 ,∠CEB= 100 。
28.在⊙O 中直径为4,弦AB =23,点C 是圆上不同于A 、B 的点,那么∠ACB 的度数为__60°或120°__.29.如图,已知点A ,B ,C 在⊙O 上,AC∥0B,∠BOC=40°,则∠ABO= 20° .30.如图,在以O 为圆心的两个同心圆中,大圆的弦AB 与小圆相切于点C ,若大圆的半径为5 cm ,小圆的半径为3 cm ,则弦AB 的长为_______cm .31.如图.⊙O 中,AB 、AC 是弦,O 在∠ABO 的内部,α=∠ABO ,β=∠ACO ,θ=∠BOC ,则下列关系中,正确的是( )A.βαθ+=B. βαθ22+= C .︒=++180θβα D.︒=++360θβα32.已知⊙O 的半径为10,弦AB 的长为3点C 在⊙O 上,且C 点到弦AB 所在的直线第25题BDOCACDO第23题的距离为5,则以O、A、B、C为顶点的四边形的面积是50333.如图,已知⊙O的半径为1,PQ是⊙O的直径,n个相同的正三角形沿PQ排成一列,所有正三角形都关于PQ对称,其中第一个111CBA△的顶点1A与点P重合,第二个222CBA△的顶点2A是11CB与PQ的交点,…,最后一个nnnCBA△的顶点n B、n C在圆上.(1)如图1,当1=n时,求正三角形的边长1a;(2)如图2,当2=n时,求正三角形的边长2a;(3)如题图,求正三角形的边长na(用含n的代数式表示).34.(1)请在图①的正方形ABCD内,画出使∠APB=90°的一个点P,并说明理由。
(2)请在图②的正方形ABCD内(含边),画出使∠APB=60°的所有的点P,并说明理由。
(3)如图③,现在一块矩形钢板ABCD,AB=4,BC=3,工人师傅想用它裁出两块全等的、面积最大的△APB和△CP'D钢板,且∠APB=∠CP'D=60°,请你在图③中画出符合要求的点P和P'。
)(1AP1B1C(第33题图1))(1AP1B1C2A2B2C(第33题图2))(1AP1B1CnAnB n C(第33题)2B2C2A图① 图② 图③35.如图,△ABC 内接于⊙O ,AD ⊥BC ,OE ⊥BC , OE =12BC . (1)求∠BAC 的度数.(2)将△ACD 沿AC 折叠为△ACF ,将△ABD 沿AB 折叠为△ABG ,延长FC 和GB 相交于点H .求证:四边形AFHG 是正方形. (3)若BD =6,CD =4,求AD 的长.36.阅读下列材料,然后解答问题。
经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆。
圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形。
如图(十三),已知正四边形ABCD 的外接圆⊙O ,⊙O 的面积为S 1,正四边形ABCD 的面积为S 2,以圆心O 为顶点作∠MON ,使∠MON =90°,将∠MON 绕点O 旋转,OM 、ON 分别与⊙O 相交于点E 、F ,分别与正四边形ABCD 的边相交于点G 、H 。
设OE 、OF 、EF 及正四边形ABCD 的边围成的图形(图中阴影部分)的面积为S(1)当OM 经过点A 时(如图①),则S 、S 1、S 2之间的关系为:S = (用含S 1、S 2的代数式表示);(2)当OM ⊥AB 时(如图②),点G 为垂足,则(1)中的结论仍然成立吗?请说明理由。
POD CB A P O DC B A (3)当∠MON 旋转到任意位置时(如图③,)则(1)中的结论仍然成立吗?请说明理由.图(十三)37.如图,圆O 的直径为5,在圆O 上位于直径AB 的异侧有定点C 和动点P ,已知BC :CA =4:3,点P 在半圆弧AB 上运动(不与A 、B 两点重合),过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:A C ·CD=PC ·BC ;(2)当点P 运动到AB 弧中点时,求CD 的长;(3)当点P 运动到什么位置时,△PCD 的面积最大?并求出这个最大面积S 。