几何证明举例教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何证明举例——等腰三角形教学设计
教学目标
1、初步掌握等腰三角形的性质及简单应用。
2、理解等腰三角形和等边三角形的性质定理之间的关系。
3、培养分类讨论、方程的思想和添加辅助线解决问题的能力。
教学重点和难点
重点是等腰三角形性质的应用;
难点是等腰三角形的“三线合一”性质的灵活运用。
教学过程设计
一、探索并证明等腰三角形的三条性质复习引入新课:
动手操作
你还记得八(上)用折叠的方法探索命题“等腰三角形的两个底角相等”的过程吗?(学生事先准备好纸剪的等腰三角形操作)。展示等腰三角形折叠动画。
二、新课探索新课探索一:等腰三角形的性质定理和判定定理
1、回答下面的问题,并与同学交流:
(1)“等腰三角形的两个底角相等”是真命题吗?怎样证明?
(2)说出命题“等腰三角形的两个底角相等”的逆命题;
(3)这个逆命题是真命题吗?怎样证明它的正确性?
2、知识点1:等腰三角形的性质定理1
等腰三角形的两个底角相等。(等边对等角)
(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)
(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C
温馨提示一:
回顾八(上)用折叠的方法探索命题“等腰三角形的两个底角相等”的过程。由当时的操作,如何添加辅助线,然后给出证明。注意作辅助线的方法可有多种,如作底边上的高、底边上的中线、顶角的平分线,相应地,在判定两个三角形全等时的依据也不同。
例4如果一个三角形有两个角相等,那么这个三角形是等腰三角形。
3、方法点拨
(3)证明一:取BC的中点D,连接AD
在△ABD和△ACD中
∴△ABD≌△ACD(SSS)
∴∠B=∠C(全等三角形的对应角相等)
证明二:作顶角的平分线AD
在△BAD和△CAD中
AB=AC(已知)
∠BAD=∠CAD(辅助线做法)
AD=AD(公共边)
∴△BAD≌△CAD(SAS)
∴∠B=∠C(全等三角形的对应角相等)
证明三:过点A作AD⊥BC于点D
在Rt△ABD和Rt△ACD中
AB=AC(已知)
AD=AD(公共边)
∴△ABD≌△ACD(HL)
∴∠B=∠C(全等三角形的对应角相等)
4、知识点2、等腰三角形的判定定理:
如果一个三角形有两个角相等,那么这个三角形是等腰三角形。(等角对等边)
温馨提示二:
1、教师要引导学生说出等腰三角形性质定理的逆命题,然后引导学生研究例4,让学生说出它的证明过程。说明它是等腰三角形的判定定理,分析它与性质定理之间的区别,明确它们的应用
2、注意不要把等腰三角形的判定定理中的两个角说成两个底角。因为在没有判定三角形是等腰三角形之前。不能使用“底角”、“腰"这些名词。
已知:如图,在△ ABC中,∠B=∠C。
求证:AB=AC。
证明:过点A作AD⊥BC于点D,则∠ADB=∠ADC=900。
在Rt△ABD和Rt△ACD中,
∵∠B=∠C,
∠ADB=∠ADC(已知),
AD=AD(公共边),
∴△ABD≌△ACD(AAS)。
∴AB=AC(全等三角形的对应边相等)。
∴△ ABC是等腰三角形(等腰三角形的定义)。
注意:这个逆命题的正确性便得到了证实今后它可以作为等腰三角形的判定定理。
5、新课探索二:等腰三角形的性质——三线合一
原命题“等腰三角形的两个底角相等”,是等腰三角形的一个性质定理。
在上图中,∠1与∠2有什么关系?BD与CD有什么关系?你能得出什么结论?与同学交流。
温馨提示三:
1、上图中线段AD既是BC边上的高,又是BC边上的中线,也是顶角∠A的平分线,从而得到等腰三角形三线合一的性质定理。
2、等腰三角形的性质定理的证明是“HL”定理的应用,其判定定理的证明是“AAS”定理的应用。这两个定理为证明“角相等”和“线段相等"提供了新的工具。在运用这两个定理时,(1)要注意“在同一个三角形中”这个隐含条件;
(2)会区分这两个互逆定理的条件和结论。虽然这两个定理都是对“等腰”来说的,但在性质定理中是已知“等腰”,然后得出两角相等的结论,即“由边推角”;在判定定理中却是已知两角相等,而要证明“等腰”,即“由角推边”,它们反映了等边与等角关系的相互转化;(3)今后应克服不顾命题的条件,一概用全等三角形来证明两角相等或线段相等的思维定势。
学法指导:
3、牢固掌握等腰三角形的性质,并能熟练地应用它们,应
通过例题,熟练地进行下面的推理:如图。
(1) ∵AB=AC(已知)∴∠B=∠C;(等边对等角)
(2)∵∠B=∠C(已知)∴AB=AC;(等角对等边)
(3) ∵AB=AC ∠1=∠2(已知)∴AD⊥BC,BD=DC;(三线
合一)
(4) ∵AB=AC,BD=DC(已知)∴AD⊥BC,∠1=∠2;(三线合一)
(5) ∵AB=AC,AD⊥BC(已知)∴BD=DC,∠1=∠2。(三线合一)
结论:等腰三角形的性质定理:等腰三角形底边上的高线、中线、顶角的平分线分线重合(三线合一)
三、小试牛刀——小荷才露尖尖角
选择:
1、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()
A、 60°
B、 120°
C、 60°或150°
D、 60°或120°
2、如图,△ABC中AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()
A、 30°
B、 36°
C、95°
D、 70°
填空题
①等腰三角形的一个顶角为36°,则它的底角是____
②等腰三角形的一个底角为36°,则它的顶角是_____
③等腰三角形的一内角为40°,则它的顶角是_____