C#实现蚁群算法

C#实现蚁群算法
C#实现蚁群算法

https://www.360docs.net/doc/3015589273.html,/sun_raining61/blog/item/449da9240b1e71024d088d5d.html/cmtid/1056b bed39d4d24779f05502

using System;

using System.Collections.Generic;

using System.Text;

namespace AntSystem

{

public class AA

{

/**////

/// 对信息量的重视程度

///

private int alpha;

/**////

/// 启发式信息的受重视程度

///

private int beta;

/**////

/// 信息素的挥发速度

///

private double lo;

/**////

/// 城市距离矩阵

///

private double[,] City;

/**////

/// 信息素矩阵

///

private double[,] Message;

/**////

/// opneList用于存放下一步可行城市

///

private Queue openList=new Queue ();

/**////

/// closedList用于存放已经访问过的城市

///

private Queue closedList=new Queue ();

/**////

/// 储存较好的路径

///

private Queue BestList=new Queue ();

private int Pro_time = 0;

/**//////////////////////////////////////////////////////////

///

/// 构造函数:形成城市距离和信息素矩阵

///

/// 城市距离矩阵

/// 信息素的挥发速度 public AA(double[,] city,double Lo,int Alpha,int Beta) {

alpha = Alpha;

beta = Beta;

lo=Lo;

int temp = Convert.ToInt32( Math.Sqrt(city.Length)); City=new double [temp,temp];

Message=new double [temp,temp];

for (int i = 0; i < temp; i++)

{

for (int j = 0; j < temp; j++)

{

City[i, j] = city[i, j];

}

}

//初始化信息素矩阵

for (int i = 0; i < temp; i++)

{

for (int j = 0; j < temp; j++)

{

if (i != j)

{

Message[i, j] = (double)1 / (temp * temp - temp);

}

}

}

}

/**/////////////////////////////////////////////////////////////

///

/// 改变信息素矩阵,closed_list为较好的路径

///

///

private void Change_Message(Queue closed_list) {

lock (this)

{

int[] temp_Array = new int[closed_list.Count];

temp_Array = closed_list.ToArray();

for (int i = 0; i < closed_list.Count - 1; i++)

{

Message[temp_Array[i], temp_Array[i + 1]] = Message[temp_Array[i], temp_Array[i + 1]] + lo / ((1 - lo) *Convert.ToInt32(Get_Weight(closed_list)+1));

}

Message[temp_Array[temp_Array.Length - 1], temp_Array[0]] = Message[temp_Array[temp_Array.Length - 1], temp_Array[0]] + lo / ((1 - lo) *Convert.ToInt32(Get_Weight(closed_list)));

for (int i = 0; i < closed_list.Count; i++)

{

for (int j = 0; j < closed_list.Count; j++)

{

Message[i, j] = (1 - lo) * Message[i, j];

}

}

}

}

/**////////////////////////////////////////////////////////////////

///

/// 输入一个链表,计算出其对应的总路径

///

///

///

public double Get_Weight(Queue closed_list)

{

lock (this)

{

double sum = 0;

int[] temp_Array = new int[closed_list.Count];

temp_Array = closed_list.ToArray();

for (int i = 0; i < Convert.ToInt32(temp_Array.Length) - 1; i++)

{

sum = sum + City[temp_Array[i], temp_Array[i + 1]];

}

sum = sum + City[temp_Array[temp_Array.Length - 1], temp_Array[0]];

return sum;

}

}

/**///////////////////////////////////////////////////////////////

///

/// 产生到i城市后,下一个可走城市的集合。并将城市编号加入到openList中。

/// 产生的城市不可以已经存在closedList中

///

///

private void NextCity()

{

openList.Clear();

int temp_int=Convert.ToInt32(Math.Sqrt(City.Length));

for (int i = 0; i < temp_int; i++)

{

if (closedList.Contains(i) ==false)

{

openList.Enqueue(i);

}

}

}

/**///////////////////////////////////////////////////////////////

///

/// 选择应该走那条路,选择完路A后,清空openList,再把A加入到openList中///

///

private int choiceRoute()

{

int index = 0;//记录选择的城市

Random random = new Random();

double random_value =(double) random.NextDouble();//随机选择的概率

int[] temp_Array=new int [openList.Count];

temp_Array=openList.ToArray();

double sum_Message = 0;//openList所有节点的总信息量

for (int i = 0; i < openList.Count; i++)

{

double eta = 1 / City[Pro_time, temp_Array[i]];

sum_Message = sum_Message +Math.Pow(Message[Pro_time, temp_Array[i]],alpha)*Math.Pow (eta,beta);

}

double temp=0;

for (int j = 0; j < openList.Count; j++)

{

double eta = 1 / City[Pro_time, temp_Array[j]];

temp=temp+Math.Pow(Message[Pro_time,temp_Array[j]],alpha)*Math.Pow(eta,b eta)/sum_Message;

if (temp > random_value)

{

index = temp_Array [j];

break;

}

}

openList.Clear();

openList.Enqueue(index);

return index;

}

/**//////////////////////////////////////////////////////////////

public Queue Main_DW()

{

BestList.Clear();

/**////共循环20次

for (int i = 0; i < 4; i++)

{

/**////共有n只蚂蚁n=City'number Convert.ToInt32(Math.Sqrt(City.Length))

for (int j = 0; j < Convert.ToInt32(Math.Sqrt(City.Length)); j++)

{

openList.Enqueue(0);

closedList.Clear();

while (openList.Count != 0 && closedList.Count != Convert.ToInt32(Math.Sqrt(City.Length)))

{

int temp = openList.Dequeue();

Pro_time = temp;

closedList.Enqueue(temp);

if (openList.Count == 0 && closedList.Count == Convert.ToInt32(Math.Sqrt(City.Length)))

{

if (BestList.Count == 0)

{

int[] temp_Array = new int[Convert.ToInt32(Math.Sqrt(City.Length))];

temp_Array = closedList.ToArray();

for (int k = 0; k < Convert.ToInt32(Math.Sqrt(City.Length)); k++)

{

BestList.Enqueue(temp_Array[k]);

}

}

if (Get_Weight(BestList) > Get_Weight(closedList))

{

BestList.Clear();

int[] temp_Array = new int[Convert.ToInt32(Math.Sqrt(City.Length))];

temp_Array = closedList.ToArray();

for (int k = 0; k < Convert.ToInt32(Math.Sqrt(City.Length)); k++)

{

BestList.Enqueue(temp_Array[k]);

}

}

}

NextCity();

choiceRoute();

}

}

Change_Message(BestList);//修改信息量

}

return BestList;

}

}

}

基于蚁群算法的MATLAB实现

基于蚁群算法的机器人路径规划MATLAB源代码 基本思路是,使用离散化网格对带有障碍物的地图环境建模,将地图环境转化为邻接矩阵,最后使用蚁群算法寻找最短路径。 function [ROUTES,PL,Tau]=ACASPS(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 基于蚁群算法的机器人路径规划 % GreenSim团队——专业级算法设计&代写程序 % 欢迎访问GreenSim团队主页→https://www.360docs.net/doc/3015589273.html,/greensim %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N

蚁群算法简述及实现

蚁群算法简述及实现 1 蚁群算法的原理分析 蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。 蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。 引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1(a))。现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1(b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1(c))。这时,选择路径的概率就有了偏差,向C走的蚂蚁数将是向H走的蚂蚁数的2倍。对于从E到D来的蚂蚁也是如此。 (a)(b)(c) 图1 蚁群路径搜索实例 这个过程一直会持续到所有的蚂蚁最终都选择了最短的路径为止。 这样,我们就可以理解蚁群算法的基本思想:如果在给定点,一只蚂蚁要在不同的路径中选择,那么,那些被先行蚂蚁大量选择的路径(也就是信息素留存较浓的路径)被选中的概率就更大,较多的信息素意味着较短的路径,也就意味着较好的问题回答。

基于蚁群算法的路径规划

MATLAB实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE,其中AB,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC的蚂蚁分别走过了BCD 和DCB,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁

基于蚁群算法的机器人路径规划Ant Colony Algorithm

基于蚁群算法的机器人路径规划 说明:基于蚁群算法的机器人路径规划,使用网格离散化的方法对带有障碍物的环境建模,使用邻接矩阵存储该环境,使得问题转化为蚁群算法寻找最短路径。 使用网格离散化的方法对带有障碍物的环境建模,使用邻接矩阵存储该环境,使得问题转化为蚁群算法寻找最短路径。 % ACASP.m % 蚁群算法动态寻路算法 % GreenSim团队原创作品,转载请注明 % Email:greensim@https://www.360docs.net/doc/3015589273.html, %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素 %% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵

人工蚁群算法的实现与性能分析

目录.................................................... 错误!未定义书签。摘要. (ii) Abstract (iii) 第一章引言 (1) 1.1 非对称TSP问题(ATSP)及其求解方法概述 (1) 1.2 人工蚁群算法的主要思想和特点 (1) 1.3 主要工作 (2) 第二章 ATSP问题分析 (3) 2.1 ATSP问题的数学模型 (3) 2.2 ATSP问题与TSP问题的比较 (3) 第三章求解ATSP问题的人工蚁群算法 (4) 3.1 ATSP问题的蚁群算法表示 (4) 3.2 人工蚁群算法的实现 (4) 3.2.1 人工蚁群算法的流程图 (5) 3.2.2 蚁群的规模、算法终止条件 (6) 3.2.3 路径选择方法和信息素的更新方法 (7) 第四章实验和分析 (10) 4.1 测试环境 (10) 4.2 测试用例 (10) 4.3 实验结果及参数分析 (10) 4.3.1 br17.atsp的测试结果 (10) 4.3.2 ft53.atsp的测试结果 (12) 4.3.3 ftv33.atsp的测试结果 (13) 4.3.4 ftv35.atsp的测试结果 (15) 4.3.5 br17.atsp相关参数修改后的测试结果 (16) 第五章总结 (19) 致谢 (20) 参考文献 (21)

摘要 旅行商问题(TSP问题)是组合优化的著名难题。它具有广泛的应用背景,如计算机、网络、电气布线、加工排序、通信调度等。已经证明TSP问题是NP难题,鉴于其重要的工程与理论价值,TSP常作为算法性能研究的典型算例。TSP的最简单形象描述是:给定n个城市,有一个旅行商从某一城市出发,访问各城市一次且仅有一次后再回到原出发城市,要求找出一条最短的巡回路径。TSP分为对称TSP和非对称TSP两大类,若两城市往返距离相同,则为对称TSP,否则为非对称TSP 。本文研究的是对称的ATSP。 实质上,ATSP问题是在TSP问题上发展而来的,它们的区别就在于两座城市之间的往返距离是否相同。例如,有A,B两个城市,在TSP问题中,从A到B的距离是等于从B到A得距离的,是一个单向选择的连通问题。而在ATSP问题中,从A到B的距离就不一定等于从B到A的距离,所以这是双向选择的联通问题。 本文主要阐述了用人工蚁群算法的原理和一些与其相关联的知识结构点。通过对算法原理的理解,及在函数优化问题上的应用,与优化组合问题的研究来了解ATSP问题以及人工蚁群算法解决实际问题上的应用与研究。 关键词:ATSP ;组合优化;人工蚁群算法;TSP

(完整word版)基于蚁群算法的路径规划

MATLAB 实现基于蚁群算法的机器人路径规划 1、问题描述 移动机器人路径规划是机器人学的一个重要研究领域。它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起 始状态到目标状态的能避开障碍物的最优路径。机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。 2 算法理论 蚁群算法(Ant Colony Algorithm ,ACA ),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。但是算法本身性能的评价等算法理论研究方面进展较慢。 Dorigo 提出了精英蚁群模型(EAS ),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。次年Dorigo 博士给出改进模型(ACS ),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。 Stützle 与Hoos 给出了最大-最小蚂蚁系统(MAX-MINAS ),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。 下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。如图2-1 所示,AE 之间有两条路ABCDE 与ABHDE ,其中AB ,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。当t=0 时,从A 点,E 点同时各有30 只蚂蚁从该点出发。当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC ,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC 。同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。当t=2 时,选择BC 与DC 的蚂蚁分别走过了BCD 和DCB ,而选择BH 与DH 的蚂蚁都走到了H 点。所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。这就是它们群体智能的体现。 蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。 归结蚁群算法有如下特点: (1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。这使得算法具有较强的适应性; (2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。同样的蚁群算法中的各个蚂蚁的决策是根据系统内部信息素的分布进行的。这使得算法具有较强的鲁棒性; (3)正反馈机制与负反馈机制结合:若某部分空间上分布的信息素越多,那么在这个空间上走过的蚂蚁也就越多;走过的蚂蚁越多,在那个空间上留下的信息素也就越多,这就是存在的正反馈机制。但蚁群算法中解的构造是通过计算转移概率实现的,也就是说构造解的时候可以接受退化解,这限制了正反馈机制,

matlab蚁群算法精讲及仿真图

蚁群算法matlab精讲及仿真 4.1基本蚁群算法 4.1.1基本蚁群算法的原理 蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。等人提出来的,在越来越多的领域里得到广泛应用。蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信

息传递物质量高的路径走,可能搜索其它的路径。这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。【基于蚁群算法和遗传算法的机器人路径规划研究】 该算法的特点: (1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。 (2)正反馈机制,蚂蚁在运动的过程中,收到其他蚂蚁的信息素影响,对于某路径上信息素越强的路径,其转向该路径的概率就越大,从而更容易使得蚁群寻找到最短的避障路径。 (3)易于与其他算法结合,现实中蚂蚁的工作过程简单,单位蚂蚁的任务也比较单一,因而蚁群算法的规则也比较简单,稳定性好,易于和其他算法结合使得避障路径规划效果更好。 (4)具有并行搜索能力探索过程彼此独立又相互影响,具备并行搜索能力,这样既可以保持解的多样性,又能够加速最优解的发现。 4.1.2 基本蚁群算法的生物仿真模型 a为蚂蚁所在洞穴,food为食物所在区,假设abde为一条路径,eadf为另外一条路径,蚂蚁走过后会留下信息素,5分钟后蚂蚁在两条路径上留下的信息素的量都为3,概率可以认为相同,而30分钟后baed路径上的信息素的量为60,明显大于eadf路径上的信息素的量。最终蚂蚁会完全选择abed这条最短路径,由此可见,

蚁群算法的基本原理

2.1 蚁群算法的基本原理 蚁群优化算法是模拟蚂蚁觅食的原理,设计出的一种群集智能算法。蚂蚁在觅食过程中能够在其经过的路径上留下一种称之为信息素的物质,并在觅食过程中能够感知这种物质的强度,并指导自己行动方向,它们总是朝着该物质强度高的方向移动,因此大量蚂蚁组成的集体觅食就表现为一种对信息素的正反馈现象。某一条路径越短,路径上经过的蚂蚁越多,其信息素遗留的也就越多,信息素的浓度也就越高,蚂蚁选择这条路径的几率也就越高,由此构成的正反馈过程,从而逐渐的逼近最优路径,找到最优路径。 蚂蚁在觅食过程时,是以信息素作为媒介而间接进行信息交流,当蚂蚁从食物源走到蚁穴,或者从蚁穴走到食物源时,都会在经过的路径上释放信息素,从而形成了一条含有信息素的路径,蚂蚁可以感觉出路径上信息素浓度的大小,并且以较高的概率选择信息素浓度较高的路径。 (a) 蚁穴 1 2 食物源 A B (b) 人工蚂蚁的搜索主要包括三种智能行为: (1)蚂蚁的记忆行为。一只蚂蚁搜索过的路径在下次搜索时就不再被该蚂蚁选择,因此在蚁群算法中建立禁忌表进行模拟。 (2)蚂蚁利用信息素进行相互通信。蚂蚁在所选择的路径上会释放一种信息素的物质,当其他蚂蚁进行路径选择时,会根据路径上的信息素浓度进行选择,这样信息素就成为蚂蚁之间进行通信的媒介。 (3)蚂蚁的集群活动。通过一只蚂蚁的运动很难达到事物源,但整个蚁群进行搜索就完全不同。当某些路径上通过的蚂蚁越来越多时,路径上留下的信息素数量也就越多,导致信息素强度增大,蚂蚁选择该路径的概率随之增加,从而进一步增加该路径的信息素强度,而通过的蚂蚁比较少的路径上的信息素会随着时间的推移而挥发,从而变得越来越少。3.3.1蚂蚁系统 蚂蚁系统是最早的蚁群算法。其搜索过程大致如下: 在初始时刻,m 只蚂蚁随机放置于城市中, 各条路径上的信息素初始值相等,设为:0(0)ij ττ=为信息素初始值,可设0m m L τ=,m L 是由最近邻启发式方法构 造的路径长度。其次,蚂蚁(1,2,)k k m = ,按照随机比例规则选择下一步要转

基于蚁群算法的TSP问题研究

南京航空航天大学金城学院毕业设计(论文)开题报告 题目基于蚁群算法的TSP问题研究 系部XXXX系 专业XXXX 学生姓名XXXX学号XXXX 指导教师XXXX职称讲师 毕设地点XXXX 年月日

填写要求 1.开题报告只需填写“文献综述”、“研究或解决的问题和拟采用的方法”两部分内容,其他信息由系统自动生成,不需要手工填写。 2.为了与网上任务书兼容及最终打印格式一致,开题报告采用固定格式,如有不适请调整内容以适应表格大小并保持整体美观,切勿轻易改变格式。 3.任务书须用A4纸,小4号字,黑色宋体,行距1.5倍。 4.使用此开题报告模板填写完毕,可直接粘接复制相应的内容到毕业设计网络系统。

1.结合毕业设计(论文)课题任务情况,根据所查阅的文献资料,撰写1500~2000字左右的文献综述: 1.1蚁群算法的发展和应用 在计算机自动控制领域中,控制和优化始终是两个重要问题。使用计算机进行控制和优化本质上都表现为对信息的某种处理。随着问题规模的日益庞大,特性上的非线性及不确定性等使得难以建立精确的“数学模型”。人们从生命科学和仿生学中受到启发,提出了许多智能优化方法,为解决复杂优化问题(NP-hard问题)提供了新途径。 蚁群算法(Ant Colony Algorithm,ACA)是Dorigo M等人于1991年提出的。 经观察发现,蚂蚁个体之间是通过一种称之为信息素的物质进行信息传递的。在运动过程中,蚂蚁能够在它所经过的路径上留下该种信息素,而且能够感知信息素的浓度,并以此指导自己的运动方向。蚁群的集体行为表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。蚂蚁个体之间就是通过这种信息的交流达到搜索食物的目的。它充分利用了生物蚁群通过个体间简单的信息传递,搜索从蚁巢至食物间最短路径的集体寻优特征,以及该过程与旅行商问题求解之间的相似性。同时,该算法还被用于求解二次指派问题以及多维背包问题等,显示了其适用于组合优化问题求解的优越特征。 蚁群算法应用于静态组合优化问题,其典型代表有旅行商问题(TSP)、二次分配问题(QAP)、车间调度问题、车辆路径问题等。在动态优化问题中的应用主要集中在通讯网络方面。这主要是由于网络优化问题的特殊性,如分布计算,随机动态性,以及异步的网络状态更新等。例如将蚁群算法应用于QOS组播路由问题上,就得到了优于模拟退火(SA)和遗传算法(GA)的效果。蚁群优化算法最初用于解决TSP 问题,经过多年的发展,已经陆续渗透到其他领域中,如图着色问题、大规模集成电路设计、通讯网络中的路由问题以及负载平衡问题、车辆调度问题等。蚁群算法在若干领域获得成功的应用,其中最成功的是在组合优化问题中的应用。 1.2蚁群算法求解TSP问题 (1)TSP问题的描述 TSP问题的简单形象描述是:给定n个城市,有一个旅行商从某一城市出发,访问各城市一次且仅有一次后再回到原出发城市,要求找出一条最短的巡回路径。 (2)TSP问题的理论意义 该问题是作为所有组合优化问题的范例而存在的。它已经成为并将继续成为测

C#实现蚁群算法

https://www.360docs.net/doc/3015589273.html,/sun_raining61/blog/item/449da9240b1e71024d088d5d.html/cmtid/1056b bed39d4d24779f05502 using System; using System.Collections.Generic; using System.Text; namespace AntSystem { public class AA { /**////

/// 对信息量的重视程度 /// private int alpha; /**//// /// 启发式信息的受重视程度 /// private int beta; /**//// /// 信息素的挥发速度 /// private double lo; /**//// /// 城市距离矩阵 /// private double[,] City; /**//// /// 信息素矩阵 /// private double[,] Message; /**//// /// opneList用于存放下一步可行城市 /// private Queue openList=new Queue (); /**//// /// closedList用于存放已经访问过的城市 /// private Queue closedList=new Queue (); /**//// /// 储存较好的路径 /// private Queue BestList=new Queue (); private int Pro_time = 0; /**////////////////////////////////////////////////////////// ///

蚁群算法原理及在TSP中的应用(附程序)

蚁群算法原理及在TSP 中的应用 1 蚁群算法(ACA )原理 1.1 基本蚁群算法的数学模型 以求解平面上一个n 阶旅行商问题(Traveling Salesman Problem ,TSP)为例来说明蚁群算法ACA (Ant Colony Algorithm )的基本原理。对于其他问题,可以对此模型稍作修改便可应用。TSP 问题就是给定一组城市,求一条遍历所有城市的最短回路问题。 设()i b t 表示t 时刻位于元素i 的蚂蚁数目,()ij t τ为t 时刻路径(,)i j 上的信息量,n 表示TSP 规模,m 为蚁群的总数目,则1()n i i m b t ==∑;{(),}ij i i t c c C τΓ=?是t 时刻集合C 中元素(城市)两两连接ij t 上残留信息量的集合。在初始时刻各条路径上信息量相等,并设 (0)ij const τ=,基本蚁群算法的寻优是通过有向图 (,,)g C L =Γ实现的。 蚂蚁(1,2,...,)k k m =在运动过程中,根据各条路径上的信息量决定其转移方向。这里用禁忌表(1,2,...,)k tabu k m =来记录蚂蚁k 当前所走过的城市,集合随着 k tabu 进化过程作动态调整。在搜索过程中,蚂蚁根据各条路径上的信息量及路 径的启发信息来计算状态转移概率。()k ij p t 表示在t 时刻蚂蚁k 由元素(城市)i 转移 到元素(城市)j 的状态转移概率。 ()*()()*()()0k ij ij k k ij ij ij s allowed t t j allowed t t p t αβ αβτητη??????????? ∈?????=????? ??? ∑若否则 (1) 式中,{}k k allowed C tabuk =-表示蚂蚁k 下一步允许选择的城市;α为信息启发式因子,表示轨迹的相对重要性,反映了蚂蚁在运动过程中所积累的信息在蚂蚁运动时所起作用,其值越大,则该蚂蚁越倾向于选择其他蚂蚁经过的路径,蚂蚁之间协作性越强;β为期望启发式因子,表示能见度的相对重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的重视程度,其值越大,则该状态转移概率越接近于贪心规则;()ij t η为启发函数,其表达式如下: 1 ()ij ij t d η= (2)

蚁群算法简介

1. 蚁群算法简介 蚁群算法(Ant Clony Optimization,ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性。蚁群算法最早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。经过20多年的发展,蚁群算法在理论以及应用研究上已经得到巨大的进步。 蚁群算法是一种仿生学算法,是由自然界中蚂蚁觅食的行为而启发的。在自然界中,蚂蚁觅食过程中,蚁群总能够按照寻找到一条从蚁巢和食物源的最优路径。图(1)显示了这样一个觅食的过程。 图(1)蚂蚁觅食 在图1(a)中,有一群蚂蚁,假如A是蚁巢,E是食物源(反之亦然)。这群蚂蚁将沿着蚁巢和食物源之间的直线路径行驶。假如在A和E之间突然出现了一个障碍物(图1(b)),那么,在B点(或D点)的蚂蚁将要做出决策,到底是向左行驶还是向右行驶?由于一开始路上没有前面蚂蚁留下的信息素(pheromone),蚂蚁朝着两个方向行进的概率是相等的。但是当有蚂蚁走过时,它将会在它行进的路上释放出信息素,并且这种信息素会议一定的速率散发掉。信息素是蚂蚁之间交流的工具之一。它后面的蚂蚁通过路上信息素的浓度,做出决策,往左还是往右。很明显,沿着短边的的路径上信息素将会越来越浓(图1(c)),从而吸引了越来越多的蚂蚁沿着这条路径行驶。 2. TSP问题描述 蚁群算法最早用来求解TSP问题,并且表现出了很大的优越性,因为它分布式特性,鲁棒性强并且容易与其它算法结合,但是同时也存在这收敛速度慢,容易陷入局部最优(local optimal)等缺点。 TSP问题(Travel Salesperson Problem,即旅行商问题或者称为中国邮递员问题),是一种,是一种NP-hard问题,此类问题用一般的算法是很大得到最优解的,所以一般需要借助一些启发式算法求解,例如遗传算法(GA),蚁群算法(ACO),微粒群算法(PSO)等等。 TSP问题可以分为两类,一类是对称TSP问题(Symmetric TSP),另一类是非对称问题(Asymmetric TSP)。所有的TSP问题都可以用一个图(Graph)来描述:

多目标蚁群算法及其实现

多目标蚁群算法及其实现 李首帅(2012101020019) 指导老师:张勇 【摘要】多目标优化问题对于现阶段来说,是十分热门的。本文将对多目标规划当中的旅行商问题,通过基于MATLAB的蚁群算法来解决,对多目标问题进行局部优化。 【关键词】旅行商问题;蚁群算法;MATLAB 一、背景介绍 旅行商问题是物流领域当中的典型问题,它的求解十分重要。蚁群算法是受自然界中真实蚁群的集体行为的启发而提出的一种基于群体的模拟进化算法,属于随机搜索算法。M. Dorigo等人充分利用了蚁群搜索食物的过程与旅行商问题(TSP)之间的相似性,通过人工模拟蚁群搜索食物的行为(即蚂蚁个体之间通过间接通讯与相互协作最终找到从蚁穴到食物源的最短路径)来求解TSP问题。为区别于真实蚁群,称算法中的蚂蚁为“人工蚂蚁”。人们经过大量研究发现,蚂蚁个体之间是通过一种称之为信息素(pheromone)的物质进行信息传递,从而能相互协作,完成复杂的任务。蚁群之所以表现出复杂有序的行为,个体之间的信息交流与相互协作起着重要的作用。蚂蚁在运动过程中,能够在它所经过的路径上留下该种物质,而且能够感知这种物质的存在及其强度,并以此指导自己的运动方向。蚂蚁倾向于朝着该物质强度高的方向移动。因此,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。蚂蚁个体之间就是通过这种信息的交流达到搜索食物的目的。 二、蚁群算法原理介绍 1.蚁群在路径上释放信息素; 2.碰到还没走过的路口,就随机挑选一条路走。同时释放与路径长度有关的信息素; 3.信息素浓度与路长成反比; 4.最优路径上的信息浓度越来越大; 5.最终蚁群找到最优路径。 其实自然界中,蚁群这种寻找路径的过程表现是一种正反馈的过程,与人工蚁群的优化算法很相近。所以我们简单功能的工作单元视为蚂蚁,则上述的搜寻路径过程可以用来解释人工蚁群搜寻过程。 人工蚁群和自然界蚁群各具特点。人工蚁群具有一定的记忆能力。它能够记忆已经访问过的节点;另外,人工蚁群在选择下一条路径的时候并不是完全盲目的,而是按一定的算法规律有意识地寻找最短路径。而自然界蚁群不具有记忆的能力,它们的选路凭借外激素,或者

NS2中蚁群算法路由协议的实现_田克纯

一、引言 目前,最广泛使用的验证网络协议的正确性和测试相关性能的方法是通过虚拟环境进行模拟仿真。NS2是最流行的进行网络模拟的软件之一,是由美国加州大学的LNBL网络研究组于1989年开发的一个开放源代码的网络仿真软件[1],已广泛被科研院所和各大高校用于网络分析、研究和教学。 蚁群算法是M.Dorigo提出的一种基于生物习性的启发式算法,用于解决复杂组合优化问题。它能在一个合理的时间内对复杂问题有一个较优的结果,在网络路由方面,该算法也体现出了很好的路由性能。虽然NS2集成了大量典型的有线和无线网络下各个层的协议,但还没有提供蚁群算法协议功能,因此以下主要论述把蚁群算法集成到NS2中,并能在Otcl脚本中使用的实现方法。 二、NS2原理[2] NS2是一个离散事件模拟器,其核心部分是一个离散事件模拟引擎。NS2中有一个“调度器”类,负责记录当前时间,调度网络时间队列中的事件,并提供函数产生新事件,指定事件发生的时间。在一个网络模拟器中,典型的时间包括分组到达,时钟超时等,模拟时钟的推进由事件发生的时间量决定。模拟处理过程的速率不直接对应着实际时间。一个事件的处理可能又会产生后继的时间。模拟器所做的就是不停地处理一个个事件,直到所有的事件都被处理完或者某一特定事件发生为止。 NS2还有一个丰富的构件库,有了这个构件库,用户可以完成自己所要研究的系统的建模工作。NS2的构件库所支持的网络类型包括广域网、局域网、移动通信网、卫星通信网等,所支持的路由方式包括层次路由、动态路由、多播路由等。NS2还提供了跟踪和检测的对象,可以把网络系统中的状态和事件记录下来以便分析。NS2构件库的部分类层次结构如图1所示。 NS2中的网络构件一般由相互关联的两个类来实现,一个在C++中,一个在Otcl中,这种方式称为分裂对象模型。构件的主要功能是在C++中实现的,Otcl中的类则主要提供C++对象面向用户的接口。C++对象和Otcl对象之间的这种连接机制就是TclCL。这种分裂对象模型增强了可扩展性和可组合性。 NS2中蚁群算法路由协议的实现 田克纯,农秀凤,王方 (桂林电子科技大学信息与通信学院,广西桂林541004) 摘要:网络模拟是当前网络通信研究中的重要手段之一,在网络通信的建设开发过程中起着不可替代的作用。 NS2由于其扩展性强、执行效率高,已被广泛应用于各种网络的仿真。首先介绍NS2的原理,然后结合 蚁群算法介绍如何添加新协议到NS环境下并实现,最后给出新协议AntSense的仿真结果。 关键词:网络模拟;NS2;蚁群算法;新协议 中图分类号:T P319文献标识码:A文章编号:1008-3545(2010)04-0043-04 43

蚁群优化算法

蚁群优化算法
目录 [隐藏]
? ?
比较
1 2
蚁群算法的提出: 人工蚂蚁与真实蚂蚁的异同
o o ? ? ? ? ?
3 4 5 6 7
2.1 2.2
相同点比较 不同点比较
蚁群算法的流程图 基本蚁群算法的实现步骤 蚁群算法的 matlab 源程序 蚁群算法仿真结果 版权声明
[编辑]蚁群算法的提出:
人类认识事物的能力来源于与自然界的相互作用,自然界一直是人类创造力 的源泉。 自然界有许多自适应的优化现象不断地给人以启示,生物和自然中的生 态系 统可以利用自身的演化来让许多在人类看来高度复杂的优化问题得到几乎完美 的解决。近些年来,一些与经典的数学问题思想不同的,试图通过模拟自然生态 系统 来求解复杂优化问题的仿生学算法相继出现,如蚁群算法、遗传算法、粒子群算 法等。 这些算法大大丰富了现在优化技术,也为那些传统最优化技术难以处理的 组 合优化问题提供了切实可行的解决方案。 生物学家通过对蚂蚁的长期的观察发现,每只蚂蚁的智能并不高,看起来没 有集中的指挥,但它们却能协同工作,集中事物,建起坚固漂亮的蚁穴并抚养后 代, 依靠群体能力发挥出超出个体的智能。 蚁群算法是最新发展的一种模拟昆虫王国 中蚂蚁群体智能行为的仿生优化算法,它具有较强的鲁棒性、优良的分布式计算 机 制、易于与其他方法相结合等优点。尽管蚁群算法的严格理论基础尚未奠定,国 内外的相关研究还处于实验阶段, 但是目前人们对蚁群算法的研究已经由当初单 一 的旅行商问题(TSP)领域渗透到了多个应用领域,由解决一维静态优化问题发展 到解决多维动态组合优化问题, 由离散域范围内的研究逐渐扩展到了连续域范围 内的

蚁群算法

蚁群算法 学号:1101500449 姓名:赵亮民 摘要:蚁群算法是优化领域中新出现的一种仿生进化算法。该算法采用分布式并行计算机制,具有较强的鲁棒性;但有搜索时间较长,易陷入局部最优解的缺点。本文首先讲述蚁群算法的来源和基本原理,然后讨论蚁群算法的几种改进策略,并简单介绍近年来蚁群算法在许多新领域中的发展应用,最后对今后进一步研究的方向作了展望。 关键词:蚁群算法;蚂蚁;信息素;优化 Abstract:Ant colony algorithm is a novel category of bionic algorithm for optim ization problems.Parallel computation mechanism is adopted in this algorithm.It has strong robustness and is easy to combinewith other methods in optimization,but it has the limitation of stagnation,and is easy to fall into local optimums.Firstly,the basic principle of ant colony algorithm is introduced.Then。a series of schemes on improving the ant colony algorithm are discussed,and the new applications are also provided.Finally,somerem arks on the further research and directions are presented. Key words:ant colony algorithm ;ant;pheromone;optimization 概念 各个蚂蚁在没有事先告诉他们食物在什么地方的前提下开始寻找食物。当一只找到食物以后,它会向环境释放一种挥发性分泌物pheromone (称为信息素,该物质随着时间的推移会逐渐挥发消失,信息素浓度的大小表征路径的远近)来实现的,吸引其他的蚂蚁过来,这样越来越多的蚂蚁会找到食物。有些蚂蚁并没有象其它蚂蚁一样总重复同样的路,他们会另辟蹊径,如果另开辟的道路比原来的其他道路更短,那么,渐渐地,更多的蚂蚁被吸引到这条较短的路上来。最后,经过一段时间运行,可能会出现一条最短的路径被大多数蚂蚁重复着。原理 设想,如果我们要为蚂蚁设计一个人工智能的程序,那么这个程序要多么复杂呢?首先,你要让蚂蚁能够避开障碍物,就必须根据适当的地形给它编进指令让他们能够巧妙的避开障碍物,其次,要让蚂蚁找到食物,就需要让他们遍历空间上的所有点;再次,如果要让蚂蚁找到最短的路径,那么需要计算所有可能的路径并且比较它们的大小,而且更重要的是,你要小心翼翼地编程,因为程序的错误也许会让你前功尽弃。这是多么不可思议的程序!太复杂了,恐怕没人能够完成这样繁琐冗余的程序。 然而,事实并没有你想得那么复杂,上面这个程序每个蚂蚁的核心程序编码不过100多行!为什么这么简单的程序会让蚂蚁干这样复杂的事情?答案是:简单规则的涌现。事实上,每只蚂蚁并不是像我们想象的需要知道整个世界的信息,他们其实只关心很小范围内的眼前信息,而且根据这些局部信息利用几条简单的规则进行决策,这样,在蚁群这个集体里,复杂性的行为就会凸现出来。这就是人工生命、复杂性科学解释的规律!那么,这些简单规则是什么呢? 现今有哪些关于蚁群算法的应用呢? 1大规模集成电路的线网布局 在大规模集成电路的线网布局中,需要根据电路和工艺的要求完成芯片上单元或功能模块的布局,然后实现它们之间的互连。此问题可看作是寻找一个网格平面上两端点之间绕过障碍的最短路径问题。线网上的每个Agent根据启发策略.像蚂蚁一样在开关盒网格上爬行,所经之处便设置一条金属线.历经一个线网的所有引脚之后.线网便布通了。应用蚁群算法,可以找到成本最低、最合理的线网布局.而且由于其本身的并行性。比较适合于解决此类问题。 2通信网络路由

相关文档
最新文档