离散型随机变量的均值
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
《离散型随机变量的均值》知识解读
《离散型随机变量的均值》知识解读1.离散型随机变量的均值的概念 一般地,若离散型随机变量X 的分布列为则称11221()ni i n n i i i E X x p x p x p x p x p ==+++++=∑为随机变量X 的均值或数学期望.它反映了离散型随机变量取值的平均水平. 2.对离散型随机变量的均值的理解均值(数学期望)是随机变量的一个重要特征数,它反映了随机变量取值的平均水平.随机变量的均值与随机变量本身具有相同的单位.均值这一概念是建立在随机变量分布列的基础之上的,分布列中随机变量X 的一切可能值i x 与对应的概率()i P X x =的乘积的和就叫作随机变量X 的均值. 由于离散型随机变量X 的每一种可能取值的概率满足11ni i p ==∑,因而离散型随机变量X 的均值()E X 是以概率i p 为权数的加权平均.离散型随机变量的分布列和均值虽然都是从整体上刻画随机变量的,但二者大有不同.分布列只给出了随机变量取所有可能值的概率,而均值建立在分布列的基础之上,它反映了随机变量取值的平均水平或集中位置. 3.随机变量的均值(数学期望)与平均数 对于n 个数()12121,,,,n n x x x x x x x n=+++为这n 个数的平均数.从随机变量的角度解决这个问题,设X 为从这n 个数中任取的一个数,则X 所有可能的取值便为12,,,n x x x .因为(P X =)1(1,2,,)i x i n ==,所以X 的分布列为1231111()n E X x x x x n n nn =⋅+⋅+⋅++⋅(2311)n x x x x n=++++.不难看出均值(数学期望)的定义是初中所学平均数定义的推广. 4.随机变量的均值与样本的平均值的区别和联系区别:随机变量的均值是一个常数,它不依赖样本的抽取,而样本的平均值是一个随机变量,它是随着样本的不同而变化的.联系:对于简单随机抽样,随着样本容量的增加,样本的平均值越来越接近总体的均值.因此,我们常用样本的平均值来估计总体的均值. 5.对随机变量均值的线性性质的理解如果Y aX b =+,其中X 是随机变量,,a b 是常数,随机变量X 的均值是()E X . (1)当0a =时,()E b b =,即常数的均值就是这个常数本身.(2)当1a =时,()()E X b E X b +=+,即随机变量X 与常数之和的均值等于X 的均值与这个常数之和.(3)当0b =时,()()E aX aE X =,即常数与随机变量X 乘积的均值等于这个常数与X 的均值的乘积. 公式证明:如果Y aX b =+,其中,a b 为常数,X 是随机变量,那么Y 也是随机变量.因为()(),1,2,3,,i i P Y ax b P X x i n =+===,所以Y 的分布列为于是()()()1122()n n E Y ax b p ax b p ax b p =++++++=()()112212()n n n a x p x p x p b p p p aE X b +++++++=+,即()()E aX b aE X b +=+.。
离散型随机变量均值和方差、正态分布
课堂互动讲练
ξ 0 2345 P 0.03 p1 p2 p3 p4
(1)求q2的值; (2)求随机变量ξ的数学期望Eξ; (3)试比较该同学选择都在B处投篮得 分超过3分与选择上述方式投篮得分超过3 分的概率的大小.
课堂互动讲练
【思路点拨】 首先由P(ξ=0)= 0.03计算出q2,从而可写出分布 列.本题便可求解.
课堂互动讲练
P(X≥7)=P(X≤3) =12×[1-P(3<X<7)], =12×(1-0.9544)=0.0228, ∵P(4<X<6)=0.6826, ∴P(5<X<6)=12P(4<X<6) =0.3413.
课堂互动讲练
考点二 求离散型随机变量的均值与方差
求离散型随机变量X的均值与方差的步 骤:
【解】 (1)由题设知,“ξ=0”对 应的事件为“在三次投篮中没有一次投 中”,由对立事件和相互独立事件性质 可知
P(ξ=0)=(1-q1)(1-q2)2=0.03, 解得q2=0.8.
课堂互动讲练
(2)根据题意 p1=P(ξ=2)=(1-q1)C21(1-q2)q2 =0.75×2×0.2×0.8=0.24. p2=P(ξ=3)=q1(1-q2)2=0.25×(1- 0.8)2=0.01. p3=P(ξ=4)=(1-q1)q22=0.75×0.82 =0.48. p4=P(ξ=5)=q1q2+q1(1-q2)q2 =0.25×0.8+0.25×0.2×0.8=0.24. 因此Eξ=0×0.03+2×0.24+3×0.01 +4×0.48+5×0.24=3.63.
基础知识梳理
参数μ,σ在正态分布中的实际 意义是什么?
【思考·提示】 μ是正 态分布的期望,σ是正态分布 的标准差.
1.若随机变量X的分布列如下,则X 的数学期望是( )
离散型随机变量的均值、方差和正态分布
10.9 离散型随机变量的均值、方差和正态分布[知识梳理]1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为(1)均值:称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)D (X )=∑i =1n(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差.2.均值与方差的性质 (1)E (aX +b )=aE (X )+b ;(2)D (aX +b )=a 2D(X )(a ,b为常数).3.两点分布与二项分布的均值、方差4.正态曲线(1)正态曲线的定义 函数φμ,σ(x )=12π·σe -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,称φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线(μ是正态分布的期望,σ是正态分布的标准差).(2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,关于直线x =μ对称; ③曲线在x =μ处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移; ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“高瘦”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.5.正态分布(1)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x (即x=a ,x =b ,正态曲线及x 轴围成的曲边梯形的面积),则称随机变量X 服从正态分布,记作X ~N (μ,σ2).(2)正态分布的三个常用数据 ①P (μ-σ<X <μ+σ)=0.6826; ②P (μ-2σ<X <μ+2σ)=0.9544; ③P (μ-3σ<X <μ+3σ)=0.9974.[诊断自测] 1.概念思辨(1)随机变量不可以是负数,随机变量所对应的概率可以是负数,随机变量的均值不可以是负数.( )(2)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.( )(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小. ( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( )答案 (1)× (2)√ (3)√ (4)√2.教材衍化(1)(选修A2-3P 68T 1)已知X 的分布列为设Y =2X +3,则E (Y )的值为( ) A.73 B .4 C .-1 D .1 答案 A解析 E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.故选A. (2)(选修A2-3P 75A 组T 1)正态分布密度函数为 φμ,σ(x )=18πe -x 28,x ∈(-∞,+∞),则总体的平均数和标准差分别为()A .0和8B .0和4C .0和2D .0和 2答案 C解析 根据已知条件可知μ=0,σ=2,故选C.3.小题热身(1)(2015·山东高考)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74% 答案 B解析 P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,则P (3<ξ<6)=12×(95.44%-68.26%)=13.59%.故选B.(2)(2018·张掖检测)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=( )A.126125B.65C.168125D.75 答案 B解析 设涂0个面的小正方体有x 个,涂1个面的小正方体有y 个,涂2个面的小正方体有z 个,涂3个面的小正方体有w 个,则有0·x +1·y +2·z +3·w =25×6=150,所以E (X )=0·x 125+1·y 125+2·z125+3·w 125=150125=65.故选B.题型1 与二项分布有关的期望与方差典例(2017·山西太原模拟)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下:1.抽奖方案有以下两种,方案a :从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b :从装有3个红球、2个白球(仅颜色不同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件:顾客购买商品的金额满100元,可根据方案a 抽奖一次;满150元,可根据方案b 抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a 抽奖两次或方案b 抽奖一次或方案a 、b 各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A 只选择方案a 进行抽奖,求其所获奖金的期望; (2)要使所获奖金的期望值最大,顾客A 应如何抽奖?解 (1)按方案a 抽奖一次,获得奖金的概率P =C 22C 25=110.顾客A 只选择方案a 进行抽奖,则其可以按方案a 抽奖三次. 此时中奖次数服从二项分布B ⎝ ⎛⎭⎪⎫3,110.设所得奖金为w 1元,则E (w 1)=3×110×30=9. 即顾客A 所奖资金的期望为9元.(2)按方案b 抽奖一次,获得奖金的概率P 1=C 23C 25=310.若顾客A 按方案a 抽奖两次,按方案b 抽奖一次,则由方案a 中奖的次数服从二项分布B 1⎝⎛⎭⎪⎫2,110,由方案b 中奖的次数服从二项分布B 2⎝⎛⎭⎪⎫1,310,设所得奖金为w 2元,则E (w 2)=2×110×30+1×310×15=10.5. 若顾客A 按方案b 抽奖两次,则中奖的次数服从二项分布B 3⎝⎛⎭⎪⎫2,310.设所得奖金为w3元,则E(w3)=2×310×15=9.结合(1)可知,E(w1)=E(w3)<E(w2).所以顾客A应该按方案a抽奖两次,按方案b抽奖一次.方法技巧与二项分布有关的期望、方差的求法1.求随机变量ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B(n,p),则用公式E(ξ)=np,D(ξ)=np(1-p)求解,可大大减少计算量.2.有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E(aξ+b)=aE(ξ)+b以及E(ξ)=np求出E(aξ+b),同样还可求出D(aξ+b).冲关针对训练(2014·辽宁高考)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).解(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108. (2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03·(1-0.6)3=0.064, P (X =1)=C 13·0.6(1-0.6)2=0.288, P (X =2)=C 23·0.62(1-0.6)=0.432, P (X =3)=C 33·0.63=0.216.分布列为因为X ~B (3,0.6),所以期望E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1-0.6)=0.72.题型2 离散型随机变量的均值与方差角度1 求离散型随机变量的均值与方差典例(2016·山东高考)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).解 (1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×( 14×23×34×23+34×13×34×23 )=23.所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×( 34×13×14×13+14×23×14×13 )=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×( 34×23×34×13+34×23×14×23 )=60144=512,P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236. 角度2 均值与方差的应用问题典例(2016·全国卷Ⅰ)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.可知X的所有可能取值为16、17、18、19、20、21、22,P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n =19.方法技巧1.求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ可能的全部值.(2)求ξ取每个值的概率.(3)写出ξ的分布列.(4)由均值的定义求E(ξ).(5)由方差的定义求D(ξ).2.由均值与方差情况求参数问题的求解思路先根据题设条件将均值、方差用待求参数表示,再由已知均值与方差构建关于参数的方程(组),然后求解.3.利用均值、方差进行决策的方法:均值能够反映随机变量取值的“平均水平”,因此,当均值不同时,两个随机变量取值的水平可见分晓,由此可对实际问题作出决策判断;若两个随机变量均值相同或相差不大,则可通过分析两个变量的方差来研究随机变量的离散程度或者稳定程度,方差越小,则偏离均值的平均程度越小,进而进行决策.提醒:均值E(X)由X的分布列唯一确定,即X作为随机变量是可变的,而E(X)是不变的,它描述X值的取值的平均水平.冲关针对训练(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解(1)由题意知,X所有可能取值为200,300,500,由表格数据知P(X=200)=2+1690=0.2,P(X=300)=3690=0.4,P(X=500)=25+7+490=0.4.因此X的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500.当300≤n≤500时,若最高气温不低于25,则Y=6n-4n=2n;若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此E(Y)=2n×0.4+(1200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n,因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以n=300时,Y的数学期望达到最大值,最大值为520元.题型3正态分布典例(2015·湖南高考)在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为() (附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544) A.2386 B.2718 C.3413 D.4772答案 C解析由曲线C为正态分布N(0,1)的密度曲线可知题图中阴影部分的面积为P(0<X≤1)=12×0.6826=0.3413,又题图中正方形面积为1,故它们的比值为0.3413,故落入阴影部分的点的个数的估计值为0.3413×10000=3413.故选C.[条件探究]若将本典例中条件“曲线C为正态分布N(0,1)的密度曲线”变为“曲线C为正态分布N(-1,1)的密度曲线”,则结果如何?解对于正态分布N(-1,1),可知μ=-1,σ=1,正态曲线关于直线x=-1对称,故题图中阴影部分的面积为12×[P(-3<X≤1)-P(-2<X≤0)]=12×[P(μ-2σ<X≤μ+2σ)-P(μ-σ<X≤μ+σ)]=12×(0.9544-0.6826)=0.1359,所以点落入题图中阴影部分的概率P=0.13591=0.1359,投入10000个点,落入阴影部分的个数约为10000×0.1359=1359.方法技巧正态分布下两类常见的概率计算1.利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,曲线与x轴之间的面积为1.2.利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.冲关针对训练(2014·全国卷Ⅰ)从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,σ2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求E(X).附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z≤μ+σ)=0.6826,P(μ-2σ<Z≤μ+2σ)=0.9544.解(1)抽取产品的质量指标值的样本平均数x和样本方差s2分别为x=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200,s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.6826.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826, 依题意知X ~B (100,0.6826),所以E (X )=100×0.6826=68.26.1.(2017·浙江高考)已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C .E (ξ1)>E (ξ2),D (ξ1)<D (ξ2) D .E (ξ1)>E (ξ2),D (ξ1)>D (ξ2) 答案 A解析 ∵E (ξ1)=0×(1-p 1)+1×p 1=p 1, 同理,E (ξ2)=p 2,又0<p 1<p 2, ∴E (ξ1)<E (ξ2).D (ξ1)=(0-p 1)2(1-p 1)+(1-p 1)2·p 1=p 1-p 21,同理,D (ξ2)=p 2-p 22.D (ξ1)-D (ξ2)=p 1-p 2-(p 21-p 22)=(p 1-p 2)(1-p 1-p 2).∵0<p 1<p 2<12,∴1-p 1-p 2>0, ∴(p 1-p 2)(1-p 1-p 2)<0. ∴D (ξ1)<D (ξ2).故选A.2.(2015·湖北高考)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≤t )≥P (Y ≤t )D .对任意正数t ,P (X ≥t )≥P (Y ≥t ) 答案 C解析 由题图可知μ1<0<μ2,σ1<σ2,∴P (Y ≥μ2)<P (Y ≥μ1),故A 错误;P (X ≤σ2)>P (X ≤σ1),故B 错误;当t 为任意正数时,由题图可知P (X ≤t )≥P (Y ≤t ),而P (X ≤t )=1-P (X ≥t ),P (Y ≤t )=1-P (Y ≥t ),∴P (X ≥t )≤P (Y ≥t ),故C 正确,D 错误.故选C.3.(2018·安徽模拟)某小区有1000户,各户每月的用电量近似服从正态分布N (300,102),则用电量在320度以上的户数约为( )(参考数据:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ≤μ+σ)=68.26%,P (μ-2σ<ξ≤μ+2σ)=95.44%,P (μ-3σ<ξ≤μ+3σ)=99.74%)A .17B .23C .34D .46 答案 B解析 P (ξ>320)=12×[1-P (280<ξ≤320)] =12×(1-95.44%)=0.0228, 0.0228×1000=22.8≈23,∴用电量在320度以上的户数约为23.故选B.4.(2017·全国卷Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=________.答案 1.96解析由题意得X~B(100,0.02),∴D(X)=100×0.02×(1-0.02)=1.96.[重点保分 两级优选练]A 级一、选择题1.已知ξ的分布列为则在下列式中:①E (ξ)=-13;②D (ξ)=2327;③P (ξ=0)=13.正确的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 E (ξ)=(-1)×12+1×16=-13,故①正确.D (ξ)=⎝⎛⎭⎪⎫-1+132×12+⎝⎛⎭⎪⎫0+132×13+⎝⎛⎭⎪⎫1+132×16=59,故②不正确.由分布列知③正确.故选C.2.已知随机变量X +Y =8,若X ~B (10,0.6),则E (Y ),D (Y )分别是( ) A .6和2.4 B .2和2.4 C .2和5.6 D .6和5.6答案 B解析 由已知随机变量X +Y =8,所以Y =8-X .因此,求得E (Y )=8-E (X )=8-10×0.6=2,D (Y )=(-1)2D (X )=10×0.6×0.4=2.4.故选B.3.(2018·广东茂名模拟)若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12 C.12 D .1 答案 C解析 因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a = -2(舍去)或a =1,所以E (X )=12.故选C.4.(2017·青岛质检)设随机变量ξ服从正态分布N (1,σ2),则函数f (x )=x 2+2x +ξ不存在零点的概率为( )A.12B.23C.34D.45 答案 A解析 函数f (x )=x 2+2x +ξ不存在零点的条件是 Δ=22-4×1×ξ<0,解得ξ>1.又ξ~N (1,σ2),所以P (ξ>1)=12,即所求事件的概率为12.故选A.5.(2018·山东聊城重点中学联考)已知服从正态分布N (μ,σ2)的随机变量在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某校为高一年级1000名新生每人定制一套校服,经统计,学生的身高(单位:cm)服从正态分布(165,52),则适合身高在155~175 cm 范围内的校服大约要定制( )A .683套B .954套C .972套D .997套 答案 B解析 P (155<ξ<175)=P (165-5×2<ξ<165+5×2)=P (μ-2σ<ξ<μ+2σ)=95.4%.因此服装大约定制1000×95.4%=954套.故选B.6.(2018·皖南十校联考)在某市1月份的高三质量检测考试中,理科学生的数学成绩服从正态分布N (98,100).已知参加本次考试的全市理科学生约9450人.某学生在这次考试中的数学成绩是108分,那么他的数学成绩大约排在全市第多少名?( )A .1500B .1700C .4500D .8000 答案 A解析 因为学生的数学成绩X ~N (98,100),所以P (X ≥108)=12[1-P (88<X <108)]=12[1-P (μ-σ<X <μ+σ)]=12(1-0.6826)=0.1587,故该学生的数学成绩大约排在全市第0.1587×9450≈1500名,故选A.7.(2017·银川一中一模)一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,(a ,b ,c ∈(0,1)),已知他投篮得分的数学期望是2,则2a +13b 的最小值为( )A.323B.283C.143D.163 答案 D解析 由数学期望的定义可知3a +2b =2,所以2a +13b =12(3a +2b )·⎝ ⎛⎭⎪⎫2a +13b =12( 6+23+4b a +a b )≥12⎝ ⎛⎭⎪⎫6+23+4=163,当且仅当4b a =a b 即a =12,b =14时取得等号.故选D.8.若X 是离散型随机变量,P (X =x 1)=23,P (X =x 2)=13,且x 1<x 2,又已知E (X )=43,D (X )=29,则x 1+x 2的值为( )A.53B.73 C .3 D.113 答案 C 解析 由已知得⎩⎪⎨⎪⎧x 1·23+x 2·13=43,⎝ ⎛⎭⎪⎫x 1-432·23+⎝ ⎛⎭⎪⎫x 2-432·13=29,解得⎩⎪⎨⎪⎧x 1=53,x 2=23或⎩⎪⎨⎪⎧x 1=1,x 2=2. 又∵x 1<x 2,∴⎩⎪⎨⎪⎧x 1=1,x 2=2,∴x 1+x 2=3.故选C.9.(2018·广州调研)已知随机变量x 服从正态分布N (μ,σ2),且P (μ-2σ<x ≤μ+2σ)=0.9544,P (μ-σ<x ≤μ+σ)=0.6826,若μ=4,σ=1,则P (5<x <6)等于( )A .0.1358B .0.1359C .0.2716D .0.2718 答案 B解析 由题知x ~N (4,1),作出相应的正态曲线,如图,依题意P (2<x ≤6)=0.9544,P (3<x ≤5)=0.6826,即曲边梯形ABCD 的面积为0.9544,曲边梯形EFGH 的面积为0.6826,其中A ,E ,F ,B 的横坐标分别是2,3,5,6,由曲线关于直线x =4对称,可知曲边梯形FBCG 的面积为0.9544-0.68262=0.1359,即P (5<x <6)=0.1359,故选B.10.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p (p ≠0),发球次数为X ,若X 的数学期望E (X )>1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712B.⎝ ⎛⎭⎪⎫0,12C.⎝ ⎛⎭⎪⎫712,1D.⎝ ⎛⎭⎪⎫12,1 答案 B解析 根据题意,学生一次发球成功的概率为p ,即P (X =1)=p ,发球二次的概率P (X =2)=p (1-p ),发球三次的概率P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12.故选B. 二、填空题11.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=______.答案 53解析 ∵P (X =0)=13×(1-p )2=112,∴p =12. 则P (X =1)=23×12×12+13×12×12×2=412=13, P (X =2)=23×12×12×2+13×12×12=512, P (X =3)=23×12×12=16.则E (X )=0×112+1×13+2×512+3×16=53.12.某省实验中学高三共有学生600人,一次数学考试的成绩(试卷满分150分)服从正态分布N (100,σ2),统计结果显示学生考试成绩在80分到100分之间的人数约占总人数的13,则此次考试成绩不低于120分的学生约有________人.答案 100解析 ∵数学考试成绩ξ~N (100,σ2),作出正态分布图象,可能看出,图象关于直线x =100对称.显然P (80≤ξ≤100)=P (100≤ξ≤120)=13;∴P (ξ≤80)=P (ξ≥120).又∵P (ξ≤80)+P (ξ≥120)=1-P (80≤ξ≤100)-P (100≤ξ≤120)=13,∴P (ξ≥120)=12×13=16.∴成绩不低于120分的学生约为600×16=100人.13.(2018·沧州七校联考)2017年中国汽车销售量达到1700万辆,汽车耗油量对汽车的销售有着非常重要的影响,各个汽车制造企业积极采用新技术降低耗油量,某汽车制造公司为调查某种型号的汽车的耗油情况,共抽查了1200名车主,据统计该种型号的汽车的平均耗油为百公里8.0升,并且汽车的耗油量ξ服从正态分布N (8,σ2),已知耗油量ξ∈[7,9]的概率为0.7,那么耗油量大于9升的汽车大约有________辆.答案 180解析 由题意可知ξ~N (8,σ2),故正态分布曲线以μ=8为对称轴.又因为P (7≤ξ≤9)=0.7,故P (7≤ξ≤9)=2P (8≤ξ≤9)=0.7,所以P (8≤ξ≤9)=0.35.而P (ξ≥8)=0.5,所以P (ξ>9)=0.15.故耗油量大于9升的汽车大约有1200×0.15 =180辆.14.(2017·安徽蚌埠模拟)赌博有陷阱.某种赌博游戏每局的规则是:参与者从标有5,6,7,8,9的小球中随机摸取一个(除数字不同外,其余均相同),将小球上的数字作为其赌金(单位:元),然后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其奖金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与奖金,则E (ξ)-E (η)=________元.答案 3解析 ξ的分布列为E (ξ)=15×(5+6+7+8+9)=7(元). η的分布列为E (η)=2×25+4×310+6×15+8×110=4(元), ∴E (ξ)-E (η)=7-4=3(元).故答案为3.B 级三、解答题15.(2018·湖北八校第二次联考)某手机卖场对市民进行国产手机认可度的调查,随机抽取100名市民,按年龄(单位:岁)进行统计的频数分布表和频率分布直方图如下:(1)求频率分布表中x、y的值,并补全频率分布直方图;(2)在抽取的这100名市民中,按年龄进行分层抽样,抽取20人参加国产手机用户体验问卷调查,现从这20人中随机选取2人各赠送精美礼品一份,设这2名市民中年龄在[35,40)内的人数为X,求X的分布列及数学期望.解(1)由题意知,[25,30)内的频率为0.01×5=0.05,故x=100×0.05=5.因[30,35)内的频率为1-(0.05+0.35+0.3+0.1)=1-0.8=0.2,故y=100×0.2=20,且[30,35)这组对应的频率组距=0.25=0.04.补全频率分布直方图略.(2)∵年龄从小到大的各层人数之间的比为5∶20∶35∶30∶10=1∶4∶7∶6∶2,且共抽取20人,∴抽取的20人中,年龄在[35,40)内的人数为7.X可取0,1,2,P(X=0)=C213C220=78190,P(X=1)=C113C17C220=91190,P(X=2)=C27C220=21 190,故X的分布列为故E(X)=91190×1+21190×2=133190.16.新生儿Apgar 评分,即阿氏评分,是对新生儿出生后总体状况的一个评估,主要从呼吸、心率、反射、肤色、肌张力这几个方面评分, 评分在8~10分者为正常新生儿,评分在4~7分的新生儿考虑患有轻度窒息,评分在4分以下的新生儿考虑患有重度窒息,大部分新生儿的评分在7~10分之间.某医院妇产科从9月份出生的新生儿中随机抽取了16名,表格记录了他们的评分情况.(1)现从这16名新生儿中随机抽取3名,求至多有1名新生儿的评分不低于9分的概率;(2)用这16名新生儿的Apgar 评分来估计本年度新生儿的总体状况,若从本年度新生儿中任选3名,记X 表示抽到评分不低于9分的新生儿数,求X 的分布列及数学期望.解 (1)设A i 表示所抽取的3名新生儿中有i 名的评分不低于9分, “至多有1名新生儿的评分不低于9分”记为事件A ,则由表格中数据可知P (A )=P (A 0)+P (A 1)=C 312C 316+C 14C 212C 316=121140.(2)由表格数据知,从本年度新生儿中任选1名,评分不低于9分的概率为416=14,由题意知随机变量X 的所有可能取值为0,1,2,3,且P (X =0)=⎝ ⎛⎭⎪⎫343=2764;P (X =1)=C 13⎝ ⎛⎭⎪⎫141⎝ ⎛⎭⎪⎫342=2764; P (X =2)=C 23⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫341=964;P (X =3)=C 33⎝ ⎛⎭⎪⎫143=164. 所以X 的分布列为E (X )=0×2764+1×2764+2×964+3×164=0.75⎝ ⎛⎭⎪⎫或E (X )=3×14=0.75.17.(2015·湖南高考)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中各随机摸出1个球.在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的数学期望和方差.解 (1)记事件A 1={从甲箱中摸出的1个球是红球},A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意,A 1与A 2相互独立,A 1A -2与A -1A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A -2+A -1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,P (B 2)=P (A 1A -2+A -1A 2)=P (A 1A -2)+P (A -1A 2)=P (A 1)P (A -2)+P (A -1)P (A 2)=P (A 1)[1-P (A 2)]+[1-P (A 1)]P (A 2)=25×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-25×12=12.故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710. (2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝ ⎛⎭⎪⎫3,15.故X 的数学期望为E (X )=3×15=35,方差为D (X )=3×15×45=1225.18.(2018·江淮十校联考)某市级教研室对辖区内高三年级10000名学生的数学一轮成绩统计分析发现其服从正态分布N (120,25),该市一重点高中学校随机抽取了该校成绩介于85分到145分之间的50名学生的数学成绩进行分析,得到如图所示的频率分布直方图.(1)试估算该校高三年级数学的平均成绩;(2)从所抽取的50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X ,求X 的期望.附:若X ~N (μ,σ2),则P (μ-3σ<X <μ+3σ)=0.9974. 解 (1)由频率分布直方图可知[125,135)的频率为 1-10×(0.01+0.024+0.03+0.016+0.008)=0.12, 该校高三年级数学的平均成绩为90×0.1+100×0.24+110×0.3+120×0.16+130×0.12+140×0.08=112(分). (2)由于1310000=0.0013,由正态分布得P (120-3×5<X <120+3×5)=0.9974,故P (X ≥135)=1-0.99742=0.0013,即0.0013×10000=13, 所以前13名的成绩全部在135分以上,由频率分布直方图可知这50人中成绩在135以上(包括135分)的有50×0.08=4人,而在[125,145)的学生有50×(0.12+0.08)=10人,所以X 的取值为0,1,2,3,P (X =0)=C 36C 310=16,P (X =1)=C 26C 14C 310=12,P (X =2)=C 16C 24C 310=310,P (X =3)=C 34C 310=130,X 的分布列为数学期望值为E (X )=0×16+1×12+2×310+3×130=1.2.。
离散型随机变量的均值与方差
(1)均值
称 E(X)=x1p1+x2p2+…+xipi+…+xnpn 为
随机变量 X 的均值或 数学期望 ,它反映了离
散型随机变量取值的 平均水平 .
(2)方差 n
称
D(X)=
∑
i=1
(xi-E(X))2pi 为随机变量 X 的
方差,它刻画了随机变量 X 与其均值 E(X) 的 平均偏离程度 ,其算术平方根 DX 为
2.方差的意义 D(X)表示随机变量 X 对 E(X)的平均偏离程 度,D(X)越大表明平均偏离程度越大,说 明 X 的取值越分散,反之 D(X)越小,X 的 取值越集中,由方差定义知,方差是建立 在期望这一概念之上的.在 E(X)附近,统 计中常用 DX来描述 X 的分散程度.
基础自测
1.随机变量 ξ 的分布列如下:
=E(ξ2)+4E(ξ)+4=11+12+4=27.
D(2ξ-1)=4D(ξ)=8,
Dξ-1= Dξ= 2.
探究提高 ξ 是随机变量,则 η=f(ξ)一般仍是 随机变量,在求 η 的均值和方差时,熟练应用 均值和方差的性质,可以避免再求 η 的分布列 带来的繁琐运算.
变式训练 2 袋中有 20 个大小相同的球,其中 记上 0 号的有 10 个,记上 n 号的有 n 个(n =1,2,3,4).现从袋中任取一球,ξ 表示所取 球的标号. (1)求 ξ 的分布列、均值和方差; (2)若 η=aξ+b,E(η)=1,D(η)=11,试求 a,b 的值.
题型分类 深度剖析
题型一 离散型随机变量的均值与方差的求法 例 1(2010·福建)设 S 是不等式 x2-x-6≤0 的解集,
整数 m,n∈S. (1)记“使得 m+n=0 成立的有序数组(m,n)” 为事件 A,试列举 A 包含的基本事件; (2)设 ξ=m2,求 ξ 的分布列及其均值 E(ξ).
离散型随机变量的分布列、均值与方差
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
离散型随机变量的均值(tw)
2.3.1
离散型随机变量的均值
石河子第二中学
唐伟
2011.4.26
1、离散型随机变量均值的定义
一般地,若离散型随机变量X的分布列为
X
P
x1 p1
x2 … p2 …
xi pi
…
…
xn pn
则称: E( X ) x1 p1 x2 p2 xi pi xn pn 为随机变量X的均值或数学期望。 求离散型随机变量均值(期望)的步骤:
小结:
1、离散型随机变量X均值E(X)的定义 2、离散型随机变量均值的性质 E(aX+b)=aE(X)+b 3、两点分布:E(X)= p 二项分布:E(X)= np 4、求数学期望时: (1)已知是两点分布或二项分布,直接代用公式; (2)其它分布的随机变量,先画出分布列,在对应 求值。
探究:
根据气象预报,某地区近期有小洪水的概率为0.25, 有大洪水的概率为0.01.该地区某工地上有一台大型 设备,遇到大洪水时损失60000元,遇到小洪水损失 10000元.为保护设备,有以下3种方案: 方案1:运走设备,搬运费为3800元; 方案2:建保护围墙,建设费为2000元, 但围墙只能防小洪水; 方案3:不采取任何措施,希望不发生洪水. 试比较哪一种方案好?
推广: E(a1X1+a2X2)=a1E(X1)+a2E(X2)
罚不中得0分,已知某运动员罚球命中的概率为p, (1)求他罚球1次的得分X的均值. (2)求他罚球2次的得分X的均值. 解:(1) X的分布列为:
X
P
0
1-p
1
p
则:E(X)=0 × (1-p)+1×p=p
一般地,如果随机变量X服从两点分布,
12.5 离散型随机变量的均值与方差
考点1
考点2
考点3
-12-
参考公式:χ2=(������+������)(������������+(������������������)-(���������������+���)2������)(������+������),其中 n=a+b+c+d. 参考临界值:
P(χ2>k0) k0
0.05 3.841
考点1
考点2
考点3
-22-
思考如何求离散型随机变量X的均值与方差? 解题心得1.求离散型随机变量X的均值与方差的步骤: (1)理解X的意义,写出X的全部可能取值. (2)求X取每个值的概率. (3)写出X的分布列. (4)由均值的定义求EX. (5)由方差的定义求DX. 2.注意性质的应用:若随机变量X的均值为EX,则对应随机变量 aX+b的均值是aEX+b,方差为a2DX.
种子发芽这株豆苗就能有效成活,每株豆成活苗可以收成大豆
2.205
kg.已知每粒豆苗种子成活的概率为
1 2
(假设种子之间及外部
条件一致,发芽相互没有影响).
(1)求恰好有3株成活的概率;
(2)记成活的豆苗株数为ξ,收成为η(kg),求随机变量ξ的分布列及η
的均值Eη.
考点1
考点2
考点3
-17-
解 (1)设每株豆子成活的概率为 P0,
女
40
50
90
合计
120
80
200
又 χ2=20102×0(8×08×05×01-1300××9400)2≈16.498>6.635, 所以有 99%的把握认为性别与“为 A 类学生”有关.
高考数学总复习考点知识专题讲解12 离散型随机变量的数字特征
高考数学总复习考点知识专题讲解专题12 离散型随机变量的数字特征知识点一离散型随机变量的均值1.离散型随机变量的均值的概念一般地,若离散型随机变量X的分布列为则称E(X)=x1p1+x2p2+…+x i p i+…+x n p n=∑=ii ip x1,为随机变量X的均值或数学期望.2.离散型随机变量的均值的意义均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.3.离散型随机变量的均值的性质若Y=aX+b,其中a,b均是常数(X是随机变量),则Y也是随机变量,且有E(aX+b)=aE(X)+b.证明如下:如果Y=aX+b,其中a,b为常数,X是随机变量,那么Y也是随机变量.因此P(Y=ax i+b)=P(X=x i),i=1,2,3,…,n,所以Y的分布列为于是有E(Y)=(ax1+b)p1+(ax2+b)p2+…+(ax i+b)p i+…+(ax n+b)p n=a(x1p1+x2p2+…+x i p i+…+x n p n)+b(p1+p2+…+p i+…+p n)=aE(X)+b,即E(aX+b)=aE(X)+b .知识点二 两点分布的均值如果随机变量X 服从两点分布,那么E (X )=0×(1-p )+1×p =p .【例1】(2023•岳阳楼区校级开学)甲乙两人进行乒乓球比赛,每人各局取胜的概率均为12,现采用五局三胜制,胜3局者赢得全部奖金800元.若前两局比赛均为甲胜,此时因某种原因比赛中止,为使奖金分配合理,则乙应得奖金()元 A .700B .600C .200D .100【例2】(2023•宝山区期末)设0a b <…,随机变量X 的分布是124()a b a b+,则()E X 的取值范围是()A .3(1,)2B .11[,3)4C .11(1,]4D .53[,)22【例3】(2023•多选•扬州期中)乒乓球()tabletennis ,被称为中国的“国球”,是一种世界流行的球类体育项目,是推动外交的体育项目,被誉为“小球推动大球”.某次比赛采用五局三胜制,当参赛甲、乙两位中有一位赢得三局比赛时,就由该选手晋级而比赛结束.每局比赛皆须分出胜负,且每局比赛的胜负不受之前已赛结果影响.假设甲在任一局赢球的概率为(01)p p 剟,实际比赛局数的期望值记为()f p ,下列说法正确的是() A .三局就结束比赛的概率为33(1)p p +-B .()f p 的常数项为3 C .14()()35f f <D .133()28f =知识点三 离散型随机变量的方差、标准差 设离散型随机变量X 的分布列如表所示.我们用X 所有可能取值x i 与E (X )的偏差的平方(x 1-E (X ))2,(x 2-E (X ))2,…,(x n -E (X ))2,关于取值概率的加权平均,来度量随机变量X 取值与其均值E (X )的偏离程度.我们称D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =i ni i p X E x ∑=-12))((为随机变量X 的方差(variance),有时也记为Var (X )X 的标准差(standard deviation),记为σ(X ). 知识点四 离散型随机变量方差的性质 1.设a ,b 为常数,则D (aX +b )=a 2D (X ). 2.D (c )=0(其中c 为常数). 均值、方差在决策中的作用(1)均值:均值反映了离散型随机变量取值的平均水平,均值越大,平均水平越高. (2)方差:方差反映了离散型随机变量取值的离散波动程度,方差越大越不稳定. (3)在决策中常结合实际情形依据均值、方差做出决断.【例4】(2023•巴中模拟)若一组样本数据1y ,2y ,⋯⋯,n y 的期望和方差分别为2,0.04,则数据151y +,251y +,351y +,⋯⋯,51n y +的期望和方差分别为() A .3,1B .11,1C .3,0.2D .11,0.2【例5】(2023•多选•重庆期中)若随机变量X 服从两点分布,且1(0)4P X ==,则()A .(1)()P X E X ==B .(41)3E X +=C .3()16D X =D .(41)4D X +=【例6】(2023•多选•南山区期中)设离散型随机变量X 的分布列为若离散型随机变量Y 满足21Y X =+,则下列结果正确的有() A .0.5q =B .()3E X =,() 1.4D X =C .()3E X =,() 1.8D X =D .()7E Y =,() 5.6D Y =【例7】(2022•浙江)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ==,()E ξ=.【例8】(2023•湖南月考)长沙市有橘子洲,岳麓山,天心阁,开福寺四个景点,一位游客来长沙市游览.已知该游客游览橘子洲的概率为23,游览其他景点的概率都是12.该游客是否游览这四个景点相互独立,用随机变量X 记录该游客游览的景点数,下列说法正确的是()A .游客至多游览一个景点的概率为14B .3(2)8P X ==C .1(4)24P X ==D .13()6E X =【例9】(2023•多选•南京模拟)在10件产品中,其中有3件一等品,4件二等品,3件三等品,现从这10件产品中任取3件,记X 为取出的3件产品中一等品件数,事件A为取出的3件产品中一等品件数等于一等品件数,事件B 为取出的3件产品中一等品件数等于三等品件数,则下列命题正确的是() A .7(2)40P X ==B .29(1)30P X =…C .9()10E X =D .A ,B 相互独立【例10】(2022•多选•张家口期末)一种疾病需要通过核酸检测来确定是否患病,检测结果呈阴性即没患病,呈阳性即为患病,已知7人中有1人患有这种疾病,先任取4人,将他们的核酸采样混在一起检测.若结果呈阳性,则表明患病者为这4人中的1人,然后再逐个检测,直到能确定患病者为止;若结果呈阴性,则在另外3人中逐个检测,直到能确定患病者为止.则()A .最多需要检测4次可确定患病者B .第2次检测后就可确定患病者的概率为27C .第3次检测后就可确定患病者的概率为27D .检测次数的期望为227【例11】(2023•河源期末)某工厂有甲、乙、丙三条生产线同时生产同一产品,这三条生产线生产产品的次品率分别为6%,5%,4%,假设这三条生产线产品产量的比为5:7:8,现从这三条生产线上共任意选取100件产品,则次品数的数学期望为4.85.【例12】(2022•甲卷)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.【例13】(2021•新高考Ⅰ)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B 类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.同步训练1.(2019•浙江)设01<<.随机变量X的分布列是a则当a在(0,1)内增大时,()A.()D X减小D X增大B.()C.()D X先减小后增大D X先增大后减小D.()2.(2023•多选•从化区期中)袋内有大小完全相同的2个黑球和3个白球,从中不放回地每次任取1个小球,直至取到白球后停止取球,则()A .抽取2次后停止取球的概率为35B .停止取球时,取出的白球个数不少于黑球的概率为910C .取球次数ξ的期望为2D .取球3次的概率为1103.(2022•多选•南关区开学)已知随机变量ξ的分布列如下表;记“函数()3sin()2x f x x R π+=∈是偶函数”为事件A ,则下列结论正确的有() A .3()4E m ξ=-B .34m n +=C .3()4P A =D .1()4P A =4.(2023•多选•城厢区期末)设01m <<,随机变量的分布列为:则当m 在(0,1)上增大时,() A .()E ξ减小B .()E ξ增大C .()D ξ先增后减,最大值为16D .()D ξ先减后增,最小值为165.(2021•浙江)袋中有4个红球,m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -=,()E ξ=.6.(2020•浙江)盒中有4个球,其中1个红球,1个绿球,2 个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则(0)Pξ==,Eξ=.()7.(2022•全国)甲、乙两名运动员进行五局三胜制的乒乓球比赛,先赢得3局的运动员获胜,并结束比赛.设各局比赛的结果相互独立,每局比赛甲赢的概率为2,乙赢的3.概率为13(1)求甲获胜的概率;(2)设X为结束比赛所需要的局数,求随机变量X的分布列及数学期望.8.(2022•北京)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m以上(含9.50)m的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:):m甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(Ⅰ)估计甲在校运动会铅球比赛中获得优秀奖的概率;(Ⅱ)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望EX;(Ⅲ)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)9.(2021•新高考Ⅱ)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代,⋯⋯,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0i P X i p i ===,1,2,3).(Ⅰ)已知00.4p =,10.3p =,20.2p =,30.1p =,求()E X ;(Ⅱ)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X …时,1p =,当()1E X >时,1p <;(Ⅲ)根据你的理解说明(2)问结论的实际含义.10.(2020•江苏)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为n X ,恰有2个黑球的概率为n p ,恰有1个黑球的概率为n q . (1)求1p ,1q 和2p ,2q ;(2)求2n n p q +与112n n p q --+的递推关系式和n X 的数学期望()n E X (用n 表示).。
离散型随机变量的均值与方差
5 0.8
8 0.5
10 0.2
12 0.3
E(Y1)=5×0.8+10×0.2=6, D(Y1)=(5-6)2×0.8+(10-6)2×0.2=4, E(Y2)=2×0.2+8×0.5+12×0.3=8, D(Y2)=(2-8)2×0.2+(8-8)2×0.5+(12-8)2×0.3 =12.
3.正态曲线的特点: (1)曲线位于x轴 (3)曲线在
x= μ 上方 ,与x轴不相交; x= μ
(2)曲线是单峰的,它关于直线 处达到峰值
1
对称; ;
(4)曲线与x轴之间的面积为
;
(5)当σ一定时,曲线随着μ的变化而沿x轴平移
(6)当μ一定时,曲线的形状由σ确定.σ越小曲线
越“ ”瘦高 ,表示总体的分布越集中;σ越大,曲
离散型随机变量的均值方差
一、均值
1.一般地,若离散型随机变量X的分布列为
X P x1 p1 x2 p2 … … xi pi … … xn Pn
则称E(X)= x1p1+x2p2+…+xipi+…+xnpn 为
随机变量X的均值或数学期望,它反映了离散
型随机变量取值的 平均水平 .
2.若Y=aX+b,其中a,b为常数,则Y也 是随机变量,且E(aX+b)=
(2) f ( x ) D
[ x 2 3(100 x )2 ]
(4 x 2 600 x 3 1002 ).
当 x= =75时,f(x)=3为最小值.
正态分布下的概率计算常见的有两类: 1.利用正态分布密度曲线的对称性研究相关概 率问题,涉及的知识主要是正态曲线关于直线x =μ对称,及曲线与x轴之间的面积为1. 2.利用3σ原则求概率问题时,要注意把给出的 区间或范围与正态变量的μ,σ进行对比联系,
离散型随机变量的均值
⎛ 1⎫若 X ~B 4, ⎪,则 E (X )的值为( )离散型随机变量的均值1.离散型随机变量的均值或数学期望(1)定义:一般地,若离散型随机变量 X 的分布列为XPx 1 p 1x 2 p 2…… x i p i……x n p n则称 E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量 X 的均值或数学期望.(2)意义:离散型随机变量 X 的均值或数学期望反映了离散型随机变量取值的平均水平.(3)性质:如果 X 为离散型随机变量,则 Y =aX +b (其中 a ,b 为常数)也是随机变量,且 E (Y )=E (aX +b )=aE (X )+B .随机变量的均值与样本平均值的关系:随机变量的均值是一个常数,它不依赖于样本的抽取,而样本平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机样本,随着样本容量的增加,样本平均值越来越接近总体的均值.2.两点分布、二项分布的均值(1)若随机变量 X 服从两点分布,则 E (X )=p (p 为成功概率).(2)若 X ~B (n ,p ),则 E (X )=np .判断正误(正确的打“√”,错误的打“×”)(1)随机变量 X 的数学期望 E (X )是个变量,其随 X 的变化而变化.()(2)随机变量的均值与样本的平均值相同.()(3)若随机变量 X 的数学期望 E (X )=2,则 E (2X )=4.(答案:(1)× (2)× (3)√⎝ 2⎭A .4B .2C .1答案:BD.1 2随机变量 X 的分布列为3 C 25 5 C 25 10 C 255 C 25 10所以 E (ξ2)=1.4××1+ ×2+ ×3+ ×4⎪=2.8.10 5 10 ⎭⎝53 1 1 XP10.2 20.5 3m则 X 的均值是()A .2C .2.3答案:B设 X 的分布列为B .2.1D .随 m 的变化而变化XP11 6 21 6 31 3 41 3,Y =2X +5,则 E (Y )=________.32答案:探究点 1 求离散型随机变量的均值赌博有陷阱.某种赌博每局的规则是赌客先在标记有 1,2,3,4,5 的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的 1.4 倍作为其奖金(单位:元).若随机变量 ξ1 和 ξ2 分别表 示赌客在一局赌博中的赌金和奖金,则 E (ξ1)-E (ξ2)=________元.【解析】 赌金的分布列为ξ1P11 5 21 5 31 5 41 5 51 51所以 E (ξ1)=5(1+2+3+4+5)=3.奖金的分布列为ξ2P1.44 2= 2.83 3 = 4.22 1= 5.61 1 =⎛2 ⎫解:(1)P (当天商店不进货)=P (当天商店销售量为0 件)+P (当天商店销售量为1 件)= +10(2)由题意知 X 的可能取值为 2,3,P (X =2)=P (当天商品销售量为 1 件)= = ,20 20 20 4 E (ξ1)-E (ξ2)=0.2.【答案】 0.2求离散型随机变量的均值的步骤(1)确定取值:根据随机变量 X 的意义,写出 X 可能取得的全部值.(2)求概率:求 X 取每个值的概率.(3)写分布列:写出 X 的分布列.(4)求均值:由均值的定义求出 E (X ),其中写出随机变量的分布列是求解此类问题的关键所在.1. 已知某一随机变量 ξ 的分布列如下表所示,若 E (ξ)=6.3,则 a 的值为()ξPab70.1 90.4A.4C .6B .5D .7解析:选 A.根据随机变量 ξ 的分布列可知 b +0.1+0.4=1,所以 b =0.5.又 E (ξ)=ab +7×0.1+9×0.4=6.3,所以 a =4.2.某商店试销某种商品 20 天,获得如下数据:日销售量(件)频数1 15 29 35试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品 3 件,当天营业结束后检查存货,若发现存量少于 2 件,则当天进货补充至 3 件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记 X 为第二天开始营业时该商品的件数,求 X 的分布列和数学期望.1 520 203 = .5 120 4P (X =3)=P (当天商品销售量为 0 件)+P (当天商品销售量为 2 件)+P (当天商品销售量为 31 9 5 3件)= + + = .所以 X 的数学期望为 E (X )=2× +3× = .+ + +m + =1,解得 m = , 所以 E (X )=(-2)× +(-1)× +0× +1× +2× =- .=2×(- )-3=- .所以 E (Y )=(-7)× +(-5)× +(-3)× +(-1)× +1× =- .[变问法]本例条件不变,若 ξ=aX +3,且 E (ξ)=- ,求 a 的值.解:E (ξ)=E (aX +3)=aE (X )+3=- a +3=- ,故 X 的分布列为XP21 4 33 41 3 114 4 4探究点 2 离散型随机变量均值的性质已知随机变量 X 的分布列为:X -2 -1 0 1 2P1 41 31 5m1 20(1)求 E (X );(2)若 Y =2X -3,求 E (Y ).【解】 (1)由随机变量分布列的性质,得1 1 1 1 1 4 3 5 20 61 1 1 1 1 17 4 3 5 6 20 30(2)法一:由公式 E (aX +b )=aE (X )+b ,得E (Y )=E (2X -3)=2E (X )-317 6230 15法二:由于 Y =2X -3,所以 Y 的分布列如下:YP-71 4 -51 3 -31 5 -11 6 11 201 1 1 1 1 624 356 20 1511217 1130 2所以 a =15.若 η=aξ+3,E (η)= ,则 a =( )解析:选 B.由分布列的性质得 + +m =1,所以 m = ,所以 E (ξ)=-1× +0× +1× =- ,=- a +3= .E (η)=(-a +3)× +3× +(a +3)× = .2与离散型随机变量性质有关问题的解题思路若给出的随机变量 ξ 与 X 的关系为 ξ=aX +b ,a ,b 为常数.一般思路是先求出 E (X ),再利用公式 E (aX +b )=aE (X )+b 求 E (ξ).也可以利用 X 的分布列得到 ξ 的分布列,关键由 X的取值计算 ξ 的取值,对应的概率相等,再由定义法求得 E (ξ).已知随机变量 ξ 的分布列为ξP-11 2 01 31mA .1C .373B .2D .41 1 12 3 61 1 1 12 3 6 3法一:E (η)=E (aξ+3)=aE (ξ)+31 73 3所以 a =2.法二:因为 η=aξ+3,所以 η 的分布列如下:ηP-a +31 2 31 3 a +31 61 1 1 72 3 6 3所以 a =2.探究点 3 两点分布与二项分布的均值某商场为刺激消费,拟按以下方案进行促销:顾客每消费 500 元便得到抽奖券一张,1每张抽奖券的中奖概率为 ,若中奖,商场返还顾客现金 100 元.某顾客现购买价格为 2 300元的台式电脑一台,得到抽奖券四张.每次抽奖互不影响.(1)设该顾客抽奖后中奖的抽奖券张数为 X ,求随机变量 X 的分布列;(2)设该顾客购买台式电脑的实际支出为 Y (元),用 X 表示 Y ,并求随机变量 Y 的均值.⎛ 1⎫因此 X ~B 4, ⎪.所以 P (X =0)=C 04× ⎪ = ,P (X =1)=C 14× ⎪ = .P (X =2)=C 24× ⎪ = ,P (X =3)=C 34× ⎪ = ,P (X =4)=C 44× ⎪ = . ⎛ 1⎫1 (2)因为 X ~B 4, ⎪,所以 E (X )=4× =2.红灯的概率都是 ,出现绿灯的概率都是 .记这 4 盏灯中出现红灯的数量为 ξ,当这 4 盏装4 4【解】 (1)因为每张奖券是否中奖是相互独立的,⎝ 2⎭⎛1⎫4 1 ⎛1⎫4 1 ⎝2⎭ 16 ⎝2⎭ 4⎛1⎫4 3 ⎛1⎫4 1 ⎝2⎭ 8 ⎝2⎭ 4⎛1⎫4 1 ⎝2⎭ 16所以离散型随机变量 X 的分布列为XP1 16 11 4 23 8 31 4 41 16⎝ 2⎭ 2又由题意可知 Y =2 300-100X ,所以 E (Y )=E (2 300-100X )=2 300-100E (X )=2 300-100×2=2 100(元).即所求随机变量 Y 的均值为 2 100 元.(1)如果随机变量 X 服从两点分布,则其期望值 E (X )=p (p 为成功概率).(2)如果随机变量 X 服从二项分布,即 X ~B (n ,p ),则 E (X )=np .以上两特例可以作为常用结论,直接代入求解,从而避免了繁杂的计算过程.某广场上有 4 盏装饰灯,晚上每盏灯都随机地闪烁红灯或绿灯,每盏灯出现2 13 3饰灯闪烁一次时:(1)求 ξ=2 时的概率;(2)求 ξ 的数学期望.解:(1)依题意知:ξ=2 表示 4 盏装饰灯闪烁一次时,恰好有 2 盏灯出现红灯,而每盏灯出2 2 1 8现红灯的概率都是3,故 ξ=2 时的概率 P =C 2(3)2×(3)2=27.2 1(2)法一:ξ 的所有可能取值为 0,1,2,3,4,依题意知:P (ξ=k )=C k(3)k ·(3)4-k (k =0,1,2,3,4).所以 ξ 的概率分布列为所以 E (ξ)=0× +1× +2× +3× +4× = .法二:因为 ξ 服从二项分布,即 ξ~B (4, ),所以 E (ξ)=4× = .nξP1 81 18 81 224 81 332 81 416 811 8 24 32 16 881 81 81 81 81 3232 83 3探究点 4 均值问题的实际应用(2016·高考全国卷Ⅰ)某公司计划购买 2 台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元.在机器使用期间,如果备件不足再购买,则每个 500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了 100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这 100 台机器更换的易损零件数的频率代替 1 台机器更换的易损零件数发生的概率,记 X表示 2 台机器三年内共需更换的易损零件数, 表示购买 2 台机器的同时购买的易损零件数.(1)求 X 的分布列;(2)若要求 P (X ≤n )≥0.5,确定 n 的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在 n =19 与 n =20 之中选其一,应选用哪个?【解】 (1)由柱状图并以频率代替概率可得,1 台机器在三年内需更换的易损零件数为 8,9,10,11 的概率分别为 0.2,0.4,0.2,0.2,从而P (X =16)=0.2×0.2=0.04;P (X =17)=2×0.2×0.4=0.16;P (X =18)=2×0.2×0.2+0.4×0.4=0.24;P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24;P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08;奖率为 ,中奖可以获得 2 分;方案乙的中奖率为 ,中奖可以获得 3 分;未中奖则不得分.每解:(1)由已知得小明中奖的概率为 ,小红中奖的概率为 ,两人中奖与否互不影响,记“这因为 P (X =5)= × = ,P (X =22)=0.2×0.2=0.04.所以 X 的分布列为XP160.04 170.16 180.24 190.24 200.2 210.08 220.04(2)由(1)知 P (X ≤18)=0.44,P (X ≤19)=0.68,故 n 的最小值为 19.(3)记 Y 表示 2 台机器在购买易损零件上所需的费用(单位:元).当 n =19 时,E (Y ) =19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当 n =20 时,E (Y )=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080.可知当 n =19 时所需费用的期望值小于当 n =20 时所需费用的期望值,故应选 n =19.(1)实际问题中的均值问题均值在实际中有着广泛的应用,如在体育比赛的安排和成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益等,都可以通过随机变量的均值来进行估计.(2)概率模型的解答步骤①审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些;②确定随机变量的分布列,计算随机变量的均值;③对照实际意义,回答概率、均值等所表示的结论.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中2 23 5人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求 X ≤3 的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,则他们选择何种方案抽奖,累计得分的数学期望较大?2 23 52 人的累计得分 X ≤3”为事件 A ,则事件 A 的对立事件为“X =5”,2 2 43 5 15所以 P (A )=1-P (X =5)= .所以这两人的累计得分 X ≤3 的概率为 .由已知得 X 1~B 2, ⎪, X 2~B 2, ⎪,P (X =2)=2= , P (X =3)= 22= . 所以 E (X )= ×2+ ×3=2+ = .面试的概率为 ,得到 B 公司面试的概率为 p ,且两个公司是否让其面试是独立的.记 ξ 为小王得到面试的公司个数.若 ξ=0 时的概率 P (ξ=0)= ,则随机变量 ξ 的数学期望 E (ξ)11151115(2)设小明、小红都选择方案甲抽奖中奖的次数为 X 1,都选择方案乙抽奖中奖的次数为 X 2, 则这两人选择方案甲抽奖累计得分的数学期望为 E (2X 1),选择方案乙抽奖累计得分的数学期 望为 E (3X 2).⎛ 2⎫ ⎝ 3⎭⎛ 2⎫ ⎝ 5⎭2 4 2 4所以 E (X 1)=2×3=3,E (X 2)=2×5=5,8 所以 E (2X 1)=2E (X 1)=3,12 E (3X 2)=3E (X 2)= 5 .因为 E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.1.口袋中有编号分别为 1、2、3 的三个大小和形状相同的小球,从中任取2 个,则取出的球的最大编号 X 的均值为()A.1 3B.2 3C .2D.8 3解析:选 D.X 可能取值为 2,3.1 1 C 3 3C 1 2 C 3 31 2 2 83 3 3 32.毕业生小王参加人才招聘会,分别向 A ,B 两个公司投递个人简历.假定小王得到 A 公司1312解析:由题意,得P(ξ=2)=p,P(ξ=1)=(1-p)+p=,由++p=1,得p=.所以E(ξ)=0×+1×+2×p=.得分高的选手胜出.已知某参赛选手在A区和B区每次投篮进球的概率分别是和.如果以⎛9⎫99解:设该选手在A区投篮的进球数为X,则X~B 2,⎪,故E(X)=2×=.则该选手在A区投篮得分的期望为2×=3.6,⎛1⎫设该选手在B区投篮的进球数为Y,则Y~B 3,⎪,故E(Y)=3×=1,则该选手在B区投篮得分的期望为3×1=3,(2)由于离散型随机变量X的每一种可能取值的概率满足∑pi ==________.1121+p3333ξ的分布列为ξ012P 121+p313p11+p11233411+p1723312答案:7 123.某班将要举行篮球比赛,比赛规则是:每位选手可以选择在A区投篮2次或选择在B区投篮3次,在A区每进一球得2分,不进球得0分;在B区每进一球得3分,不进球得0分,91103投篮得分的期望值高作为选择的标准,问该选手应该选择哪个区投篮?请说明理由.⎝10⎭10595⎝3⎭13因为3.6>3,所以该选手应选择在A区投篮.知识结构深化拓展对离散型随机变量的均值的理解(1)均值这一概念是建立在随机变量分布列的基础之上的,分布列中随机变量X的一切可能值xi 与对应的概率P(X=xi)的乘积的和就叫做随机变量X的均值.ni=11.已知ξ~B(n,),η~B(n,),且E(ξ)=15,则E(η)等于()解析:选B.因为E(ξ)=n=15,所以n=30,所以η~B(30,),所以E(η)=30×=10.解析:选D.E(ξ)=1×+2×+3×+4×=,E(η)=E(2ξ+5)=2E(ξ)+5=2×+5=.次均失败,则放弃试验.若此人每次试验成功的概率为,则此人试验次数ξ的均值是()3B.131,因而离散型随机变量X的均值E(X)是以概率p i为权数的加权平均.(3)离散型随机变量的分布列和均值虽然都是从整体上刻画随机变量的,但二者大有不同.分布列只给出了随机变量取所有可能值的概率,而均值建立在分布列的基础之上,它反映了随机变量取值的平均水平或集中位置.[A基础达标]1123A.5C.15121133 2.设ξ的分布列为B.10 D.20ξP 116216313413又设η=2ξ+5,则E(η)等于()A. C.76173B.D.176323111117663361732633.某人进行一项试验,若试验成功,则停止试验,若试验失败,再重新试验一次,若试验323A.49D. 13则 P (ξ=1)= ,P (ξ=2)= × = ,P (ξ=3)= × ×( + )= .所以 E (ξ)=1× +2× +3× = .1C 12C 12 4 4件数 X 的概率 P (X =2)= 2= ,P (X =1)= = ,所以 P (X =0)=1-P (X =2)-P (X =1)= .所以 E (X )=0+1× +2× = .故选 B.C.5 37解析:选 B.试验次数 ξ 的可能取值为 1,2,3,231 2 23 3 91 12 1 13 3 3 3 9所以 ξ 的分布列为ξP12 3 22 9 31 92 2 1 133 9 9 94.两封信随机投入 A ,B ,C 三个空邮箱,则 A 邮箱的信件数 X 的数学期望 E (X )=()A.C.1 31 2B.D.2 33 4解析:选 B.两封信随机投入 A ,B ,C 三个空邮箱,共有 32=9(种)情况.则投入 A 邮箱的信C 2 9 9 9 9 9所以离散型随机变量 X 的分布列为XP4 9 14 9 21 94 1 29 9 35.甲、乙两名射手一次射击得分(分别用 X 1,X 2 表示)的分布列如下:甲得分:X 1 P10.4 20.1 30.5乙得分:解得 p > 或 p < ,又由 p ∈(0,1),可得 p ∈(0, ).2X 2 P10.1 20.6 30.3则甲、乙两人的射击技术是()A .甲更好C .甲、乙一样好B .乙更好D .不可比较解析:选 B.因为 E (X 1)=1×0.4+2×0.1+3×0.5=2.1,E (X 2)=1×0.1+2×0.6+3×0.3 =2.2,所以 E (X 2)>E (X 1),故乙更好些.6.某电视台开展有奖答题活动,每次要求答 30 个选择题,每个选择题有 4 个选项,其中有且只有一个正确答案,每一题选对得 5 分,选错或不选得 0 分,满分 150 分,规定满 100 分拿三等奖,满 120 分拿二等奖,满 140 分拿一等奖.有一个选手选对任一题的概率都是0.8,则该选手可能拿到________等奖.解析:选对题的个数 X 服从二项分布,即 X ~B (30,0.8),所以 E (X )=30×0.8=24,由于24×5=120(分),所以可能拿到二等奖.答案:二7.体育课的排球发球项目考试的规则是:每位学生最多可发球 3 次,一旦发球成功,则停止发球,否则一直发到 3 次为止.设学生一次发球成功的概率为 p (p ≠0),发球次数为 X ,若 X的数学期望 E (X )>1.75,则 p 的取值范围是________.解析:由已知条件可得 P (X =1)=p ,P (X =2)=(1-p )p ,P (X =3)=(1-p )2p +(1-p )3=(1-p )2,则 E (X )=P (X =1)+2P (X =2)+3P (X =3)=p +2(1-p )p +3(1-p )2=p 2-3p +3>1.75,5 1 12 2 21答案:(0, )8.某日 A 、B 两个沿海城市受台风袭击(相互独立)的概率相同,已知 A 市或 B 市受台风袭击的概率为 0.36,若用 X 表示这一天受台风袭击的城市个数,则 E (X )=________.解析:设 A 、B 两市受台风袭击的概率均为 p ,则 A 市和 B 市均不受台风袭击的概率为(1-p )2=1-0.36,解得 p =0.2 或 p =1.8(舍去 ),则 P (X =0)=1-0.36=0.64,P (X =1)=2×0.8×0.2=0.32,P (X =2)=0.2×0.2=0.04,所以 E (X )=0×0.64+1×0.32+2×0.04=0.4.答案:0.49.已知 2 件次品和 3 件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出 2 件次品或者检测出 3 件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件 A ,P (A )= 2 2 3= .P (X =200)= 22= ,A33+C 12C 13A 22 3P (X =400)=1-P (X =200)-P (X =300)=1- - = .5E (X )=200× +300× +400× =350.(1)设 B 表示事件“此人到达当日空气质量优良”,则 P (B )= .P (X =0)= ,P (X =1)= ,P (X =2)= .(2)已知每检测一件产品需要费用 100 元,设 X 表示直到检测出 2 件次品或者检测出 3 件正品时所需要的检测费用(单位:元),求 X 的分布列和均值(数学期望).A 1A 1 3 A 5 10(2)X 的可能取值为 200,300,400.A 2 1 A 5 10P (X =300)= = ,A 3 101 3 610 10 10故 X 的分布列为XP2001 10 3003 10 4006 101 3 610 10 1010.(2018·陕西西安长安一中高二下学期期中)如图是预测到的某地 5 月 1 日至 14 日的空气质量指数(AQI)趋势图,空气质量指数小于 100 表示空气质量优良,空气质量指数大于 200表示空气重度污染,某人随机选择 5 月 1 日至 5 月 13 日中的某一天到达该市,并停留 2 天.(1)求此人到达当日空气质量优良的概率;(2)设 X 是此人停留期间空气质量优良的天数,求 X 的分布列与均值.解:设 A i 表示事件“此人于 5 月 i 日到达该地”(i =1,2,…,13).1依据题意 P (A i )=13.613(2)离散型随机变量 X 的所有可能取值为 0,1,2.5 4 413 13 13所以随机变量 X 的均值为 E (X )=0× +1× +2× = .解:(1)这 3 名学生中至少有 2 名学生参加培训次数恰好相等的概率 P =1- 5 153 20=.C 25+C 215+C 220 61C 15C 115+C 115C 120 25C 15C 12052 2 2 所以 X 的数学期望 E (X )=0× +1× +2× = .2 所以随机变量 X 的分布列为XP5 13 14 13 24 135 4 4 1213 13 13 13[B 能力提升]11.某中学选派 40 名学生参加北京市高中生技术设计创意大赛的培训,他们参加培训的次数统计如表所示:培训次数参加人数15 215 320(1)从这 40 名学生中任选 3 名,求这 3 名学生中至少有 2 名学生参加培训次数恰好相等的概率;(2)从这 40 名学生中任选 2 名,用 X 表示这 2 人参加培训次数之差的绝对值,求随机变量 X的分布列及数学期望 E (X ).C 1C 1 C 1 419 C 40 494 (2)由题意知 X =0,1,2,P (X =0)= = ,C 40 156P (X =1)= = ,C 40 52 P (X =2)= = ,C 4039 则随机变量 X 的分布列为XP61 156 125 52 25 3961 25 5 115156 52 39 15612.某游戏射击场规定:①每次游戏射击5 发子弹;②5 发全部命中奖励 40 元,命中 4 发不1奖励,也不必付款,命中 3 发或 3 发以下,应付款 2 元.现有一游客,其命中率为 .解:(1)设 5 发子弹命中 X (X =0,1,2,3,4,5)发,由题意知 X ~B (5, ),则由题意有 P (XE (Y )=(-2)× +0× +40× =- .则 P (A )=C 03× ⎪ +C 13× × ⎪ = . ⎛3⎫ ⎛ 3⎫ 1 P (X =0)= 1- ⎪× 1- ⎪= ,(1)求该游客在一次游戏中 5 发全部命中的概率;(2)求该游客在一次游戏中获得奖金的均值.121 1 =5)=C 5(2)5=32.(2)X 的分布列为XP1 32 15 32 210 32 310 32 45 32 51 32设游客在一次游戏中获得资金为 Y 元,于是 Y 的分布列为YP-213 16 05 32 401 32故该游客在一次游戏中获得资金的均值为13 5 1 316 32 32 813.(选做题)某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入后,有 L 1,1L 2 两条巷道通往作业区(如图).L 1 巷道有 A 1,A 2,A 3 三个易堵塞点,各点被堵塞的概率都是2;3 3 L 2 巷道有 B 1,B 2 两个易堵塞点,被堵塞的概率分别为4,5.(1)求 L 1 巷道中,三个易堵塞点最多有一个被堵塞的概率;(2)若 L 2 巷道堵塞点的个数为 X ,求 X 的分布列及数学期望 E (X ),并请你按照“平均堵塞点少的巷道是较好的抢险路线”的标准,帮助救援队选择一条抢险路线,同时说明理由.解:(1)设“L 1 巷道中,三个易堵塞点最多有一个被堵塞”为事件 A ,⎛1⎫3 1 ⎛1⎫2 1 ⎝2⎭ 2 ⎝2⎭ 2(2)根据题意,知 X 的可能取值为 0,1,2.⎝ 4⎭ ⎝ 5⎭ 103 ⎛ 3⎫ ⎛ 3⎫ 3 9P (X =1)= × 1- ⎪+ 1- ⎪× = ,P (X =2)= × = .E (X )=0× +1× +2× = .P (Y =0)=C 03× ⎪ = ,P (Y =1)=C 13× × ⎪ =,2 ⎝2⎭P (Y =2)=C 23× ⎪ × = , P (Y =3)=C 33× ⎪ = . E (Y )=0× +1× +2× +3× = .法二:设 L 1 巷道中堵塞点个数为 Y ,则随机变量 Y ~B 3, ⎪,所以 E (Y )=3× = .2 2⎝2⎭4 ⎝ 5⎭ ⎝ 4⎭5 203 3 94 5 20所以随机变量 X 的分布列为XP1 10 19 20 29 201 9 9 2710 20 20 20法一:设 L 1 巷道中堵塞点个数为 Y ,则 Y 的可能取值为 0,1,2,3.⎛1⎫3 1 ⎝2⎭ 81 ⎛1⎫23 8⎛1⎫2 1 3 ⎝2⎭ 2 8⎛1⎫3 1 ⎝2⎭ 8所以随机变量 Y 的分布列为YP1 8 13 8 23 8 31 81 3 3 1 38 8 8 8 2因为 E (X )<E (Y ),所以选择 L 2 巷道为抢险路线较好.⎛ 1⎫ 1 3因为 E (X )<E (Y ),所以选择 L 2 巷道为抢险路线较好.。
离散型随机变量的均值
离散型随机变量的均值
1 离散型随机变量均值
离散型随机变量是统计学中一类在采样范围内具有有限取值的变量。
它们在概率论和数理统计中起着重要作用,在研究和分析现实社
会系统状态的情况下也是非常有用的。
变量的均值(又称期望值)可
以表示一个离散型随机变量的“平均数”,它可以为多个变量提供一
个基本的参考点,有助于理解数据集合的一般特征。
离散型随机变量的均值一般表示为期望值,用数学符号表示为EX
的形式。
也就是说,EX=Σ(xi * P(xi)),其中xi表示离散型随
机变量具有的概率,P(xi)表示相应的概率。
均值可以将所有的取值
加权,并将其转换为一个数值,从而提供离散型随机变量的概括信息。
离散型随机变量的均值反映出一定量的关联,通过对均值与概率
分布关系的分析可以更清楚地了解分析过程中数据的整体变化特征以
及数据变化的趋势变化。
从而帮助人们指出某类问题出现的规律性以
及所存在的潜在规律,以便及早建立预警机制或采取积极的应对措施。
总之,离散型随机变量的均值是衡量离散型随机变量的重要参考
标准,反映了其大致的概率分布,可为研究者提供重要的可视化分析
信息,为提高系统的判断和改进提供了依据。
离散型随机变量的均值
1.知识清单:
(1)离散型随机变量的均值.
(2)均值的简单应用.
2.常见误区:不会应用均值对实际问题作出正确分析.
四、课后作业:
课本P66-67第1-3题。
五、今日之事今日毕 日积月累成大器
课堂反思:
4.设随机变量X的分布列如表,且E(X)=1.6,则a-b等于()
X
0
1
2
3
P
0.1
a
b
0.1
A.0.2B.0.1C.-0.2D.-0.4
例1袋中有4个红球,3个白球,从袋中随机取出4个球.设取出一个红球得2分,取出一个白球得1分,试求得分X的均值.
反思感悟:求随机变量X的均值的方法和步骤
(1)理解随机变量X的意义,写出X所有可能的取值.
(1)求X的分布列;
(2)求1件产品的平均利润(即X的均值);
反思感悟:
例3.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.
(1)求三种粽子各取到1个的概率;
(2)设X表示取到的豆沙粽个数,求X的分布列与均值.
反思感悟:
(2)求出X取每个值的概率P(X=k).
(3)写出X的分布列.
(4)利用均值的定义求E(X).
[均值的简单应用]:
例2随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:万元)为X.
1.已知离散型随机变量X的分布列为
X
1
2
3
072随机变量的均值与方差
§16.1 随机变量的均值与方差1.所示,则称n n 2211为离散型随机变量X 的均值或数学期望,记为E(X)或μ,即E(X)=n n p x p x p x +++ 2211,其中i x 是随机变量X 的可能取值,i p 是概率,i p ≥0;n i ,,2,1 =,121=+++n p p p性质:①E(C)=C ;②E(aX)=aE(X);③E(aX+b)=aE(X)+b ;④超几何分布X ~H(n,M,N)的数学期望为NnM X E =)(,二项分布X ~B(n ,p)的数学期望为np X E =)(。
2.X 的概率分布如表所示,则称n n p x p x p x 22211)()()(μ-++-+- 为离散型随机变量X 的方差,记为V(X)或2σ,即V(X)= n n p x p x p x 2222121)()()(μμμ-++-+- (其中)(X E =μ,i p ≥0;n i ,,2,1 =,121=+++n p p p ),方差也可用公式212)(μ-=∑=i ni i p x X V ,即22)()()(X E X E X V -=,V(X)的算术平方根称为X 的标准差,即)(X V =σ。
性质:①0)(=C V ;②)()(2X V a b aX V =+;③超几何分布X ~H(n,M,N)的方差为)1())(()(2---=N N n N M N nM X V ,二项分布X ~B(n ,p)的方差为)1()(p np X V -=。
注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度。
方差或标准差越小,随机变量偏离于均值的平均程度越小。
三、典型例题例1:有10张卡片,其中8张标有数字2,有2张标有数字5,从中随即地抽取3张卡片,设3 张卡片上的数字之和为随机变量ξ,求E(ξ)、V(ξ)例2:假定某射手每次射击命中目标的概率为32,且只有3发子弹。
2.3.1__离散型随机变量的均值ppt课件
引入:某商场为满足市场需求要将单价分别为18元 /kg ,24元/kg ,36元/kg 的3种糖果按3:2:1的 比例混合销售,其中混合糖果中每一颗糖果的质量 都相等,如何对混合糖果定价才合理? 定价为
18+24+36 26 3
可以吗?
假如从这种混合糖果中随机选取一颗,记X为这颗 糖果所属种类的单价(元 kg),你能写出X的分布列吗?
定义
一般地:
对任一射手,若已知他的所得环数 的分布列,即已
知 P( i)(i 0,1, 2,L ,10), 则可以预计他任意n次射击的
平均环数是 0 P( 0) 1 P( 1) L 10 P( 10) 记为E
我们称E 为此射手射击所得环数的期望,它刻
划了所得环数随机变量 所取的平均值.
在100次射击之前,试估计该射手100次射击的平均环数. 分析:平均环数=总环数100
由概率可知,在 100 次射击之前,估计得 i 环的次数为 P( i)100 .
所以,总环数约等于 (4×0.02+5×0.04+6×0.06+ …+10×0.22)× 100.
故100次射击的平均环数约等于
4×0.02+5×0.04+6×0.06+ …+10×0.22=8.32. 一般地6
结论1
结论1:若 a b, 则 E aE b
Q P( axi b) P( xi ), i 1, 2, 3L
所以, 的分布列为
L ax1 b ax2 b
L LL P p1
p2
axipi b
axn b
pn
E (ax1 b) p1 (ax2 b) p2 L (axn b) pn
离散型随机变量的均值
变量X的均值或数学期望,数学期望又简称为期望 随机变 (Mathematical expectation).
它反映了离散型随机变量取值的平均水平.
随机变量的均值与样本的 平均值有何区别和联系
•随机变量的均值是常数,而样本的平均值随 着样本的不同而变化,因而样本的平均值是 随机变量; •对于简单随机样本,随着样本容量的增加, 样本的平均值越来越接近总体的平均值,因 此,我们常用样本的平均值来估计总体的平 均值。
X P 0 1
3
2
2
3
0.3
C 0.7 0.3
1 3
C 0.7 0.3
2 3 2
0.7
3
1 (2) E( X ) 0 0.33 1 C3 0.7 0.32 2 C32 0.72 0.3 3 0.73
2 .1
3 0.7
求证: 若X~B(n,p), 则E(X)= np
练习:
人寿保险中(某一年龄段),在一年的保险期内, 每个被保险人需缴纳保险费a元,被保险人意外死 亡则保险公司赔付3万元,出现非意外死亡,则赔付 1万元,经统计,此年龄段一年内意外死亡的概率 是p1 ,非意外死亡的概率为p2 ,则a满足什么条件,保 险公司2 p2 xi pi xn pn
aE ( X ) b
练习一
1、随机变量ξ的分布列是
ξ P (1)则E(ξ)= 1 0.5 2.4 3 0.3 5 0.2 . 5.8
(2)若η=2ξ+1,则E(η)=
2、随机变量ξ的分布列是
.
ξ P
4 0.3
7 a
0.1
9 b
10 0.2
2.5.1离散型随机变量的均值
答: X的数学期望约为1.6667
8550 3800 2584 8075 从而 E(X)=0× +1× +2× 23751 +3×23751 23751 23751 +4× 700 + 5× 42 = 5 ≈1.6667 23751 23751 3
例2 从批量较大的成品中随机取出10件产品进行 质量检查,若这批产品的不合格品率为0.05,随 机变量X表示这10件产品中的不合格品数, 求随机变量X的数学期望E(X).
注: 离散型随机变量X的均值也称为X的概率分布的均值.
对于前面的问题,通过计算,可以求得 E(X1)=0×0.7+1×0.1+2×0.1+3×0.1=0.6 E(X2)=0×0.5+1×0.3+2×0.2+3×0=0.7 由于E(X1)<E(X2),即甲工人生产出废品数的均值小, 从这个意义上讲,甲的技术比乙的技术好。
一般地,由定义可求出超几何分布和 二项分布的数学期望的计算公式
nM 若X~H(n,M,N) 则E(X)= N
若X~B(n,p)
则E(X)=np
分层训练
必做题
选做题 思考题
P67 练习 2,3,4
P71 习题 P71 习题 5 , 7 6(1)(2)
作业
P71 习题
1
前面我们所讨论的随机变量的取值都是离 散的,我们把这样的随机变量称为离散型随机变 量.
怎样刻画离散型随机变量取值的平均水平 和稳定程度呢?
我们再看下面的问题:
甲、乙两个工人生产同一产品,在相同的条件下, 他们生产100件产品所出的不合格品数分别用X1,X2表 示, X1,X2的概率分布下: X1 pk X2 pk 0 0.7 0 0.5 1 0.1 1 0.3 2 0.1 2 0.2 3 0.1 3 0
离散型随机变量的均值
离散型随机变量的均值离散型随机变量的均值是概率论中重要的概念之一,在统计分布,密度函数,累积分布函数以及各种其它概率模型中都有着广泛的应用。
它是用于衡量一个随机变量的变动范围的重要参数,也是衡量一个概率分布的主要参数之一。
离散型随机变量的均值是一个重要的参数,它可以帮助我们评估一个特定概率分布的性能,它可以揭示随机变量分布的特征。
离散型随机变量的均值是随机变量的平均数,也称为期望值,按照不同的数学定义,它有多种形式,其中最常见的是期望值,平均值,均值方差(VAR),算术平均值,几何平均,及总体均值和总体标准差等。
它是一种描述一类随机变量的平均值,反映出该类变量的总体趋势。
概率论中,离散型随机变量的均值表示该类随机变量的概率分布中心位置,也是衡量随机变量的变动范围的参数。
离散型随机变量的均值也有其特殊性,它可以反映一类随机变量的出现频率、次数及其分布的特征。
它也可以用于解决多种实际问题,例如历史数据分析、安全分析、经济预测、失真分析、统计估计以及投资分析等。
例如,假设一个股票的过去30天的收益率由离散型随机变量表示,此时,我们可以计算出该股票30天收益率的均值和标准差,这样就可以预测未来30天的收益率。
离散型随机变量的均值有多种形式,因此,在计算的时候,需要知道不同变量的均值是如何得出的,以及它们有什么特性。
最常见的计算方法是把各个离散型随机变量的概率加权平均值,公式为:μ =x*P(x)其中,x代表离散型随机变量的取值,P(x)代表其对应的概率。
按照这个公式,对所有离散型随机变量x的取值和对应概率P(x)求和,就可以得到这一类随机变量的均值。
由此可见,离散型随机变量的均值是一个重要的参数,它可以用来揭示随机变量的分布特征,以及衡量离散型随机变量的变动范围。
离散型随机变量的均值是一个重要的参数,它可以用来评价随机变量的性能,反映出随机变量的分布特征,用于多种概率模型分析,还可以用来解决实际问题,如投资分析估计等。
第2章 2.3 2.3.1 离散型随机变量的均值
2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值学习目标核心素养1.理解离散型随机变量的均值的意义和性质,会根据离散型随机变量的分布列求出均值.(重点)2.掌握两点分布、二项分布的均值.(重点)3.会利用离散型随机变量的均值解决一些相关的实际问题.(难点)1.通过离散型随机变量的均值的学习,体会数学抽象的素养.2.应用随机变量的均值解题提升数学运算的素养.1.离散型随机变量的均值(1)定义:若离散型随机变量X的分布列为:X x1x2…x i…x nP p1p2…p i…p n=x1p1+x2p2+…+x i p i+…+x n p n为随机变量(2)意义:它反映了离散型随机变量取值的平均水平.(3)性质:如果X为(离散型)随机变量,则Y=aX+b(其中a,b为常数)也是随机变量,且P(Y=ax i+b)=P(X=x i),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b.2.两点分布和二项分布的均值(1)若X服从两点分布,则E(X)=p;(2)若X~B(n,p),则E(X)=np.思考:随机变量的均值与样本平均值有什么关系?[提示]随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机样本,随着样本容量的增加,样本的平均值越来越接近于总体的均值.1.若随机变量X 的分布列为X -1 01 p121613A .0B .-1C .-16D .-12C [E (X )=∑i =13x i p i =(-1)×12+0×16+1×13=-16.]2.设E (X )=10,则E (3X +5)=________. 35 [E (3X +5)=3E (X )+5=3×10+5=35.]3.若随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫4,13,则E (X )的值为________.43 [E (X )=np =4×13=43.]求离散型随机变量的均值【例1多有4次参加考试的机会,一旦某次考试通过,即可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数X 的分布列和X 的均值.[解] X 的取值分别为1,2,3,4.X =1,表明李明第一次参加驾照考试就通过了, 故P (X =1)=0.6.X =2,表明李明在第一次考试未通过,第二次通过了,故P (X =2)=(1-0.6)×0.7=0.28.X =3,表明李明在第一、二次考试未通过,第三次通过了,故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096.X=4,表明李明第一、二、三次考试都未通过,故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024.所以李明一年内参加考试次数X的分布列为X 123 4P 0.60.280.0960.024 所以X的均值为E(X)=1×0.6+2×0.28+3×0.096+4×0.024=1.544.求离散型随机变量X的均值的步骤1.理解X的实际意义,并写出X的全部取值.2.求出X取每个值的概率.3.写出X的分布列(有时也可省略).4.利用定义公式E(X)=x1p1+x2p2+…+x n p n求出均值.其中第(1)、(2)两条是解答此类题目的关键,在求解过程中要注重运用概率的相关知识.1.盒中装有5节同牌号的五号电池,其中混有两节废电池.现在无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数X的分布列及均值.[解]X可取的值为1,2,3,则P(X=1)=35,P(X=2)=25×34=310,P(X=3)=25×14×1=110.抽取次数X的分布列为X 12 3P 35310110E(X)=1×35+2×310+3×110=32.离散型随机变量的均值公式及性质X -2 -1 0 1 2 P141315m120(2)求E (X );(3)若Y =2X -3,求E (Y ).[解] (1)由随机变量分布列的性质,得14+13+15+m +120=1, 解得m =16.(2)E (X )=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730.(3)法一:(公式法)由公式E (aX +b )=aE (X )+b ,得E (Y )=E (2X -3)=2E (X )-3=2×⎝ ⎛⎭⎪⎫-1730-3=-6215.法二:(直接法)由于Y =2X -3,所以Y 的分布列如下:Y -7 -5 -3 -1 1 P14131516120所以E (Y )=(-7)×14+(-5)×13+(-3)×15+(-1)×16+1×120=-6215.1.该类题目属于已知离散型分布列求均值,求解方法是直接套用公式,E (X )=x 1p 1+x 2p 2+…+x n p n 求解.2.对于aX +b 型的随机变量,可利用均值的性质求解,即E (aX +b )=aE (X )+b ;也可以先列出aX +b 的分布列,再用均值公式求解,比较两种方式显然前者较方便.2.已知随机变量X 的分布列为X 1 2 3 P121316且Y=aX+3,若E(Y)=-2,则a的值为________.-3[E(X)=1×12+2×13+3×16=53.∵Y=aX+3,∴E(Y)=aE(X)+3=53a+3=-2.解得a=-3.]两点分布与二项分布的均值【例(1)求投篮1次时命中次数X的均值;(2)求重复5次投篮时,命中次数Y的均值.[思路点拨](1)利用两点分布求解.(2)利用二项分布的数学期望公式求解.[解](1)投篮1次,命中次数X的分布列如下表:X 0 1P 0.40.6(2)由题意,重复5次投篮,命中的次数Y服从二项分布,即Y~B(5,0.6),则E(Y)=np=5×0.6=3.1.(变换条件)求重复10次投篮时,命中次数ξ的均值.[解]E(ξ)=10×0.6=6.2.(改变问法)重复5次投篮时,命中次数为Y,命中一次得3分,求5次投篮得分的均值.[解]设投篮得分为变量η,则η=3Y.所以E(η)=E(3Y)=3E(Y)=3×3=9.1.常见的两种分布的均值设p为一次试验中成功的概率,则(1)两点分布E(X)=p;(2)二项分布E(X)=np.熟练应用上述公式可大大减少运算量,提高解题速度.2.两点分布与二项分布辨析(1)相同点:一次试验中要么发生要么不发生.(2)不同点:①随机变量的取值不同,两点分布随机变量的取值为0,1,二项分布中随机变量的取值x=0,1,2,…,n.②试验次数不同,两点分布一般只有一次试验;二项分布则进行n次试验.离散型随机变量均值的实际应用[1.某篮球明星罚球命中率为0.7,罚球命中得1分,不中得0分,若该球星在一场比赛中共罚球10次,命中8次,那么他平均每次罚球得分是多少?[提示]每次平均得分为810=0.8.2.在探究1中,你能求出在他参加的各场比赛中,罚球一次得分大约是多少吗?为什么?[提示]在球星的各场比赛中,罚球一次的得分大约为0×0.3+1×0.7=0.7(分).因为在该球星参加各场比赛中平均罚球一次的得分只能用随机变量X的数学期望来描述他总体得分的平均水平.具体到每一场比赛罚球一次的平均得分应该是非常接近X的均值的一个分数.【例4】随机抽取某厂的某种产品200件,经质检,其中一等品126件,二等品50件,三等品20件,次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:元)为X.(1)求X的分布列;(2)求1件产品的平均利润(即X的均值);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%,如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?[思路点拨]根据利润的意义写出X的取值→写出X的分布列→求出均值E(X)→利用期望回答问题[解](1)X的所有可能取值有6,2,1,-2.P(X=6)=126200=0.63,P(X=2)=50200=0.25,P(X=1)=20200=0.1,P(X=-2)=4200=0.02.故X的分布列为:X 621-2P 0.630.250.10.02(2)(3)设技术革新后的三等品率为x,则此时1件产品的平均利润为E(X)=6×0.7+2×(1-0.7-0.01-x)+1×x+(-2)×0.01=4.76-x(0≤x≤0.29).依题意,E(X)≥4.73,即4.76-x≥4.73,解得x≤0.03,所以三等品率最多为3%.1.实际问题中的均值问题均值在实际生活中有着广泛的应用,如对体育比赛的成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益的预测等方面,都可以通过随机变量的均值来进行估计.2.概率模型的三个解答步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的分布列,计算随机变量的均值.(3)对照实际意义,回答概率,均值等所表示的结论.3.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,则他们选择何种方案抽奖,累计得分的数学期望较大?[解] (1)由已知得小明中奖的概率为23,小红中奖的概率为25,两人中奖与否互不影响,记“这2人的累计得分X ≤3”为事件A ,则事件A 的对立事件为“X =5”, 因为P (X =5)=23×25=415, 所以P (A )=1-P (X =5)=1115.所以这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖的次数为X 1,都选择方案乙抽奖中奖的次数为X 2,则这两人选择方案甲抽奖累计得分的数学期望为E (2X 1),选择方案乙抽奖累计得分的数学期望为E (3X 2).由已知得X 1~B ⎝ ⎛⎭⎪⎫2,23,X 2~B ⎝ ⎛⎭⎪⎫2,25,所以E (X 1)=2×23=43,E (X 2)=2×25=45. 所以E (2X 1)=2E (X 1)=83, E (3X 2)-3E (X 2)=125. 因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.1.求离散型随机变量均值的步骤: (1)确定离散型随机变量X 的取值;(2)写出分布列,并检查分布列的正确与否; (3)根据公式写出均值.2.若X ,Y 是两个随机变量,且Y =aX +b ,则E (Y )=aE (X )+b ;如果一个随机变量服从两点分布或二项分布,可直接利用公式计算均值.1.判断(正确的打“√”,错误的打“×”)(1)随机变量X 的数学期望E (X )是个变量,其随X 的变化而变化.( ) (2)随机变量的均值反映样本的平均水平.( )(3)若随机变量X 的数学期望E (X )=2,则E (2X )=4.( ) (4)随机变量X 的均值E (X )=x 1+x 2+…+x nn.( )[答案] (1)× (2)× (3)√ (4)× 2.已知随机变量X 的分布列为X 1 2 3 P0.20.5m则X A .2 B .2.1C .2.3D .随m 的变化而变化B [由0.2+0.5+m =1得m =0.3,∴E (X )=1×0.2+2×0.5+3×0.3=2.1,故选B.] 3.已知X ~B ⎝ ⎛⎭⎪⎫100,12,则E (2X +3)=________.103 [E (X )=100×12=50,E (2X +3)=2E (X )+3=103.]4.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到1个黑球记0分,每取到1个白球记1分,每取到1个红球记2分,用X 表示取得的分数.求:(1)X 的分布列; (2)X 的均值.[解] (1)由题意知,X 可能取值为0,1,2,3,4.P(X=0)=C24C29=16,P(X=1)=C13C14C29=13,P(X=2)=C14C12+C23C29=1136,P(X=3)=C12C13C29=16,P(X=4)=C22C29=136.故X的分布列为(2)E(X)=0×16+1×13+2×1136+3×16+4×136=149.课时分层作业(十四)离散型随机变量的均值(建议用时:60分钟)[基础达标练]一、选择题1.设随机变量X~B(40,p),且E(X)=16,则p等于()A.0.1 B.0.2C.0.3 D.0.4D[∵E(X)=16,∴40p=16,∴p=0.4.]2.今有两台独立工作在两地的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达台数为X,则E(X)为()A.0.765 B.1.75C.1.765 D.0.22B[X的取值为0,1,2,P(X=0)=0.1×0.15=0.015,P (X =1)=0.9×0.15+0.1×0.85=0.22, P (X =2)=0.9×0.85=0.765,E (X )=0×0.015+1×0.22+2×0.765=1.75.] 3.已知Y =5X +1,E (Y )=6,则E (X )的值为( ) A .65 B .5 C .1D .31C [因为E (Y )=E (5X +1)=5E (X )+1=6, 所以E (X )=1.]4.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400B [记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100,而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200,故选B.]5.口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,则取出的球的最大编号X 的期望为( )A.13B.23C.2D.83D [X =2,3.所以P (X =2)=1C 23=13,P (X =3)=C 12C 23=23,所以E (X )=2×13+3×23=83.]二、填空题6.篮球运动员在比赛中每次罚球命中得1分,不命中得0分.已知他命中的概率为0.8,则罚球一次得分X 的期望是________.0.8 [因为P (X =1)=0.8,P (X =0)=0.2,所以E (X )=1×0.8+0×0.2=0.8.] 7.某射手射击所得环数X 的分布列如下:已知X 的均值E (X )=8.9,则y 的值为________. 0.4 [由题意得⎩⎨⎧x +0.1+0.3+y =1,7x +0.8+2.7+10y =8.9,即⎩⎨⎧ x +y =0.6,7x +10y =5.4,解得⎩⎨⎧x =0.2,y =0.4.] 8.对某个数学题,甲解出的概率为23,乙解出的概率为34,两人独立解题.记X 为解出该题的人数,则E (X )=________.1712 [由已知得X 的可能取值为0,1,2. P (X =0)=13×14=112, P (X =1)=23×14+13×34=512,P (X =2)=23×34=612,E (X )=0×112+1×512+2×612=1712.] 三、解答题9.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.若厂家发给商家20件产品,其中有3件不合格.按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数X 的分布列及均值E (X ).[解] X 可能的取值为0,1,2.P (X =0)=C 217C 220=136190,P (X =1)=C 13C 117C 220=51190,P (X =2)=C 23C 220=3190.∴X 的分布列为:E(X)=0×136190+1×51190+2×3190=310.10.端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与均值.[解](1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)=C12C13C15C310=14.(2)X的所有可能取值为0,1,2,且P(X=0)=C38C310=715,P(X=1)=C12C28C310=715,P(X=2)=C22C18C310=115.综上知,X的分布列为故E(X)=0×715+1×715+2×115=35.[能力提升练]1.某船队若出海后天气好,可获得5 000元;若出海后天气坏,将损失2 000元;若不出海也要损失1 000元.根据预测知天气好的概率为0.6,则出海的期望效益是()A.2 000元B.2 200元C.2 400元D.2 600元B[出海的期望效益E(ξ)=5 000×0.6+(1-0.6)×(-2 000)=3 000-800=2 200(元).]2.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值范围是()A.⎝ ⎛⎭⎪⎫0,712 B.⎝ ⎛⎭⎪⎫0,12 C.⎝ ⎛⎭⎪⎫712,1 D.⎝ ⎛⎭⎪⎫12,1 B [根据题意,X 的所有可能取值为1,2,3,且P (X =1)=p ,P (X =2)=p (1-p ),P (X =3)=(1-p )2,则E (X )=p +2p (1-p )+3(1-p )2=p 2-3p +3,依题意有E (X )>1.75,则p 2-3p +3>1.75,解得p >52或p <12,结合p 的实际意义,可得0<p <12,即p ∈⎝ ⎛⎭⎪⎫0,12.]3.把两封信投入A ,B ,C 三个空邮箱中,则A 邮箱中的信件数X 的均值E (X )=________.23[每封信投到A 邮箱的概率均为13, X ~B ⎝ ⎛⎭⎪⎫2,13,∴E (X )=23.]4.某人有10万元,准备用于投资房地产或购买股票,如果根据下面的盈利表进行决策:那么应选择的决策方案是________.投资房地产 [设购买股票的盈利为X ,投资房地产的盈利为Y , 则购买股票的盈利的均值为 E (X )=10×0.3+3×0.5+(-5)×0.2 =3+1.5-1=3.5.投资房地产的盈利的均值为 E (Y )=8×0.3+4×0.5+(-4)×0.2=2.4+2-0.8=3.6.因为E(Y)>E(X),所以投资房地产的平均盈利高,即应选择投资房地产.] 5.某商场为刺激消费,拟按以下方案进行促销:顾客消费每满500元便得到抽奖券1张,每张抽奖券的中奖概率为12,若中奖,则商场返回顾客现金100元.某顾客现购买价格为2 300元的台式电脑一台,得到奖券4张.每次抽奖互不影响.(1)设该顾客抽奖后中奖的奖券张数为ξ,求ξ的分布列;(2)设该顾客购买台式电脑的实际支出为η(单位:元),用ξ表示η,并求η的数学期望.[解](1)∵每张奖券是否中奖是相互独立的,∴ξ~B(4,1 2).∴ξ的分布列为ξ0123 4P 116143814116(2)∵ξ~B(4,12),∴E(ξ)=4×12=2.又由题意可知η=2 300-100ξ,∴E(η)=E(2 300-100ξ)=2 300-100E(ξ)=2 300-100×2=2 100. 即实际支出的数学期望为2 100元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3离散型随机变量的均值与方差2.3.1离散型随机变量的均值1.理解离散型随机变量的均值的意义和性质,会根据离散型随机变量的分布列求出均值.(重点)2.掌握两点分布、二项分布的均值.(重点)3.会利用离散型随机变量的均值解决一些相关的实际问题.(难点)[基础·初探]教材整理1离散型随机变量的均值阅读教材P60~P61例1,完成下列问题.1.定义:若离散型随机变量X的分布列为:则称E(=x1p1+x2p2+…+x i p i+…+x n p n为随机变量2.意义:它反映了离散型随机变量取值的平均水平.3.性质:如果X为(离散型)随机变量,则Y=aX+b(其中a,b为常数)也是随机变量,且P(Y=ax i+b)=P(X=x i),i=1,2,3,…,n.E(Y)=E(aX+b)=aE(X)+b.1.下列说法正确的有________.(填序号)①随机变量X的数学期望E(X)是个变量,其随X的变化而变化;②随机变量的均值反映样本的平均水平;③若随机变量X 的数学期望E (X )=2,则E (2X )=4; ④随机变量X 的均值E (X )=x 1+x 2+…+x nn.【解析】 ①错误,随机变量的数学期望E (X )是个常量,是随机变量X 本身固有的一个数字特征.②错误,随机变量的均值反映随机变量取值的平均水平.③正确,由均值的性质可知.④错误,因为E (X )=x 1p 1+x 2p 2+…+x n p n .【答案】 ③2.已知离散型随机变量X 的分布列为:则X 的数学期望E (【解析】 E (X )=1×35+2×310+3×110=32. 【答案】 323.设E (X )=10,则E (3X +5)=________. 【解析】 E (3X +5)=3E (X )+5=3×10+5=35. 【答案】 35教材整理2 两点分布与二项分布的均值 阅读教材P 62~P 63,完成下列问题. 1.两点分布和二项分布的均值 (1)若X 服从两点分布,则E (X )=p ; (2)若X ~B (n ,p ),则E (X )=np . 2.随机变量的均值与样本平均值的关系随机变量的均值是一个常数,它不依赖于样本的抽取,而样本的平均值是一个随机变量,它随样本抽取的不同而变化.对于简单随机样本,随着样本容量的增加,样本的平均值越来越接近于总体的均值.1.若随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫4,13,则E (X )的值为________.【导学号:29472067】【解析】 E (X )=np =4×13=43. 【答案】 432.篮球运动员在比赛中每次罚球命中得1分,不命中得0分.已知他命中的概率为0.8,则罚球一次得分X 的期望是________.【解析】 因为P (X =1)=0.8,P (X =0)=0.2,所以E (X )=1×0.8+0×0.2=0.8.【答案】 0.83.袋中装有6个红球,4个白球,从中任取1个球,记下颜色后再放回,连续摸取4次,设X 是取得红球的次数, 则E (X )=________.【解析】 每一次摸得红球的概率为610=35,由X ~B ⎝ ⎛⎭⎪⎫4,35,则E (X )=4×35=125.【答案】 125[小组合作型]两点分布与二项分布的均值某运动员投篮命中率为p =0.6.(1)求投篮1次时命中次数X 的数学期望; (2)求重复5次投篮时,命中次数Y 的数学期望.【精彩点拨】 (1)利用两点分布求解.(2)利用二项分布的数学期望公式求解.【自主解答】 (1)投篮1次,命中次数X 的分布列如下表:则E(X)=0.6.(2)由题意,重复5次投篮,命中的次数Y服从二项分布,即Y~B(5,0.6),则E(Y)=np=5×0.6=3.1.常见的两种分布的均值设p为一次试验中成功的概率,则(1)两点分布E(X)=p;(2)二项分布E(X)=np.熟练应用上述公式可大大减少运算量,提高解题速度.2.两点分布与二项分布辨析(1)相同点:一次试验中要么发生要么不发生.(2)不同点:①随机变量的取值不同,两点分布随机变量的取值为0,1,二项分布中随机变量的取值x=0,1,2,…,n.②试验次数不同,两点分布一般只有一次试验;二项分布则进行n次试验.[再练一题]1.某种种子每粒发芽的概率为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,每个坑至多补种一次,补种的种子数记为X,则X的数学期望为()A.100B.200C.300 D.400【解析】由题意可知,补种的种子数记为X,X服从二项分布,即X~B(1 000,0.1),所以不发芽种子的数学期望为1 000×0.1=100.所以补种的种子数的数学期望为2×100=200.【答案】 B离散型随机变量的均值公式及性质已知随机变量X 的分布列如下:(1)求m (2)求E (X );(3)若Y =2X -3,求E (Y ).【精彩点拨】 (1)利用分布列的性质求m ; (2)利用离散型随机变量的均值公式求解; (3)利用离散型随机变量均值的性质求解.【自主解答】 (1)由随机变量分布列的性质,得14+13+15+m +120=1, 解得m =16.(2)E (X )=(-2)×14+(-1)×13+0×15+1×16+2×120=-1730. (3)法一:由公式E (aX +b )=aE (X )+b ,得E (Y )= E (2X -3)=2E (X )-3=2×⎝ ⎛⎭⎪⎫-1730-3=-6215. 法二:由于Y =2X -3,所以Y 的分布列如下:所以E (Y )=(-7)×14+(-5)×13+(-3)×15+(-1)×16+1×120=-6215.1.该类题目属于已知离散型分布列求均值,求解方法是直接套用公式,E (X )=x 1p 1+x 2p 2+…+x n p n 求解.2.对于aX +b 型的随机变量,可利用均值的性质求解,即E (aX +b )=aE (X )+b ;也可以先列出aX +b 的分布列,再用均值公式求解,比较两种方式显然前者较方便.[再练一题]2.已知随机变量ξ的分布列为若η=aξ+3,E(η)=73,则a=()A.1 B.2 C.3 D.4【解析】由分布列的性质得12+13+m=1,所以m=16.所以E(ξ)=-1×12+0×13+1×16=-13.所以E(η)=E(aξ+3)=aE(ξ)+3=-13a+3=73,得a=2.【答案】 B求离散型随机变量的均值在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率;(2)甲、乙两单位之间的演出单位个数ξ的分布列与均值.【导学号:29472068】【精彩点拨】(1)可先求“甲乙两单位的演出序号至少有一个为奇数”的对立事件的概率;(2)先求出ξ的取值及每个取值的概率,然后求其分布列和均值.【自主解答】只考虑甲、乙两单位的相对位置,故可用组合计算基本事件数.(1)设A表示“甲、乙的演出序号至少有一个为奇数”,则A表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式得P (A )=1-P (A )=1-C 23C 26=1-15=45.(2)ξ的所有可能取值为0,1,2,3,4,且P (ξ=0)=5C 26=13,P (ξ=1)=4C 26=415,P (ξ=2)=3C 26=15,P (ξ=3)=2C 26=215,P (ξ=4)=1C 26=115.从而知ξ的分布列为所以E (ξ)=0×13+1×415+2×15+3×215+4×115=43.求离散型随机变量ξ的均值的步骤1.根据ξ的实际意义,写出ξ的全部取值. 2.求出ξ的每个值的概率. 3.写出ξ的分布列. 4.利用定义求出均值.其中第(1)、(2)两条是解答此类题目的关键,在求解过程中应注重分析概率的相关知识.[再练一题]3.盒中装有5节同牌号的五号电池,其中混有两节废电池.现在无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数X 的分布列及均值.【解】 X 可取的值为1,2,3, 则P (X =1)=35,P (X =2)=25×34=310, P (X =3)=25×14×1=110.抽取次数X的分布列为E(X)=1×35+2×310+3×110=32.[探究共研型]离散型随机变量的均值实际应用探究1某篮球明星罚球命中率为0.7,罚球命中得1分,不中得0分,则他罚球一次的得分X可以取哪些值?X取每个值时的概率是多少?【提示】随机变量X可能取值为0,1.X取每个值的概率分别为P(X=0)=0.3,P(X=1)=0.7.探究2在探究1中,若该球星在一场比赛中共罚球10次,命中8次,那么他平均每次罚球得分是多少?【提示】每次平均得分为810=0.8.探究3在探究1中,你能求出在他参加的各场比赛中,罚球一次得分大约是多少吗?为什么?【提示】在球星的各场比赛中,罚球一次的得分大约为0×0.3+1×0.7=0.7(分).因为在该球星参加各场比赛中平均罚球一次的得分只能用随机变量X的数学期望来描述他总体得分的平均水平.具体到每一场比赛罚球一次的平均得分应该是非常接近X的均值的一个分数.随机抽取某厂的某种产品200件,经质检,其中一等品126件,二等品50件,三等品20件,次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:元)为X.(1)求X的分布列;(2)求1件产品的平均利润(即X的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%,如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?【自主解答】 (1)X 的所有可能取值有6,2,1,-2. P (X =6)=126200=0.63,P (X =2)=50200=0.25,P (X =1)=20200=0.1, P (X =-2)=4200=0.02. 故X 的分布列为:(2)E (X )(3)设技术革新后的三等品率为x ,则此时1件产品的平均利润为 E (X )=6×0.7+2×(1-0.7-0.01-x )+1×x +(-2)×0.01 =4.76-x (0≤x ≤0.29).依题意,E (X )≥4.73,即4.76-x ≥4.73, 解得x ≤0.03,所以三等品率最多为3%.1.实际问题中的均值问题均值在实际生活中有着广泛的应用,如对体育比赛的成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益的预测等方面,都可以通过随机变量的均值来进行估计.2.概率模型的三个解答步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的分布列,计算随机变量的均值.(3)对照实际意义,回答概率,均值等所表示的结论.[再练一题]4.甲、乙两人各自独立破译某个密码,甲破译出密码的概率是23,乙破译出密码的概率是45,设破译出该密码的人数为X ,求其数学期望.【解】 设A 、B 分别为甲、乙破译出该密码的事件,X 的可能取值是0,1,2. P (X =0)=P (A ·B )=P (A )·P (B ) =⎝ ⎛⎭⎪⎫1-23⎝ ⎛⎭⎪⎫1-45=115; P (X =1)=P (A ·B )+P (A ·B ) =23×⎝ ⎛⎭⎪⎫1-45+⎝ ⎛⎭⎪⎫1-23×45=25;P (X =2)=P (AB )=P (A )·P (B )=23×45=815. 所以X 的分布列是因此E (X )=0×115+1×25+2×815=2215.1.某一供电网络,有n 个用电单位,每个单位在一天中使用电的机会是p ,供电网络中一天平均用电的单位个数是( )A .np (1-p )B .npC .nD .p (1-p )【解析】 依题意知,用电单位X ~B (n ,p ),所以E (X )=np . 【答案】 B2.设随机变量X 的分布列为P (X =k )=14,k =1,2,3,4,则E (X )的值为( )A .2.5B .3.5C .0.25D .2【解析】 E (X )=1×14+2×14+3×14+4×14=2.5. 【答案】 A3.某射手射击所得环数ξ的分布列如下:已知ξ的均值【解析】 依题意得⎩⎨⎧x +0.1+0.3+y =1,7x +0.8+2.7+10y =8.9,即⎩⎨⎧x +y =0.6,7x +10y =5.4,解得y =0.4. 【答案】 0.44.已知X ~B ⎝ ⎛⎭⎪⎫100,12,则E (2X +3)=________.【解析】 E (X )=100×12=50,E (2X +3)=2E (X )+3=103.【答案】 1035.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到1个黑球记0分,每取到1个白球记1分,每取到1个红球记2分,用X 表示取得的分数.求:(1)X 的分布列; (2)X 的均值.【解】 (1)由题意知,X 可能取值为0,1,2,3,4.P (X =0)=C 24C 29=16,P (X =1)=C 13C 14C 29=13,P (X =2)=C 14C 12+C 23C 29=1136, P (X =3)=C 12C 13C 29=16,P(X=4)=C22C29=136.故X的分布列为(2)E(X)=0×16+1×13+2×1136+3×16+4×136=149.。