高二数学期末考试卷.docx

合集下载

高二第二学期期末考试数学试题含答案(word版)

高二第二学期期末考试数学试题含答案(word版)

高二年级第二学期期末考试数学试题一、选择题(每小题5分,共50分)1.在用数学归纳法证明:“凸多边形内角和为π)2(-n ”时,第一步验证的n 等于( ) A .1 B .3 C .5 D .7 2.欧拉公式x i x e ix sin cos +=(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。

根据欧拉公式可知,i e 32π表示的复数位于复平面中的( ) A .第一象限B .第二象限C .第三象限D .第四象限3.用反证法证明:“实数z y x ,,中至少有一个不大于0”时,反设正确的是( ) A .z y x ,,中有一个大于0 B .z y x ,,都不大于0 C .z y x ,,都大于0 D .z y x ,,中有一个不大于0 4.设随机变量),(~p n B X ,且 1.6Ex =,0.96Dx =,则( )A .0.4p 4,n ==B .0.2p 8,n ==C .0.32p 5,n ==D .0.45p 7,n == 5.曲线)20(sin π≤≤=x x y 与x 轴所围成的封闭图形的面积为 ( ) A .2B .π2C .πD .46.已知函数x e x f x ln )(2⋅=,)(x f '为)(x f 的导函数,则)1(f '的值为( ) A .0 B .1C .eD .2e7.给出定义:设)(x f '是函数)(x f y =的导函数,)(x f ''是函数)(x f '的导函数,若方程0)(=''x f 有实数解0x ,则称点))(,(00x f x 为函数)(x f y =的“拐点”.已知函数x x x x f cos sin 3)(-+=的拐点是))(,(00x f x ,则=0tan x ( ) A .21 B .22C .23 D .18.魏晋时期数学家刘徽首创割圆术,他在《九章算术》中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体,而无所失矣”.这是一种无限与有限的转化过程,比如在正数Λ++112112中的“…”代表无限次重复,设Λ++=112112x ,则可以利用方程x x +=112求得x ,类似地可得到正数Λ333=( ) A .2 B .3 C .4 D .69.已知6)(x xa -展开式的常数项为15,则=a ( )A .1±B .0C .1D .-110.某地区高考改革,实行“3+2+1”模式,即“3”指语文、数学、外语三门必考科目,“1”指在物理、历史两门科目中必选一门,“2”指在化学、生物、政治、地理以及除了必选一门以外的历史或物理这五门学科中任意选择两门学科,则一名学生的不同选科组合有( ) A .8种 B .12种 C .16种 D .20种二、填空题(每小题5分,共20分)11.设随机变量X 的概率分布列如下图,则==-)12(x P __. 12.曲线1)(+=x xe x f 在点))0(,0(f 处的切线方程为_____. 13.复数z 满足12=+-i z ,则z 的最小值是___________.14.椭圆1422=+y x 绕x 轴旋转一周所得的旋转体的体积为 .三、解答题(每小题10分,共50分)15.已知复数i iaz ++=1,其中i 为虚数单位,R a ∈. (1)若R z ∈,求实数a 的值;(2)若z 在复平面内对应的点位于第一象限,求实数a 的取值范围.16.用数学归纳法证明:当*N n ∈时,21223+++n n 能被7整除.17.近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重. 大气污染可引起心悸、呼吸困难等心肺疾病。

高二下学期期末考试数学试卷与答案解析(共四套)

高二下学期期末考试数学试卷与答案解析(共四套)

高二下学期期末考试数学试卷(一)注意事项:1.本试卷共22题。

全卷满分150分。

考试用时120分钟。

2.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

3.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知各项为正数的等比数列{a n}中,a2=1,a4a6=64,则公比q=()A.4 B.3 C.2 D.2.从4种不同的书中买3本送给3名同学,每人各1本,不同的送法共有()A.4种B.12种C.24种D.64种3.直线与曲线相切,则b的值为()A.﹣2 B.﹣1 C.D.14.若函数f(x)=alnx﹣x2+5x在(1,3)内无极值点,则实数a的取值范围是()A.(﹣,3)B.(﹣∞,﹣)C.[3,+∞)D.(﹣∞,﹣]∪[3,+∞)5.已知集合A={1,2,3,4},B={1,2,3,4,5},从集合A中任取3个不同的元素,其中最小的元素用a表示,从集合B中任取3个不同的元素,其中最大的元素用b表示,记X=b﹣a,则随机变量X的期望为()A.B.C.3 D.46.在二项式(x﹣2y)6的展开式中,设二项式系数和为A,各项系数和为B,x的奇次幂项的系数和为C,则=()A.﹣B.C.﹣D.7.已知x与y之间的几组数据如表:x 1 2 3 4y 1 m n 4如表数据中y的平均值为2.5,若某同学对m赋了三个值分别为1.5,2,2.5,得到三条线性回归直线方程分别为y=b1x+a1,y=b2x+a2,y=b3x+a3,对应的相关系数分别为r1,r2,r3,下列结论中错误的是()参考公式:线性回归方程y=中,其中,.相关系数r=.A.三条回归直线有共同交点B.相关系数中,r2最大C.b1>b2D.a1>a28.已知数列{a n}:,,,,,,,,,,,,,…(其中第一项是,接下来的22﹣1项是,,再接下来的23﹣1项是,,,,,,,依此类推.)的前n项和为S n,下列判断:①是{a n}的第2036项;②存在常数M,使得S n<M恒成立;③S2036=1018;④满足不等式S n>1019的正整数n的最小值是2100.其中正确的序号是()A.①②③B.①②④C.①③④D.②③④二、多选题:本题共4小题,每小题5分,共20分。

高二下学期期末数学考试试卷含答案(共5套)

高二下学期期末数学考试试卷含答案(共5套)

i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。

高二学年期末考试数学试卷

高二学年期末考试数学试卷

考试时间:120分钟满分:100分一、选择题(本大题共10小题,每小题5分,共50分。

每小题只有一个选项符合题意,请将正确选项的字母填写在答题卡上。

)1. 若函数f(x) = x^2 - 2ax + 1在区间[1, 2]上单调递减,则a的取值范围是:A. a ≤ 1B. a ≥ 2C. a ≤ 2D. a ≥ 12. 已知向量a = (1, 2),向量b = (2, -1),则向量a与向量b的夹角θ的余弦值为:A. 1/5B. 2/5C. 3/5D. 4/53. 函数y = log2(x - 1)的图像经过点(3, 2),则该函数的图像还经过:A. (2, 1)B. (4, 3)C. (5, 2)D. (6, 3)4. 若等差数列{an}的首项a1 = 3,公差d = 2,则前n项和Sn = 15的n值为:A. 3B. 4C. 5D. 65. 圆C的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则圆C的半径为:A. 1B. 2C. 3D. 46. 已知函数f(x) = x^3 - 3x^2 + 4x - 1,则f(x)的图像在x轴上有一个零点,则f(x)的图像还经过:A. (1, 0)B. (2, 0)C. (3, 0)D. (4, 0)7. 若等比数列{bn}的首项b1 = 1,公比q = 2,则第n项bn = 16的n值为:A. 3B. 4C. 5D. 68. 已知函数f(x) = (x - 1)^2 - 2(x - 1) + 1,则f(x)的图像关于直线x = 1对称,则f(x)的图像还经过:A. (0, 0)B. (1, 0)C. (2, 0)D. (3, 0)9. 圆O的方程为x^2 + y^2 = 4,圆P的方程为(x - 1)^2 + (y - 1)^2 = 1,则圆O与圆P的公共弦所在直线的方程为:A. x + y = 2B. x + y = 3C. x + y = 4D. x + y = 510. 若函数f(x) = |x - 2| + |x + 1|,则f(x)的最小值为:A. 1B. 2C. 3D. 4二、填空题(本大题共5小题,每小题5分,共25分。

高二数学下学期期末考试试卷含答案(共3套)

高二数学下学期期末考试试卷含答案(共3套)

高二年级下学期期末考试数学试卷(考试时间:120分钟;满分:150分)一、选择题(本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设103iZ i=+,则Z 的共轭复数为( ) A .13i -+ B .13i -- C .13i + D .13i -2.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A .144 B .120 C .72 D .243.已知(1,21,0),(2,,),a t t b t t b a =--=-则的最小值是( )A B C D4.已知正三棱锥P ABC -的外接球O 的半径为1,且满足0,OA OB OC ++=则正三棱锥的体积为( )A .4 B .34C .2D .4 5.已知函数(),1,x xf x a b e=-<<且则( ) A .()()f a f b = B .()()f a f b <C .()()f a f b >D .()()f a f b ,大小关系不能确定 6.若随机变量~(,),X B n p 且()6,()3,(1)E X D X P X ===则的值为( ) A .232-• B .42- C .1032-• D .82-7.已知10件产品有2件是次品.为保证使2件次品全部检验出的概率超过0.6,至少应抽取作检验的产品件数为( )A .6B .7C .8D .98.若2211S x dx =⎰,2211S dx x =⎰,231x S e dx =⎰,则123,,S S S 的大小关系为( )A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<9.平面内有n 条直线,最多可将平面分成()f n 个区域,则()f n 的表达式为( )A .1n +B .2nC .222n n ++ D .21n n ++10.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m =( )A .5B .6C .7D .811.已知一系列样本点(,)i i x y (1,2,3,i =…,)n 的回归直线方程为ˆ2,yx a =+若样本点(,1)(1,)r s 与的残差相同,则有( )A .r s =B .2s r =C .23s r =-+D .21s r =+12.设点P 在曲线12x y e =上,点Q 在曲线(2)y ln x =上,则PQ 的最小值为( )A .12ln - B2)ln - C .12ln + D2)ln + 二、填空题(本大题共4小题,每小题5分,共20分)13.已知复数5()12iz i i =+是虚数单位,则z =__________;14.直线21cos ρθ=与圆2cos ρθ=相交的弦长为__________; 15.二项式822x y 的展开式中,的系数为__________; 16.已知11()123f n =+++…*15(),(4)2,(8),(16)32n N f f f n +∈>>>经计算得,7(32),2f >则有__________(填上合情推理得到的式子).三、解答题(本大题共6小题,17小题10分, 18-22题每小题12分,共70分;解答应写出文字说明、证明过程或演算步骤)17.已知曲线C 的极坐标方程是2()3cos πρθ=+,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是1,()2x t t y =--⎧⎪⎨=+⎪⎩是参数,设点(1,2)P -. (Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,将直线l 的参数方程化为普通方程; (Ⅱ)设直线l 与曲线C 相交于,M N 两点,求PM PN •的值.18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽列联表:已知从该班随机抽取1人为喜欢的概率是3.(Ⅰ)请完成上面的22⨯列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++(参考公式:其中)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设123,,a a a 分别表示甲,乙,丙3个盒中的球数. (Ⅰ)求1232,1,0a a a ===的概率;(Ⅱ)记12,a a ξ=+求随机变量ξ的概率分布列和数学期望.20.已知数列1111{},,21n n nx x x x +==+满足 其中n N *∈ . (Ⅰ)写出数列{}n x 的前6项;(Ⅱ)猜想数列2{}n x 的单调性,并证明你的结论.21.如图,四棱锥P ABCD -中,底面ABCD 是梯形,//AD BC ,,AD BC >090BAD ∠=,,,PA ABCD PA AB ⊥=底面点E PB 是的中点. (Ⅰ)证明:PC AE ⊥;(Ⅱ)若1,3,AB AD PA ==且与平面PCD 所成角的大小为045,求二面角A PD C --的正弦值.22.已知函数(),()()ln xg x f x g x ax x==-. (Ⅰ)求函数()g x 的单调区间;(Ⅱ)若函数()f x 在()1,a +∞上是减函数,求实数的最小值;(Ⅲ)若21212,[,],()()(0)x x e e f x f x a a '∃∈≤+>使成立,求实数a 的取值范围.下学期高二年级期末考试数学参考答案一、选择题二、填空题13.14. 15.70 16.*2(2)(2,)2n n f n n N +>≥∈ 三、解答题17.解:(Ⅰ) 曲线C 的极坐标方程化为直角坐标方程为:22x y x +=- ,即221()(122xy -++= ;直线l 20y ++= .(Ⅱ) 直线l 的参数方程化为标准形式为11,2()22x m m y m ⎧=--⎪⎪⎨⎪=+⎪⎩是参数,①将①式代入22x y x +=,得:23)60m m +++= ,②由题意得方程②有两个不同的根,设12,m m 是方程②的两个根,由直线参数方程的几何意义知:12PM PN m m •=•=6+. (Ⅱ)根据列联表数据,得到2260(1422618) 3.348 2.706,32282040K ⨯-⨯=≈>⨯⨯⨯ 所以有90%的可靠性认为“喜欢与否和学生性别有关”.19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为111,,632.(Ⅰ) 由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,121233111(2,1,0)()()6336p p a a a C ====== .(Ⅱ) 由题意知,ξ可能的取值是0,1,2,3 .1231(0)(0,0,3),8p p a a a ξ======12121231233311113(1)(0,1,2)(1,0,2)()()()()32628p p a a a p a a a C C ξ=====+====+=123123123(2)(2,0,1)(1,1,1)(0,2,1)p p a a a p a a a p a a a ξ=====+===+===1231233311111113()()()()()()()62632328C A C =++=123123123(3)(0,3,0)(1,2,0)(2,1,0)p p a a a p a a a p a a a ξ=====+===+===+1231(3,0,0)8p a a a ====.故ξ的分布列为:期望()012388882E ξ=⨯+⨯+⨯+⨯= .20.解:(Ⅰ)由121112,213x x x ===+得; 由232213,315x x x ===+得; 由343315,518x x x ===+得; 由454518,8113x x x ===+得; 由5658113,13121x x x ===+得; (Ⅱ)由(Ⅰ)知246,x x x >>猜想:数列2{}n x 是递减数列. 下面用数学归纳法证明:①当1n =时,已证命题成立;②假设当n k =时命题成立,即222k k x x +>. 易知20k x >,当1n k =+时,2224k k x x ++- 21231111k k x x ++=-++23212123(1)(1)k k k k x x x x ++++-=++22222122230(1)(1)(1)(1)k k k k k k x x x x x x ++++-=>++++即2(1)2(1)2k k x x +++>.也就是说,当1n k =+时命题也成立.根据①②可知,猜想对任何正整数n 都成立.21. 解:解法一(向量法):建立空间直角坐标系A xyz -,如图所示.根据题设,可设(,0,0),(0,,0),(0,0,),(,,0)D a B b P b C c b , (Ⅰ)证明:0,,22b b AE ⎛⎫= ⎪⎝⎭,(,,)PC c b b =-, 所以0()022bb AE PCc b b ⋅=⨯+⋅+⋅-=, 所以AE PC ⊥,所以PC AE ⊥.(Ⅱ)解:由已知,平面PAD 的一个法向量为(0,1,0)AB =. 设平面PCD 的法向量为(,,)m x y z =, 由0,0,m PC m PD ⎧⋅=⎪⎨⋅=⎪⎩即0,00,cx y z y z +-=⎧⎪+⋅-=令1z =,得11m ⎫=⎪⎭.而(0,0,1)AP =,依题意PA 与平面PCD 所成角的大小为45︒,所以||sin 45||||m AP m AP ⋅︒==,即=,解得32BC c =(32BC c ==去),所以2133m ⎛⎫=⎪⎪⎭. 设二面角A PD C --的大小为θ,则233cos ||||12133m ABm AB θ⋅===++, 所以6sin θ,所以二面角A PD C --的正弦值为6. 解法二(几何法):(Ⅰ)证明:因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以BC PA ⊥. 又由ABCD 是梯形,AD BC ∥,90BAD ∠=︒,知BC AB ⊥,而AB AP A =,AB ⊂平面PAB ,AP ⊂平面PAB ,所以BC ⊥平面PAB . 因为AE ⊂平面PAB ,所以AE BC ⊥.又PA AB =,点E 是PB 的中点,所以AE PB ⊥.因为PB BC B =,PB ⊂平面PBC ,BC ⊂平面PBC ,所以AE ⊥平面PBC . 因为PC ⊂平面PBC ,所以AE PC ⊥. (Ⅱ)解:如图4所示,过A 作AF CD ⊥于F ,连接PF , 因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD PA ⊥,则CD ⊥平面PAF ,于是平面PAF ⊥平面PCD ,它们的交线是PF . 过A 作AG PF ⊥于G ,则AG ⊥平面PCD , 即PA 在平面PCD 上的射影是PG ,所以PA 与平面PCD 所成的角是APF ∠.由题意,45APF ∠=︒. 在直角三角形APF 中,1PA AF ==,于是2AG PG FG ===. 在直角三角形ADF 中,3AD ,所以2DF = 方法一:设二面角A PD C --的大小为θ, 则2232cos 13PDG APDS PG DF S PA AD θ⋅===⋅⨯△△,所以sin θ,所以二面角A PD C --方法二:过G 作GH PD ⊥于H ,连接AH ,由三垂线定理,得AH PD ⊥,所以AHG ∠为二面角A PD C --的平面角, 在直角三角形APD中,2PD =,PA AD AH PD ⋅===. 在直角三角形AGH中,sin AG AHG AH ∠===, 所以二面角A PD C --22.解:由已知,函数()g x ,()f x 的定义域为(0,1)(1,),+∞ 且()ln xf x ax x=-. (Ⅰ)函数221ln ln 1()(ln )(ln )x x x x g x x x -⋅-'==, 当01()0x e x g x '<<≠<且时,;当()0x e g x '>>时,.所以函数()g x 的单调减区间是(0,1),(1,),()e e +∞增区间是,. (Ⅱ)因()f x 在(1,)+∞上为减函数,故2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立. 所以当(1,)x ∈+∞时,max ()0f x '≤. 又222ln 111111()()(),(ln )ln ln ln 24x f x a a a x x x x -'=-=-+-=--+- 故当11,ln 2x =即2x e =时,max 1()4f x a '=-. 所以1110,,444a a a -≤≥于是故的最小值为.(Ⅲ)命题“若21212,[,],()()x x e e f x f x a '∃∈≤+使成立”等价于 “当2min max [,],()()x e e f x f x a '∈≤+时有” . 由(Ⅱ)知,当2max max 11[,],(),()44x e e f x a f x a ''∈=-∴+=时有.问题等价于:“2min 1[,],()4x e e f x ∈≤当时有” .① 当14a ≥时,由(Ⅱ)知,2()[,]f x e e 在上为减函数,则222min2111()(),2424e f x f e ae a e==-≤≥-故 .②当104a <<时,由于2111()()ln 24f x a x '=--+-在2[,]e e 上为增函数,故21()(),(),4f x f e f e a a '''的值域为[],即[--] .由()f x '的单调性和值域知,200,,()0x e e f x '∃∈=唯一()使,且满足:当0,,()0,()x e x f x f x '∈<()时为减函数; 当20,,()0,()x x e f x f x '∈>()时为增函数; 所以,20min 00001()(),(,)ln 4x f x f x ax x e e x ==-≤∈ . 所以,2001111111,ln 4ln 4244a x x e e ≥->->-= 与104a <<矛盾,不合题意. 综上,得21124a e ≥-.高二年级第二学期期末考试数学试题一、选择题(每小题5分,共50分)1.已知集合{}322+<=x x x M ,{}2<=x x N ,则=⋂N M ( )A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式x i x e ix sin cos +=(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。

高二下学期期末考试数学试卷Word版含答案

高二下学期期末考试数学试卷Word版含答案

数学试卷时量:120分钟 满分:150分一选择题(本大题共12小题,每小题5分,共60分)1若复数)21(i i z +=,则复数z 的共轭复数在复平面上所对应的点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2一个年级有10个班级,每个班级学生从1到48号编排,为了交流学习经验.要求每班编号为28的同学留下进行交流,这里运用的是( )A .分层抽样B .抽签法C .系统抽样D .随机数表法3椭圆1162522=+y x 的离心率为( )53A 54B 34C 43D4已知),4(~2σN X ,且p X P =≤)2(,则)()6(=≤X Pp A p B 21- 21pC - PD -15任取实数],8,2[-∈x 则所取x 满足不等式0652≤+-x x 的概率为( ) A81 B 91 C 101 D 1116已知6)(xa x +的展开式中含 2x 项的系数为12,则a 为( )A 1B 2C 3D 47若一组数据54321,,,,x x x x x 的平均数为5,方差为2,则32,32,32321---x x x32,3254--x x 的平均数和方差分别为( )A7,-1 B7,1 C7,2 D7,8 8以下关于独立性检验的说法中, 错误的是( ) A .独立性检验依赖于小概率原理 B .独立性检验得到的结论一定准确 C .样本不同,独立性检验的结论可能有差异 D .独立性检验不是判断两事物是否相关的唯一方法9 “b a 33>”是“b a ln ln >”的( )10已知平面α的一个法向量为)1,2,2(=n ,点)0,3,1(-A 在平面α内,则点)3,1,2(P 到平面α的距离为( )A .35 B . 34 C. 1 D.3211设21,F F 为双曲线1422=-y x 的两焦点,P 在双曲线上,且 9021=∠PF F , 则21PF F ∆面积为( ) A 、1 B 、25C 、2D 、5 12在正方体1111ABCD A B C D -中,O 为BD AC ,的交点,则O C 1与D A 1所成角 的余弦值为( ) A.0B.21 C.63D.33 二、填空题(大题共4小题,每小题5分,共20分)13命题“0832,3≤--∈∀x x R x ”的否定是__________________________14学校要从7名男生和3名女生中选出3人作为上海世博会志愿者,若用 随机变量ξ表示选出的志愿者中女生的人数,则数学期望______)(=ξE (结果用最简分数表示)15小苏,小龙,小陈,小钟,小欧,小刘六个人从左至右排成一行合影留念,小苏不站最左端,小龙不站最右端,则不同的排法共有__________种16过抛物线x y 162=的焦点F 作倾斜角为ο30的直线交抛物线于B A ,两点,O 为坐标原点,则AOB ∆的面积为______________温馨提示:请把所有试题答案转涂或转写在答案卡上,题号应一一对应三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.) 17(10分)一个袋中装有大小形状相同的标号为1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中拿一个球(拿后放回袋中)记下标号,若拿出球的标号是奇数,则得1分,否则得0分.(1)求拿2次得分不小于1分的概率;(2)(2)拿4次所得分数ξ 的分布列和数学期望)(ξE18(12分)湖南省某示范性高中图书馆志愿者协会中,有高一志愿者6人,其中含3名男生,3名女生;有高二志愿者4人,其中含1名男生,3名女生。

(完整word版)高二数学期末考试试题及其答案

(完整word版)高二数学期末考试试题及其答案

禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷一、选择题:本大题共12个小题,每小题5分,共60分.1.(5分)已知集合M ={1,2,3},N ={2,3,4},则下列式子正确的是( ) A .M ⊆N B .N ⊆M C .M ∩N ={2,3} D .M ∪N ={1,4} 2.已知向量,则2等于( )A .(4,﹣5)B .(﹣4,5)C .(0,﹣1)D .(0,1)3.在区间(1,7)上任取一个数,这个数在区间(5,8)上的概率为( ) A .B .C .D .4.要得到函数y =sin (4x ﹣)的图象,只需将函数y =sin4x 的图象( ) A .向左平移单位 B .向右平移单位 C .向左平移单位D .向右平移单位5.已知两条直线m ,n ,两个平面α,β,给出下面四个命题: ①m ∥n ,m ⊥α⇒n ⊥α ②α∥β,m ⊂α,n ⊂β⇒m ∥n ③m ∥n ,m ∥α⇒n ∥α ④α∥β,m ∥n ,m ⊥α⇒n ⊥β 其中正确命题的序号是( ) A .①③ B .②④ C .①④ D .②③6.执行如图所以的程序框图,如果输入a =5,那么输出n =( ) A .2B .3C .4D .57.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,若求出关于的线性回归方程为,那么表中的值为 A . B . C . D . 8.已知f (x )=(x ﹣m )(x ﹣n )+2,并且α、β是方程f (x )=0的两根,则实数m ,n ,α,β的大小关系可能是( )A x y yx ˆ0.70.35yx =+t 3 3.15 3.5 4.5x 3456y 2.5t 4 4.5A.α<m<n<βB.m<α<β<n C.m<α<n<βD.α<m<β<n9.已知某锥体的三视图(单位:cm)如图所示,则该锥体的体积为()A.2cm3B.4cm3C.6cm3D.8cm310.在等腰△ABC中,∠BAC=90°,AB=AC=2,,,则的值为()A.B.C.D.11.已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时刻该蚂蚁距离三角形的三个顶点的距离均超过2的概率是()A.1﹣B.1﹣C.1﹣D.1﹣12.已知函数f(x)=,x1,x2,x3,x4,x5是方程f(x)=m的五个不等的实数根,则x1+x2+x3+x4+x5的取值范围是()A.(0,π)B.(﹣π,π)C.(lg π,1)D.(π,10)二、填空题(每题5分,满分20分)13.若直线2x+(m+1)y+4=0与直线mx+3y+4=0平行,则m=.14.已知=﹣1,则tanα=.15.若变量x、y满足约束条件,则z=x﹣2y的最大值为.16.已知函数()3,01,02+≥⎧⎪=⎨⎛⎫<⎪⎪⎝⎭⎩kkx xf xx ,若方程()()20f f x-=恰有三个实数根,则实数k的取值范围是三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,a,b,c分别为内角A,B,C的对边,2b sin B=(2a+c)sin A+(2c+a)sin C.(Ⅰ)求B的大小;(Ⅱ)若b=,A=,求△ABC的面积.18.已知:、、是同一平面上的三个向量,其中=(1,2).① 若||=2,且∥,求的坐标. ② 若||=,且+2与2-垂直,求与的夹角.19.设S n 是等差数列{a n}的前n 项和,已知S 3=6,a 4=4. (1)求数列{a n }的通项公式; (2)若b n =3﹣3,求证:++…+<.20为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表.(1)分别求出的值;a b c a c 5c a c b 25a b a b a b n y x b a ,,,(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.21.在三棱柱ABC﹣A1B1C1中,△ABC是边长为2的正三角形,侧面BB1C1C是矩形,D、E 分别是线段BB1、AC1的中点.(1)求证:DE∥平面A1B1C1;(2)若平面ABC⊥平面BB1C1C,BB1=4,求三棱锥A﹣DCE的体积.22.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE的面积最大.禄劝一中高中2018-2019学年高二(上)期末数学模拟试卷参考答案一.选择题(每小题5分,共12分)二、填空题(每小题5分,共12分) 13. -3 14.15. 3 16. 11,3⎛⎤-- ⎥⎝⎦17(Ⅰ)解:∵2b sin B =(2a +c )sin A +(2c +a )sin C , 由正弦定理得,2b 2=(2a +c )a +(2c +a )c , 化简得,a 2+c 2﹣b 2+ac =0. ∴.∵0<B <π, ∴B =.(Ⅱ)解:∵A =,∴C =.∴sin C =sin ==.由正弦定理得,,∵,B =,∴.∴△ABC 的面积=.18. 解:①设 ∵∥且||=2∴∴∴=(2,4)或=(-2,-4) .),(y x c =→c a c 5⎩⎨⎧=+=-200222y x y x 2±=x c c②∵(+2)⊥(2-)∴(+2)·(2-)=0, ∴22+3·-22=0∴2||2+3||·||-2||2=0 ∴2×5+3××-2×=0,∴= -1 ∴θ=,∵θ∈[0,π],∴θ=π.19.解:(1)设公差为d ,则,解得,∴a n =n .(2)证明:∵b n =3﹣3=3n +1﹣3n =2•3n ,∴=,∴{}是等比数列.∵=,q =,∴++…+==(1﹣)<.20解:(1)由频率表中第4组数据可知,第4组总人数为, …(1分) 再结合频率分布直方图可知,a b a b a b a b a a b b a a b θcos b 525θcos 45θcos π2πk +2536.09==n 10010025.025=⨯∴1000.01100.55a =⨯⨯⨯=,…(4) (2)因为第2,3,4组回答正确的人数共有54人,所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为: 第2组:人; 第3组:人; 第4组:人 …(8分) (3)设第2组2人为:A 1,A 2;第3组3人为:B 1,B 2,B 3;第4组1人为:C 1. 则从6人中随机抽取2人的所有可能的结果为:(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,C 1),(A 2,B 1),(A 2, B 2),(A 2,B 3),(A 2,C 1),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 2,B 3),(B 2,C 1),(B 3,C 1)共15个基本事件,其中恰好没有第3组人共3个基本事件, …(10分) ∴所抽取的人中恰好没有第3组人的概率是:. …(12分) 21.(1)证明:取棱A 1C 1的中点F ,连接EF 、B 1F 则由EF 是△AA 1C 1的中位线得EF ∥AA 1,EF =AA 1 又DB 1∥AA 1,DB 1=AA 1 所以EF ∥DB 1,EF =DB 1故四边形DEFB 1是平行四边形,从而DE ∥B 1F 所以DE ∥平面A 1B 1C 1(Ⅱ)解:因为E 是AC 1的中点,所以V A ﹣DCE =V D ﹣ACE =过A 作AH ⊥BC 于H因为平面平面ABC ⊥平面BB 1C 1C ,所以AH ⊥平面BB 1C 1C , 所以==所以V A ﹣DCE =V D ﹣ACE ==279.01003.0100=⨯⨯⨯=b 2.0153,9.02018====y x 265418=⨯365427=⨯16549=⨯51153==P22.解:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.。

高二数学期末考试试卷

高二数学期末考试试卷

高二数学期末考试试卷一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \(y = x^2\)B. \(y = x^3\)C. \(y = \sin(x)\)D. \(y = \cos(x)\)2. 已知集合A={1,2,3},B={3,4,5},则A∩B等于?A. {1,2,3}B. {3,4,5}C. {3}D. 空集3. 若直线l的方程为\(y = 2x + 1\),则直线l的斜率是多少?A. 1B. 2C. -2D. -14. 计算下列极限:\(\lim_{x \to 0} \frac{\sin(x)}{x}\)A. 0B. 1C. -1D. 不存在5. 以下哪个选项是二项式定理的展开式?A. \((a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k\)B. \((a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{k} b^{n-k}\)C. \((a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{n}\)D. \((a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n} b^{k}\)6. 已知函数\(f(x) = \log_2(x)\),求\(f(8)\)的值。

A. 3B. 2C. 1D. 07. 以下哪个选项是复数的模的定义?A. \(|a + bi| = \sqrt{a^2 + b^2}\)B. \(|a + bi| = \sqrt{a^2 - b^2}\)C. \(|a + bi| = \sqrt{a^2 + b^2 + 1}\)D. \(|a + bi| = \sqrt{a^2 - b^2 + 1}\)8. 计算下列定积分:\(\int_{0}^{1} x^2 dx\)A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{2}{3}\)D. 19. 已知向量\(\vec{a} = (2, -1)\)和\(\vec{b} = (-1, 2)\),求\(\vec{a} \cdot \vec{b}\)的值。

学高二第二学期期末考试理科数学试题及答案.docx

学高二第二学期期末考试理科数学试题及答案.docx

试卷类型: A高二数学(理科)试题注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共5 页。

2. 答题前,考生务必在答题卡上用直径毫米的黑色字迹签字笔将自己的姓名、准考证号填写清楚, 并粘好条形码。

请认真核准条形码上的准考证号、 姓名和科目。

3. 答第Ⅰ卷时, 选出每题答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答在本试卷上无效。

4. 答第Ⅱ卷时,请用直径毫米的黑色字迹签字笔在答题卡上各题的答题区域内作答。

答在本试卷上无效。

5. 第( 22)、( 23)小题为选考题,请按题目要求从中任选一题作答,并用2B铅笔在答题卡上把所选题目题号后的方框涂黑。

6. 考试结束后,将本试卷和答题卡一并收回。

附:回归方程 y? bx?a?中斜率与截距的最小二乘估计公式分别为:? bnn( x i x)( y i y)x i y i n x yi 1i 1 ?nn, a? y b x( x i x) 2x i 22nxi 1i1第Ⅰ卷一、 选择题:本题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。

( 1)已知复数z22i,其中 i 是虚数单位,则z的模等于1i( A)2(B) 3 (C)4(D)2(2)用反证法证明某命题时,对结论:“自然数a,b, c中恰有一个偶数”正确的反设为(A)a, b, c (C)a, b, c 中至少有两个偶数(B)a, b, c 中至少有两个偶数或都是奇数都是奇数(D)a,b, c 都是偶数( 3)用数学归纳法证明:对任意正偶数n ,均有11111(11134...n2n 42n 1n 2 1...),在验证n 2 正确后,归纳假设应写成( A)假设n k(k N * ) 时命题成立(B)假设n k (k N * ) 时命题成立( C)假设2(* )()假设*n k k N 时命题成立n 2( k 1)(k N ) 时命题成立D(4)从 3 男 4 女共 7 人中选出 3 人,且所选 3 人有男有女,则不同的选法种数有( A) 30 种(B) 32种(C) 34种(D) 35种(5) 曲线y e x在点 2, e2处的切线与坐标轴所围三角形的面积为(A) 2e2(B)e2(C)e2(D)9e224(6)已知随机变量 X 服从正态分布 N 3,2,且 P( X 1) 1 P( X3) ,则 P( X5) 等于4(A)1 (B) 5 (C) 3 (D) 788 48(7) 已知 a2 3sin xdx ,曲线 f ( x) ax1ln( ax 1) 在点 1, f (1) 处的切线的斜率为 k ,则ak 的最小值为(A) 1(B)3 (C)2(D)32( 8) 甲、乙、丙三人独立参加体育达标测试,已知甲、乙、丙各自通过测试的概率分别为2 3 . 若三人中只有甲通过的概率为1,3 , , p ,且他们是否通过测试互不影响164则甲、丙二人中至少有一人通过测试的概率为(A)7 (B)3 (C)5 (D)68487( 9)函数 f ( x) x 3 2xf (1) ,则函数 f (x) 在区间2,3 上的值域是(A)[ 4 2 ,9](B)[ 4 2 ,4 2](C) [ 4,4 2 ] (D)4,9(10) 设 1x 5 a 0 a 1 (1 x) a 2 1 x 2 ... a 5 (1 x) 5 ,则 a 0 a 2 a 4 等于(A) 242 (B) 121 (C) 244 (D)122(11) 已知函数 f ( x)e x (x 2bx)(b R) . 若存在 x1,2 ,使得 f ( x) xf ( x)0 ,则实数x2b 的取值范围是(A),5(B),8(C)3 , 5 (D)8 ,632 63(12)中国南北朝时期的着作《孙子算经》中,对同余除法有较深的研究 . 设a, b, m(m 0)为整数,若 a 和b被 m 除得的余数相同,则称 a 和b对模 m 同余,记为 a b(mod m) .如9和21 被6除得的余数都是 3 ,则记921(mod 6) .若a C200 C 2012 C 202 22...C2020 220, a b(mod 10) ,则b的值可以是(A) 2011(B) 2012 (C) 2013 (D) 2014第II 卷本卷包括必考题和选考题两部分。

高二下学期期末考试数学试卷含答案(word版)

高二下学期期末考试数学试卷含答案(word版)

第二学期期末考试 高二数学试卷一、选择题:(本题共12小题,每小题5分,共60分,每小题只有一个选项正确。

)1.设集合{|22}xA x =>,{|ln(2)}B y y x ==-,则A B ⋂=( )A .{|12}x x <<B .{|02}x x <<C .{|1}x x >D . {|2}x x <2.若()125i z i -=,则z 的值为( )A .3B .5C .3D .53. 在边长为3的等边三角形ABC ∆中,若M 、N 分别是BC 边上的三等分点,则AM AN u u u u r u u u rg 的值是( )A .112 B . 132C. 6 D .7 4.已知24x y +=,其中0,0x y >>,则12x y+的最小值为( ) A.32 B. 2 C. 94D. 22 5.函数2cos 32sinxx y +=的图像的一条对称轴方程是( ) A .311π=x B .35π=x C .35-π=x D .3-π=x 6.下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x 与相应的生产能耗y 的几组对应数据:根据上表可得回归方程$9.49.1y x =+,那么表中m 的值为( ) A .27.9B .25.5C .26.9D .267.设函数21()9ln 2f x x x =-在区间[1,1]a a -+上单调递减,则实数a 的取值范围是 ( ) A.(1,2]B.[4,+∞)C.(-2,2]D.(0,3]8.已知命题p :x R ∀∈,22log (23)1x x ++>;命题q :0x R ∃∈,0sin 1x >,则下列命题中为真命题的是( )A .p q ⌝∧⌝B .p q ∧⌝C .p q ⌝∧D .p q ∧9.若实数,x y 满足1200y x x y y ≤+⎧⎪-≤⎨⎪≥⎩,则z =的最大值是 ( )AD10.在三棱锥S ABC -中,SB BC ⊥,SA AC ⊥, SB BC =,SA AC =,12AB SC =,且三棱锥S ABC -,则该三棱锥的外接球半径是( ) A .1B .2C .3D .411.斜率为k 的直线l 过抛物线错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学期末考试卷(必修
3,选修 1-1)
一、选择题(本大题共 10 小题,每小题 5 分,计 50 分,每小题有四个选项,其中只有一项是符合题意
的,请把你认为正确的项选出,填在答题纸的相应位置)
1.从总数为 N 的一批零件中抽取一个容量为
30 的样本,若每个零件被抽取的概率为,则
N 等于
A . 200
B .150
C .120
D .100
2.将长为 9cm 的木棍随机分成两段,则两段长都大于
2cm 的概率为
4
B .
5 C .
6 7
A .
9
9
D .
9
9
3.设 p ∶ x
2
x 2< 0, q ∶
1
x
< 0,则 p 是 q 的
x 2
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
x
2
4.已知△ ABC 的顶点 B 、 C 在椭圆 3 + y 2= 1 上,顶点 A 是椭圆的一个焦点,且椭圆的另外一个焦点在
BC 边上,则△ ABC 的周长是
A . 2 3
B . 6 开始
C . 4 3
D .12 5.给出下面的程序框图,那么其循环体执行的次数是
i
2, s
A .500
B . 499
C . 1000
D .998
6.下列命题是真命题的是
s
s + i
A . x R, 有 ( x 2 ) 2 0
B . x Q, 有 x 2
i
i + 2
C .
x Z , 使 3x 812

i 1000
D . x R, 使 3x 2
4 6x

7.为了考察两个变量 x 和 y 之间的线性相关性,甲、乙两位同学各
结束
(第 5题)
自独
立地做 10 次和 15 次试验,并且利用线性回归方法, 求得回归直
线分
别为 l 1 和 l 2,已知两个人在试验中发现对变量 x 的观测数据的平均值都是
s ,对变量 y 的观测数据的平均值
都是 t ,那么下列说法正确的是
A . l 1 和 l 2 有交点( s , t )
B . l 1 与 l 2 相交,但交点不一定是( s , t )
C . l 1 与 l 2 必定平行
D . l 1 与 l 2 必定重合
8.下列说法正确的是
A . x 2 = y 2
x = y B .等比数列是递增数列的一个必要条件是公比大于 1.
C .命题“若 b 3 ,则 b 2
9 ”的逆命题是真命题 D .若 a + b>3,则 a>1 或 b > 2.
9.在一个口袋中装有 4 个白球和 2 个黑球,这些球除颜色外完全相同,从中摸出 2 个球,至少摸到 1
个黑球的概率等于
A . 1
B . 2
3
4
C .
D .
5 5 5
5
10.椭圆x
2
y 21的左、右焦点分别为F1 , F2,点P在椭圆上,若P, F1 , F2是一个直角三角形的三4
个顶点,则点 P 到x轴的距离为
131
或3
D.以上均不对
A .
B .C.
3
232
二、填空题(本大题共 6 小题,每小题 5 分,计 30 分,请把你认为正确的答案填在答题纸的相应位置)11.一个社会调查机构就某地居民的月收入调查了10 000 人,并根据所得数据画了样本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000 人中再用分层抽样方法抽出100 人作进一步调查,则在[ 2500,3000 )(元)月收入段应抽出人.频率 /组距
Read n
12.命题“ x∈ R, x2-x+3>0 ”的否定是 ______________ .
13.阅读右上框中伪代码,若输入的n 值是50,则输出的结果是i ←1

x 2y2
s←0
1表示椭圆的充要条件是.While i ≤ n
14.方程
k
9 k1月收入 (元 )s← s+i
15.某人 5 次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,10002000 30004000.i ← i+2方差为 2,则| x- y|的值为
第11题图
x 2
y
2End while
16.在区间 [1,5] 和 [2,4] 分别各取一个数,记为1表示焦点在x 轴上的椭圆的
m 和 n,则方程
n 2Print s
m 2
概率是.第 13题
三、解答题(本大题共 6 题,计 80 分,请在题后空白处写出相应的解答过程)
17.(本题满分12 分)
张三卖鸡50 天,每天卖鸡的数可用茎叶图表示如下:
134566678888999
20000112222233334455566667778889
301123
将其分成7 组:
⑴填频率分布表,并回答卖鸡数从25 只到 30 只的频率是多少?
⑵在同一坐标系中,画出频率分布直方图和折线图.
频率分布表
分组频数频率
频率
组距
鸡数(只)
合计
18.(本小题满分12 分)
S1输入 x
已知算法:(1)指出其功能(用算式表示),
S2若 x <- 2,执行 S3;否则,执行 S6( 2)将该算法用流程图描述之。

S3y← x2+ 1
S4输出 y
S5执行 S12
S6若 x≤ 2,执行 S7;否则执行 S10
S7y← x
S8输出 y
19.(本小题满分 14 分)已知在平面直角坐标系
xOy 中的一个椭圆,它的中心在原点,左焦点为
F ( 3,0) ,右顶点为 D (2,0)
,设点 A 1,
1
.
2
⑴求该椭圆的标准方程;
⑵若 P 是椭圆上的动点,求线段
PA 中点 M 的轨迹方程
x 2 4x
3 0
p 是
q 的充分条件 ,求实数 a
20.(本小题满分 14 分)已知 P :2x 2
-9x+a < 0,q :

x 2
6x 8 0
的取值范围 .
21.(本小题满分 14 分)袋中装有
35 个球,每个球上都记有从 1 到 35 的一个号码,设号码为
n 的球的
重量为 n 2 5n 24 (克 ),这些球以等可能性
(不受重量、号码的影响
)从袋中取出。

⑴如果任意取出
3
1 球,试求其重量大于号码数的概率;⑵如果同时任意取出
2 球,试求它们重量相同的概率.
22.(本小题满分 14 分)将圆 O : x 2
y 2 4 上各点纵坐标缩短到原来的一半,(横坐标不变),
得到曲线 C . ⑴求曲线 C 的方程;
⑵设 O 为坐标原点,过点 F (
3,0) 的直线 l 与 C 交于 A, B 两点, N 为 AB 的中点,连结
ON 并
延长交曲线 C 于点 E ,
求证: OE
2ON 的充要条件是 AB 3 .。

相关文档
最新文档