离散数学习题课-命题逻辑

合集下载

(完整版)《离散数学》同步练习答案

(完整版)《离散数学》同步练习答案

华南理工大学网络教育学院《离散数学》练习题参考答案第一章命题逻辑一填空题(1)设:p:派小王去开会。

q:派小李去开会.则命题:“派小王或小李中的一人去开会" 可符号化为:(p q) (p q)。

(2)设A,B都是命题公式,A B,则A B的真值是T。

(3)设:p:刘平聪明。

q:刘平用功。

在命题逻辑中,命题:“刘平不但不聪明,而且不用功”可符号化为:p q .(4)设A , B 代表任意的命题公式,则蕴涵等值式为A B A B。

(5)设,p:径一事;q:长一智。

在命题逻辑中,命题:“不径一事,不长一智。

" 可符号化为: p q 。

(6)设A , B 代表任意的命题公式,则德摩根律为(A B)Û A B)。

(7)设,p:选小王当班长;q:选小李当班长.则命题:“选小王或小李中的一人当班长。

”可符号化为: (p q)(p q) .(8)设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

" 可符号化为:P Q .(9)对于命题公式A,B,当且仅当 A B 是重言式时,称“A蕴含B”,并记为A B。

(10)设:P:我们划船.Q:我们跑步.在命题逻辑中,命题:“我们不能既划船又跑步.”可符号化为:(P Q) 。

(11)设P,Q是命题公式,德·摩根律为:(P Q)P Q) 。

(12)设P:你努力.Q:你失败。

在命题逻辑中,命题:“除非你努力,否则你将失败。

”可符号化为:P Q .(13)设p:小王是100米赛跑冠军。

q:小王是400米赛跑冠军。

在命题逻辑中,命题:“小王是100米或400米赛跑冠军.”可符号化为:p q。

(14)设A,C为两个命题公式,当且仅当A C为一重言式时,称C可由A逻辑地推出。

二.判断题1.设A,B是命题公式,则蕴涵等值式为A B A B。

()2.命题公式p q r是析取范式。

( √ )3.陈述句“x + y > 5”是命题。

离散数学习题

离散数学习题

第1章命题逻辑一、单项选择题1. 下列命题公式等值的是( )BBAAQPQQPQB AABAAQPQP),()D(),()C() (),()B(,)A(∧∨⌝∨∨⌝∨→→→⌝→→∨⌝∧⌝2. 设命题公式G:)(RQP∧→⌝,则使公式G取真值为1的P,Q,R赋值分别是( )0,0,1)D(0,1,0)C(1,0,0)B(0,0,0)A(3. 命题公式QQP→∨)(为( )(A) 矛盾式(B) 仅可满足式(C) 重言式(D) 合取范式4 命题公式)(QP→⌝的主析取范式是( ).(A) QP⌝∧(B) QP∧⌝(C) QP∨⌝(D) QP⌝∨5. 前提条件PQP,⌝→的有效结论是( ).(A) P(B) ⌝P(C) Q(D)⌝Q6. 设P:我将去市里,Q:我有时间.命题“我将去市里,仅当我有时间时”符号化为( )QPQPQPPQ⌝∨⌝↔→→)D()C()B()A(二、填空题1. 设命题公式G:P→⌝(Q→P),则使公式G为假的真值指派是2. 设P:我们划船,G:我们跑步,那么命题“我们不能既划船,又跑步”可符号化为3. 含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是4. 若命题变元P,Q,R赋值为(1,0,1),则命题公式G=)())((QPRQP∨⌝↔→∧的真值是5. 命题公式P→⌝(P∧Q)的类型是.6. 设A,B为任意命题公式,C为重言式,若C⇔∧,那么A∧CBA↔是式(重言式、矛盾式或可满B足式)三、解答化简计算题1.判别下列语句是否命题?如果是命题,指出其真值.(1) 中国是一个人口众多的国家. (2) 存在最大的质数.(3) 这座楼可真高啊!(4) 请你跟我走! (5) 火星上也有人.2.作命题公式)P∨∧→→的真值表,并判断该公式的类Q)((P)(PQ型.3. 试作以下二题:(1) 求命题公式(P∨⌝Q)→(P∧Q)的成真赋值.(2) 设命题变元P,Q,R的真值指派为(0,1,1),求命题公式∨P→R→⌝↔的真值.∧P⌝(()Q)((QR))4. 化简下式命题公式)⌝∧P∧∨Q⌝∧(P))Q((P5. 求命题公式))⌝∧→的主合取范式.Q→P∧P)(P((Q6. 求命题公式R→∧⌝⌝)((的真值.→(∧))QP∨PRQ∨↔RP7. 求命题公式)→∧→⌝的主析取范式,并求该命题公P⌝(Q)(PQ式的成假赋值.8. 将命题公式)⌝∧⌝化为只含∨和⌝的尽可能简单的⌝∧RQP→(P等值式.9. 求命题公式)∨⌝∧的真值表.P⌝∧)((QPQ四、证明题1. 证明S∧∧→)∨⌝)⌝(()(RQRS∧QP⌝P⌝∨⇒2. 构造推理证明:QR→→())((⇒S→)RPSQ→P∧∧3. 证明命题公式(P→(Q∨⌝R))∧⌝P∧Q与⌝(P∨⌝Q)等值.4. 证明命题公式)R→与QP→∧)(有相同的主析取范∨)((QRP→Q式.命题逻辑习题参考答案一、1. C 2. D 3. B 4. A 5. D 6. B二、1. 1,0;1,1 2. )(Q P ∧⌝或Q P ⌝∨⌝ 3. (P ∧Q ∧R )∨(P ∧Q ∧⌝R )4. 05. 非永真式的可满足式6. 重言三、1. (1) 是命题,真值为1. (2) 是命题,真值为0. (3), (4)不是命题. (5)是命题.1. 判别下列语句是否命题?如果是命题,指出其真值.(1) 中国是一个人口众多的国家. (2) 存在最大的质数.(3) 这座楼可真高啊! (4) 请你跟我走! (5) 火星上也有人.2. 命题公式))(()(P Q P Q P ∨∧→→的真值表 P Q P →Q Q P ∧ P Q P ∨∧)())(()(P Q P Q P ∨∧→→ 0 0 1 0 0 00 1 1 0 0 01 0 0 0 1 11 1 1 1 1 1原式为可满足式.3. (1) (P ∨⌝Q )→(P ∧Q )⇔(⌝P ∧Q )∨(P ∧Q )⇔(⌝P ∨P )∧Q ⇔Q可见(P ∨⌝Q )→(P ∧Q )的成真赋值为(0,1),(1,1).(2) ))()(()(Q R Q P R P →⌝∨⌝→⌝∧↔0))10()01(()10(⇔→∨→∧↔⇔4. ))()((P Q P Q P ∧⌝∧⌝∨∧P Q P Q P ∧⌝∧⌝∨∧⇔)()()()(P P Q P Q P ∧⌝∧⌝∨∧∧⇔0)(∨∧⇔Q PQ P ∧⇔5. ))()((Q P P Q P ∧⌝∧→→))()((Q P P Q P ∧⌝∧∨⌝∨⌝⇔)())(Q P P Q P Q P ∧⌝∧∨∧⌝∧⌝∨⌝⇔)00(∧∨⌝⇔P)(Q Q P ⌝∧∨⌝⇔)()(Q P Q P ⌝∨⌝∧∨⌝⇔6. R P R Q P P R Q ∨↔∨→⌝∧→⌝∧)())((R P R Q P P R Q ∨↔∨∨∧∨∨⌝⇔)()(R P Q Q R P ∨↔∧⌝∨∨⇔)(1⇔7. Q P Q P Q P Q P Q P ⌝∧⇔⌝∨⌝∧⌝∧⇔⌝→∧→⌝)()()()(因为成真赋值是(1,0),故成假赋值为(0,0),(0,1),(1,1)8. ))()()(R P Q P P R Q P ∨∧∨⌝⇔→⌝∧⌝∧⌝))()((R P Q P ∨⌝∨∨⌝⇔不唯一.9. 作真值表P Q P∧Q⌝P⌝Q⌝P∨⌝Q (P∧Q)∧(⌝P∨⌝Q)0 0 0 1 1 1 00 1 0 1 0 1 01 0 0 0 1 1 01 1 1 0 0 0 0四、证明题1.①⌝Q∨R P②⌝R P③⌝Q①,②析取三段论④P→Q P⑤P⌝③,④拒取式⑥P∨⌝S P⑦⌝S⑤,⑥析取三段论2.前提:QPRSQP,)),((→→→结论:SR→证明:①R附加前提②R→P前提引入③P①,②假言推理④P→(Q→S) 前提引入⑤Q→S③,④假言推理⑥Q前提引入⑦S⑤,⑥假言推理3. (P→(Q∨⌝R))∧⌝P∧Q⇔(⌝P∨(Q∨⌝R))∧⌝P∧Q⇔(⌝P∧⌝P∧Q)∨(Q∧⌝P∧Q)∨(⌝R∧⌝P∧Q)⇔(⌝P∧Q)∨(⌝P∧Q)∨(⌝P∧Q∧⌝R)⇔⌝P∧Q⇔⌝(P∨⌝Q)4.方法1.)()(QRQP→∨→⇔)()(QRQP∨⌝∨∨⌝⇔∨∧⌝⇔QRP)(QRP→∧)(因为两命题公式等值,由主合取范式的惟一性,可知两命题公式的主合取范式是相同.方法2.)()(QRQP→∨→⇔)()(QRQP∨⌝∨∨⌝RQPQRP⌝∨∨⌝⇔∨⌝∨⌝⇔RQPQRPQRP⌝∨∨⌝⇔∨⌝∨⌝⇔→∧)(因为它们的主合取范式相同,可知它们的主析取范式也相同.第2章谓词逻辑习题一、 单项选择题1. 谓词公式)())()((x Q y yR x P x →∃∨∀中量词∀x 的辖域是( )(A) ))()((y yR x P x ∃∨∀ (B) P (x ) (C) )()(y yR x P ∃∨ (D) )(x Q2. 谓词公式∃xA (x )∧⌝∃xA (x )的类型是( )(A) 永真式 (B) 矛盾式(C) 非永真式的可满足式 (D) 不属于(A ),(B ),(C )任何类型3 设个体域为整数集,下列公式中其真值为1的是( )(A) )0(=+∃∀y x y x(B) )0(=+∀∃y x x y (C))0(=+∀∀y x y x (D) )0(=+∃⌝∃y x y x 4 设L (x ):x 是演员,J (x ):x 是老师,A (x ,y ):x 佩服y. 那么命题“所有演员都佩服某些老师”符号化为( )(A) ),()(y x A x xL →∀ (B) ))),()(()((y x A y J y x L x ∧∃→∀(C) )),()()((y x A y J x L y x ∧∧∃∀ (D) )),()()((y x A y J x L y x →∧∃∀ 5. 设个体域是整数集合,P 代表∀x ∃y ((x <y )→(x -y <0)),下面4个命题中为真的是( )(A) P 是真命题 (B) P 是谓词逻辑公式,但不是命题(C) P 是假命题 (D) P 不是谓词逻辑公式6. 表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是( )(A) P (x ,y ) (B)R (x ,y ) (C)P (x ,y )∧R (x ,y ) (D) P (x ,y )∨Q (z )二、 填空题1. 设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为.2. 设个体域D={a,b},公式))Gx→∀消去量词化为yHx∃(y,()(x3. 设N(x):x是自然数,Z(y);y是整数,则命题“每个自然数都是整数,而有些整数不是自然数”符号化为4. 谓词公式∀x(F(x)→G(x))∧⌝∀y(F(y)→G(y))的类型是.5. 设个体域{1,2},谓词P(1)=1,P(2)=0,Q(1)=0,Q(2)=1,则∀x(P(x)∨Q(x))的真值是三、解答化简计算题1. 判别谓词公式),(x∃yF∀→∃的类型.∀x,)yx(yyxF2. 指出谓词公式)(xQyPx∀中∀x和∃x的辖xR→∧∃x∧(,))x))(S)((x(域,并指出该公式的约束变元和自由变元以及约束出现次数和自由出现次数.3. 求谓词公式))PQx∧→x∀的真值.(R(())f(a其中P:4>3,Q(x):x>1,R(x):x≤2.f(-3)=1,f(1)=5,f(5)= -3.a:5.个体域D=(-3,1,5).4.说明公式))xP∀xyG→(∀是逻辑有效式(永真式).→x∃()y(,)(xxP5. 通过等值演算说明下列等值式成立:PxxxPQ∃→⇔∀→x∃)()()))(xQ(x(x6. 求谓词公式),,(xyyGxxF∃∧∀的前束范式.→∀yzH)(,,(xy(z))四、证明题1. 试利用代换实例证明谓词公式xyzGxF∀∃∀→∀x→,)())((xF(x)z是逻辑有效式(永真式).2. 构造推理证明))xxQxxP∀∃.→∀⇒xP→(()()(Q(x)x(提示:))xA∨xxBx∀x∨∀⇒∀.))(()(()xB(xA谓词逻辑习题参考答案一、1. C ;2.. B ;3 A ;4. B ;5. A 6. D二、1. A (1)∨A (2)∨(B (1)∧B (2)) 2. (G (a )→(H (a ,a )∨H (a ,b )))∧ (G (b )→(H (b ,a )∨H (b ,b )))3.))()(())()((x N x Z x x Z x N x ⌝∧∃∧→∀ 4. 永假式 5. 1三、1.设I 为任意一个解释,D 为I 的个体域. 若在解释I 下,该公式的前件为0,无论),(y x xF y ∃∀如何取值,),(),(y x xF y y x yF x ∃∀→∀∃为1; 若在解释I 下,该公式的前件为1,则,0D x ∈∃使得),(y x yF ∀为1,它蕴含着),(,0y x F D y '∈'∀为1),(y x xF '∃⇒为1,由y '的任意性,必有),(y x xF y ∃∀为1,于是),(),(y x xF y y x yF x ∃∀→∀∃为1. 所以,),(),(y x xF y y x yF x ∃∀→∀∃是永真式.2. ∀x 的辖域为:P (x )→Q (x ,y )∧∃xR (x )∃x 的辖域为:R (x )x 既是约束变元,也是自由变元,约束出现3次,自由出现1次.y是自由变元,自由出现1次. 3. ))(())((a f R x Q P x ∧→∀=))5(())5(())1(())3((f R Q P Q P Q P ∧→∧→∧-→=)3()11()01()01(-∧→∧→∧→R01100=∧∧∧=4. 已知1)()(⇔∨⌝∨⌝⇔∨⌝∨⌝⇔→→P Q P P Q P P Q P因为))(),(()(x xP y x yG x xP ∀→∃→∀是)(P Q P →→的代换实例,可知))(),(()(x xP y x yG x xP ∀→∃→∀是逻辑有效式.或))(),(()(x xP y x yG x xP ∀∨⌝∃∨⌝∀1)(),()(⇔∨⌝∃∨⌝∀⇔x P y x yG x xP5. ⇔→∃))()((x Q x P x )()((x Q x P x ∨⌝∃))()(x xQ x P x ∃∨⌝∃⇔)()(x xQ x xP ∃∨⌝∀⇔)()(x xQ x xP ∃→∀⇔6. ),,()),(),((z y x zH y x yG y x xF ∃∧∀→∀),,()),(),((z y x zH y x yG y x xF ∃∧∀∨⌝∀⇔),,()),(),((z y x zH v u vG y u F u ∃∧∀∨⌝∃⇔)),,()),(),((z y x zH v u vG y u F u ∃∧∀∨⌝∃⇔)),,()),(),(((z y x H v u Q y u F z v u ∧∨⌝∃∀∃⇔(或)),,()),(),(((z y x H v u Q y u F z v u ∧→∃∀∃⇔)四、1.谓词公式))(),(()(x xF z x zG y x xF ∀→∃∀→∀ 是命题公式)(P Q P →→的代换实例.因为命题公式⇔∨⌝∨⌝⇔→→P Q P P Q P )(1是永真式, 故))(),(()(x xF z x zG y x xF ∀→∃∀→∀是逻辑有效式.2.前提:)()(x xQ x xP ∀→∃.结论:)()(x xQ x xP ∀→∃.证 ① )()(x xQ x xP ∀→∃ 前提引入② )()(x xQ x xP ∀∨⌝∃ T ①,蕴含等值式③ )()(x xQ x P x ∀∨⌝∀ T ②,量词否定④ ))()((x Q x P x ∨⌝∀⑤ ))()((x Q x P x →∀ T ④,蕴含等值式第3章 集合及其运算一、 单项选择题1. 设a 是集合A 的元素,则以下正确的是( )A a A a A a a a ∈⊆⊆⊆}){D ()C (}){B (}){A (2. 设集合A ={1,2,3,4},B ={2,4,6,9},那么集合A ,B 的对称差A ⊕B=( )(A) {1,3} (B) {2,4,6} (C) {1,3,6,9} (D) {1,2,3,4,6,9}3. 设集合A ={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )(A) 1∈A (B) {{4,5}}⊂A(C) {1,2,3}⊆A (D) ∅∈A4. 设A , B , C 都是集合,如果A ⋂C =B ⋂C ,则有( ) (A) A =B (B) A ≠B (C) 当A -C =B -C 时,有A =B(D) 当C =U 时, 有A ≠B5. 设集合A ={∅,a },则P (A )= ( )}},{},{},{,){D (}}}},{,{},{},{,){C (}},{},{},){{B (}},{},{,){A (a a A a a a a a a ∅∅∅∅∅∅∅∅∅∅6. 设A ={1,2,3},B ={2,3,4,5},C ={2,3},则(A ∪B )⊕C 为( )(A) {1,2} (B) {2,3} (C) {1,4,5} (D) {1,2,3}二、 填空题1.设A , B 代表集合,命题A -B =∅⇔A=B 的真值为 .2. 设A , B 为任意集合,命题A -B =∅⇔A⊆B 的真值为 .3. 设集合A ={∅,{a }},则A 的幂集P (A )=4. 设集合A ={{a ,b },c }, B ={c ,d }, 那么A -B =5. 设集合A ={1,2,3,4},B ={a ,b ,c },则∣A ×B ∣=三、解答化简计算题1. 试作以下二题:(1) 设有序对<2x +y ,6>=<5,x +y >,求x ,y ;(2)设集合A ={1,2},求A ×P (A ).2. 设集合A ={a ,b ,c },B ={b ,d ,e },求B ⋂A ,A ⋃B ,A -B ,B ⊕A .3. 化简集合表达式:((A ⋃B ⋃C )⋂(A ⋃B ))-((B ⋃(B -C ))-A )4. 判断下列哪些运算结果是对的?哪些是错的?请将错误的运算结果更正过来.(1) ∅=∅⋂∅}{ (2) ∅=∅⋃∅}{(3) }{}}{,{}{∅=∅∅⋂∅ (4) }}{,{}{}}{,{∅∅=∅-∅∅(5)A B B A =⋃-)( (6)A B B A =-⋃)((7)A A A =⊕ (8)∅=-⋂A B A )(5.易,0.5,8,掌握,2-2 设全集E =(a ,b ,c ,d ,e ,f ), A ={a ,d },B ={a ,b ,e },C ={b ,d },求下列集合:(1) C B A ~)(⋃⋂; (2))()(A P A A ⋃⊕.6. 设},{},,,{},,{},,,,,{42=521=41=54321=C B A E求 (A ⋂B )⋃~C ,P (A )-P (B ),A ⊕B .四、证明题1. 设A ,B ,C 为三个集合,证明若C ⊆A .则(A ⋂B )⋃C ⊆A ⋂(B ⋃C )2. 试证明对任意集合A ,B ,C ,如果B A ⊆且D C ⊆,则C BD A -⊆- 3. 设A ,B ,C 为任意集合,证明:)()()(C B C A C B A ---=--集合练习题参考答案一、1. B 2. C 3. B 4. C 5. D 6. C 二、1. 0 2. 1 3. }}}{,{}},{{},{,{a a ∅∅∅ 4. {{a ,b }} 5.12三、解答化简题1. (1) 由有序对定义,解方程⎩⎨⎧=+=+652y x y x 解得x=-1,y=7.(4分)(2)P (A )={∅,{1},{2}{1,2}}A ⨯P (A )={<1,∅>,<2,∅>,<1,{1}>,<2,{1}>,<1,{2}>,<2,{2}>,<1,{1,2}>,<2,{1,2}>}2. B ⋂A ={b } A ⋃B ={a ,b ,c ,d ,e } A -B ={a ,c } B ⊕A ={a ,b ,c ,d ,e }-{b }={a ,c ,d ,e }3. ((A ⋃B ⋃C )⋂(A ⋃B ))-((B ⋃(B -C ))-A )=(A ⋃B )-(B -A ) =(A ⋃B )⋂(~B ⋃A ) =A ⋃(B ⋂~B )=A ⋃∅=A4. (1) 对. (2) 错.应为}{∅. (3) 对. (4) 错.应为{}{∅}(5)错.应为B A ⋃ (6)错.应为B A -(或B A ~⋂或A -AB )(7)错.应为∅,即∅=⋂-⋃=⊕A A A A A A (8)对. 5. (1) },,,{},,,{}{~)(f e c a f e c a a C B A =⋃=⋃⋂ (2)∅=⋂-⋃=⊕)()()(A A A A A A . }},{},{},{,{)(d a d a A P ∅=.故)()(A P A A ⋃⊕=}},{},{},{,{d a d a ∅ 6. (A ⋂B )⋃~C ={1}⋃}5,3,1{}5,3,1{=}},{},{{}},{},{},{,{}},{},{},{,{)()(411=4242-4141=-φφC P A PA⊕B =(A⋃B)-(A⋂B)=}5,4,2{}5,4,2,1{=-}1{四、证明题1. 已知xC∀⊆,A∈⋂∨⇔⋃(∈)x∈⋂CAxABxBC∈∧(⇔)∈∨Cx∈BxAx∨∈x∈∧⇔A∈∨∈x(C)(x)BCx∈∈x⋃∨⋂∧A⇒∈∈⇔B(C(xA)BxC)即)⋂A⋃⊆⋂B⋃(CC)(AB2. 由于C⇔~⊆⊆,DC~D又有BA⊆,所以⊆⋂~⋂DCA~B即C-.⊆A-DB3. )A⋂CC⋂B---A=⋂~)~(~C(B(C))(⋂A⋃C=⋂~B(~))(CA⋂CB⋂⋂A⋂⋃=(~))~(C~C=C)~~(⋂⋂⋂=⋂= C)(BBAC~A~(-)BA-第3章 二元关系练习题一、 单项选择题1. 设集合A ={0,b },B ={1,b ,3},则A ⋃B 上的恒等关系是 ( ).(A) {<0,0>,<1,1>,<3,3>} (B){<0,0>,<1,1>,<b ,b >,<3,3>}(C) {<1,1>,<b ,b >,<3,3>} (D) {<0,1>,<1,b ><b ,3>,<3,0>} 2. 已知集合A ={a ,b ,c }上的二元关系R 的关系矩阵M R =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001011010,那么R =( ),(A) {<a ,b >,<b ,a >,<b ,b >,<a ,c >} (B) {<a ,b >,<b ,a >,<b ,b >,<c ,b >} (C) {<a ,b >,<a ,a >,<b ,b >,<c ,a >} (D) {<a ,b >,<b ,a >,<b ,b >,<c ,a >} 3. 设集合A ={1,2,3,4}, A 上的二元关系R 的关系矩阵为M R =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00000001011001则关系R 的表达式是( )(A) {<1,1>,<1,4>,<2,1>,<2,3>} (B) {<1,1>,<1,2>,<1,4>,<2,3>} (C) {<1,1>,<2,1>,<3,2>,<1,4>} (D) {<1,1>,<2,1>,<3,2>,<4,1>}4. 设A ={a ,b ,c },R ={<a ,a >,<b ,b >},则R 具有性质( ) (A) 自反的 (B) 反自反的 (C) 反对称的 (D) 等价的5. 设R 是集合A 上的二元关系,I A 是A 上的恒等关系,如果R ⊂I A ,则下面四个命题中为真的是( )(A) R 不是自反的 (B) R 不是传递的 (C) R 不是对称的 (D) R不是反对称的 二、填空题1. 设R ,S 都是集合A 上的等价关系,则对称闭包s (R ⋂S )=2. 如果关系R 是传递的,则R ∙R ⊆ .3. 设集合A ={1,2,3,4 }, B ={6,8,12}, A 到B 的关系R =},,2,{B y A x x y y x ∈∈=><,那么R -1=4. 设X ={a ,b ,c },R 是X 上的二元关系,其关系矩阵为 M R=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001001101,那么R 的关系图为 .5. 设A ={1,2,3,4},A 上的二元关系}3,{Z ∈-><=y x y x R ,其中Z 是整数集合.试用列举法那么R= . 三、解答化简计算题1. 设集合A ={a ,b ,c ,d },在A 上定义二元关系R ={<a ,a >,<a ,d >,<b ,b >,<b ,c >,<c ,b >,<c ,c >,<d ,a >,<d ,d >} R 是否为等价关系,说明理由.2. 设R 是实数集,R 上的二元关系S 为 S ={<x ,y >∣x ,y ∈R ∧x =y }试问二元关系S 具有哪些性质?简单说明理由.3. 设A ={1,2},B ={a ,b },试问从A 到B 的二元关系有多少个?4. 设集合A ={0,1,2,3,4,5,6}上的偏序关系R 如下: R={<0,1>,<0,2>,<0,3>,<0,4>,<0,5>,<0,6>,<4,6>,<2,5>,<3,5>}⋃I A 做偏序集<A ,R >的哈斯图,并求B ={0,2,3}的极大元、极小元、最大元和最小元.5. 设集合A ={0,1,2,3,4},定义A 上的二元关系R 为: R ={<x ,y >⎪x ,y ∈A ∧(x =y ∨x +y ∈A )}试写出二元关系R 的集合表达式,并指出R 具有的性质.6. 已知集合A 上的二元关系R 的关系图如图4-1,试写出R 的集合表达式和R 的关系矩阵.并指出R 所有的性质.7. 设集合A ={1,2,3,4}, B ={2,4,6} 从A 到B 的二元关系R 定义为R =},{N k k xy B y A x y x ∈∧=∧∈∧∈><试求R 的集合表达式和关系矩阵M R .8. 设R 1是A 1={1,2}到A 2=(a ,b ,c )的二元关系,R 2是A 2到A 3={βα,}的二元关系,R 1= {<1,a >,<1,b >,<2,c >}, R 2={<a ,β>,<b ,β>} 试用关系矩阵求R 1∙R 2的集合表达式.9. 设集合X ={a ,b ,c ,d },X 上的二元关系R 的关系图如图4-2所示.试写出R 的表达式和关系矩阵.10. 设集合S ={1,2,3,4},定义S 上的二元关系 })(,,{2y x S y x S y x y x R >∧∈-∧∈><=},,{是素数yx S y x y x T ∧∈><=试求R ,T 的元素表达式,并计算R ∙T . 四、证明题1. 证明如果非空集合A 上的二元关系R 和S 是偏序关系,则S R ⋂也是A 上的偏序关系.2. 设R 是集合A 上的二元关系,试证明R 是自反的当且仅当R I A ⊆.3. 假设R 是非空集合A 上的等价关系,证明R 的逆关系R -1也是A 上的等价关系.0 ∙ ∙2 1∙ 图4- 1a db c图4-2二元关系习题参考答案一、1. B 2. D 3. A 4. C 5. A二、1. R ⋂S 2. R 3. {<6,3>,<8,4> }4. 如图4-3.5. }1,4,4,1{><><⋃A I三、1. R 含有<a ,a >,<b ,b >,<c ,c >,<d ,d >, 是自反的;R 含有<a ,a >,<b ,b >,<c ,c >,<d ,d >,<a ,d >,<d ,a >,<b ,c >,<c ,b >, 是对称的; 对R z x R z y R y x >∈⇒<>∈<>∈<∀,,,,,是传递的.故R 是A 上的等价关系.2. S 具有自反性,显然<x ,x >∈S ; S 具有对称性,∀<x ,y >∈S ,有x =y ,则<y ,x >∈S ; S 具有反对称性,∀<x ,y >,<y ,x >∈S ,有x =y ; S 具有传递性,∀<x ,y >,<y ,z >∈S ,因为x =y =z ,故<x ,z >∈S .3. 二元关系共有16个.4. A ={0,1,2,3,4,5,6}, B ={0,2,3}, 哈斯图如图4-4.B 的极大元:2,3, B 的极小元:0 B 的最大元:无 B 的最小元:05. 由题设,R =I A ⋃{<0,1>,<1,0>,<0,2>,<2,0>,<0,3>,<3,0>,<0,4>,<4,0>,<1,2>,<2,1>,<1,3>,<3,1>}易知,R 具有自反性和对称性.6. }0,2,2,0,2,2,0,0{><><><><=R⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101000101RMR 有对称性和传递性.7. R ={<1,2>,<1,4>,<1,6>,<2,2>,<2,4>,<2,6>,<3,6>,<4,4>}M R =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡01100111111 a c b 图4-3 6∙ 5∙∙4 3∙ 2∙ ∙10∙ 图4-48. ,100111⎥⎦⎤⎢⎣⎡=R M⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0010102R M ⎥⎦⎤⎢⎣⎡=∙10001121R R M ⎥⎦⎤⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡0010001010 },1{21><=∙βR R9. R ={<a ,a >,<a ,c >,<b ,c >,<d ,d >}⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000000001000101R M 10. }2,4,3,4,2,3,1,2{><><><><=R}2,4,1,3,1,2{><><><=T }1,4,1,3{><><=⋅T R四、证明题1. .① S R x x S x x R x x A x ⋂>∈⇒<>∈<>∈<∈∀,,,,,,所以S R ⋂有自反性;②,,A y x ∈∀因为R ,S 是反对称的,yx x y y x S x y S y x R x y R y x S x y R x y S y x R y x S R x y S R y x =⇔=∧=⇒>∈<∧>∈<∧>∈<∧>∈<⇔>∈<∧>∈<∧>∈<∧>∈<⇔⋂><∧⋂><),,(),,(),,(),,(,, 所以,R ⋂S 有反对称性.③ A z y x ∈∀,,,因为R ,S 是传递的, S R z y S R y x ⋂>∈<∧⋂>∈<,,S z y R z y S y x R y x >∈<∧>∈<∧>∈<∧>∈⇔<,,,, S z y S y x R z y R y x >∈<∧>∈<∧>∈<∧>∈⇔<,,,, S R z x S z x R z x ⋂>∈⇔<>∈<∧>∈⇒<,,,所以,S R ⋂有传递性. 总之,R 是偏序关系. 2. 先证必要性.假设R I A ⊆/,则必存在x ∈A ,使得<x ,x >∈I A ,且<x ,x >∉R ,这与R 是自反的相矛盾.所以R I A ⊆.再证充分性.设R I A ⊆,则对,,,A I x x A x >∈<∈∀因为R I A ⊆,所以R x x >∈<,.因此R 是自反的.3. (1) ∀x ∈A ,则<x ,x >∈R ,显然<x ,x >∈R -1,R -1具有自反性. (2) ∀x ,y ∈A , 如果<x ,y >∈R -1⇔<y ,x >∈R⇒<x ,y >∈R (R 是对称的)⇔<y ,x >∈R -1, R -1具有对称性.(3) ∀x ,y ,z ∈A ,如果<x ,y >∈R -1∧<y ,z >∈R 1⇔<y ,x >∈R ∧<z ,y >∈R ⇔<z ,y >∈R ∧<y ,x >∈R ⇒<z ,x >∈R (R 是传递的)⇔<x ,z >R -1,R 具有传递性.总之,R 是等价关系.第5章 群练习题一、单项选择题1. 设A =Q ×Q ,其中Q 是有理数集,定义A 上的二元运算*为:),,(b a ∀,A y x ∈),(,),(),(),(b ay ax y x b a +=*,则(1,2)*(3,4)=())6,3)(D ()8,6)(C ()1,5)(B ()10,3)(A (-2. 下列集合和运算能构成群的是 ( ).(A) (M n (R ),+),其中M n (R )是定义在实数集上的n 阶矩阵,+是普通加法 (B)(A ,+),其中A ={0,±1,±2,…,±n },+是普通加法 (C)({21,0,2},+),其中+是普通加法(D) ({0,1,2,3},⊗),其中运算⊗是模4乘法3. 在自然数集N 上定义的二元运算*,满足结合律的是( )ba b a b a b a b a b a b a b a -=*=*2+=*-=*)D (},max{)C ()B ()A (4. 以下代数系统中,只是半群的为( ). (A) (Z ,︒),其中Z 是整数集,∀a ,b ∈Z ,a ︒b =a +b -2 (B) (Z ,︒),其中Z 是整数集,∀a ,b ∈Z ,a ︒b =b (C) (Z ,︒),其中Z 是整数集,∀a ,b ∈Z ,a ︒b =a +b -ab(D) (R -{0},︒),其中R 是实数集,∀a ,b ∈R ,a ︒b =ab 5. 以下群中,是循环群的为( ). (A) (Z ,+),其中Z 是整数集,+是数的加法 (B) (Q +,×),其中Q +是正有理数集,×是数的乘法 (C) (Q ,+),其中Q 是有理数集,+是数的加法(D) (P (A),⊕),其中A ={a ,b },P (A)是A 的幂集,⊕是集合的对称差运算 二、填空题 1. 设R 是实数集,∀a ,b ∈R ,定义二元运算*:a *b =a +b +ab ,已知0∈R 是其单位元,那么∀a ∈R ,但a ≠-1,则a 的逆元是 .2. 设(R *, )是代数系统,其中R *=R -{0},二元运算 定义为abb a R b a =∈∀ ,,*,那么,a R a ,*∈∀的逆元是3. 设集合A ={1,2,3},在A 上定义二元运算︒为:,,A b a ∈∀a ︒b =},min{b a ,则︒的运算表为︒ 1 2 3 1 2 34. 设S 是非空有限集合,P (S )是S 的幂集,则代数系统<P (S ),⋃ >存在单位元是 三、解答化简计算题1. 设代数系统(R *, ︒),其中R *是非0实数集,二元运算︒为:∀a ,b ∈R , a ︒b =ab. 试问︒是否满足交换律、结合律,并求单位元以及可逆元素的逆元.2. 验证H 2={e ,a 3}是6阶循环群G ={ e ,a 1,a 2,a 3,a 4, a 5}的子群.3. 验证代数系统(Z ,+)与(2Z ,+)同构.4. 设集合A ={1,2,3},P (A )是A 的幂集合,⊕是集合的对称差运算.求运算⊕在P (A )上的单位元.∀x ∈P (A ),求x 关于运算⊕的逆元.并解方程{1,2}⊕y ={1}.四、证明题1. 设群(G ,*), 若∀a ∈G ,都有a 的逆元a -1=a ,则G 是交换群.2. 设R *=R -{0},集合S 定义为},00{*R b a b a S ∈⎥⎦⎤⎢⎣⎡= 证明代数系统(S ,*)是群,其中*是矩阵的乘法运算.3. 在整数集合Z 上定义二元运算︒:∀x ,y ∈Z , x ︒y =x +y -2,已知<Z , ︒>是半群,证明<Z ,︒>是群.4. 证明群(R ,+)与(R +,∙)同构,其中+和∙分别是数的加法和乘法.(提示:考虑函数f (x )=e x )群练习题参考答案一、1. D 2. A 3. C 4. B 5. A 二、1. 1+-a a 2.a1 3.4. ∅三、1. ∀a ,b ,c ∈R *, a ︒b =ab =ba =b ︒a ,可交换; (a ︒b )︒c =ab ︒c =abc =a (bc )=a ︒(bc )=a ︒(b ︒c ),可结合. 易见,单位元为1.对∀a ∈R *, a ︒a -1=aa -1=1=a -1a =a -1︒a ,故a 的逆元:aa 11=-2. (1) H 2⊂G .易验证∀x ,y ∈H 2,有xy ∈H 2.且在H 2上满足结合律. e 是其单位元,(e )-1=e ,(a 3)-1=a 3. 故H 2是G 的子群.3. ∀z ∈Z ,f (z )=2z ,有f :Z →2Z .∀z 1,z 2∈Z ,f (z 1+z 2)=2(z 1+z 2)= 2z 1+2z 2= f (z 1)+f (z 2) 所以,(Z ,+)与(2Z ,+)同态.又因为f (z )=2z 是双射函数,故(Z ,+)与(2Z ,+)同构. 4. ∀S ∈P (A),S ⊕∅=∅⊕S =S ,故∅是单位元. ∀x ∈P (A),x ⊕x =∅,故x 的逆元是它自己. 因为(1,2)的逆元是{1,2},故y ={1,2}⊕{1}={2}. 四、1. 111,,)(,,,---==*=*∈*∈∀b b a a b a b a G b a G b a 由题设(3分) 于是有a b a b b a b a b a *====--------11111111)(*)()*()*(* 所以G 是一个交换群.2. 任取S 中的元素⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡d c y x b a00,00,00,其中a ,b ,x ,y ,c ,d ∈R *,有⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡byd axc yd xcb a dc y x b a byd axc d c by ax d c y x b a 0000*00)00*00(*000000*0000*)00*00(︒1 2 3 1 1 1 1 21 2 2 3123可见,*满足结合律,故(S ,*)是半群. 取E =S ∈⎥⎦⎤⎢⎣⎡1001,∀A ∈S ,有AE =EA =A .E 为S 的单位元.∀X ∈S ,X =⎥⎦⎤⎢⎣⎡y x0,x ,y ∈R *,则存在⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡y x 1001∈S ,则有⎥⎦⎤⎢⎣⎡y x0*⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡y x 1001=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡y x 1001*⎥⎦⎤⎢⎣⎡y x 00=E ,即X -1=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡y x 1001.S 的每个元素都有逆元.故(S , *)是群. 3. 因为<Z ,︒>是半群,易见二元运算︒满足交换律.设幺元为e , ∀x ∈Z ,有x ︒e =x +e -2=x ,得到e =2∈Z ,幺元存在惟一;∀x ∈Z , x 的逆元记作x -1, x ︒x -1=x +x -1-2=2, 即x -1=4-x ∈Z ,即x 的逆元存在且惟一.所以,<Z ,︒>是群. 4.设f (x )=e x ,可知f :R →R +.(1) ∈∀21,x x R ,)()(e e e )(21212121x f x f x x f x x x x ∙===++∈R +. 0和1分别是(R ,+)和(R +,∙)的单位元,有 f (0)=e 0=1对任意x ∈R ,x 关于+的逆元为-x ,而f (-x )=e -x =)(11x f ex=.(2) f :R →R +是双射函数.所以,(R ,+)与(R +,∙)同构.第6章 格与布尔代数及环、域练习题一、 单项选择题1.下列偏序集中是格的为( )2. 设布尔代数式c b a f ⋅+=,则f 的对偶式f *=( )(A) c b a ⋅+ (B) c b a ⋅+ (C) c b a +⋅ (D) c b a +⋅ 3. ( )是布尔代数. (A) 有余有界格 (B) 有余分配格 (C) 有界分配格 (D) 有余代数格 4. 设G 是非空集合,G 上二元运算︒和*,*对︒有左、右分配律,又满足( ),则(G ,︒,*)称为环.(A) (G ,*)是交换群,(G ,︒)是交换群 (B) (G ,*)是半群,(G ,︒)是半群(C) (G ,*)是群,(G ,︒)是群 (D) (G ,*)是半群,(G ,︒)是交换群二、 填空题1. 设代数系统(L ,︒,*),若(L ,︒)是 ,(L ,*)是半群,又二元运算*对︒满足分配律,则(L ,︒,*)是环.2. 布尔代数式))(()1(c a b a +⋅+⋅的对偶式是3.在布尔代数中,有b a b a a +=⋅+)(成立,则其对偶式 一定成立.4. 若<G ,+,∙>是环,那么∀a ,b ∈G ,有 则称<G ,+,∙>是交换环. 三、解答化简计算题1. 设代数系统(Z ,+,×),已知(Z ,×)是半群,验证(Z ,+,×)是环.2. 设(L ,*,︒)是有补格,∀a ,b ∈L ,化简表达式 (a *b )*(a '︒b ')(其中a ',b '分别是元素a ,b 的补元)3. 已知(L ,*,︒)是格,且二元运算*和︒满足分配律,∀a ,b ,c ∈L ,化简表达式 ((a *b )︒(a *c ))* ((a *b )︒(b *c ))4. 试作以下二题:(1)已知A ≠∅,则(P (A ),⋃,⋂,~,∅,A )是布尔代数,∀S ∈P (A ),求S 的补元,说明理由.(2)布尔代数(),,,+∙B ,其中}1,0{=B ,若B 上的三个变元的表达式c b c b a c b a E ++∙+=),,(求)1,1,0(E 的真值.四、证明题1. 设R 为实数集,证明(R ,+)是交换群,(R ,×)是半群,且×对+满足左、右分配律,即(R ,+,×)是环.其中+,×是普通加法和乘法.2. 设<S ,+,∙,,0,1>为一布尔代数,证明∀a ,b ∈S ,有b a b a a +=∙+)(;b a b a a ∙=+∙)((A)(B) (C) (D)格等代数系统习题参考答案一、 1. B 2. C 3. B 4. D二、1.交换群 2. ))(()0(c a b a ⋅+⋅+ 3. b a b a a ⋅=+⋅)( 4. a ∙b =b ∙a 三、1.只需验证(Z ,+)是交换群. 易验证整数具有结合律,交换律. 0是加法的单位元.(4分)∀k ∈Z ,∃-k ∈Z ,有 k +(―k )=(―k )+k =0Z 中每个元素有逆元.故(Z ,+)是交换群. 所以(Z ,+,×)是环.(8分)2. (a *b )*(a '︒b ')=(a *b )* (a *b ) '=13. ((a *b )︒(a *c ))*((a *b )︒(b *c ))=(a *b )︒ ( (a *c )* (b *c ))(分配律) =(a *b ) ︒((a *b )*c ) (幂等律) =a *b (吸收律)4. (1) 对任意S , 因为S ⋃(A -S )=(S ⋃A )⋂(S ⋃~S )=A ,S ⋂(A -S )=S ⋂(A ⋂~S )=∅故S 的补元为A -S .(2) 因为c b c b a c b a E ++∙+=),,(所以, E (0,1,1) =11110++∙+=1110++∙=0+1=1四、1. (1)∀x ,y ,z ∈R ,有(x +y )+z =x +(y +z ),满足加法 R 上满足加法结合律. (2) ∀x ,y ∈R ,有x +y =y +x ,满足加法R 上满足加法交换律.(3)R 中存在元素0,使得∀x ∈R ,有x +0 =0+x , 加法单位元存在,为0. (4) ∀x ∈R , 存在-x ∈R ,使得x +(-x )=0,加法逆元存在,x -1=-x . 可见(R ,+)是交换群; (5) ∀x ,y ,z ∈R ,有(x ×y )×z =x ×(y ×z ),满足乘法结合律. 可见(R ,×)是半群; (6) ∀x ,y ,z ∈R ,有(x +y )×z =x ×z +(y ×z ), z ×(x +y )=z ×x +z ×y , 满足左、右分配律.二元运算×对+满足左右分配律.总之,(R ,+,×>是环. 2. b a b a b a a a b a a +=+∙=+∙+=∙+)(1)()()( b a b a b a a a b a a ∙=∙+=∙+∙=+∙0)()(第7章 图的基本概念一、 单项选择题1. 设V ={a ,b ,c ,d },与V 能构成强连通图的边集E =( )(A) {<a ,b >,<a ,c >,<d ,a >,<b ,d >,<c ,d >} (B) {<a ,d >,<b ,a >,<b ,c >,<b ,d >,<d ,c >} (C) {<a ,c >,<b ,a >,<b ,c >,<d ,a >,<d ,c >} (D) {<a ,d >,<b ,a >,<b ,d >,<c ,d >,<d ,c >} 2. 有向完全图D =<V ,E >, 则图D 的边数是( )(A)2)1(-E E (B)2)1(-V V (C) ∣E ∣(∣E ∣-1) (D) ∣V ∣(∣V ∣-1)3. n 阶无向完全图K n 中的边数为( ) (A)2)1(-n n (B)2)1(+n n (C) n (D)n (n +1)4. 给定无向图G 图5-1所示,下面给出的顶点集子集中,不是点割集的为( )(A) {b ,d } (B) {d } (C) {a ,c } (D) {g ,e } 5. 下列数组中,不能构成无向图的度数列的数组是( )(A) (1,1,1,2,3) (B) (1,2,3,4,5) (C) (2,2,2,2,2) (D) (1,3,3,3)二、 填空题1.设有向图D =<V ,E >的邻接矩阵为A (D )=0110101000010110⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,那么∣E ∣= . 2. 无向图G (如图5-2)的关联矩阵M (G )=3. 数列{2,3,3,4}不能构成无向简单图的度数列,此命题的真值为4. 在有向图的邻接矩阵中,第i 行元素之和与第j 列元素之和分别为 .5. 图G 如图5-3,那么图G 的割点是6. 有16条边,每个顶点都是2度顶点的无向图有个顶点.三、解答化简计算题 1. 设图G 如图5-4所示.已知通路(1) v 1e 5 v 5e 7 v 2e 2 v 3(2) v 5e 6 v 2e 2 v 3e 3 v 4e 8 v 2e 7 v 5 (3) v 2e 7 v 5e 6 v 2(4) v 1e 1 v 2e 2 v 3e 3 v 4e 8 v 2e 6 v 5试回答它们各是简单通路、简单回路、 初级通路还是初级回路.a gb d fc e 图5- 1 v 2e 2 v 3 e 1 e 3 v 1 e 4 v 4 图5-2a bf ce d图5-3 v 1 e 1 e 5 v 2 e 6 v 5 e 2 e 7 e 4 e 8v 3 e 3 v 4 图5-42. 指出有向图D(如图5-5)中各图是强连通,单侧连通还是弱连通?3. 找出无向图G(如图5-6所示)中的一个点割集,三条边和四条边的边割集各一个.4. 已知有向图D(如图5-7)的邻接矩阵为A(D)=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡111111111求从v2到v4长度为2和从v3到v3长度为2的通路条数,并将它们具体写出.5. 设图G=<V,E>,其中V={a,b,c,d,e}, E={(a,b),(b,c),(c,d), (a,e)}试作出图G的图形,并指出图G是简单图还是多重图?是连通图吗?说明理由.6. 设简单连通无向图G有12条边,G中有2个1度结点,2个2度结点,3个4度结点,其余结点度数为3.求G中有多少个结点.试作一个满足该条件的简单无向图.四、证明题1. 若无向图G中只有两个奇数度结点,则这两个结点一定是连通的.2 证明在任何有向完全图中,所有结点的入度平方之和等于所有结点的出度平方之和.(1)(2)(3)(4)(5)图5-5a bce d图5-6v4 v3v1 v2图5-7图的基本概念习题参考答案一、1. A 2. D 3. A 4. A 5. B二、1. 7 2. ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡11001101101001 3. 1 4.结点v i 的出度与结点v j 的入度 5. a , f 6. 16 三、1. (1) 初级通路; (2) 简单回路; (3) 初级回路; (4) 简单通路.2. 强连通图为:图5-5的(1),(4),(5);单侧连通图为:如图5-5的(1),(2),(4),(5),或图5-5的(2); 弱连通图为:图5-5(1)~(5),或图5-5的(3)..3. 点割集:{a ,c ,d }(不惟一) 三条边的边割集:{(b ,c ),(c ,e ),(c ,d )}(不惟一) 四条边的边割集:{(a ,b ),(a ,d ),(d ,e ),(c ,e )}(不惟一)4.. A 2(D )=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2120020221201212从矩阵A 2(D )中a 24=2,a 33=2可知,从v 2到v 4长度为2的通路有2条. 它们是: v 2v 3v 4,和v 2v 1v 4, 从v 3到v 3长度为2的通路有2条. 它们是: v 3v 4v 3,和v 3v 2v 3,5. 图G 如图5-8.图G 中既无环,也无平行边,是简单图.图G 是连通图. G 中任意两点都连通. 6. 设图G 有x 个结点,有握手定理 2⨯1+2⨯2+3⨯4+3⨯(x -2-2-3)=12⨯2271821243=-+=xx =9 图G 有9个结点. 作图如图5-10四、1. 用反证法.设G 中的两个奇数度结点分别为u 和v .假若u 和v 不连通. 即它们之间无任何通路,则G 至少有两个连通分支G 1,G 2,且u 和v 分别属于G 1和G 2,于是G 1和G 2各含有一个奇数度结点.这与握手定理的推论矛盾.因而u 和v 一定是连通的.ab ec d图5-8 图5-10第七章几种特殊图练习题一、 单项选择题1. 以下命题真值为1的是( )(A) 无向完全图都是欧拉图 (B) 有n 个结点n -1条边的无向图都是树 (B) 无向完全图都是平面图 (D) 树的每条边都是割边 2. 有4个结点的非同构的无向树有 ( )个. (A) 2 (B) 3 (C) 4 (D) 5 3. 无向完全图K 4是( )(A )欧拉图 (B )哈密顿图 (C )树 (D )非平面图 4. 以下各图中存在哈密顿回路的图是 ( )5. 设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). (A) e -v +2 (B)v +e -2 (C)e -v -2 (D) e +v +26. 无向图G 是欧拉图,当且仅当( )(A) G 中所有结点的度数全为偶数 (B) G 中所有结点的度数全为奇数 (C) G 连通且所有结点的度数全为偶数 (D) G 连通且所有结点的度数全为奇数 7. 设G 是有6个结点的无向完全图,从G 中删去( )条边,则得到树. (A) 6 (B) 9 (C) 10 (D) 15二、填空题1. 无向连通图G 含有欧拉回路的充分必要条件是2. 设图G =<V ,E >,其中|V |=n ,|E |=m .则图G 是树当且仅当G 是连通的,且m = .3. 图G (如图6-1所示)带权图中最小生成树的权是4.在平面图>=<E V G ,中,则∑=ri i r 1)deg(= ,其中r i (i =1,2,…,r )是图G 的面.5. 设图>=<E V G ,是简单图,若图中每对结点的度数之和 ,则G 一定是哈密顿图.6. 设G 是连通平面图,v ,e ,r 分别表示G 的结点数,边数和面数,则v ,e 和r 满足的关系式是三、解答化简计算题1. 设无向图G =<V ,E >, 那么图G 中∣V ∣与∣E ∣满足什么条件,图G 一定是树.2. 图G (如图6-2)能否一笔画出?说明理由. 若能画出,请写出一条通路或回路.3. 给定三个图如图6-3所示,试判断它们是否 为欧拉图、哈密顿图、或平面图?并说明理由.(A) (B) (C) (D)∙2 2 3∙ 1 ∙7 9 2∙ 8 ∙ 6 图6-1v 5 d v 4 v 1 v 2 v 3 图6-2 e f n c a h g b。

离散数学 同步测试1、命题逻辑

离散数学 同步测试1、命题逻辑

《 离散数学 》同步测试1、命题逻辑一.填空:1.公式)()(s r q p ∨→∧的真值表中共有 16 种真值指派。

2.命题公式(⌝P →Q )→(⌝ Q ∨ P )的主析取范式为001011m m m ∨∨或(P ∧Q )∨(P ∧⌝ Q )∨(⌝P ∧⌝Q ) ,主合取范式为:01M 或P ∨⌝ Q 。

3.设A 、B 、C 和D 四个人中派两个人出差,需要满足下列条件:(1)若A 去,则C 和D 中要去一人;(2)B 和C 不能都去;(3)C 去则D 要留下。

则有3 种派法,分别为 AC,AD,BD 。

4.给定命题公式:P ∨(⌝P →(Q ∨(⌝ Q →R ))则它的成真指派为001,010,011,100,101,110,111,成假指派为000。

二.判断下列命题的对错。

正确的在括号内填√,错误的在括号内填×。

1、设A 、B 、C 为任意命题公式,若A ∨B ⇔ B ∨ C ,则A ⇔ B 。

( × )2、设A 、B 为任意命题公式,若⌝ A ⇔⌝ B ,则A ⇔ B 。

( √ )3、公式)()(q p q p ∨→∧是重言式。

( √ )4、公式P ∧Q 是合取范式,不是析取范式。

( × )5、所有极大项的析取为永真式。

(√ )6、一个命题公式可以有多个与之等价的析取范式。

(√ )7、任一命题的主合取范式是唯一的。

(√)8、下面推理是正确的: ( × )(1)P →Q P(2)⌝P P(3)⌝Q T(1)(2)9、公式(P ∧Q )→(R ∨ ⌝S )的对偶式为(P ∨Q )→(R ∧ ⌝S )。

( × )10、公式(⌝P ∨Q )∧(P →R )与P →(Q ∧ R )。

( √ )三、在每小题的备选答案中只有一个正确答案,将正确答案序号填入下列叙述中的括号内(多选不给分)。

1、给定命题公式如下:A .(P ↔Q )↔(P →Q )∧(Q → P )B .(P ∧⌝P )↔ QC .(P ∨⌝P )→((Q ∧⌝ Q )∧R )则重言式为:( A ) ,矛盾式为:( C ),可满足式为:( B )2.给定命题公式如下:(⌝P →Q )→(⌝ P ∧Q )该命题公式的成真赋值个数是(D),成假赋值个数是(B),与它等价的主析取范式中极小项个数为(D),主合取范式中极大项个数为(B)A.0 B.1 C.2 D.3 E. 43.给定命题公式:P∨(Q∧R)则它的成真赋值为(A),成假赋值为(C)A.111,011,100,101,110 B.111,011C.000,010,001 D.0004.给定真值表:则F等价于( D )A.P ∧Q B.P∨Q C.P→Q D.⌝P∨⌝Q5.给定命题公式:(⌝P∨Q)∧(P→ R),与之等价的是(C )A.P→(⌝ Q∧R)B.P→(Q∨R)C.P→(Q∧R)D.⌝P→(Q∧R)6.前提条件:P→(Q →S),Q, P∨⌝R,则它的有效推论为(B )A.S B.R→S C.P D.R→Q同步测试2、谓词逻辑一.填空:1.对谓词公式((∀x)P(x)∨(∃y)Q(y))→(∀x)R(x)中约束变元应用变换规则所得到的前束范式是(∃x)(∀ y)(∀z)(P(x)∨Q(y))→R(z))2.谓词公式(∀x)(P(x)→Q(x))∧(∃z)(R(x)∧S(z))中,量词(∀x)的辖域为(P(x)→Q(x))。

离散数学命题逻辑习题课

离散数学命题逻辑习题课

二.重言式的证明方法 方法1:列真值表。 方法2:公式的等价变换,化简成“T”。 方法3:用公式的主析取范式。 (1)证明(P→Q)→(P→(P∧ ))是重言式。 (P→Q)→(P→(P∧Q)) ))是 方法1:
P F F T T Q F T F T
P→Q
T T F T
P→(P∧Q) P→(P∧ )
本题的解题关键在于:不管开关和灯处 于什么状态,灯的状态改变当且仅当只 有一个开关的状态发生改变。因此,本 题有多解。 (a)若A=0, B=0时Y=0,则相应真值表设计如下
A 0 0 1 1 B 0 1 0 1 Y 0 1 1 0
相应逻辑表达式为
Y = ( ¬A ∧ B ) ∨ ( A ∧ ¬B )
用异或门实现
A
=1
B
Y
(b)若A=0, B=0时Y=1,则相应真值表设计如下
A 0 0 1 1 B 0 1 0 1 Y 1 0 0 1
相应逻辑表达式为
Y = ( ¬A ∧ ¬B ) ∨ ( A ∧ B )
用同或门实现
A
=1
B
Y
六. 逻辑推理 熟练掌握三种推理方法。 (1) (A∨B)→(C∧D), (D∨E)→P ⇒ A→P 1.直接推理 ⑴ (A∨B)→(C∧D) P ⑵ ¬(A∨B)∨(C∧D) T ⑴ E ⑶ (¬A∧¬B) ∨(C∧D) T ⑵ E ⑷ (¬A∨C)∧(¬B∨C)∧(¬A∨D)∧(¬B∨D) T ⑶ E ⑸ ¬A∨D T ⑷ I ⑹ A→D T⑸ E ⑺ (D∨E)→P P ⑻ ¬(D∨E)∨P T ⑺ E ⑼ (¬D∧¬E)∨P T ⑻ E ⑽ (¬D ∨P) ∧(¬E∨P) T ⑼ E ⑾ ¬D∨P T ⑽ I ⑿ D→P T ⑾ E ⒀A→P T ⑹⑿ I

离散数学命题逻辑练习题

离散数学命题逻辑练习题

离散数学命题逻辑练习题⼀、选择题1. 设命题公式)(R Q P ∧→?,记作G ,使G 的真值指派为1的P ,Q ,R 的真值是( ) 0,0,1)D (0,1,0)C (1,0,0)B (0,0,0)A (2. 与命题公式P ?(Q ?R )等价的公式是( )A ()P Q R ∨→B ()P Q R ∧→C ()P Q R →→D ()P Q R →∨3. 下列各组公式中,哪组是互为对偶的 ( )A ,P PB ,P P ?C ,()A A **D ,A A(其中P 为单独的命题变元,A 为含有联结词的公式)4. 命题公式(P ∧(P →Q))→Q 是_____式。

A 重⾔B ⽭盾C 可满⾜D ⾮永真的可满⾜5. 下⾯命题联结词集合中,哪个是最⼩联结词 ( )A {,}?B {,,}?∧∨C {}↑D {,}∧→6. 命题公式()P Q R ?∧→的主析取范式种含⼩项的个数为 ( )A 8B 3C 5D 07. 如果A B ?成⽴,则以下各种蕴含关系哪⼀个成⽴ ( )A B A ? B A B C B A D A B ??8. 命题公式()()P Q P R →∧→的主析取范式中包含⼩项 ( )A P Q R ∧∧B P Q R ∧∧?C P Q R ∧?∧D P Q R ∧?∧?9. ,,A B C 为任意命题公式,当()成⽴时,有A B ?。

A AB B AC B C ∨?∨ C A C B C ∧?∧D C A C B →?→10. 下⾯4个推理定律中,不正确的是 ( )A ()A AB ?∧ B ()A B A B ∨∧??C ()A B A B →∧?D ()A B B A →∧11. 下列命题公式是等价公式的为().A .?P??Q ?P?QB .A?(?B?A) ??A?(A?B)C .Q ?(P?Q )??Q ?(P?Q )D .?A?(A?B) ?B12. 命题公式)(Q P →?的主析取范式是().A .Q P ?∧B .Q P ∧?C .Q P ∨?D .Q P ?∨13.下列表述成⽴的为().A .?P ??Q ?P ?QB .?B ?A ? A ?BC .P ? Q ?QD .?A ? (A ?B ) ?B14. ⼀个公式在等价意义下,下⾯哪个写法是唯⼀的()。

离散数学习题解答-第2章命题逻辑

离散数学习题解答-第2章命题逻辑

(2) 有 4 个不同的命题变元,使公式的真值为 0 的赋值有 p 0, q 0, r 1, w 0 ;
p 0, q 1, r 0, w 1 ; p 0, q 1, r 1, w 0 ; p 1, q 1, r 0, w 1 ;
3
p 1, q 1, r 1, w 1 ; 使 公 式 的 真 值 为 1 有 赋 值 有 p 0 , q 0 ,r 0 ,w ; 0 p 0, q 0, r 0, w 1 ; p 0, q 0, r 1, w 1 ; p 0, q 1, r 0, w 0 ; p 0, q 1, r 1, w 1 ; p 1, q 0, r 0, w 0 ; p 1, q 0, r 0, w 1 ; p 1, q 0, r 1, w 0 ; p 1, q 0, r 1, w 1 ; p 1, q 1, r 0, w 0 ; p 1, q 1, r 1, w 0 ;
((p q) s) (r t )
3. 列出下列各公式的所有赋值, 并指出哪些赋值使公式的真值为 1, 哪些赋值使公式的真值 为 0。 (1) ( p q) r r (2) (w q) ( p r ) w (3) (( p q) ( p q)) p (4) ((u q) (t r )) (r u) (5) (m q) ((q r ) s) (6) (m q) (t r ) q 解 : (1) 有 3 个 不 同 的 命 题 变 元 , 使 公 式 的 真 值 为 0 的 赋 值 有 p 0, q 0, r 0 ;
p 0, q 0, r 1 ; p 0, q 1, r 0 ; p 0, q 1, r 1 ; p 1, q 0, r 1 ; p 1, q 1, r 0 ; p 1, q 1, r 1 . 使公式的真值为 1 有赋值有 p 1, q 0, r 0 .

离散数学 练习-第1部分 数理逻辑(解答)

离散数学 练习-第1部分 数理逻辑(解答)

5、下列命题公式为重言式的是( D ),为矛盾式的是( C )
A、(P→Q)⋀Q⋀R
B、(P→P)→Q
C、(Q⋁R)⋀R
D、((P→Q)⋀(Q→R))→(P→R)
6、命题公式 (P→Q) 的主合取范式中含有( D )个极大项, 主析取范式中含有( B )个极小项 A、0 B、1 C、2 D、3
7、下列式子不正确的是( D ) A、∃xA(x) ⇔ ∀xA(x) B、∃x(A→B(x)) ⇔ A→∃xB(x) C、∀xA(x) ⇔ ∃xA(x) D、∀x(A(x)→B) ⇔ ∀xA(x)→B
以下方案任选一:①A不去,B不去,C去;②A不去,B去,C不去; ③A去,B不去,C去
9、证明下列谓词公式为永真式
(xF( x) yG( y)) (yG( y) xF( x))
证明:题中的谓词公式为 (P Q) (Q P) 的代换实例
(P Q) (Q P) (P Q) (Q P) (P Q) (P Q) 1 (A A 1)
(P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) (P Q R) m001 m000 m011 m111 m0 m1 m3 m(7 主析取范式) M2 M4 M5 M(6 主合取范式) (P Q R) (P Q R) (P Q R) (P Q R)
命题“并不是所有汽车都比火车跑得慢”可符号化为( C )
命题“说汽车都比火车快是不对的”可符号化为( C ) A、∃x(F(x)∧∀y(G(y)→H(x,y))) B、∃x∃y(F(x)∧G(y)→H(x,y)) C、∀x∀y(F(x)∧G(y)→H(x,y)) D、∀x(F(x)∧∃y(G(y)→H(x,y)))

离散数学-第二章命题逻辑等值演算习题及答案

离散数学-第二章命题逻辑等值演算习题及答案

第二章作业 评分要求:1. 每小题6分: 结果正确1分; 方法格式正确3分; 计算过程2分. 合计48分2. 给出每小题得分(注意: 写出扣分理由)3. 总得分在采分点1处正确设置.一. 证明下面等值式(真值表法, 解逻辑方程法, 等值演算法, 三种方法每种方法至少使用一次):说明证1. p ⇔(p ∧q)∨(p ∧¬q)解逻辑方程法设 p ↔((p ∧q)∨(p ∧¬q)) =0, 分两种情况讨论:⎩⎨⎧=⌝∧∨∧=0)()(1)1(q p q p p 或者 ⎩⎨⎧=⌝∧∨∧=1)()(0)2(q p q p p (1)(2)两种情况均无解, 从而, p ↔(p ∧q)∨(p ∧¬q)无成假赋值, 为永真式.等值演算法(p ∧q)∨(p ∧¬q)⇔ p ∧(q ∨¬q)∧对∨的分配率⇔ p ∧1 排中律⇔ p 同一律真值表法用真值表法和解逻辑方程法证明相当于证明为永真式1. (¬p→q)→(¬q∨p)解(¬p→q)→(¬q∨p)⇔(p∨q)→(¬q∨p)蕴含等值式⇔(¬p∧¬q)∨(¬q∨p)蕴含等值式, 德摩根律⇔(¬p∧¬q)∨¬q ∨p结合律⇔p∨¬q吸收律, 交换律⇔M1因此, 该式的主析取范式为m0∨m2∨m32. (¬p→q)∧(q∧r)解逻辑方程法设(¬p→q)∧(q∧r) =1, 则¬p→q=1且q∧r=1,解得q=1, r=1, p=0 或者q=1, r=1, p=1, 从而所求主析取范式为m3∨m7, 主合取范式为M0∧M1∧M2∧M4∧M5∧M6等值演算法(¬p→q)∧(q∧r)⇔ (p∨q)∧(q∧r) 蕴含等值式⇔ (p∧q∧r)∨(q∧r) ∧对∨分配律, 幂等律⇔ (p∧q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r) 同一律, 矛盾律, ∧对∨分配律⇔m7∨ m3主合取范式为M0∧M1∧M2∧M4∧M5∧M63. (p↔q)→r解逻辑方程法设(p↔q)→r =0, 解得p=q=1, r=0 或者p=q=0, r=0, 从而所求主合取范式为M0∧M6, 主析取范式为m1∨m2∨m3∨m4∨m5∨m7等值演算法(p↔q)→r⇔ ((p→q)∧(q→p))→r 等价等值式⇔⌝((p→q)∧(q→p))∨r 蕴含等值式⇔ (p∧⌝q)∨(q∧⌝p)∨r 德摩根律, 蕴含等值式的否定(参见PPT)⇔ (p∨q∨r)∧(⌝q∨⌝p∨r) ∨对∧分配律, 矛盾律, 同一律⇔M0∧ M6主析取范式为m1∨m2∨m3∨m4∨m5∨m74. (p→q)∧(q→r)解等值演算法(p→q)∧(q→r)⇔ (⌝p∨q)∧(⌝q∨r) 蕴含等值式⇔ (⌝p∧⌝q)∨(⌝p∧r)∨(q∧r) ∧对∨分配律, 矛盾律, 同一律⇔ (⌝p∧⌝q∧r)∨(⌝p∧⌝q∧⌝r) ∨ (⌝p∧q∧r)∨(⌝p∧⌝q∧r) ∨ (p∧q∧r)∨(⌝p∧q∧r)⇔m1∨ m0∨ m3∨ m7主合取范式为M2∧ M4∧ M5∧ M6.解逻辑方程法设(p → q) ∧ (q → r) = 1, 则p → q =1 且q → r =1.前者解得: p=0, q=0; 或者p=0, q=1; 或者p=1, q=1.后者解得: q=0, r=0; 或者q=0, r=1; 或者q=1, r=1.综上可得成真赋值为000, 001, 011, 111, 从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.真值表法公式(p → q) ∧ (q从而主析取范式为m0∨ m1∨ m3∨ m7, 主合取范式为M2∧ M4∧ M5∧ M6.。

修-习题(第一章命题逻辑)080913

修-习题(第一章命题逻辑)080913

(可满足) 可满足)
(3 ) ┐ (Q → R) ∧ R。 。 真值表
Q 0 0 1 1 R 0 1 0 1 Q → R ┐ (Q → R) ┐ (Q → R) ∧ R 1 1 0 1 0 0 1 0 0 0 0 0
(矛盾式) 矛盾式)
(4) (P → Q) → (┐Q → ┐P) 。 ) ┐ 真值表
(P →Q, T) (P →Q, 不确定 不确定)
∧Q, 是最小的素数, 不是最小的自然数。 ∧Q (5)虽然 是最小的素数,但2不是最小的自然数。P∧Q,T )虽然2是最小的素数 不是最小的自然数
6)4既不是素数 也不是偶数。 既不是素数, (6)4既不是素数,也不是偶数。
是无理数,而且自然对数的底e也是无理数 ∧Q 也是无理数。 ∧Q, π 是无理数,而且自然对数的底 也是无理数。P∧Q,T
∵P∧Q ⇔0 ∧Q 十、判断下面论述是否为真:” π 是无理数(P)。并且 是无理数( ) 判断下面论述是否为真: 如果3是无理数( ) 也是无理数( ) 另外, 如果 是无理数(Q),则 2也是无理数(R)。另外, 是无理数 只有6能被 整除( ) 能被2整除 才能被4整除 只有 能被 整除(S),6才能被 整除(W)。 ” 才能被 整除( )
P 0 0 0 0 1 1 1 1 Q 0 0 1 1 0 0 1 1 R 0 1 0 1 0 1 0 1 P ∨Q ∨ R 0 1 1 1 1 1 1 1 P→ (P ∨Q ∨ R) → 1 1 1 1 1 1 1 1
(2) (P → ┐ P) → ┐ Q 。 ) 真值表
P 0 0 1 1 Q 0 1 0 1 P→ ┐ P 1 1 0 0 ┐Q 1 0 1 0 (P → ┐ P) → ┐ Q 1 0 1 1

离散数学命题逻辑习题答案

离散数学命题逻辑习题答案

二年级叙事作文:枪战达人_350字
我们想去后院走走,没想到刚出门就看到后院玩的那些人,他们问我和朋友:“你们和我们玩会儿呗?”我思考了一会,回答:“行啊!走。


到达了后院,他站在大石头边宣布:“规则:四人一队,一人两把武器,开始玩吧!”刚开始,我被投票选为队长,随后我下令:“前进,进入掩体,让对方不能发现我们!”因为和我们的掩体最近的只有一棵树,所以我又命令一个人:“在右边观察‘战场’上的一举一动!”
战场上,激战已经非常激烈,可我们一动不动,没有参与。

直到共五队只剩三队时,我大喊:“冲啊!”把其他两个队一举歼灭了。

枪战结束了,我们欢呼:“终于胜利了!”第二名在一边唠叨:“你们不是也损失了两个。

”第三名嘀咕:“你们肯定了。


就这样,枪战在我们的欢声笑语中结束了。

离散数学第1-2章参考答案-命题逻辑谓词逻辑

离散数学第1-2章参考答案-命题逻辑谓词逻辑

Page 49 第17题解:〔1〕令①P:李明学习努力;②Q:李明成绩好;③R:李明不热衷于玩扑克;〔2〕条件符号化,即①P→Q:假如李明学习努力,那么他成绩好;②R→P:假如李明不热衷于玩扑克,那么他就努力学习;〔3〕所求结论符号化,即①¬Q→¬R:李明成绩不好,所以李明热衷于玩扑克;〔4〕证明:原命题符号化为P→Q,R→P ¬Q→¬R;①P→Q P规那么;②R→P P规那么;③R→Q T规那么①②;④Q∨¬R T规那么③;⑤¬Q→¬R T规那么④;〔5〕得证。

Page 50 第32题〔2〕解: P∨(¬P→(Q∨(¬Q→R)));⇔ P∨(P∨(Q∨(Q∨R)));⇔P∨Q∨R;①主合取范式为:P∨Q∨R;因为 P∨Q∨R ⇔∏M0 ⇔∑m1,2,3,4,5,6,7;②主析取范式为:∨(¬P∧¬Q∧R)∨(¬P∧Q∧¬R)∨(¬P∧Q∧R)∨(P∧¬Q∧¬R)∨(P∧¬Q∧R)∨(P∧Q∧¬R)∨(P∧Q∧R);Page 50 第32题〔4〕解: (P∧¬Q∧R)∨(¬P∧Q∧¬S);⇔ ((P∧¬Q∧R)∧(S∨¬S))∨((¬P∧Q∧¬S)∧(R∨¬R));⇔(P∧¬Q∧R∧S)∨(P∧¬Q∧R∧¬S)∨(¬P∧Q∧R∧¬S)∨(¬P∧Q∧¬R∧¬S);①主析取范式为:(¬P∧Q∧¬R∧¬S)∨(¬P∧Q∧R∧¬S)∨(P∧¬Q∧R∧¬S)∨(P∧¬Q∧R∧S) ⇔∑m4,6,10,11⇔∏M0,1,2,3,5,7,8,9,12,13,14,15;②主合取范式为:(¬P∨¬Q∨¬R∨¬S)∧(¬P∨¬Q∨¬R∨S)∧(¬P∨¬Q∨R∨¬S) ∧(¬P∨¬Q∨R∨S)∧(¬P∨Q∨¬R∨S)∧(¬P∨Q∨R∨S)∧(P∨¬Q∨¬R∨¬S) ∧(P∨¬Q∨¬R∨S)∧(P∨Q∨¬R∨¬S)∧(P∨Q∨¬R∨S)∧(P∨Q∨R∨¬S)∧(P∨Q∨R∨S);Page 50 第32题〔6〕解: (P→Q)→(P∨R);⇔¬(¬P∨Q)∨(P∨R);⇔(P∧¬Q)∨(P∨R);⇔(P∨R)∧(P∨¬Q∨R);⇔ ((P∨R)∨(¬Q∧Q))∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R)∧(P∨¬Q∨R);⇔(P∨¬Q∨R)∧(P∨Q∨R);①主合取范式为:(P∨¬Q∨R)∧(P∨Q∨R);⇔∏M0,2;⇔∑m1,3,4,5,6,7;①主合取范式为:(¬P∨¬Q∨R)∧(¬P∨Q∨R)∧(P∨¬Q∨¬R)∧(P∨¬Q∨R)∧(P∨Q∨¬R)∧(P∨Q∨R);Page 51 第37题〔2〕解: P→Q P→(P∧Q)①P P规那么〔附加前提〕;②P→Q P规那么;③Q T规那么①,②,I;④P∧Q T规那么①,③,I;⑤P→(P∧Q) CP规那么;Page 51 第37题〔4〕解: (P∨Q)→R ⇒ (P∧Q)→R①P∧Q P规那么〔附加前提〕;②P T规那么①,I;③P∨Q T规那么②,I;④(P∨Q)→R P规那么;⑤R T规那么③,④,I;⑥(P∧Q)→R CP规那么;Page 51 第38题〔3〕解:﹁(P→Q)→﹁(R∨S),((Q→P)∨﹁R),R ⇒ P↔Q①﹁(P↔Q) P规那么〔假设前提〕;②﹁((P→Q)∧(Q→P)) T规那么①,I;③R P规那么;④((Q→P)∨﹁R) P规那么;⑤R→(Q→P) T规那么④,I;⑥(Q→P) T规那么③⑤,I;⑦R∨S T规那么③,I;⑧﹁(P→Q)→﹁(R∨S) P规那么;⑨(R∨S)→(P→Q) T规那么⑧,I;⑩(P→Q) T规那么⑦⑨,I;⑪(P→Q)∧(Q→P) T规那么⑥⑩,I;⑫得证间接证明法②⑪;Page 51 第39题〔1〕解:〔1〕符号化命题①P:明天是晴天;②Q:明天下雨;③R:我去看电影;④S:我不看书;条件符号化:P∨Q,P→R,R→S;结论符号化:①﹁S→Q〔2〕证明:P∨Q,P→R,R→S ⇒﹁S→Q①P→R P规那么;②R→S P规那么;③P→S T规那么①②;④﹁S→﹁P T规那么③,I;⑤P∨Q P规那么;⑥﹁P→Q T规那么⑤,I;⑦﹁S→Q T规那么④⑥,I;Page 51 第39题〔2〕解:〔1〕符号化命题①P:明天不下雨;②Q:可以买到车票;③R:我去参观计算机展览会;条件符号化:P∧Q→R;结论符号化:①﹁R→﹁P〔2〕证明:P∨Q,P→R,R→S ⇒﹁S→Q①P∧Q→R P规那么;②﹁R P规那么〔附加前提〕;③﹁(P∧Q) T规那么①②;④﹁P∨﹁Q T规那么③,I;⑤也就是说或者明天下雨或者买不到票,所以原命题说不能参加计算机展览的原因只是明天下雨是不完全的,故原命题无效。

离散数学命题逻辑练习题及答案

离散数学命题逻辑练习题及答案

离散数学命题逻辑练习题及答案本文档包含了一些离散数学中的命题逻辑练习题及其详细答案。

在离散数学中,命题逻辑是一种符号逻辑系统,它研究命题的形式和逻辑推理的规则。

这些练习题旨在帮助读者巩固对命题逻辑基本概念的理解,并锻炼逻辑推理能力。

练习题1.写出下列命题的否定形式:a)如果今天下雨,我就不出门。

b)数学和计算机科学是紧密相关的学科。

c)所有猫都有尾巴。

d)如果一个数是偶数,它肯定可以被2整除。

2.判断以下陈述是否为命题,并给出理由:a)蓝色是我最喜欢的颜色。

b)2加2等于4。

c)这是一个错误的陈述。

d)如果明天下雨,我就会带伞。

3.使用真值表判断以下复合命题的真值:a)P ∧ (¬Q ∨ R)b)(P ∧ Q) ∨ (¬R ∧ S)c)(P → Q) ∧ (R → S)d)(P ∨ Q) ∧ (¬P ∨ Q)4.使用推理规则化简以下逻辑表达式:a)~((P ∧ Q) ∨ R)b)~(P ∨ (Q ∧ R))c)(~P ∧ Q) ∨ ((~P ∨ Q) ∧ R)d)(P → Q) ∨ (¬Q → ¬P)答案a)今天下雨而且我不出门。

b)数学和计算机科学不是紧密相关的学科。

c)存在不具备尾巴的猫。

d)存在一个偶数,它不能被2整除。

a)不是命题。

因为它表达了个人偏好,无法判断真假。

b)是命题。

因为它可以明确地判断为真。

c)不是命题。

因为它没有明确的真值。

d)是命题。

因为它可以根据明天的天气情况来判断真假。

P Q R¬Q ∨ R P ∧ (¬Q ∨ R)T T T T TT T F F FT F T T TT F F T TF T T T FF T F T FF F T T FF F F T FP Q R P ∧ Q¬R ∧ S(P ∧ Q) ∨ (¬R ∧ S) T T T T F TT T F T F TT F T F T TT F F F T TF T T F F FF T F F F FF F T F F FF F F F F FP Q R P → Q R → S(P → Q) ∧ (R → S) T T T T T TT T F T F FT F T F T FT F F F T FF T T T T TF T F T F TF F T T T TF F F T T TP Q(P ∨ Q)¬P ∨ Q(P ∨ Q) ∧ (¬P ∨ Q) T T T T TT F T F FF T T T TF F F F F~((P ∧ Q) ∨ R)= ~(P ∧ Q) ∧ ~R~(P ∨ (Q ∧ R))= ~P ∧ ~(Q ∧ R)= ~P ∧ (~Q ∨ ~R)(~P ∧ Q) ∨ ((~P ∨ Q) ∧ R)= (~P ∨ ~P) ∧ (Q ∨ Q) ∧ (Q ∨ R) ∧ (~P ∨ R) = ~P ∧ Q ∨ R(P → Q) ∨ (¬Q → ¬P)= (~P ∨ Q) ∨ (Q ∨ ¬P)= (~P ∨ Q) ∨ (¬P ∨ Q)= T以上是一些离散数学命题逻辑的练习题及答案。

离散数学复习资料

离散数学复习资料

《离散数学》习题与解答第一篇数理逻辑第一章命题逻辑1-1(1)指出下列语句哪些是命题,哪些不是命题,如果是命题指出他的真值a)离散数学是计算机科学系的一门必修棵b)∏> 2 吗?c)明天我去看电影d)请勿随地吐痰e)不存在最大质数f)如果我掌握了英语,法语,那么学习其他欧洲的语言就容易多了g)9+5<12h)x<3i)月球上有水j)我正在说假话[解]a)不是命题b)是命题,真值视具体情况而定c)不是命题d)是命题,真值为te)是命题,真值为tf)是命题,真值为fg)不是命题h)是命题, 真值视具体情况而定i)不是命题1-2(1)用P表示命题“天下雪”,(又表示命题“我将去镇上”,R表示命题“我有时间”.以符号形式写出下列命题:(a)如果天不下雪和我有时间,那么我将去镇上.(b)我将去镇上,仅当我有时间.(c)天不下雪(d)天下雪,那么我不去镇上[解]a)(┐P∧R)→Qb)Q→Rc)┐Pd)P→┐Q1-2(2)将下面这段陈述中所出现的原子命题符号化,并指出他们的真值,然后将这段陈述中的每一命题符号化 2 是有理数是不对的.2是偶素数.2或4是素数.如果2是素数则3也是素数.2是素数当且仅当3也是素数.[解]:陈述中出现5个原子命题,将他们符号化为:P: 2 是有理数其真值为FQ:2是素数其真值为TR:2是偶数其真值为TS:3是素数其真值为TU:4是素数其真值为F陈述中各命题符号化为:┐P;Q∧R;Q∨U;Q→S;Q<=>S1-2(3)将下列命题符号化a)如果3+3=6,则雪是白色的.b)如果3+3≠6,则雪是白色的c)如果3+3=6,则雪不是白色的.d)如果3+3≠6,则雪不是白色的e)王强身体很好,成绩也很好.f)四边形ABCD是平行四边形,仅当其对边平行[解]:设P:3+3=6 Q:雪是白色的R:王强成绩很好S:王强身体很好U: 四边形ABCD是平行四边形V: 四边形ABCD的对边是平行的于是:a)可表示为:P→Qb)可表示为: ┐P→Qc)可表示为: P→┐Qd)可表示为:┐P→┐Qe)可表示为:S∧Rf)可表示为:U<=>V1-3(1)判别下列公式中哪些是合式公式,那些不是合式公式a) (Q→R∧S)b) (P<=>(R→S))c) ((┐P→Q)→(Q→P)))d) (RS→T)e)((P→(Q→R))→((P→Q)→(P→R)))[解]:a)不是合式公式(若规定运算符优先级后也可以作为合式公式)b)是合式公式c)不是合式公式(括号不配对)d)不是合式公式e)是合式公式1-3(2)对下列各式用指定的公式进行代换:a) (((A→B)→B)→A),用(A→C)代换A,用((B∧C)→A代换B。

离散数学(命题逻辑)课后总结

离散数学(命题逻辑)课后总结

离散数学(课件上习题)第一章例1-1.1 判定下面这些句子哪些是命题。

⑴2是个素数。

⑵雪是黑色的。

⑶2013年人类将到达火星。

⑷如果a>b且b>c,则a>c 。

(其中a,b,c都是确定的实数)⑸x+y<5⑹请打开书!⑺您去吗?⑴⑵⑶⑷是命题例1-2.1 P:2是素数。

⌝P:2不是素数。

例1-2.2 P:小王能唱歌。

Q:小王能跳舞。

P∧Q:小王能歌善舞。

例1-2.3. 灯泡或者线路有故障。

(析取“∨”)例1-2.4. 第一节课上数学或者上英语。

(异或、排斥或。

即“⊽”)注意:P ⊽Q 与(P∧⌝Q)∨(Q∧⌝P ) 是一样的。

归纳自然语言中的联结词,定义了六个逻辑联结词,分别是:(1)否定“⌝”(2) 合取“∧”(3) 析取“∨”(4) 异或“⊽”(5) 蕴涵“→”(6) 等价“↔”例1-2.5:P表示:缺少水分。

Q表示:植物会死亡。

P→Q:如果缺少水分,植物就会死亡。

P→Q:也称之为蕴涵式,读成“P蕴涵Q”,“如果P则Q”。

也说成P是P→Q 的前件,Q是P→Q的后件。

还可以说P是Q的充分条件,Q是P的必要条件。

以下是关于蕴含式的一个例子P:天气好。

Q:我去公园。

1.如果天气好,我就去公园。

2.只要天气好,我就去公园。

3.天气好,我就去公园。

4.仅当天气好,我才去公园。

5.只有天气好,我才去公园。

6.我去公园,仅当天气好。

命题1.、2.、3.写成:P→Q命题4.、5.、6.写成:Q→P例1-2.6:P:△ABC 是等边三角形。

Q :△ABC是等角三角形。

P↔Q :△ABC 是等边三角形当且仅当它是等角三角形。

课后练习:填空已知P∧Q为T,则P为( ),Q为( )。

已知P∨Q为F,则P为( ),Q为( )。

已知P为F,则P∧Q为( )。

已知P为T,则P∨Q为( )。

已知P∨Q为T,且P为F ,则Q为( )。

已知P→Q为F,则P为( ),Q为( )。

已知P为F,则P→Q为( )。

离散数学之1—命题逻辑

离散数学之1—命题逻辑
pq 的逻辑关系:p为 q 的充分条件, 或者:q为 p 的必要条件。 注意:当 p 为假时,pq恒为真。 实例: 如果天气好,我就去游玩。 p → q 如果我得到这本小说,我将读完它。 p → q 如果雪是黑的,那么太阳从西方升起。 p → q
28
蕴涵联结词的实例
我将去旅游,仅当我有时间。 p: 我去旅游 q: 我有时间 p→q p: 不下雨 q: 我骑自行车上班 只要不下雨,我就骑自行车上班 p→q 只有不下雨,我才骑自行车上班。 q→p
说谎者悖论 亚里士多德,古希腊人,是世界
古典形式逻辑
如果这个人说的是假话,既 在中世纪,形式逻辑作为一门独 “我没有说谎”,既他说的是 立的科学得到了发展。 真话,矛盾。
第一篇 数理逻辑
6
数理逻辑创始人
德国哲学家和数学家莱布 尼茨是德国最重要的自然 科学家、数学家、物理学 家和哲学家,一个举世罕 见的科学天才,和牛顿同 为微积分的创建人。 莱布尼茨是现在公认的数 理逻辑创始人,他的目的 是建立一种“表意的符号 语言”,其中把一切思维 推理都化归为计算。实际 上这正是数理逻辑的总纲 领。
29
蕴涵联结词的实例
除非你努力,否则你不能成功。 表示p q的常用词: 除非你努力,你才能成功。 p是q的充分条件 p: 你努力 q: 你成功 q是p的必要条件 p → q 或 q → p 如果(若)p,则q p 0 0 1 1 q 0 1 0 1 p 1 1 0 0
只要p,就q q qp pq 只有q 才p 1因为p所以 1 q 1 0p仅当q0 0 才p 1除非q, 1 1 p 0除非q,否则非 1 1
数理逻辑
“事实上,它们(程 序设计)或者就是 数理逻辑,或者是 用计算机语言书写 的数理逻辑,或者 是数理逻辑在计算 机上的应用。”

离散数学课后习题答案

离散数学课后习题答案

第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。

离散数学命题逻辑练习题及答案

离散数学命题逻辑练习题及答案

离散数学命题逻辑练习题及答案1. 命题逻辑基础1.1 命题逻辑概念1.什么是命题?答案:命题是可以判断真假的陈述句。

2.命题的两个基本操作是什么?答案:命题的两个基本操作是合取和析取。

1.2 命题逻辑表达式3.将以下中缀表达式转换为后缀表达式:((P ∧ Q) → (R ∨ S)) ∨ T答案:后缀表达式为P Q ∧ R S ∨ → T ∨4.使用真值表验证以下命题逻辑公式是否为重言式(永远为真):(P ∨ Q) ∧ (¬P ∨ Q) ⟺ Q答案:P Q(P ∨ Q) ∧ (¬P ∨ Q)QT T T TT F T FF T T TF F F F结论:命题逻辑公式(P ∨ Q) ∧ (¬P ∨ Q)是重言式。

1.3 命题逻辑推理5.使用命题逻辑进行推理,判断以下论断是否成立(推理过程可用真值表验证):P → Q, Q → R ∈ L, ∴ P → R答案:P Q R P → Q Q → R P → R T T T T T TT T F T F FT F T F T TT F F F T FF T T T T TF T F T F TF F T T T TF F F T T T结论:论断P → R成立。

2. 命题逻辑的应用2.1 命题逻辑在计算机科学中的应用6.命题逻辑在计算机科学中有哪些应用?答案:命题逻辑在计算机科学中的应用包括逻辑电路设计、计算机程序的正确性验证、控制流分析等。

7.请简要说明命题逻辑在逻辑电路设计中的应用。

答案:命题逻辑在逻辑电路设计中用于描述逻辑电路的功能和工作原理。

通过使用命题逻辑符号和逻辑运算,可以建立逻辑电路的逻辑模型,进而进行电路的设计、优化和验证。

2.2 命题逻辑推理的应用8.请举一个命题逻辑推理在实际生活中的应用例子。

答案:命题逻辑推理在实际生活中的一个应用例子是法庭判案。

法庭根据掌握的事实和证据,通过进行命题逻辑推理来确定被告是否犯罪或无罪,从而作出最终的判决。

离散数学 命题逻辑 习题 课后题

离散数学 命题逻辑  习题 课后题

第一章命题逻辑测验一、判断命题(每题1分,共5分)判断下列语句是不是命题。

若是,给出命题的真值。

1、北京是中华人民共和国的首都。

2、陕西师大是一座工厂。

3、你喜欢唱歌吗?4、若7+8>18,则三角形有4条边。

5、给我一杯水吧!二、命题符号化(每题2分,共8分)设P:我生病,Q:我去学校1、只有在生病时,我才不去学校2、若我生病,则我不去学校3、当且仅当我生病时,我才不去学校4、若我不生病,则我一定去学校三、蕴含式(12+15=27分)1、命题定律(每个4分,共计12分)吸收律、德摩根律、分配律2、要求:不使用真值表,使用蕴含的定义以及等价变换两种方法进行证明。

(15分)→Q→P→→→R⇒(())P)(RQP四、主析取范式/主合取范式(每题15分,共30分)求下列的主析取范式和主合取范式,要求第1题使用大项和小项的关系进行求解,第2题要求直接求主析取范式和主合取范式。

1、(P∧R)∨(Q∧R)∨⌝P2、(⌝P→Q)∧(R∨P)五、推理规则进行证明(每题10分,共30分)1、S⌝→∨((直接证法)⇒→,),QRPRQSP→2、S⌝∨→⇒),→,((用CP)RQRP→PSQ3、(P→Q)∧(R→S),(Q→W)∧(S→X),⌝(W∧X),P→R => ⌝P(反证法)。

命题逻辑练习题

命题逻辑练习题

《离散数学》命题逻辑部分练习题一、选择题1.下列句子中,( )是命题。

A .2是常数。

B .这朵花多好看呀!C .请把门关上!D .下午有会吗?2.令p : 今天下雪了,q :路滑,r :他迟到了。

则命题“下雪路滑,他迟到了” 可符号化为( )。

A. p q r ∧→ B. p q r ∨→ C. p q r ∧∧ D. p q r ∨↔3.令:p 今天下雪了,:q 路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( )。

A. p q ∧⌝ B. p q ∧ C. p q ∨⌝D. p q →⌝4.设()P x :x 是鸟,()Q x :x 会飞,命题“有的鸟不会飞”可符号化为( )。

A. ()(()())x P x Q x ⌝∀→B. ()(()x P x ⌝∀∧())Q xC. ()(()())x P x Q x ⌝∃→D. ()(()x P x ⌝∃∧())Q x 5.设()F x :x 是人,()G x :x 犯错误,命题“没有不犯错误的人”符号化为( )。

A .(()())x F x G x ∀∧B . (()())x F x G x ⌝∃→⌝C .(()())x F x G x ⌝∃∧D . (()())x F x G x ⌝∃∧⌝ 6.下列命题公式不是永真式的是( )。

A. ()p q p →→B. ()p q p →→C. ()p q p ⌝∨→D. ()p q p →∨ 7.下列式子为矛盾式的是( )。

A .()p p q ∨∧B .p p ∨⌝C .p p ∧⌝D . ()p q p q ⌝∨⇔⌝∧⌝ 8.命题:“所有马都比某些牛跑得快” 的符号化公式为( )。

假设:H(x ):x 是马;C(x ):x 是牛;F(x,y ):x 跑得比y 快。

A. ()(()()(()(,)))x H x y C y F x y ∀∧∃∧B. ()(()()(()(,)))x H x y C y F x y ∀→∃→C. ()(()()(()(,)))x H x y C y F x y ∀→∃∧D. ()()(()(()(,)))y x H x C y F x y ∃∀→→二、计算题(仅给出部分题目的解题思路,未给出答案自己完成)1. 已知命题公式()()p q p r ⌝→→∧ (1)构造真值表(2)求出公式的主析取范式(2)()()p q p r ⌝→→∧0157()()()()p q r p q r p q r p q r m m m m ⇔⌝∧⌝∧⌝∨∧∧⌝∨∧⌝∧∨∧∧⇔∨∨∨2.已知命题公式()()p q p r ∨→⌝∨ (1)构造真值表;(2)用等值演算法求公式的主析取范式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10
练习2: 判断公式类型
判断下列公式的类型: (1) (PQ)(QP) (2) (PQ)Q (3) (PQ)P
11
练习2: 判断公式类型
(1) (PQ)(QP) 解 用等值演算法求主范式 (PQ)(QP) (PQ)(QP) 重言式 (PQ)(QP) (PQ)(PQ)(PQ)(PQ) m2 m1 m3 m0 m0 m1 m2 m3 主析取范式 1 主合取范式
16
练习4解答
解此类问题的步骤: 1.设简单命题并符号化 2. 用复合命题描述各条件 3. 写出由复合命题组成的合取式 4. 将合取式成析取式(最好是主析取范式) 5. 求成真赋值, 并做出解释和结论
17
练习4解答
1. 设简单命题并符号化 设 P: 派赵去,Q: 派钱去,R: 派孙去,S: 派 李去,U: 派周去 2. 写出复合命题 PQ (1) 若赵去,钱也去 SU (2) 李、周两人中至少有一人去 (3) 钱、孙两人中去且仅去一人 (QR)(QR) (RS)(RS) (4) 孙、李两人同去或同不去 U(PQ) (5) 若周去,则赵、钱也去
3
练习2
将下列命题符号化 (1) 豆沙包是由面粉和红小豆做成的. (2) 苹果树和梨树都是落叶乔木. (3) 王小红或李大明是物理组成员. (4) 王小红或李大明中的一人是物理组成员. (5) 由于交通阻塞,他迟到了. (6) 如果交通不阻塞,他就不会迟到. (7) 他没迟到,所以交通没阻塞. (8) 除非交通阻塞,否则他不会迟到. (9) 他迟到当且仅当交通阻塞.
15
练习4:应用题
某公司要从赵、钱、孙、李、周五名新毕业的 大学生中选派一些人出国学习. 选派必须满足以 下条件: (1) 若赵去,钱也去. (2) 李、周两人中至少有一人去 (3) 钱、孙两人中去且仅去一人. (4) 孙、李两人同去或同不去. (5) 若周去,则赵、钱也去. 用等值演算法分析该公司如何选派他们出国?
26
练习2:构造证明
2. 在系统P中构造下面推理的证明: 如果今天是周六,我们就到颐和园或圆明园玩. 如果颐和园游人太多,就不去颐和园. 今天是周 六,并且颐和园游太多. 所以, 我们去圆明园或 动物园玩. 证明: (1) 设 P:今天是周六,Q:到颐和园玩, R:到圆明园玩,S:颐和园游人太多 T:到动物园玩 (2) 前提:P(QR), SQ, P, S 结论:RT
习题课-命题逻辑(1)
主要内容 命题、真值、简单命题与复合命题、命题 符号化 联结词, , , , 及复合命题符号化 命题公式及层次 公式的类型 真值表及应用
1
习题课-命题逻辑(1)
基本要求 深刻理解各联结词的逻辑关系, 熟练地将 命题符号化 会求复合命题的真值 深刻理解合式公式及重言式、矛盾式、可 满足式等概念 熟练地求公式的真值表,并用它求公式的 成真赋值与成假赋值及判断公式类型
23
练习1解答
方法二:主析取范式法, (PQ)QP ((PQ)Q)P PQ M2 m0m1m3 未含m2, 不是重言式, 推理不正确.
24
练习1解答
方法三 真值表法
P 0 0 1 1 Q 0 1 0 1 PQ 0 1 1 1
(PQ)Q
0 0 1 0
2
练习1
判断下列语句是否为命题: 是 1. 十是一个整数. 2. 北京是一个村庄. 是 否 3. 请勿吸烟! 是 4. 雪是黑色的. 是 5. 今天是7号. 是 6. 1+101=110. 否 7. 您吃饭了吗? 8. 我学英语或法语. 是 是 9. 如果天气好,我就去散步. 10. 我不给所有自己替自己理发的人理发,但却给 所有自己不替自己理发的人理发。 否
22
练习1:判断推理是否正确
1. 判断下面推理是否正确: (1) 前提:PQ, Q 结论:P 解 推理的形式结构: (PQ)QP 方法一:等值演算法 (PQ)QP ((PQ)Q)P (PQ)QP ((PQ)(QQ))P PQ 易知10是成假赋值,不是重言式,所以推理不正确.
18
练习4解答
3. 设(1)—(5)构成的合取式为A A = (PQ)(SU)((QR)(QR)) ((RS)(RS))(U(PQ)) 4. 化成析取式 A (PQRSU)(PQRSU) 结论:由上述析取式可知,A的成真赋值为 00110与11001, 派孙、李去(赵、钱、周不去) 派赵、钱、周去(孙、李不去)
27
练习2解答
(3) 证明: ① P(QR) ②P ③ QR ④ SQ ⑤S ⑥ Q ⑦R ⑧ RT
前提引入 前提引入 ①②假言推理 前提引入 前提引入 ④⑤假言推理 ③⑥析取三段论 ⑦附加
28
14
练习3:求公式的主范式
已知命题公式A中含3个命题变项P, Q, R,并知 道它的成真赋值为001, 010, 111, 求A的主析取 范式和主合取范式,及A对应的真值函数. 解: P Q R A P Q R A 0 0 0 0 1 0 0 0 0 0 1 1 1 0 1 0 0 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 A的主析取范式为m1 m2 m7 A的主合取范式为M0 M3 M4 M5 M6
4
练习2解答
(1) 豆沙包是由面粉和红小豆做成的. 简单命题 (2) 苹果树和梨树都是落叶乔木. 合取式 (3) 王小红或李大明是物理组成员. 析取式 (4) 王小红或李大明中的一人是物理组成员. 异或 设 P: 交通阻塞,Q: 他迟到 P Q (5) 由于交通阻塞,他迟到了. PQ或QP (6) 如果交通不阻塞,他就不会迟到. QP 或PQ (7) 他没迟到,所以交通没阻塞. PQ 或QP (8) 除非交通阻塞,否则他不会迟到. PQ (9) 他迟到当且仅当交通阻塞.
8
习题课-命题逻辑(2)
基本要求 熟练掌握求主范式的方法(等值演算、真 值表等) 会用主范式求公式的成真赋值、成假赋值、 判断公式的类型、判断两个公式是否等值 会将公式等值地化成指定联结词公式 会用命题逻辑的概念及运算解决简单的应 用问题
9
练习1 概念
设A与B为含n个命题变项的公式,判断下列命题 是否为真? (1) AB当且仅当A与B有相同的主析取范式 真 (2) 若A为重言式,则A的主合取范式为0 假 (3) 若A为矛盾式,则A的主析取范式为1 假 (4) 任何公式都能等值地化成{, }中的公式 假 (5) 任何公式都能等值地化成{, , }中的公式 真
7
习题课-命题逻辑(2)
基本要求 深刻理解等值式的概念 牢记基本等值式的名称及它们的内容 熟练地应用基本等值式及置换规则进行等 值演算 理解简单析取式、简单合取式、析取范式、 合取范式的概念 深刻理解极小项、极大项的概念、名称及 下角标与成真、成假赋值的关系,并理解 简单合取式与极小项的关系
(PQ)QP 1 1 0 1
不是重言式, 推理不正确 方法四 直接观察出10是成假赋值
25
练习1
(2) 前提:QR, PR 结论:QP 解 推理的形式结构: (QR)(PR)(QP) 用等值演算法 (QR)(PR)(QP) (QR)(PR)(QP) ((QR)(PR))(QP) ((QP)(QR)(RP))(QP) ((QP)(QR)(RP))(QP) 1 推理正确
20
习题课-命题逻辑(3)
主要内容 推理的形式结构 判断推理是否正确的方法
真值表法 等值演算法 主析取范式法
推理定律
自然推理系统 构造推理证明的方法
直接证明法 附加前提证明法 归谬法(反证法)
21
习题课-命题逻辑(3)
基本要求 理解并记住推理形式结构的两种形式: 1. (A1A2…Ak)B 2. 前提:A1, A2, … , Ak 结论:B 熟练掌握判断推理是否正确的不同方法(如真值 表法、等值演算法、主析取范式法等) 牢记 各条推理规则 熟练掌握构造证明的直接证明法、附加前提证明 法和归谬法 会解决实际中的简单推理问题
19
练习4解答
A (PQ)((QR)(QR)) (SU)(U(PQ)) ((RS)(RS)) B1=(PQ)((QR)(QR)) ((PQR)(PQR)(QR)) (分配律) B2=(SU)(U(PQ)) ((SU)(PQS)(PQU)) (分配律) B1B2 (PQRSU)(PQRSU) (QRSU)(PQRS)(PQRU) 再令 ((RS)(RS))=B3,则 B1B2B3 (PQRSU)(PQRSU)
12
练习题2(续)
(2) (PQ)Q 解 用等值演算法求公式的主范式 (PQ)Q 矛盾式 (PQ)Q PQQ 0 主析取范式 M0 M1 M2 M3 主合取范式
13
练习2(续)
(3) (PQ)P 解 用等值演算法求公式的主范式 (PQ)P 可满足式 (PQ)P P (PQ)(PQ) m0 m1 主析取范式 M2 M3 主合取范式
5
练习3
设 P : 2是素数 Q : 北京比天津人口多 R : 乌鸦是白色的 求下面命题的真值
(1) (PQ)R (2) (QR)(PR) (3) (QR)(PR) (4) (QP)((PR)(RQ))
0 1 0 0要内容 等值式与等值演算 基本等值式(10.4;42个公式) 主析取范式与主合取范式 联结词的扩充
相关文档
最新文档