平行四边形分类证明
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四边形判定定理以及性质定理
一、平行四边形:
判定:(1)两组对边分别平行的四边形(2)两组对边分别相等的四边形(3)一组对边平行且相等的四边形(4)对角线互相平分的四边形(5)两组对角分别相等的四边形
性质:两组对边分别平行对边相等对角相等两条对角线互相平分是中心对称图形对称中心是两条对角线的交点
二、矩形:
判定:(1)有一个内角是直角的平行四边形(2)有三个内角是直角的四边形(3)对角线相等的平行四边形
性质:四个角都是直角两条对角线相等
三、菱形:
判定:(1)有一组邻边相等的平行四边形(2)四条边都相等的四边形(3)对角线互相垂直的平行四边形
性质:四条边都相等对角线互相垂直每一条对角线平分一组对角
四、正方形:
判定:(1)有一组邻边相等并且有一个内角是直角的平行四边形(2)有一组邻边相等的矩形(3)有一个内角是直角的菱形
性质:四个角都是直角四条边都相等两条对角线相等,并且互相垂直每条对角线平分一组对角
五、其他定理
中位线定理:三角形两边中点连线平行于第三边,且等于第三边的一半
斜边中线:直角三角形斜边上的中线等于斜边的一半
六、平行四边形证明题
1、如图,四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F。(1)求证:BE=DF (2)若M、N分别为边AD、BC上的点,且DM=BN,判断四边形MENF的形状
2、如图,□AECF的对角线相交于点O,DB经过点O,分别与AE、CF交于点B、D。求证:四边形ABCD是平行四边形
3、如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F。(1)求证:△ABE≌△CDF
(2)若AC与BD交于点O,求证:AO=CO
4、如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD。求证:EF=AD
5、如图,D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明
6、如图,平行四边形ABCD中,AE=CF,M、N分别是DE、BF的中点。求证:四边形MFNE是平行四边形
7、在平行四边形ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF。求证:四边形BEDF是平行四边形
8、如图,DB∥AC,且2DB=AC,E是AC的中点,求证:BC=DE
9、如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止。点Q自点C向B 以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形。问当P,Q同时出发,几秒后其中一个四边形为平行四边形
10、如图,D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分
11、如图,四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上。
求证:EF和GH互相平分
12、如图,平行四边形ABCD中,MN∥AC,试说明MQ=NP
A
Q D E
B
P
C
O
D
B
C
A E
N
M
O
七、特殊平行四边形证明题
13、如图,在平行四边形ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△GFC (1)求证:BE=DG (2)若∠B=60°,证明当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形
14、将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D ′ 处,折痕为EF 。 (1)求证:△ABE ≌△AD ′F (2)连接CF ,判断四边形AECF 是什么特殊四边形
15、如图,△ABC 中,AC 的垂直平分线MN 交AB 于点D ,交AC 于点O ,CE ∥AB 交MN 于E ,连结AE 、CD 。 求证:AD =CE
16、如图,在△ABC 中,AB =AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE 。(1)求证:△ABE ≌△ACE (2)证明当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形
17、在菱形ABCD 中,对角线AC 与BD 相交于点O ,AB=5,AC=6.点D 作DE//AC 交BC 的延长线于点E 。 (1)求△BDE 的周长 (2)点P 为线段BC 上的点,连接PO 并延长交AD 于点Q 。 求证:BP=DQ
18、如图,四边形ABCD 中,AB // CD ,AC 平分∠BAD ,CE//AD 交AB 于E 。 (1)求证:四边形AECD 是菱形; (2)若点E 是AB 的中点,试判断△ABC 的形状,并说明理由 A B
C
D
E
F D ′ A
D
G
C
B
F
E
A
B
C
D E
F E
G A
D
F
A
C B
D
P
Q
A D F
C
E
G
B 19、四边形ABCD 、DEFG 都是正方形,连接AE 、CG 。 (1)求证:AE =CG (2)观察图形,猜想AE 与CG 之间的位置关系,并证明你的猜想
20、如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE =CG ,连接BG 并延长交DE 于F 。 (1)求证:△BCG ≌△DCE (2)将△DCE 绕点D 顺时针旋转90°得到△DAE′,判断四边形E′BGD 是什么特殊四边形?并说明理由
21、如图,在△ABC 中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF =BD ,连结BF 。 (1) 求证:BD =CD (2)如果AB =AC ,试判断四边形AFBD 的形状,并证明你的结论
22、如图,四边形ABCD 是矩形,△PBC 和△QCD 都是等边三角形,且点P 在矩形上方,点Q 在矩形内。求证:(1)∠PBA =∠PCQ =30°(2)P A =PQ
23、如图,矩形ABCD 中,点E 是BC 上一点,AE =AD ,DF ⊥AE 于F ,连结DE ,求证:DF =DC
综合证明题
24、如图,在Rt △ABC 中,∠ABC=90°,将Rt △ABC 绕点C 顺时针方向旋转60°得到△DEC ,点E 在AC 上,再将Rt △ABC 沿着AB 所在直线翻转180°得到△ABF ,连接AD (1)求证:四边形AFCD 是菱形
(2)连接BE 并延长交AD 于G 连接CG 请问:四边形ABCG 是什么特殊平行四边形