匀变速直线运动规律的公式总结与应用
匀变速直线运动规律的应用
能力· 思维· 方法
【解题回顾】本题分析时,有不少学生易患如下毛 病,当推出v1>v2时假设物体匀加速,便主观地认 为若物体做匀减速运动结果就是v1<v2.
此外,本题还有一个较好的处理方法,就是利用vt图线比较v1和v2的大小. 设物体做加速运动,其v-t图如图2-2-2,其中间时 刻的速度v2大小即为梯形OABC的中位线的长度.而中 间位置的速度大小则应是把梯形面积平分为二的线 段DE表示的长度.若物体做减速运动由图2-2-3可得 出同样的结论.
物体在AB之间作匀变速直线
运动,C为AB的中点,已知物 体在A、B的速度分别为V 1和 V2试求物体在C点的速度
要点· 疑点· 考点
二、初速度为0的匀变速直线运动的特殊规律 1.从静止出发后,在T秒内、2T秒内、3T秒内位 移之比为:12∶22∶32∶…∶n2
2.从静止出发后,在第一个T秒内、第二个T秒内、 第三个T秒内位移,即连续相等时间内位移之比为: 1∶3∶5∶…∶(2n-1). 3.从静止出发后,在T秒末、2T秒末、3T末速度 之比为:1∶2∶3∶…∶n.
二、匀变速直线运动的规律
1.基本公式.
(1)速度公式:vt=v0+at,
(2)位移公式:s=v0t+(1/2)at2. (3)速度、位移关系:v2t-v20=2as,
要点回眸
【注意】匀变速直线运动中所涉及 的物理量有五个,分别为v0、vt、s、 a、t,其中t是标量,其余均为矢量, 一般情况下,选初速度方向为正方向. 当知道五个量中的任意三个的时候, 就可以利用公式求出其余两个量.
能力· 思维· 方法
【例3】物体从A到B做匀变速直线运动,经过中间 位置时的速度为v1,它在这段时间中间时刻的速 度为v2,则(AC)
匀变速直线运动相关公式与推导全解
匀变速直线运动相关公式与推导全解下面将详细介绍匀变速直线运动的相关公式与推导全解。
一、基本公式:1.速度公式:在匀变速直线运动中,物体的速度是随时间变化的。
记物体的初始速度为v0,时间为t,物体的速度为v。
若物体的加速度为a,则根据速度的定义,有 v = v0 + at。
这个公式表明,物体的速度等于初始速度加上加速度乘以时间。
2.位移公式:在匀变速直线运动中,物体的位移也是随时间变化的。
记物体的初始位移为s0,时间为t,物体的位移为s。
若物体的速度为v,则根据位移的定义,有 s = s0 + vt。
这个公式表明,物体的位移等于初始位移加上速度乘以时间。
3.加速度公式:在匀变速直线运动中,物体的速度会随时间变化,因此有加速度的概念。
加速度的定义为a=(v-v0)/t,即加速度等于速度的差值除以时间。
根据速度公式 v = v0 + at,可以推导出加速度公式 a = (v - v0) / t。
二、推导全解:假设物体在时间t=0时刻的速度为v0,位移为s0,加速度为a。
我们需要求解出该物体在任意时间t时刻的速度v和位移s。
1. 根据速度公式 v = v0 + at,可以得到物体在任意时刻t的速度v。
2. 根据位移公式 s = s0 + vt,可以得到物体在任意时刻t的位移s。
3.根据加速度公式a=(v-v0)/t,可以得到物体的加速度。
4. 根据上述三个公式,我们可以通过任意两个已知量求解出第三个未知量。
比如,如果已知 v0、a 和 t,可以通过速度公式 v = v0 + at 求解出 v,然后再通过位移公式 s = s0 + vt 求解出 s。
5. 如果已知 v0、a 和 s,则可以通过加速度公式 a = (v - v0) / t 求解出 v,然后再通过位移公式 s = s0 + vt 求解出 t。
综上所述,我们可以根据速度公式、位移公式和加速度公式,推导出匀变速直线运动的全解。
这些公式在物理学中的应用非常广泛,可以用于求解各种匀变速直线运动的问题。
匀变速直线运动规律的应用
匀变速直线运动规律的应用匀变速直线运动是物理学中的一个基本概念,它是指物体在直线上做匀速或变速运动的情况。
在实际生活中,我们经常会遇到匀变速直线运动的现象,比如汽车行驶、电梯上升、自行车骑行等等。
而对于这些现象,我们可以通过运用匀变速直线运动规律来进行分析和计算。
匀变速直线运动规律是指物体在匀变速直线运动中的位移、速度和加速度之间的关系。
具体来说,它包括以下三个方程:1. 位移公式:s = vt + 1/2at^2其中,s表示物体的位移,v表示物体的初速度,a表示物体的加速度,t表示时间。
2. 速度公式:v = v0 + at其中,v表示物体的速度,v0表示物体的初速度,a表示物体的加速度,t表示时间。
3. 加速度公式:a = (v - v0) / t其中,a表示物体的加速度,v表示物体的速度,v0表示物体的初速度,t表示时间。
通过这三个公式,我们可以计算出物体在匀变速直线运动中的各种参数,从而更好地理解和分析运动的规律。
例如,当我们开车行驶时,可以通过速度计来测量车速,然后根据速度公式计算出车辆的加速度。
如果我们想知道车辆在某段路程内的行驶时间,可以利用位移公式来计算。
而如果我们想知道车辆在某一时刻的速度,可以利用速度公式进行计算。
除了在实际生活中的应用,匀变速直线运动规律还在物理学研究中扮演着重要的角色。
例如,在研究行星运动、天体物理学等领域中,匀变速直线运动规律被广泛应用。
总之,匀变速直线运动规律是物理学中的一个基本概念,它可以帮助我们更好地理解和分析物体在匀变速直线运动中的规律。
在实际生活中,我们可以通过运用这些规律来解决各种问题,从而更好地应对生活和工作中的挑战。
1.2匀变速直线运动的规律及应用(解析版)
1.2匀变速直线运动的规律及应用一、匀变速直线运动的基本规律及应用 1.匀变速直线运动沿着一条直线且加速度不变的运动.如图所示,v -t 图线是一条倾斜的直线.2.匀变速直线运动的两个基本规律 (1)速度与时间的关系式:v =v 0+at . (2)位移与时间的关系式:x =v 0t +12at 2.3.位移的关系式及选用原则 (1)x =v t ,不涉及加速度a ; (2)x =v 0t +12at 2,不涉及末速度v ;(3)x =v 2-v 022a ,不涉及运动的时间t .二、匀变速直线运动的基本规律解题技巧 1.基本思路 画过程示意图→判断运动性质→选取正方向→选用公式列方程解方程并加以讨论 2.正方向的选定无论是匀加速直线运动还是匀减速直线运动,通常以初速度v 0的方向为正方向;当v 0=0时,一般以加速度a 的方向为正方向.速度、加速度、位移的方向与正方向相同时取正,相反时取负.3.解决匀变速运动的常用方法 (1)逆向思维法:对于末速度为零的匀减速运动,采用逆向思维法,可以看成反向的初速度为零的匀加速直线运动.(2)图像法:借助v -t 图像(斜率、面积)分析运动过程.两种匀减速直线运动的比较 1.刹车类问题(1)其特点为匀减速到速度为零后停止运动,加速度a 突然消失. (2)求解时要注意确定实际运动时间.(3)如果问题涉及最后阶段(到停止)的运动,可把该阶段看成反向的初速度为零的匀加速直线运动.2.双向可逆类问题(1)示例:如沿光滑固定斜面上滑的小球,到最高点后仍能以原加速度匀加速下滑,全过程加速度大小、方向均不变.(2)注意:求解时可分过程列式也可对全过程列式,但必须注意x、v、a等矢量的正负号及物理意义.例题1.以72→km/h的速度在平直公路上行驶的汽车,遇到紧急情况而急刹车获得大小为4→m/s2的加速度,则刹车6→s后汽车的速度为()A.44→m/sB.24→m/sC.4→m/sD.0【答案】D【解析】汽车的初速度为v0=72→km/h=20→m/s,汽车从刹车到停止所用时间为t=v0a =204→s=5→s,故刹车5→s后汽车停止不动,则刹车6→s后汽车的速度为0,故选D。
匀变速直线运动的规律及应用
③
2
解①~③得:t=5 s,x=12.5 m.
答案:12.5 m
类型二:运动学常用的重要推论及其应用 【例 2】 一列火车做匀变速直线运动驶来,一人在轨 道旁边观察火车运动,发现在相邻的两个 10 s 内,火车 从他跟前分别驶过 8 节车厢和 6 节车厢,每节车厢长 8 m (连接处长度不计),求: (1)火车的加速度的大小; (2)人开始观察时火车速度的大小. 思路点拨:抓住相邻的两个 10 s,利用结论求解.
vt/2=v0-aT,
解得 v0=7.2 m/s.
答案:(1)0.16 m/s2 (2)7.2 m/s
方法技巧:正确分析题目中的条件,选择合适的公式或结
论求解是分析运动学问题的前提,再就是必要时要作出运
动草图帮助分析.
针对训练 2-1:两木块自左向右运动,现用高速摄影 机在同一底片上多次曝光,记录下木块每次曝光时的位 置,如图 1-2-3 所示,连续两次曝光的时间间隔是相等 的,由图可知( )
匀变速直线运动flash
2.匀变速直线运动中几个常用的结论
(1)Δx=aT2,即任意相邻相等时间内的位移之差相 等.可以推广到 xm-xn=(m-n)aT2.判断匀变速直线运动
的实验依据.
(2)vt/2= v0 v = x ,即某段时间中间时刻的瞬时
2 t
速度等于该段时间内的平均速度.
(3)某段位移中点的瞬时速度:v =
v=v gt,上升时间 t 上=v / g
0
0
h=v t 1 gt 2
2 0
v2-v02=
2gh,上升最大高度
Hmax=
v2 0
2g
下降过程:自由落体运动(a=g) v= gt
高一物理 匀变速直线运动规律的应用
1.v2-v02=2ax此式不涉及时间,若题目中已知量 和未知量都不涉及时间,利用此式往往比较简单;
2用.于x匀=变vt普速遍直适线用运于动各,种两运者动相,结而合可v=以v轻02+v松=地v2t求只出适 中间时刻的瞬时速度或者初、末速度.
3.x2-x1=aT2适用于匀变速直线运动, 进一步的推论有xm-xn=(m-n)aT2(其中T为连续 相等的时间间隔,xm为第m个时间间隔内的位移, xn为第n个时间间隔内的位移).
目标定位
预习导学
课堂讲义
对点练习
课堂讲义
匀变速直线运动的规律总结
三、初速度为零的匀变速直线运动的比例式
1.初速度为零的匀加速直线运动,按时间等分(设相
等的时间间隔为T)
(1)1T末、2T末、3T末…、nT末瞬时速度之比
v1∶v2∶v3∶…∶vn=1∶2∶3∶…∶n
(2)1T内、2T内、3T内、…、nT内的位移之比 x1∶x2∶x3∶…∶xn=12∶22∶32∶…∶n2
(3)第一个T内,第二个T内,第三个T内,…,
第n个T内位移之比 xⅠ∶xⅡ∶xⅢ∶…∶xn=1∶3∶5∶…∶(2n-1)
目标定位
预习导学
课堂讲义
对点练习
课堂讲义
匀变速直线运动的规律总结
2.初速度为零的匀加速直线运动,按位移等分(设相等的 位移为x) (1)通过前x、前2x、前3x…时的速度之比
v1∶v2∶v3∶…∶vn=1: 2: 3:......: n
第2s、第3s、第4s内,通过
的路程分别为1m、2m、3m、
4m,有关其运动的描述正
确A.的4是s内( 的A平B)均速度是
2.5m/s B.在第3、4两秒内平均速 度是3.5m/s
匀变速直线运动的公式及其应用方法
匀变速直线运动的公式及其应用方法一、匀变速直线运动的速度公式设物体在t时刻的速度为v,t时刻的位移为s,则匀变速直线运动的速度公式可以表示为:v = v₀ + at其中,v₀是初始速度,a是加速度。
二、匀变速直线运动的位移公式设物体在t时刻的位移为s,则匀变速直线运动的位移公式可以表示为:s = s₀ + v₀t + 1/2at²其中,s₀是初始位移。
三、利用速度公式求物体的位移考虑一个物体从t₁时刻到t₂时刻的运动过程。
根据速度公式可知:v₂=v₁+a(t₂-t₁)将该等式两边积分得:∫v₂ dt = ∫(v₁ + a(t₂ - t₁)) dt即:s₂-s₁=v₁(t₂-t₁)+1/2a(t₂-t₁)²可见,通过速度公式和积分可求得物体在t₁到t₂时刻的位移。
四、利用位移公式求物体的速度当物体的初速度v₀、加速度a和位移s已知时,我们可以从位移公式中解出t,再代入速度公式中可以求得物体在任意时刻的速度。
五、匀变速直线运动的应用方法1.求解物体的时间、速度和位移关系:通过速度公式和位移公式,可以求解物体在任意时刻的速度和位移,并了解物体在不同时间段的运动情况。
2.物体的竖直自由落体运动:自由落体运动是一种匀变速直线运动,其中加速度为重力加速度g,可以利用匀变速直线运动的公式求解自由落体运动的速度和位移。
3.汽车加速度和制动距离计算:通过测量汽车的加速时间和制动距离,可以利用匀变速直线运动的公式反推汽车的加速度。
4.抛体运动的分析:抛体运动是一种由初速度引起的匀变速直线运动,可以利用匀变速直线运动的公式求解抛体运动中的速度和位移等参数。
5.跳伞运动的分析:跳伞运动是一种由初速度引起的匀变速直线运动,可以应用匀变速直线运动的公式分析跳伞运动中的速度、位移和时间等参数。
综上所述,匀变速直线运动的公式和应用方法对于研究运动物体的速度、位移和时间等参数具有重要意义,它在物理学和工程学等领域有着广泛的应用。
匀变速直线运动的规律及应用
(3)第1s内、第2s内、第3s内、…第ns内的位移之比
SI:SII:SIII:…:SN=1:3:5:…:(2n-1)
注意:(1)如何描述这几个规律 (2)时间间隔可扩展到任意t秒
5、做匀变速直线运动的物体,在任意相邻相等时间间隔
例3、一汽车在水平路面上行驶时以v=20m/s,遇到障碍刹车, 加速度的大小为4m/s2,求汽车在6s内通过的位移为多少? (汽车距刹车点多远)
解: S=v0t+ at2=20×6+ ×(-4)×36=48m
注意,以上解法是错误的。原因是刹车过程的最后状态是停下 来,即:vt=0。这类题在解的过程中,应首先判断在所给时 间内,物体是否停下来。如果物体没有停下来,所求过程为匀 变速直线运动,直接代公式求解;如果已经停下来了,过程应 该分为两部分:匀变速过程(停下来以前)和静止过程(停下 来以后),整个过程不再是匀变速直线运动。这种情况下,直 接代公式就不行了。但是前一个过程还是匀变速,可以代公式 求前一个过程的位移(注意这时所代时间不再是全部时间而是 匀变速过程的时间)。我们又知道,后一个过程的位移为0, 所以前一个过程的位移与整个过程的位移相同
设物体运动的初速度为v0,加速度为a,则由位移公式有:
S1=v0t1+
at12
7.2=3v0+ a×32 ①
对后3s,v2=v0+at=v0+2a
②
S2=v2t2+
at22
16.8=3v2+ a×32 ③
三式联立可求得:v0=0 a=1.6m/s2 ∴由S= at2有S总= ×1.6×52=20(m)
可以求出a=-2.5m/s2
匀变速直线运动的规律及应用
由x2-x1=aT2得
a= x2 x1 64 24 m/s2=2.5 m/s2 2 2
再由x1=v0t+ 答案
T 4 1 at2解得v =1 0 2
m/s.
1 m/s
2.5 m/s2
方法提炼 如何合理地选取运动学公式解题? (1)注意公式中涉及的物理量及题目中的已知量 之间的对应关系,根据题目的已知条件中缺少的 量去找不涉及该量的公式. (2)若题目中涉及不同的运动过程,则应重点寻 找各段运动的速度、位移、时间等方面的关系. (3)利用匀变速直线运动的四个推论往往能使解 题过程简化. (4)运动学公式众多,同一题目可以选用不同公 式解题,在学习中应加强一题多解训练,加强解 题规律的理解,提高自己运用所学知识解决实际 问题的能力,促进发散思维的发展.
图1
③能量对称性 物体从A→B和从B→A重力势能变化量的大小相 等,均等于mghAB.
(2)多解性
当物体经过抛出点上方某个位置时,可能处于上 升阶段,也可能处于下降阶段,造成双解.
题型探究
题型1 匀变速运动公式的灵活选用 【例1】一个做匀加速直线运动的物体,在连续相 等的两个时间间隔内,通过的位移分别是24 m和
第2课时 匀变速直线运动的规
律及应用
考点自清
一、匀变速直线运动 1.定义:沿着一条直线,且 加速度 不变的运动. 2.分类:
匀加速直线运动:a与v 同向
匀减速直线运动:a与v 反向
二、匀变速直线运动的规律 1.三个基本公式 v=v 速度公式: 0+at 位移速度关系式: 2-v02=2ax v 2.两个推论 (1)做匀变速直线运动的物体在一段时间内的平 均 速 度 等 于 这 段 时 间 初 末时 刻 速 度矢 量 和 的
最新匀变速直线运动规律的公式总结与应用
匀变速直线运动规律的公式总结与应用1 一、基本公式:21.速度—时间公式:v t=v 0+at ; 2.位移—时间公式:21x v t at 2=+ 33.位移—速度公式:v t 2-v 02=2ax 4.位移—平均速度公式:t V V X t20+=4二、推导公式:5 1.平均速度公式:0tv v v .2+== TX6 2.某段时间的中间时刻的瞬时速度等于该段时间内的平均速度:0tt 2v v v 2+=7 3.某段位移的中间位置的瞬时速度公式:220tx 2v vv 2+=。
无论匀加或匀减速都有。
8 4.匀变速直线运动中,在任意两个连续相等的时间T 内的位移差值是恒量,即ΔX=X n+l –9 X n =aT 2=恒量。
10 5.初速为零的匀变速直线运动中的比例关系(设T 为相等的时间间隔,x 为相等的位移间11 隔):12 ⑴、T 末、2T 末、3T 末……的瞬时速度之比为:v 1:v 2:v 3:……:v n =1:2:3:……:n ; 13 ⑵、T 内、2T 内、3T 内……的位移之比为:x 1:x 2:x 3:……:x n =1:4:9:……:n 2; 14 ⑶、第一个T 内、第二个T 内、第三个T 内……的位移之比为:x Ⅰ:x Ⅱ:x Ⅲ:……:s n =1:15 3:5:……:(2n-1);16 ⑷、前一个x 、前两个x 、前三个x ……所用的时间之比为:t 1:t 2:t 3:……:t n =1:17 ……:;18 ⑸、第一个x 、第二个x 、第三个x ……所用的时间之比为t Ⅰ、t Ⅱ、t Ⅲ:……:t N =1:19 ……:。
20 三、追及相遇问题:21 Ⅰ、速度大者减速(如匀减速直线运动)追速度小者(如匀速运动):222324Ⅱ、速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动):2526相遇问题的常见情况:1、同向运动的两物体追及即相遇;27282、相向运动的物体,当各自发生的位移大小和等于开始时两物体的距离时即相遇。
匀变速直线运动规律推论及其应用
答案:B
【例4】初速为0 的匀加速运动的物体
1、第3秒内通过的位移为15米,则第5秒内通过的位
移为
27
米,最初5秒内的位移为 75米
。
2、通过三段连续的位移所用的时间依次为1秒、2秒、3秒,
则各段位移之比依为 1 : 8 : 27
移依次为 2米、6米、10米 。
。
3、开始运动18米,分成三段相等的时间,则各段位
答案:C
【例3】一个从静止开始作匀加速直线运动的物体,从开始运动 起,连续通过三段位移的时间分别是1s、2s、3s,这三段位移 之比利通过这三段位移的平均速度之比分别是( ) A.1∶22∶32;1∶2∶3; B、1∶23∶33;1∶22∶32 C、1∶2∶3;1∶1∶1; D、1∶3∶5;1∶2∶3
Vt
2
2、一段时间内中间时刻的瞬时速度等于这段 时间的平均速度: v t (v0 v t ) v
2
2
思考2:有一物体做匀加速直线运动,初速度为V0,
经一段位移后速度变为Vt,求物体在这段时间中点位置 的瞬时速度
Vx
2
3、中点位置的瞬时速度:
vx
2 2 v0 vt 2 2
讨论:物体在同一过程 V t 和 V x 哪个大?
最后1s内的位移等于前7s内的位移减去前6s内的位移, 即△x=x7-x6=( v0 t7+½at72)-( v0 t6+½at62)= v0 +13a/2 联立解得a= -4m/s2,v0= 28m/s 位移x=v0t+½at2=28×7m+½ ×(-4)×72 m=98m
解法二、利用推论法 质点在第7s内的平均速度为: V7平均=(v6+0)/2=2m/s则第6s末的速度v6=4m/s 求出初速度v0=0-at=4×7=28(m/s)
匀变速直线运动规律归纳总结
解析: 设汽车初速度方向为正方向,则 v0=10 m/s,a=-3 m/s2,x=12.5 m 由 v2-v20=2ax 得 v2=v02+2ax,所以 v=±5 m/s. 因为汽车并没有返回,故-5 m/s 舍去,即 v=5 m/s.
答案:2 m/s2,方向与物体运动方向相同
一辆汽车沿平直公路从甲站开往乙站, 从静止开始启动时加速度为 2 m/s2,加速行驶 5 s 后,匀速行驶 120 s,然后刹车滑行 50 m, 正好到达乙站(速度为零),求: (1)甲、乙两站的距离; (2)汽车从甲站到乙站所用的总时间; (3)全程的平均速度.
2、公式的选择 对某一研究过程在已知其中三个量的情况下
(1)当题目涉及时间和末速度时选择速度公式。 (2)当题目涉及时间和位移时选择位移公式。 (3)当不涉及时间时选择速度位移公式。
公式v2-v20=2ax的应用 汽车以 10 m/s 的速度行驶,刹车后的加速 度大小为 3 m/s2,求它向前滑行 12.5 m 后的瞬时 速度.
匀变速直线运动规律归纳总结
一、匀变速直线运动的三个基本公式
(1)速度公式
v=v0+at
(2)位移公式
x
v0t
1 2
at
2
(3)位移—速度公式 v2v022ax
注意
1、适用条件是仅适用于匀变速直线运动。 2、均为矢量式,处理办法是通常选择初速度方向为正方向。 3、要养成画运动示意图好习惯。 4、各量要相对同一参考系。
xⅠ∶xⅡ∶xⅢ∶…∶xN=1∶3∶5∶…∶(2n-1)
(4)通过前 x、前 2x、前 3x…位移时的速度之比 v1∶v2∶v3∶…∶vn=1∶ 2∶ 3∶…∶ n。 (5)通过前 x、前 2x、前 3x…的位移所用时间之比 t1∶t2∶t3∶…∶tn= 1∶ 2∶ 3∶…∶ n (6)通过连续相等的位移所用时间之比 tⅠ∶tⅡ∶tⅢ∶…∶tn=1∶( 2-1)∶( 3- 2)∶…∶( n- n-1)。
匀变速直线运动规律的公式总结与应用
匀变速直线运动规律的公式总结与应用一、基本公式:1. 速度—时间公式:v t=v0+at;2.位移—时间公式: x v0t1at222-v2 4. 位移—平均速度公式:X V0V3. 位移—速度公式:v t0 =2ax2t t二、推导公式:v0v t X1.平均速度公式:v.=2Tv0v t2.某段的中刻的瞬速度等于段内的平均速度:v t223.某段位移的中位置的瞬速度公式:v 02v t2v x2。
无匀加或匀减速都有。
24.匀速直运中,在任意两个相等的T 内的位移差是恒量,即X=X n+l–X n=aT 2= 恒量。
5.初速零的匀速直运中的比例关系(T 相等的隔, x 相等的位移隔):⑴、 T 末、 2T 末、 3T 末⋯⋯的瞬速度之比: v1:v2:v3:⋯⋯:v n=1 :2 :3 :⋯⋯:n;⑵、 T 内、 2T 内、 3T 内⋯⋯的位移之比: x1: x2:x3:⋯⋯:x n=1 :4:9 :⋯⋯:n 2;⑶、第一个 T 内、第二个 T 内、第三个 T 内⋯⋯的位移之比: xⅠ:xⅡ: xⅢ:⋯⋯:s n=1 :3 :5 :⋯⋯:(2n-1) ;⑷、前一个 x、前两个 x、前三个 x⋯⋯所用的之比: t 1:t 2:t 3:⋯⋯:t n =1 :⋯⋯:;⑸、第一个 x、第二个 x、第三个 x⋯⋯所用的之比 tⅠ、 t Ⅱ、t Ⅲ:⋯⋯:t N =1 :⋯⋯:。
三、追及相遇问题:Ⅰ、速度大者减速(如匀减速直线运动)追速度小者(如匀速运动):Ⅱ、速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动):相遇问题的常见情况:1、同向运动的两物体追及即相遇;2、相向运动的物体,当各自发生的位移大小和等于开始时两物体的距离时即相遇。
匀变速直线运动的规律及应用
第二讲:匀变速直线运动的规律及应用【基础概述】一、匀变速直线运动规律1.(1)描述物体运动的基本概念:质点、参考系、时间、路程和位移、速率和速度、加速度①位移、速度和加速度是矢量;②位移大速度不一定大;③位移为零速度不一定为零;④物体做直线运动,若速度的方向不变,则位移的大小增加;(2)速度为零加速度不一定为零①加速度与速度的方向一致,则速度增大②加速度与速度的方向相反速度都减小(3)平均速度、平均速率、瞬时速度2. 匀变速直线运动规律与推论(1) 三个基本公式①速度-时间关系式:②位移-时间关系式:③速度-位移关系式:(2) 两个常用的推论(纸带推论)①平均速度关系式:②位移差公式:则【考点、考法突出】考法1 匀变速直线运动规律的应用方法1 基本公式的应用重点(1) 位移公式或位移与速度关系式①x=v0t+1/2at2 (用于知道运动时间或者求解运动时间问题)②v2-v1=2ax (用于运动时间未知的问题)(2)速度与时间的关系:用于计算初、末速度和加速度方法2 中间时刻速度公式应用重点(1)匀变速运动,时间段t中间时刻的瞬时速度等于时间t内的平均速度①应用一:已知瞬时速度,能迅速解出以这个时刻为中间时刻的一段时间里物体运动的位移或时间。
②应用二:已知两段时间的位移,可分别求出两段时间的中间时刻瞬时速度应用速度公式v=v0+at,求出加速度或者运动时间先求出Δt1及Δt2中间时刻速度: v1=,v2= .(2)再找出这两个中间时刻时间间隔Δt=Δt1+t+Δt2.(3)得该匀变速直线运动的加速度a=方法3 推论——位移差公式应用难点(1)匀变速直线运动中,连续相等的时间T内的位移之差为一恒量:Δx=xn+1-xn=aT2已知条件中出现相等的时间间隔,优先考虑用Δx=aT2求解①应用一:在连续相等的时间T内的位移之差是否相等;判断是否做匀变速直线运动②应用二:已知匀变速直线运动,根据在相等的时间T内的位移之差,求解加速度或时间方法4 初速度为零的匀加速直线运动中的比例规律应用(1)初速度为零的匀加速直线运动过程满足下列比例关系:①1t末、2t末、3t末、…、nt末的瞬时速度之比为v1∶v2∶v3∶…∶vn=1∶2∶3∶…∶n②前1t、前2t、前3t、…、前nt时间内的位移之比为x1∶x2∶x3∶…∶xn =1∶4∶9∶…∶n2(注意是零点起的不同时间内的位移之比) ③第一个t内、第二个t内、第三个t内、…、第N个连续相等时间t内的位移之比为xⅠ∶xⅡ∶xⅢ∶…∶xN=1∶3∶5∶…∶(2N-1).(注意是相等时间内的位移之比) 方法5 应用运动图像分析运动问题:①匀变速直线运动图像②根据图像分析物体运动情况③根据题设情景判断或作出运动图像考法2 根据图像分析物体的运动情况1.单个物体的运动图像的分析(1)无论是x-t图像还是v-t图像都只能描述直线运动(2)x-t图像和v-t图像不表示物体运动的轨迹(3)关键点:根据斜率判断物体的运动状况根据位移图像斜率判断速度变化情况根据速度图像斜率判断加速度变化情况(4)a-t图像阴影面积表示速度的变化量2.两个物体运动图像的分析:运动性质、位移大小、速度大小或方向、相遇点或距离等比较考法3 根据题设情景判断或作出物体的运动图像两种形式:一、给出初始条件和受力条件,判断或作出运动图像,选择题二、给出某一物理量(非速度)随时间变化的图像关系,据此解答问题(1)本质是将非速度的图像关系转化成速度—时间关系;(2)判断物体起始时刻的物理状态,即不同图像的起点;(3)根据初始状态及分析出的物体运动规律判断或作出所求图像;【考点拓展练习】一、单项选择题1.某驾驶员手册规定具有良好刹车性能的汽车在以80 km/h的速率行驶时,可以在56 m的距离内被刹住;在以48 km/h的速率行驶时,可以在24 m的距离内被刹住。
匀变速直线运动公式的运用
匀变速直线运动公式的应用一. 匀变速直线运动的规律:速度公式:atv v t +=0 位移公式:2021at t v s +=v t 2-v 02=2as位移与速度关系式: 位移的平均速度式:t v v t v s t 20+===2t v .t 其平均速度等于初末速度的平均值:20v v v t += 其中间时刻的速度等于该段时间内的平均速度:2t v =20t v v v +=纸带问题:二.初速度为0的匀变速直线运动速度公式:at v t = 位移公式:221at s = 位移与速度关系式: v t 2=2as 位移的平均速度式:t v t v s t 2== 其平均速度等于初末速度的平均值:2t v v = 其中间时刻的速度等于该段时间内的平均速度2t v =2t v v =〔自由落体运动:将上式中a 改为g 即可〕例1.一质点从静止开场以l m /s 2的加速度匀加速运动,经5 s 后做匀速运动,最后2 s的时间质点做匀减速运动直至静止,那么质点匀速运动时的速度是________;减速运动时的加速度是________例2.跳伞运发动做低空跳伞表演,当飞机离地而某一高度静止于空中时,运发动离开飞机自由下落,运动一段时间后翻开降落伞,展伞后运发动以5m/s 2的加速度匀减速下降那么在运发动减速下降的任一秒内以下说法正确的选项是〔 〕5m/s5m/sD. 这一秒末的速度比前一秒初的速度小10m/s 21aT s s s n n =-=∆-例3.一火车以2 m/s的初速度,1 m/s2的加速度做匀加速直线运动,求:〔1〕火车在第3 s末的速度是多少?〔2〕在前4 s的平均速度是多少?〔3〕在第5 s内的位移是多少?〔4〕在第2个4 s内的位移是多少?例4 在平直公路上,一汽车的速度为20m/s,从某时刻开场刹车,在阻力作用下,汽车以4 m/s2的加速度刹车,问〔1〕2s末的速度?〔2〕前2s的位移?〔3〕前6s的位移。
匀变速直线运动公式及其应用
2a
二、本章要领 描述运动, 一定离不开速度、 加速度、 位移、 时间, 所以在做题时根据题目, 就要立刻反应有已知量可求得什么未知量! 想要快速熟练的解题, 熟悉公式是关 键。 三、公式应用步骤 1、通读题目,画出有用信息,如:物体做什么运动、速度是多少、用了多少时 间、位移是多少、加速度是多少,找出已知量。 2、明确物体的运动规律:加速、减速、或是自由落体 3、根据运动规律,快速回忆相关公式公式,根据已知信息或所求量选择最合适 的公式。 四、自由落体(就是匀加速直线运动,只不过初速度为 0,加速度为定值 g) Vt = gt 某一时刻速度(瞬时速度)Vt 位移 X 1 X=2 gt 2 X=2g Vt2 自由落体运动的公式不用死记硬背,我们一定要明确,自由落体运动就是一 个初速度为 0 的匀加速直线运动,只不过它有自己特有的加速度 g,所以我们只 要记住匀变速直线运动的公式,将其简化带入 g,便可很容易的得到自由落体的 运动公式。
1
匀变速直线运动公式及其应用
一、公式汇总 末速度 Vt 平均速度v Vt = Vo + at (加速) Vt = Vo – at (减速) S V= t X = Vot + 位移 X X = Vtt X= X=
1 2 1 2
at 2 (加速) at 2 (减速) (加速) (减速)
2 V2 t −V 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
3.某段位移的中间位置的瞬时速度公式:
22
0t
x
2
v v
v2
+
=。
无论匀加或匀减速都有。
s n=1:3:5:……:(2n-1);
⑷、前一个x、前两个x、前三个x……所用的时间之比为:t1:t2:t3:……:t n=1:
……:;
⑸、第一个x、第二个x、第三个x……所用的时间之比为tⅠ、tⅡ、tⅢ:……:t N=1:
……:。
三、追及相遇问题:
Ⅰ、速度大者减速(如匀减速直线运动)追速度小者(如匀速运动):
Ⅱ、速度小者加速(如初速度为零的匀加速直线运动)追速度大者(如匀速运动):
相遇问题的常见情况:
1、同向运动的两物体追及即相遇;
2、相向运动的物体,当各自发生的位移大小和等于开始时两物体的距离时即相遇。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。