2020年高考全国1卷数学(文科)模拟试卷(含答案)
2020年普通高等学校招生全国统一考试文科数学试题卷I卷(附带答案及详细解析)
绝密★启用前2020年普通高等学校招生全国统一考试文科I卷数学试题卷本试卷共5页,23题(含选考题)。
全卷满分150分。
考试用时120 分钟。
★祝考试顺利★注意事项:1.答题前,先将白己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2. 选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3. 非选择题的作答:用黑色签字笔直接答在答题卡.上对应的答题区域内。
写在试卷、草稿纸和答题卡,上的非答题区域均无效。
4.选考题的作答: 先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡.上对应的答题区域内,写在试卷、草稿纸和答题卡.上的非答题区域均无效。
.5.考试结束后,请将本试卷和答题卡-并上交。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(共12题;共51分)1.已知集合A={x|x2−3x−4<0},B={−4,1,3,5},则A∩B=()A. {−4,1}B. {1,5}C. {3,5}D. {1,3}2.若z=1+2i+i3,则|z|=()A. 0B. 1C. √2D. 23.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A. √5−14B. √5−12C. √5+14D. √5+124.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )A. 15 B. 25 C. 12 D. 45 5.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据 (x i ,y i )(i =1,2,⋯,20) 得到下面的散点图:由此散点图,在10°C 至40°C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A. y =a +bxB. y =a +bx 2C. y =a +b e xD. y =a +blnx6.已知圆 x 2+y 2−6x =0 ,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A. 1B. 2C. 3D. 47.设函数 f(x)=cos (ωx +π6) 在 [−π,π] 的图像大致如下图,则f(x)的最小正周期为( )A.10π9B.7π6C.4π3D.3π28.设 alog 34=2 ,则 4−a = ( )A. 116 B. 19 C. 18 D. 16 9.执行下面的程序框图,则输出的n=( )A. 17B. 19C. 21D. 23 10.设 {a n } 是等比数列,且 a 1+a 2+a 3=1 , a 2+a 3+a 4=2 ,则 a 6+a 7+a 8= ( )A. 12B. 24C. 30D. 32 11.设 F 1,F 2 是双曲线 C:x 2−y 23=1 的两个焦点,O 为坐标原点,点P 在C 上且 |OP|=2 ,则 △PF 1F 2 的面积为( )A. 72B. 3C. 52D. 212.已知 A,B,C 为球O 的球面上的三个点,⊙ O 1 为 △ABC 的外接圆,若⊙ O 1 的面积为 4π , AB =BC =AC =OO 1 ,则球O 的表面积为( ) A. 64π B. 48π C. 36π D. 32π 二、填空题:本题共4小题,每小题5分,共20分。
2020年普通高等学校招生全国统一考试模拟卷(1)(文科数学含答案详解)
2020 年普通高等学校招生全国统一考试模拟卷(1)文科数学本试题卷共 6 页, 23 题(含选考题)。
全卷满分150 分。
考试用时120 分钟。
第Ⅰ 卷一、选择题:本大题共12小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M x, y x y 2 , N x, y x y2,则集合M N()A.0,2 B .2,0C.0, 2D.2,0【答案】 D【解析】解方程组x y2x2N2,0 .选D.x y2,得.故 My02.设复数z12i( i 是虚数单位),则在复平面内,复数z2对应的点的坐标为()A. 3,4B. 5,4C.3,2D. 3,4【答案】 A【解析】 z12i z2121 44i 3 4i ,所以复数z2对应的点为3,4 ,2i故选 A.3.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经四处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的x 0,则一开始输入的x 的值为()371531A .B .C. D .481632【答案】 C【解析】 i1,( 1)x2x1,i2,( 2)x22x114x3,i3,( 3)x24x318x7,i4,( 4)x28x7116x15,i 5 ,所以输出16x150,得 x15,故选 C.164.已知cos22cos,则 tan4(A .4B.41C.D3【答案】 C【解析】因为 cos22cos,所以sin2co所以 tan41tan1,故选 C.1tan35.已知双曲线x2y21a0,b0的一个焦点为 F2,0a2b2则该双曲线的方程为()A. x2y21 B .x2y21C. y2x21D333【答案】 B【解析】令x2y20 ,解得ybx ,故双曲线的渐近线方程a2b2ab3a2a1由题意得c2,解得,∴该双曲线的方程为b23c22b2a6.某家具厂的原材料费支出x 与销售量y(单位:万元)之间有y x8?的全部数据,用最小二乘法得出与的线性回归方程为y?bxx245y253560A .5B. 15C.12D【答案】 C【解析】由题意可得:x245685 , y25355第1页,共6页回归方程过样本中心点,则:5285??.本题选择 C 选项.b , b 127.已知f x2018x20172017x20162x1,下列程序框图设计的是求 f x0的值,在“ ”中应填的执行语句是()开始输入 x0i=1,n=2018S=2018i=i+1i≤ 2017?否S=S+n是输出 SS=Sx0结束A .n2018iB .n2017 i C.n2018i D .n2017i 【答案】 A【解析】不妨设x0 1 ,要计算 f12018 2017 20162 1 ,首先S201812018,下一个应该加,再接着是加,故应填n2018 i.201720168.设π2)0x,则“x”是“cosx< x ”的(cosx2A .充分而不必要条件B .必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】 A【解析】作图 y cos x ,y x2,y x ,x0,,2可得 cosx x2解集为m,, cosx x 解集为 n,,因为22m,n,,因此选 A .229.如图为正方体ABCD A1B1C1 D1,动点M从 B1点出发,在正方体表面上沿逆时针方向1M11x与运动一周后,再回到 B 的运动过程中,点与平面 ADC 的距离保持不变,运动的路程l MA1MC1 MD 之间满足函数关系l f x ,则此函数图象大致是()A.B.C.D.【答案】 C【解析】取线段B1 A 中点为N,计算得:l N NA1NC1ND623l B l A.同221AC 或CB1的中点时,计算得l N NA1 NC1 ND622 3 l B,符合C项的图象特征.故选C.2110.已知双曲线E:x2y21( a 0, b 0)的右顶点为A,右焦点为Fa2b2第二象限上的一点, B 关于坐标原点O 的对称点为 C ,直线 CA 与直线 BF 的交点BF 的中点,则双曲线的离心率为()11C. 2 D . 3A .B .25【答案】 D【解析】不妨设B c, b2,由此可得 A a,0, C c,b2, F c,0,a ab2b2于 A,C, M 三点共线,故2aaac,化简得 c3a ,故离心率 e 3 .a11.已知点A 4,3和点B 1,2,点 O 为坐标原点,则OA tOB t R的最A.5 2 B . 5C. 3 D .5【答案】 D【解析】由题意可得:OA4,3, OB1,2,则:OA tOB4,3t 1,24t,32t232t25t24 t结合二次函数的性质可得,当t2时, OA tOB54202min本题选择 D 选项.第2页,共6页x2y2x2y212.已知椭圆C1 :a12b121 a1>b1>0与双曲线C2:a22b22 1 a2>0,b2>0有相同的焦点 F1, F2,若点P是 C1与 C2在第一象限内的交点,且F1F2 2 PF2,设 C1与 C2的离心率分别为 e1, e2,则 e2e1的取值范围是()A .1,1C.1D .1 3B .,,,322【答案】 D【解析】设F1F22c,令 PF1t ,由题意可得:t c2a2, t c 2a1,据此可得: a1 a2c11e2,,则: 1 ,e11e1e2e2则: e2e1e2e2e221,由 e21可得: 01e21e2 12 1 ,11e2e2e2211结合二次函数的性质可得:e20,1 ,e2则:e2e11,即 e e 的取值范围是1,.本题选择 D 选项.2212第Ⅱ卷本卷包括必考题和选考题两部分。
2020年文科数学全国卷高考模拟1【含答案】
2020年文科数学全国卷高考模拟1文科数学本试卷共23小题, 满分150分. 考试用时120分钟.参考公式:锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为高. 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的 1. (){},|0,,A x y x y x y R =+=∈,(){},|20,,B x y x y x y R =--=∈,则集合A B I =( )A .(1,1)-B .{}{}11x y ==-UC .{}1,1-D .(){}1,1- 2.等差数列{}n a 中,若58215a a a -=+,则5a 等于( )A .3B .4C .5D .6 3.下列函数中,在其定义域内是减函数的是( ) A .1)(2++-=x x x f B . xx f 1)(=C . 13()log f x x = D . ()ln f x x =4.已知函数(1),0()(1),0x x x f x x x x +<⎧=⎨-≥⎩,则函数()f x 的零点个数为( )A 、1B 、2C 、3D 、45.已知0a >,4()4,f x x a x =-+则()f x 为( )A .奇函数B .偶函数C .非奇非偶函数D .奇偶性与a 有关6.已知向量(12)a =r ,,(4)b x =r ,,若向量a b //v v,则x =( ) A .2 B . 2- C . 8D .8-7.设数列{}n a 是等差数列,且5,8152=-=a a ,n S 是数列{}n a 的前n 项和,则 ( ) A.109S S < B.109S S = C.1011S S < D.1011S S =8.已知直线l 、m ,平面βα、,则下列命题中:①.若βα//,α⊂l ,则β//l ②.若βα//,α⊥l ,则l β⊥10题③.若α//l ,α⊂m ,则m l // ④.若βα⊥,l =⋂βα, l m ⊥,则β⊥m . 其中,真命题有( )A .0个B .1个C .2个D .3个9.已知离心率为e 的曲线22217-=x y a ,其右焦点与抛物线216=y x 的焦点重合,则e 的值为( )A .34B 423C .43D 2310.给出计算201614121++++Λ 的值的一个 程序框图如右图,其中判断框内应填入的条件是( ). A .10>i B .10<i C .20>i D .20<i 11.lg ,lg ,lg x y z 成等差数列是2y xz =成立的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既不充分也不必要条件12.规定记号“⊗”表示一种运算,即),(2为正实数b a b a ab b a ++=⊗,若31=⊗k ,则k =( )A .2-B .1C .2- 或1D .2二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。
2020年全国统一高考文科数学模拟试卷(新课标I)含答案解析
2020年全国统一高考数学模拟试卷(文科)(新课标I)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,93.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.211.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=_______.14.已知向量,且,则=_______.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为_______.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是_______.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.2020年全国统一高考数学模拟试卷(文科)(新课标I)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5,6},集合A={1,2,4},B={1,3,5},则下列Venn图中阴影部分表示集合{3,5}的是()A.B.C.D.【考点】Venn图表达集合的关系及运算.【分析】结合已知条件即可求解.观察Venn图,得出图中阴影部分表示的集合,【解答】解:∵全集U={1,2,3,4,5,6},集合A={1,2,4},∴(∁A)={3,5,6},∵B={1,3,5},∴B∩(∁A)={3,5}.故选:B.2.若数据x1,x2,x3,…,x n的平均数为=5,方差σ2=2,则数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数和方差分别为()A.5,2 B.16,2 C.16,18 D.16,9【考点】极差、方差与标准差.【分析】由平均数和方差的性质得数据3x1+1,3x2+1,3x3+1,…,3x n+1的平均数为,方差为32•σ2.【解答】解:∵x1,x2,x3,…,x n的平均数为5,∴=5,∴+1=3×5+1=16,∵x1,x2,x3,…,x n的方差为2,∴3x1+1,3x2+1,3x3+1,…,3x n+1的方差是32×2=18.故选:C.3.“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合双曲线的定义进行判断即可.【解答】解:若曲线mx2﹣(m﹣2)y2=1为双曲线,则对应的标准方程为,则>0,即m(m﹣2)>0,解得m>2或m<0,故“m>3”是“曲线mx2﹣(m﹣2)y2=1为双曲线”的充分不必要条件,故选:A4.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了()A.24里B.48里C.96里D.192里【考点】等比数列的前n项和.【分析】由题意可知此人每天走的步数构成为公比的等比数列,由求和公式可得首项,可得答案.【解答】解:由题意可知此人每天走的步数构成为公比的等比数列,由题意和等比数列的求和公式可得=378,解得a1=192,∴第此人二天走192×=96步故选:C5.已知双曲线C的渐近线方程为3x±2y=0,且焦点在x轴上,焦点到渐近线的距离为6,则该双曲线的方程为()A.B.C.D.【考点】双曲线的简单性质.【分析】设双曲线的方程为﹣=1(a,b>0),求得渐近线方程,由题意可得=,运用点到直线的距离公式,解方程可得a=4,b=6,进而得到双曲线的方程.【解答】解:设双曲线的方程为﹣=1(a,b>0),可得渐近线方程为y=±x,由题意可得=,设一个焦点为(c,0),可得=6,可得c=2,即a2+b2=52,解得a=4,b=9,则双曲线的方程为﹣=1.故选:D.6.设曲线y=sinx(a∈R)上任一点(x,y)处切线斜率为g(x),则函数y=x2g(x)的部分图象可以为()A.B. C.D.【考点】函数的图象;利用导数研究函数的单调性.【分析】求导y′=cosx,从而可得y=x2g(x)=x2cosx,从而判断.【解答】解:∵y=sinx,∴y′=cosx,由导数的几何意义知,g(x)=cosx,故y=x2g(x)=x2cosx,故函数y=x2g(x)是偶函数,故排除A,D;又∵当x=0时,y=0,故排除C,故选B.7.执行如图的程序,若输出的值为2,则输入的值构成的集合是()A.{2}B.{1,2,﹣1,﹣2} C.{1,﹣1} D.{2,﹣2}【考点】程序框图.【分析】由框图知程序功能是计算并输出y=的值,由题意分类讨论即可得解.【解答】解:由框图知程序功能是计算并输出y=的值,当x>0时,令x2﹣x=2,解得x=2或﹣1(舍去);当x<0时,令x2+x=2,解得x=﹣2或1(舍去);故输入的值构成的集合是:{﹣2,2}.故选:D.8.圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,则a﹣b的取值范围是()A.(﹣∞,4)B.(﹣∞,0)C.(﹣4,+∞)D.(4,+∞)【考点】直线与圆相交的性质.【分析】由题意知,圆心在直线上,解出b,再利用圆的半径大于0,解出a<2,从而利用不等式的性质求出a﹣b的取值范围.【解答】解:∵圆x2+y2﹣2x+6y+5a=0关于直线y=x+2b成轴对称图形,∴圆心(1,﹣3)在直线y=x+2b上,故﹣3=1+2b,∴b=﹣2.对于圆x2+y2﹣2x+6y+5a=0,有4+36﹣20a>0,∴a<2,a﹣b=a+2<4,故选A.9.如图,在平面四边形ABCD中,AB=1,,,∠ABC=120°,∠DAB=75°,则CD=()A.B. C. D.【考点】解三角形.【分析】分别过C,D作AB的垂线DE,CF,则通过计算可得四边形DEFC为矩形,于是CD=EF=AB﹣AE+BF.【解答】解:过D作DE⊥AB于E,过C作CF⊥AB交AB延长线于F,则DE∥CF,∠CBF=60°.DE=ADsinA==,CF=BCsin∠CBF=()×=.∴四边形DEFC是矩形.∴CD=EF=AB﹣AE+BF.∵AE=ADcosA==,BF=BCcos∠CBF=()×=.∴CD=1﹣+=.故选:A.10.若x,y满足,则z=y﹣2|x|的最大值为()A.﹣8 B.﹣4 C.1 D.2【考点】简单线性规划.【分析】由约束条件作出可行域,分类化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【解答】解:由约束条件作出可行域如图,当x≥0时,可行域为四边形OACD及其内部区域,A点是目标函数取得最大值的点;当x≤0时,可行域为三角形OAB及其内部区域,A点是目标函数取得最大值的点.∴z=y﹣2|x|的最大值为2.故选:D.11.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的外接球的体积是()A.12πB.48πC.4πD.32π【考点】由三视图求面积、体积.【分析】由三视图知该几何体为棱锥,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为,即可求出此四面体的外接球的体积.【解答】解:由三视图知该几何体为棱锥S﹣ABD,其中SC⊥平面ABCD,此四面体的外接球为正方体的外接球,正方体的对角线长为2,外接球的半径为所以四面体的外接球的体积=4.故选:C.12.已知函数f(x)=|2x+1+|在[﹣,3]上单调递增,则实数a的取值范围是()A.[0,1]B.[﹣1,1] C.[﹣1,2] D.(﹣∞,2]【考点】函数单调性的判断与证明.【分析】为去绝对值号,讨论a:(1)a<0时,根据指数函数和增函数的定义便可判断函数在[,3]上单调递增,从而需满足g(﹣)≥0,这样可得到﹣1≤a <0;(2)a=0时,显然满足条件;(3)a>0时,得到f(x)=,并可判断x=时取等号,从而需满足,可解出该不等式,最后便可得出实数a的取值范围.【解答】解:(1)当a<0时,函数在上单调递增;∴;∴﹣1≤a<0;(2)当a=0时,f(x)=2x+1在上单调递增;(3)当a>0时,,当且仅当,即x=时等号成立;∴要使f(x)在[]上单调递增,则;即0<a≤1;综上得,实数a的取值范围为[﹣1,1].故选B.二、填空题:本大题共4小题,每小题5分.13.设(i为虚数单位),则=2﹣i.【考点】复数代数形式的混合运算.【分析】直接由复数求模公式化简复数z,则答案可求.【解答】解:由=,则=2﹣i.故答案为:2﹣i.14.已知向量,且,则=5.【考点】平面向量数量积的坐标表示、模、夹角.【分析】根据平面向量的坐标运算与数量积运算,求出x的值,再求的值.【解答】解:向量,且,∴•=x﹣2=0,解得x=2,∴﹣2=(﹣3,4);==5.故答案为:5.15.已知抛物线y2=4x上一点P到焦点F的距离为5,则△PFO的面积为2.【考点】抛物线的简单性质.【分析】利用抛物线的定义,求出P的坐标,然后求出三角形的面积.【解答】解:由抛物线定义,|PF|=x P+1=5,所以x P=4,|y P|=4,所以,△PFO的面积S==.故答案为:2.16.函数f(x)=sin2x在[﹣π,π]内满足的n的最大值是4.【考点】正弦函数的图象.【分析】由题意可得,本题即求函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,数形结合得出结论.【解答】解:满足的x的个数n,即为函数f(x)=sin2x与y=kx的图象的交点个数,但不含原点,如图所示,存在k∈(﹣∞,0),使得n取到最大值4,故答案为:4.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某市根据地理位置划分成了南北两区,为调查该市的一种经济作物A(下简称A作物)的生长状况,用简单随机抽样方法从该市调查了500处A作物种植点,其生长状况如表:生长指数 2 1 0 ﹣1地域南区空气质量好45 54 26 35空气质量差7 16 12 5 北区空气质量好70 105 20 25空气质量差19 38 18 5其中生长指数的含义是:2代表“生长良好”,1代表“生长基本良好”,0代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.(Ⅰ)估计该市空气质量差的A作物种植点中,不绝收的种植点所占的比例;(Ⅱ)能否有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关”?(Ⅲ)根据(Ⅱ)的结论,能否提供更好的调查方法来估计该市A作物的种植点中,绝收种植点的比例?并说明理由.附:P(K2≥k)0.050 0.010 0.001k 3.841 6.635 10.828.【考点】线性回归方程.【分析】(I)根据表格数据计算;(II)采用独立检验方法列联表计算K2,与6.635比较大小得出结论;(III)根据绝收比例可以看出采用分层抽样比较合理.【解答】解:(1)调查的500处种植点中共有120处空气质量差,其中不绝收的共有110处,∴空气质量差的A作物种植点中,不绝收的种植点所占的比例.(2)列联表如下:收绝收合计南区160 40 200北区270 30 300合计430 70 500∴K2=≈9.967.∵9.967>6.635,∴有99%的把握认为“该市A作物的种植点是否绝收与所在地域有关“.(3)由(2)的结论可知该市A作物的种植点是否绝收与所在地域有关,因此在调查时,先确定该市南北种植比例,再把种植区分南北两层采用分层抽样比采用简单随机抽样方法好.18.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是平行四边形,且AB=1,BC=2,∠ABC=60°,E为BC的中点,AA1⊥平面ABCD.(1)证明:平面A1AE⊥平面A1DE;(2)若DE=A1E,试求异面直线AE与A1D所成角的余弦值.【考点】平面与平面垂直的判定;异面直线及其所成的角.【分析】(1)根据题意,得△ABE是正三角形,∠AEB=60°,等腰△CDE中∠CED==30°,所以∠AED=90°,得到DE⊥AE,结合DE⊥AA1,得DE⊥平面A1AE,从而得到平面A1AE ⊥平面平面A1DE.(2)取BB1的中点F,连接EF、AF,连接B1C.证出EF∥A1D,可得∠AEF(或其补角)是异面直线AE与A1D所成的角.利用勾股定理和三角形中位线定理,算出△AEF各边的长,再用余弦定理可算出异面直线AE与A1D所成角的余弦值.【解答】解:(1)依题意,BE=EC=BC=AB=CD…,∴△ABE是正三角形,∠AEB=60°…,又∵△CDE中,∠CED=∠CDE==30°…∴∠AED=180°﹣∠CED﹣∠AEB=90°,即DE⊥AE…,∵AA1⊥平面ABCD,DE⊆平面ABCD,∴DE⊥AA1.…,∵AA1∩AE=A,∴DE⊥平面A1AE…,∵DE⊆平面A1DE,∴平面A1AE⊥平面A1DE.….(2)取BB1的中点F,连接EF、AF,连接B1C,…∵△BB1C中,EF是中位线,∴EF∥B1C∵A1B1∥AB∥CD,A1B1=AB=CD,∴四边形ABCD是平行四边形,可得B1C∥A1D∴EF∥A1D…,可得∠AEF(或其补角)是异面直线AE与A1D所成的角….∵△CDE中,DE=CD==A1E=,AE=AB=1∴A1A=,由此可得BF=,AF=EF==…,∴cos∠AEF==,即异面直线AE与A1D所成角的余弦值为…19.已知数列{a n}的前n项和为S n,a1=1,a n+1=(λ+1)S n+1(n∈N*,λ≠﹣2),且3a1,4a2,a3+13成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)若数列{b n}满足a n b n=log4a n+1,求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)讨论可判断出数列{a n}是以1为首项,λ+2为公比的等比数列,从而结合8a2=3a1+a3+13可得λ2﹣4λ+4=0,从而解得;(Ⅱ)化简可得b n=,从而可得T n=1+++…+,T n=+++…+,利用错位相减法求其前n项和即可.【解答】解:(Ⅰ)∵a n+1=(λ+1)S n+1,+1,∴当n≥2时,a n=(λ+1)S n﹣1∴a n+1﹣a n=(λ+1)a n,即a n+1=(λ+2)a n,又∵λ≠﹣2,∴数列{a n}是以1为首项,λ+2为公比的等比数列,故a2=λ+2,a3=(λ+2)2,∵3a1,4a2,a3+13成等差数列,∴8a2=3a1+a3+13,代入化简可得,λ2﹣4λ+4=0,故λ=2,故a n=4n﹣1;(Ⅱ)∵a n b n=log4a n+1=n,∴b n=,故T n=1+++…+,T n=+++…+,故T n=1+++…+﹣=(1﹣)﹣,故T n=﹣.20.已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(I)求C的方程.(Ⅱ)若直线y=k(x﹣1)与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.【考点】直线与圆的位置关系.【分析】(Ⅰ)求出圆M和圆N的圆心及半径,设圆P的圆心为P(x,y),半径为R.由圆P与圆M外切并与圆N内切,得到曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),由此能求出C的方程.(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由此利用根的判别式、韦达定理,结合已知条件能求出存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.【解答】解:(Ⅰ)圆M:(x+1)2+y2=1的圆心为M(﹣1,0),半径r1=1,圆N的圆心N(1,0),半径r2=3.设圆P的圆心为P(x,y),半径为R.∵圆P与圆M外切并与圆N内切,∴|PM|+|PN|=R+r1+r2﹣R=r1+r2=4.…由椭圆的定义可知,曲线C是以M,N为左右焦点,长半轴长为2,短半轴为的椭圆(左顶点除外),∴C的方程为.…(Ⅱ)假设存在T(t,0)满足∠OTS=∠OTR.设R(x1,y1),S(x2,y2)联立得(3+4k2)x2﹣8k2x+4k2﹣12=0,由韦达定理有①,其中△>0恒成立,…由∠OTS=∠OTR(由题意TS,TR的斜率存在),故k TS+k TR=0,即②,由R,S两点在直线y=k(x﹣1)上,故y1=k(x1﹣1),y2=k(x2﹣1),代入②得,即有2x1x2﹣(t+1)(x1+x2)+2t=0③…将①代入③即有:④,要使得④与k的取值无关,当且仅当“t=4“时成立,综上所述存在T(4,0),使得当k变化时,总有∠OTS=∠OTR.…21.已知函数f(x)=(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出函数的导数,计算f(1),f′(1),代入切线方程即可;(Ⅱ)求出k的值,令g(x)=(x2+x)f'(x),问题等价于,根据函数的单调性证明即可.【解答】解:(Ⅰ)由得,x∈(0,+∞),所以曲线y=f(x)在点(1,f(1))处的切线斜率为:,而f(1)=,故切线方程是:y﹣=﹣(x﹣1),即:x+ey﹣3=0;(Ⅱ)证明:若f′(1)=0,解得:k=1,令g(x)=(x2+x)f'(x),所以,x∈(0,+∞),因此,对任意x>0,g(x)<e﹣2+1,等价于,由h(x)=1﹣x﹣xlnx,x∈(0,∞),得h'(x)=﹣lnx﹣2,x∈(0,+∞),因此,当x∈(0,e﹣2)时,h'(x)>0,h(x)单调递增;x∈(e﹣2,+∞)时,h'(x)<0,h(x)单调递减,所以h(x)的最大值为h(e﹣2)=e﹣2+1,故1﹣x﹣xlnx≤e﹣2+1,设φ(x)=e x﹣(x+1),∵φ'(x)=e x﹣1,所以x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故x∈(0,+∞)时,φ(x)=e x﹣(x+1)>0,即,所以.因此,对任意x>0,恒成立.选修4-1:几何证明与选讲22.如图,在⊙O中,弦AF交直径CD于点M,弦的延长线交CD的延长线于点E,M、N分别是AF、AB的中点.(Ⅰ)求证:OE•ME=NE•AE;(Ⅱ)若,求∠E的大小.【考点】相似三角形的性质;与圆有关的比例线段.【分析】(1)通过证明△AME∽△ONE,即可推出结果.(2)利用(1)的结论,设OE=x,求解x,然后在直角三角形中求解即可.【解答】(1)证明:∵M、N分别是AF、AB的中点.∴∠AME=∠ONE=90°,又∵∠E=∠E,∴△AME∽△ONE,∴,∴OE•ME=NE•AE.(2)设OE=x,(x>0),∵BE==,∴NE=2,AE=3,又∵OM=,∴x=2,即:(x﹣4)(2x+9)=0,∵x>0,∴x=4,即OE=4,则在Rt△ONE中,cos∠E===∴∠E=30°.选修4-4:坐标系与参数方程23.在平面直角坐标系xOy中,曲线C:(x﹣2)2+(y﹣3)2=1,以O为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程为θ=(p∈R).(1)求曲线C的参数方程及直线l的直角坐标方程;(2)设曲线C与直线l相交于点A、B,若点P为曲线C上一动点(异于点A、B),求△PAB面积的最大值.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)令x﹣2=cosα,y﹣3=sinα即可得出曲线C的参数方程,直线l过原点,且斜率为tanθ,利用点斜式方程写出直线l的方程;(2)解方程组求出A,B坐标,得到AB,则P到AB的最大距离为C到AB的距离与圆C 的半径的和.【解答】解:(1)令x﹣2=cosα,y﹣3=sinα,则x=2+cosα,y=3+sinα,∴曲线C的参数方程为(α为参数).直线l的斜率k=tanθ=1,∴直线l的直角坐标方程为y=x.(2)解方程组得或.设A(2,2),B(3,3).则|AB|==.∵圆C的圆心为C(2,3),半径r=1,∴C到直线AB的距离为=.∴P到直线AB 的最大距离d=+1.∴△PAB面积的最大值为=.选修4-5:不等式选讲24.已知f(x)=|x﹣3|,g(x)=|x﹣k|(其中k≥2).(Ⅰ)若k=4,求f(x)+g(x)<9的解集;(Ⅱ)若∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,求实数k的值.【考点】绝对值不等式的解法.【分析】(Ⅰ)将k=4代入g(x),通过讨论x的范围,求出不等式的解集即可;(Ⅱ)问题等价于∀x∈[1,2],x+3≥2k恒成立,根据x的范围求出k的范围即可.【解答】解:(Ⅰ)k=4时,f(x)+g(x)<9,即|x﹣3|+|x﹣4|<9,即或或,解得:﹣1<x<3或3≤x≤4或4<x<8,故原不等式的解集是{x|﹣1<x<8};(Ⅱ)∵k∵≥2且x∈[1,2],∴x﹣3<0,x﹣k<0,∴f(x)=|x﹣3|=3﹣x,g(x)=|x﹣k|=k﹣x,则∀x∈[1,2],不等式f(x)﹣g(x)≥k﹣x恒成立,等价于∀x∈[1,2],x+3≥2k恒成立,∴4≥2k,即k≤2,又∵k≥2,∴k=2.2020年9月9日。
2020年高考模拟全国统一考试(全国Ⅰ卷)文科数学模拟试题(PDF版)及答案
不等式
f
(
x)
6
可化为:
x 4
1 − 2x
6
或
1 x 2 6
3
或
x 3 2x − 4
6
,
解得: −1 a 1或1 x 3 或 3 a 5 ,综上: −1 x 5
7
4 − 2x, x 1
(Ⅱ)作出 f ( x) = 2,1 x 3 的图像如图:
2x − 4, x 3
3
20. 已知函数 f ( x) = x3 + ax2 + bx + c ( x R) 在 x = − 2 处取得极值,其图象在点
3
(1, f (1)) 处的切线与直线 y + 2 = 0 平行.
(Ⅰ)求 a,b 的值;
(Ⅱ)若对 x −1, 2 都有 f ( x) 1 恒成立,求 c 的取值范围.
故有 99.9%的把握认为观众对电影“复仇者联盟 4”结局的满意程度与性别具有相关性.
18.【解析】(Ⅰ)设等差数列an 的公差为 d , a8 是 a5 与 a13 的等比中项.a82 =a5a13 ,即 (a1 + 7d )2 = (a1 + 4d )(a1 +12d )
d = 0 或 d = 2 ; d 0 d = 2 ,an = 2n −1
=
n 2n +1
.
19.【解析】(Ⅰ) AC = BC,O 为 AB 中点,OC ⊥ AB ,
平面VAB ⊥ 平面 ABC ,平面VAB 平面 ABC = AB , OC 平面 ABC ,OC ⊥ 平面VAB,OC 平面 MOC ,
平面 MOC ⊥ 平面VAB ;
(Ⅱ) AC ⊥ BC 且 AC = BC = 2 , O 分别为 AB 的中点,
2020年高考文科数学全国1卷(word版,含答案)
1.【ID:4005071】已知集合,,则()A.B.C.D.【答案】D【解析】解:集合,,则,故选:D.2.【ID:4005072】若,则()A.B.C.D.【答案】C【解析】解:,.故选:C.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4005073】设为正方形的中心,在,,,,中任取点,则取到的点共线的概率为()A.B.C.D.【答案】A【解析】解:,,,,中任取点,共有种,其中共线为,,和,,两种,故取到的点共线的概率为,故选:A.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4005074】已知圆,过点的直线被该圆所截得的弦的长度的最小值为()A.B.C.D.【答案】B【解析】解:由圆的方程可得圆心坐标,半径;设圆心到直线的距离为,则过的直线与圆的相交弦长|AB|=2,当最大时弦长|AB|最小,当直线与所在的直线垂直时最大,这时,所以最小的弦长,故选:B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4005075】设,则()A.B.C.D.【答案】B【解析】解:因为,则,则,则,故选:B.9.【ID:4005076】执行右面的程序框图,则输出的()A.B.C.D.【答案】C【解析】解:,,第一次执行循环体后,,不满足退出循环的条件,;第二次执行循环体后,,不满足退出循环的条件,;第三次执行循环体后,,不满足退出循环的条件,;第四次执行循环体后,,不满足退出循环的条件,;第五次执行循环体后,,不满足退出循环的条件,;第六次执行循环体后,,不满足退出循环的条件,;第七次执行循环体后,,不满足退出循环的条件,;第八次执行循环体后,,不满足退出循环的条件,;第九次执行循环体后,,不满足退出循环的条件,;第十次执行循环体后,,不满足退出循环的条件,;第十一次执行循环体后,,满足退出循环的条件,故输出值为,故选:C.10.【ID:4005077】设是等比数列,且,,则()A.B.C.D.【答案】D【解析】解:是等比数列,且,则,即,,故选:D.11.【ID:4005078】设,是双曲线:的两个焦点,为坐标原点,点在上且,则的面积为()A.B.C.D.【答案】B【解析】解:由题意可得,,,,,,为直角三角形,,,,,,的面积为,故选:B.12.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4005079】设向量,,若,则________.【答案】【解析】解:向量,,若,则,则,故答案为:.15.【ID:4005080】曲线的一条切线的斜率为,则该切线的方程为________.【答案】【解析】解:的导数为,设切点为,可得,解得,即有切点,则切线的方程为,即,故答案为:.16.【ID:4005081】数列满足,前项和为,则________.【答案】【解析】解:由,当为奇数时,有,可得,,累加可得;当为偶数时,,可得,,,.可得..,,即.故答案为:.17. 某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为,,,四个等级,加工业务约定:对于级品、级品、级品,厂家每件分别收取加工费元,元,元;对于级品,厂家每件要赔偿原料损失费元.该厂有甲、乙两个分厂可承接加工业务,甲分厂加工成本费为元/件,乙分厂加工成本费为元/件,厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了件这种产品,并统计了这些产品的等级,整理如下:(1)【ID:4005082】分别估计甲、乙两分厂加工出来的一件产品为级品的概率.【答案】;【解析】解:由试加工产品等级的频数分布表知,甲分厂加工出来的一件产品为级品的概率的估计值为;乙分厂加工出来的一件产品为级品的概率的估计值为.(2)【ID:4005083】分别求甲、乙两分厂加工出来的件产品的平均利润,以平均利润为依据厂家应选哪个分厂承接加工业务?【答案】甲分厂【解析】解:由数据知甲分厂加工出来的件产品利润的频数分布表为因此甲分厂加工出来的件产品的平均利润为.由数据知乙分厂加工出来的件产品利润的频数分布表为因此乙分厂加工出来的件产品的平均利润为.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务.18. 的内角,,的对边分别为,,.已知.(1)【ID:4005084】若,,求的面积.【答案】【解析】解:由题设及余弦定理得,解得(含去),,从而.的面积为.(2)【ID:4005085】若,求.【答案】【解析】解:在中,,所以,故.而,所以,故.19. 如图,为圆锥的顶点,是圆锥底面的圆心,是底面的内接正三角形,为上一点,.(1)【ID:4005086】证明:平面平面.【答案】见解析【解析】证明:由题设可知,.由于是正三角形,故可得,.又,故,.从而,,故平面,所以平面平面.(2)【ID:4005087】设,圆锥的侧面积为,求三棱锥的体积.【答案】【解析】解:设圆锥的底面半径为,母线长为.由题设可得,.解得,.从而.由可得,故.所以三棱锥的体积为.20. 已知函数.(1)【ID:4008459】当时,讨论的单调性.【答案】在上单调递减,在上单调递增.【解析】解:由题意,的定义域为,且.当时,,令,解得.∴当时,,单调递减,当时,,单调递增.在上单调递减,在上单调递增.(2)【ID:4008481】若有两个零点,求的取值范围.【答案】【解析】①当时,恒成立,在上单调递增,不合题意;②当时,令,解得,当时,,单调递减,当时,,单调递增.的极小值也是最小值为.又当时,,当时,.要使有两个零点,只要即可,则,可得.综上,若有两个零点,则的取值范围是.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。
2020年全国普通高等学校招生统一考试(新课标Ⅰ卷)文科数学+答题卡+答案+全解全析(2020.6.15)
线
封
﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍
学校__________________班级__________________姓名__________________准考证号__________________
全国名校 2020 年高三 6 月大联考(新课标Ⅰ卷) 文科数学·答题卡
x2 a2
−
y2 b2
= 1(a
> 0,b > 0) 的左、右焦点,若直线 x
=c
与双曲线
C
的
两条渐近线分别交于点 M,N,且 ∠MF1N = 60° ,则双曲线 C
的离心率为__________.
16.石雕工艺承载着几千年的中国石雕文化,随着科技的发展,
机器雕刻产品越来越多.某石雕厂计划利用一个圆柱形的石 材(如图 1)雕刻制作一件工艺品(如图 2),该作品的上方
3.请按题号顺序在各题目的答题区域内作答,超出 区域书写的答案无效;在草稿纸、试题卷上答题
无效。 4.保持卡面清洁,不要折叠、不要弄破。 5.正确填涂
贴条形码区
缺考 此栏考生禁填
标记
18.(12 分)
一、选择题(每小题 5 分,共 60 分)
1 [A] [B] [C] [D] 2 [A] [B] [C] [D] 3 [A] [B] [C] [D] 4 [A] [B] [C] [D]
π 12
个单位长度后所得函数的图象关于原点对称
D.函数
f
(x)
在区间
(π 3
,
5π ) 6
上单调递减
10.设各项均为正数的数列{an } 的前 n 项和为 Sn ,若数列{an } 满足 a1 = 2 , anan+1 = 4Sn − 2(n ∈ N* ) , 则
2020年全国普通高等学校招生统一考试文科数学试卷 全国Ⅰ卷(含答案)
2020年全国普通高等学校招生统一考试试卷 全国Ⅰ卷文科数学一、选择题1.若1i z =+,则22z z -=( ) A.0B.1C.2D.22.设集合{}240A x x =-≤,{}20B x x a =+≤,且{}21A B x x ⋂=-≤≤,则a =( ) A.-4B.-2C.2D.43.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )51-51-51+51+4.已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A.2B.3C.6D.95.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据i i (,)(1,2,...,20)x y i =得到下面的散点图: 由此散点图,在10C ︒至40C ︒之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A.y a bx =+B.2y a bx =+C.x y a be =+D.ln y a b x =+6.函数43()2f x x x =-的图像在点(1,(1))f 处的切线方程为( ) A.21y x =--B.21y x =-+C.23y x =-D.21y x =+7.设函数π()cos()6f x x ω=+在[]π,π-的图像大致如下图,则()f x 的最小正周期为( )A.10π9B.7π6C.4π3D.3π28.25()()y x x y x++的展开式中33x y 的系数为( )A. 5B. 10C. 15D. 209.已知(0,)α∈π,且3cos28cos 5αα-=,则sin α=( ) 5 B.23 C.135 10.已知,,A B C 为球O 的球面上的三个点,1O 为ABC 的外接圆,若1O 的面积为14π,AB BC AC OO ===,则球O 的表面积为( )A.64πB.48πC.36πD.32π11.已知22:2220M x y x y +---=,直线:220l xy,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A.210x y --=B.210x y +-=C.210x y -+=D.210x y ++=12.若242log 42log a b a b +=+,则( )A.2a b >B.2a b <C.2a b >D.2a b <13.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B ⋂=( ) A.{4,1}-B.{1,5}C.{3,5}D.{1,3}14.若312i i z =++,则||z =( ) A.0B.1C.2D.215.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.51- B.51- C.51+ D.51+ 16.设O 为正方形ABCD 的中心,在,,,,O A B C D 中任取3点,则取到的3点共线的概率为( ) A.15B.25C.12D.4517.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C )的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10C ︒至40C ︒之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A.y a bx =+B.2y a bx =+C.e x y a b =+D.ln y a b x =+18.已知圆2260x y x +-=,过点()1,2的直线被该圆所截得的弦的长度的最小值为( ) A.1B.2C.3D.419.设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则()f x 的最小正周期为( )A.10π9B.7π6C.4π3D.3π220.设3log 42a =,则4a -= ( ) A.116B.19C.18D.1621.执行下面的程序框图,则输出的n = ( )A.17B.19C.21D.2322.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=( ) A.12B.24C.30D.3223.设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为( ) A.72B.3C.52D.224.已知,,A B C 为球O 的球面上的三个点,1O 为ABC 的外接圆,若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A.64πB.48πC.36πD.32π二、填空题25.若,x y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则7z x y =+的最大值为____________.26.设,a b 为单位向量,且||1+=a b ,则||a b -=___________.27.已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________.28.如图,在三棱锥–P ABC 的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则cos FCB ∠=______________.29.若,x y 满足约束条件220,10,10,x y x y y +-≤⎧⎪--≥⎨⎪+≥⎩则7z x y =+的最大值为__________.30.设向量(1,1),(1,24)m m =-=+-a b ,若a b ⊥,则m =____________.31.曲线ln 1y x x =++的一条切线的斜率为2,则该切线的方程为______________.32.数列{}n a 满足2(1)31n n n a a n ++-=-,前16项和为540,则1a =_____________. 三、解答题33.设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.34.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO 上一点,6PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.35.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12. (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.36.已知,A B 分别为椭圆()222:11x E y a a+=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程; (2)证明:直线CD 过定点. 37.已知函数2()e x f x ax x =+-. (1)当1a =时,讨论()f x 的单调性; (2)当0x ≥时,()3112f x x ≥+,求a 的取值范围. 38.在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎪⎨=⎪⎩(t为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=.(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标. 39.已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.40.某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为,,,A B C D 四个等级.加工业务约定:对于A 级品、B 级品、C 级品,厂家每件分别收取加工费90元,50元,20元;对于D 级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表 等级ABCD频数 40 20 20 20乙分厂产品等级的频数分布表 等级 ABCD频数28 17 34 21(1)分别估计甲、乙两分厂加工出来的一件产品为A 级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?41.ABC 的内角,,A B C 的对边分别为,,a b c .已知150B =︒. (1)若3,27a c b ==,求ABC 的面积; (2)若2sin 3sin A C +=,求C . 42.如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,90APC ∠=︒.(1)证明:平面PAB ⊥平面PAC ;(2)设2DO =3π,求三棱锥P ABC -的体积. 43.已知函数()(2)x f x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.44.已知,A B 分别为椭圆()222:11x E y a a +=>的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程; (2)证明:直线CD 过定点.45.在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎪⎨=⎪⎩(t为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=.(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标. 46.已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.参考答案1.答案:D 解析:2.答案:B 解析:3.答案:C解析:如图,设正四棱锥的高为h ,底面边长为a ,侧面三角形底边上的高为'h ,则依题意有:222212'()2'h ah a h h ⎧=⎪⎪⎨⎪=-⎪⎩,因此有221'()22'a h ah -=,化简得2'4()2()1'0h h a a --=,解得5'1h a +=.4.答案:C解析:设点A 的坐标为()x y ,,由点A 到y 轴的距离为9可得9x =,由点A 到C 的焦点的距离为12,可得122px +=,解得6p =. 5.答案:D解析:用光滑的曲线把图中各点连接起来,由图像的大致走向判断,此函数应该是对数函数类型的,故应该选用的函数模型为ln y a b x =+. 6.答案:B解析:先求函数的导函数32()46'f x x x =-,则由导数的几何意义知在点(1,(1))f 处的切线的斜率为(1)'2k f ==-,又因为(1)1f =-,由直线方程的点斜式得切线方程为:(1)2(1)y x --=--,化简得21y x =-+.7.答案:C解析:由图知4π4ππ()cos()0996f ω-=-+=,所以4ππππ()962k k ω-+=+∈Z ,化简得39()4kk ω+=-∈Z ,又因为2π2T T <<,即2π4π2π||||ωω<<,所以1||2ω<<,当且仅当1k =-时1||2ω<<,所以32ω=,最小正周期2π4π||3T ω==.故选C. 8.答案:C解析:5()x y +的通项公式为55(012345)r r r C x y r -=,,,,,,所以1r =时,21433555y C x y x y r x==,,时32333510xC x y x y =,所以33x y 的系数为15. 9.答案:A解析:原式化简得23cos 4cos 40αα--=,解得2cos 3α=-,或2(舍),又(0,π)α∈,所以sin α=10.答案:A解析:设1,AB a O =的半径为r ,球O 的半径为R ,所以2π4πr =,所以2r =,而1r O A ==,所以222114a R OO O A ==+=,所以球O 的表面积为24π64πR =,故选A. 11.答案:D解析:22:(1)(1)4M x y -+-=,因为1||||2||||2||2PAMB PAMS PM AB S PA AM PA =====所以||||PM AB ·最小,即||PM 最小,此时PM 与直线l 垂直,1122PM y x =+:, 直线PM 与直线l 的交点(10)P -,,过直线外一点P 作M 的切线所得切点弦所在直线方程为:210x y ++=,所以选D. 12.答案:B 解析: 13.答案:D解析:由2340x x --<解得14x -<<, 所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B ⋂=, 故选:D.14.答案:C解析:因为31+2i i 1+2i i 1i z =+=-=+,所以22112z =+=. 故选:C . 15.答案:C解析:如图,设,CD a PE b ==,则22224a PO PE OEb =-=-, 由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=, 解得15b a +=(负值舍去). 故选:C.16.答案:A解析:如图,从,,,,O A B C D 5个点中任取3个有 {,,},{,,},{,,},{,,}O A B O A C O A D O B C {,,},{,,},{,,},{,,}O B D O C D A B C A B D {,,},{,,}A C D B C D 共10种不同取法,3点共线只有{,,}A O C 与{,,}B O D 共2种情况, 由古典概型的概率计算公式知, 取到3点共线的概率为21105=. 故选:A.17.答案:D解析:由散点图分布可知,散点图分布在一个对数函数的图象附近, 因此,最适合作为发芽率y 和温度x 的回归方程类型的是ln y a b x =+. 故选:D. 18.答案:B解析:圆2260x y x +-=化为22(3)9x y -+=,所以圆心C 坐标为(3,0)C ,半径为3, 设(1,2)P ,当过点P 的直线和直线CP 垂直时,圆心到过点P 的直线的距离最大,所求的弦长最短,根据弦长公式最小值为229||982CP -=-=. 故选:B. 19.答案:C解析:由图可得:函数图象过点4π,09⎛⎫- ⎪⎝⎭,将它代入函数()f x 可得:4ππcos 096ω⎛⎫-⋅+= ⎪⎝⎭,又4π,09⎛⎫- ⎪⎝⎭是函数()f x 图象与x 轴负半轴的第一个交点, 所以4πππ962ω-⋅+=-,解得:32ω=,所以函数()f x 的最小正周期为2π2π4π332T ω===, 故选:C. 20.答案:B解析:由3log 42a =可得3log 42a =,所以49a =, 所以有149a-=,故选:B. 21.答案:C解析:依据程序框图的算法功能可知,输出的n 是满足135100n ++++>的最小正奇数,因为()()211112135110024n n n n -⎛⎫+⨯+⎪⎝⎭++++==+>,解得19n >,所以输出的21n =. 故选:C. 22.答案:D解析:设等比数列{}n a 的公比为q ,则()2123111a a a a q q ++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q ++=++=++==.故选:D. 23.答案:B解析:由已知,不妨设12(2,0),(2,0)F F -, 则1,2a c ==,因为121||1||2OP F F ==, 所以点P 在以12F F 为直径的圆上,即12F F P 是以P 为直角顶点的直角三角形, 故2221212||||||PF PF F F +=,即2212||||16PF PF +=,又12||||22PF PF a -==,所以222121212214||||||||2||||162||||PF PF P P F PF PF PF F PF =-=+-=-, 解得12||||6PF PF =,所以12121||||32F F P S PF PF ==△, 故选:B. 24.答案:A解析:设圆1O 半径为r ,球的半径为R ,依题意, 得2π4π,2r r =∴=,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据圆截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积24π64πS R ==.故选:A.25.答案:1 解析: 26.3解析: 27.答案:2 解析: 28.答案:14-解析: 29.答案:1解析:绘制不等式组表示的平面区域如图所示,目标函数7z x y =+即:1177y x z =-+,其中z 取得最大值时,其几何意义表示直线系在y 轴上的截距最大, 据此结合目标函数的几何意义可知目标函数在点A 处取得最大值, 联立直线方程:22010x y x y +-=⎧⎨--=⎩,可得点A 的坐标为:1,0A ,据此可知目标函数的最大值为:max 1701z =+⨯=. 故答案为:1. 30.答案:5解析:由a b ⊥可得0a b ⋅=, 又因为(1,1),(1,24)a b m m =-=+-, 所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=, 即5m =, 故答案为:5. 31.答案:2y x =解析:设切线的切点坐标为001(,),ln 1,1x y y x x y x=++'=+, 00001|12,1,2x x y x y x ='=+===,所以切点坐标为(1,2), 所求的切线方程为22(1)y x -=-,即2y x =. 故答案为:2y x =. 32.答案:7解析:2(1)31n n n a a n ++-=-,当n 为奇数时,231n n a a n +=+-;当n 为偶数时,231n n a a n ++=-. 设数列{}n a 的前n 项和为n S , 16123416S a a a a a =+++++13515241416()()a a a a a a a a =+++++++111111(2)(10)(24)(44)(70)a a a a a a =++++++++++ 11(102)(140)(5172941)a a ++++++++ 118392928484540a a =++=+=,17a ∴=.故答案为:7.33.答案:(1)2q =-;(2)1(31)(2)99nn n S +-=-.解析:(1)设{}n a 的公比为q ,由题设得1232a a a =+,即21112a a q a q =+. 所以220q q +-=,解得1q =(舍去),2q =-. 故{}n a 的公比为2-. (2)记n S 为{}n na 的前n 项和.由(1)及题设可得,1(2)n n a -=-.所以112(2)(2)n n S n -=+⨯-++⨯-,21222(2)(1)(2)(2)n n n S n n --=-+⨯-++-⨯-+⨯-.可得2131(2)(2)(2)(2)n n n S n -=+-+-++--⨯-1(2)(2)3nn n --=-⨯-.所以1(31)(2)99nn n S +-=-.34.答案:(1)见解析;.解析:(1)设DO a =,由题设可得,,PO AO AB a =,2PA PB PC a ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),,0,2E A C P ⎛⎫⎛- ⎪ ⎪ ⎝⎭⎝⎭. 所以312,,0,0,1,22EC EP ⎛⎫⎛=--=- ⎪ ⎪ ⎝⎭⎝⎭. 设(,,)x y z =m 是平面PCE 的法向量,则 0,0,EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,310.2y y ⎧-+=⎪⎪⎨⎪-=⎪⎩ 可取32⎛= ⎝m . 由(1)知2AP ⎛= ⎝⎭是平面PCB 的一个法向量,记n AP =, 则25cos ,||||⋅==⋅n m n m n m所以二面角B PC E --. 35.答案:(1)116;(2)34;(3)716. 解析:(1)甲连胜四场的概率为116. (2)根据赛制,至少需要进行四场比赛,至多需要进行五场比赛. 比赛四场结束,共有三种情况: 甲连胜四场的概率为116; 乙连胜四场的概率为116; 丙上场后连胜三场的概率为18.所以需要进行第五场比赛的概率为11131161684---=. (3)丙最终获胜,有两种情况:比赛四场结束且丙最终获胜的概率为18;比赛五场结束且丙最终获胜,则从第二场开始的四场比赛按照丙的胜、负、轮空结果有三种情况:胜胜负胜,胜负空胜,负空胜胜,概率分别为111,,1688. 因此丙最终获胜的概率为111178168816+++=.36.答案:(1)2219x y +=;(2)见解析.解析:(1)由题设得(,0),(,0),(0,1)A a B a G -.则(1)(1)AG a GB a ==-,,,.由8AG GB ⋅=得218a -=,即3a =. 所以E 的方程为2219x y +=.(2)设()()1122,,,,(6,)C x y D x y P t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<. 由于直线PA 的方程为(3)9t y x =+,所以()1139ty x =+.直线PB 的方程为(3)3t y x =-,所以()2233ty x =-.可得()()1221333y x y x -=+.由于222219x y +=,故()()2222339x x y +-=-,可得()()12122733y y x x =-++,即 ()()22121227(3)(3)0m y ym n y y n ++++++=.①将x my n =+代入2219x y +=得()2229290my mny n +++-=.所以212122229,99mn n y y y y m m -+=-=++. 代入①式得()()()22222792(3)(3)90m n m n mn n m +--++++=. 解得3n =-(舍去),32n =. 故直线CD 的方程为32x my =+,即直线CD 过定点3,02⎛⎫ ⎪⎝⎭. 若0t =,则直线CD 的方程为0y =,过点3,02⎛⎫⎪⎝⎭.综上,直线CD 过定点3,02⎛⎫⎪⎝⎭.37.答案:(1)见解析;(2)27e ,4⎡⎫-+∞⎪⎢⎣⎭. 解析:(1)当1a =时,2()e x f x x x =+-,)e (1'2x f x x =+-.故当(,0)x ∈-∞时,)'(0f x <;当(0,)x ∈+∞时,)'(0f x >.所以()f x 在(,0)-∞上单调递减,在(0,)+∞单调递增. (2)31()12f x x ≥+等价于3211e 12x x ax x -⎛⎫-++≤ ⎪⎝⎭. 设函数321()1e (0)2x g x x ax x x -⎛⎫=-++≥ ⎪⎝⎭,则32213()121'e 22x g x x ax x x ax -⎛⎫=--++-+- ⎪⎝⎭21(23)42e 2x x x a x a -⎡⎤=--+++⎣⎦ 1(21)(2)e 2x x x a x -=----.(i)若210a +≤,即12a ≤-,则当(0,2)x ∈时,)'(0g x >.所以()g x 在(0,2)单调递增,而(0)1g =,故当(0,2)x ∈时,()1g x >,不合题意.(ii)若0212a <+<,即1122a -<<,则当(0,21)(2,)x a ∈+⋃+∞时,)'(0g x <;当(21,2)x a ∈+时,)'(0g x >.所以()g x 在(0,21),(2,)a ++∞单调递减,在(21,2)a +单调递增.由于(0)1g =,所以()1g x ≤当且仅当2(2)(74)e 1g a -=-≤,即27e 4a -≥.所以当27e 142a -≤<时,()1g x ≤.(iii)若212a +≥,即12a ≥,则31()1e 2x g x x x -⎛⎫≤++ ⎪⎝⎭.由于27e 10,42⎡⎫-∈⎪⎢⎣⎭,故由()ii 可得311e 12x x x -⎛⎫++ ⎪⎝≤⎭. 故当12a ≥时,()1g x ≤. 综上,a 的取值范围为27e [,)4-+∞.38.答案:(1)曲线1C 是圆心为坐标原点,半径为1的圆;(2)11,44⎛⎫⎪⎝⎭.解析:(1)当1k =时,414cos ,:sin ,x t C y t ⎧=⎨=⎩消去参数t 得221x y +=,故曲线1C 是圆心为坐标原点,半径为1的圆.(2)当4k =时,414cos ,:sin ,x t C y t ⎧=⎨=⎩消去参数t 得1C1=, 2C 的直角坐标方程为41630x y -+=.由1,41630x y =-+=⎪⎩解得1,41.4x y ⎧=⎪⎪⎨⎪=⎪⎩故1C 与2C 的公共点的直角坐标为11()44,.39.答案:(1)见解析;(2)7,6⎛⎫-∞- ⎪⎝⎭.解析:(1)由题设知13(),31()51(1)33(1).x x f x x x x x ⎧--≤-⎪⎪⎪=--<≤⎨⎪+>⎪⎪⎩,,,,()y f x =的图像如图所示.(2) 函数()y f x =的图像向左平移1个单位长度后得到函数(1)y f x =+的图像.()y f x =的图像与(1)y f x =+的图像的交点坐标为711,66⎛⎫-- ⎪⎝⎭.由图像可知当且仅当76x <-时,()y f x =的图像在()1y f x =+的图像上方.故不等式()()1f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.40.答案:(1)由试加工产品等级的频数分布表知, 甲分厂加工出来的一件产品为A 级品的概率的估计值为400.4100=; 乙分厂加工出来的一件产品为A 级品的概率的估计值为280.28100=. (2)由数据知甲分厂加工出来的100件产品利润的频数分布表为因此甲分厂加工出来的100件产品的平均利润为 65402520520752015100⨯+⨯-⨯-⨯=.由数据知乙分厂加工出来的100件产品利润的频数分布表为因此乙分厂加工出来的100件产品的平均利润为 70283017034702110100⨯+⨯+⨯-⨯=.比较甲、乙两分厂加工的产品的平均利润,应选甲分厂承接加工业务. 解析:41.答案:(1)由题设及余弦定理得2222832cos150c c =+-⨯︒.解得2c =-(舍去),2c =,从而a =.ABC 的面积为12sin1502⨯⨯︒=(2)在ABC 中,18030A B C C =︒--=︒-,所以 ()()sin sin 30sin 30A C C C C +=-+=︒+︒.故()sin 30C ︒+=. 而030C ︒<<︒,所以3045C ︒+=︒,故15C =︒. 解析:42.答案:(1)由题设可知,PA PB PC ==.由于ABC 是正三角形,故可得PAC PAB ≅,PAC PBC ≅. 又90APC ∠=︒,故90,90APB BPC ∠=︒∠=︒.从而,PB PA PB PC ⊥⊥,故PB ⊥平面PAC ,所以平面PAB ⊥平面PAC . (2)设圆锥的底面半径为r ,母线长为l .由题设可得222rl l r =-=.解得1,r l ==.从而3AB =.由(1)可得222PA PB AB +=,故6PA PB PC ===. 所以三棱锥P ABC -的体积为31111663232PA PB PC ⎛⎫⨯⨯⨯⨯=⨯⨯= ⎪ ⎪⎝⎭.解析:43.答案:(1)当1a =时,()e 2x f x x =--,则1'()e x f x =-. 当0x <时,)'(0f x <;当0x >时,)'(0f x >. 所以()f x 在(,0)-∞单调递减,在(0,)+∞单调递增. (2))'(e x f x a =-.当0a ≤时,()'0f x >,所以()f x 在(),-∞+∞单调递增,故()f x 至多存在1个零点,不合题意.当0a >时,由()'0f x =可得ln x a =,当(),ln x a ∈-∞时,()'0f x <;当()ln ,x a ∈+∞时,()'0f x >,所以()f x 在(),ln a -∞单调递减,在()ln ,a +∞单调递增,故当ln x a =时,()f x 取得量小值,最小值为()()ln 1ln f a a a =-+.()i 若10ea <≤,则(ln )0f a ≥,()f x 在(,)-∞+∞至多存在1个零点,不合题意.()ii 若1ea >,则(ln )0f a <.由于2(2)e 0f --=>,所以()f x 在(,ln )a -∞存在唯一零点.由(1)知,当2x >时,2e 20x -->,所以当4x >且()2ln 2x a >时,22()e e (2)x x f x a x =⋅-+ ()ln 2e2(2)2a x a x ⎛⎫>⋅+-+ ⎪⎝⎭2a =0>.故()f x 在(ln ,)a +∞存在唯一零点.从而()f x 在(,)-∞+∞有两个零点. 综上,a 的取值范围是1,e ⎛⎫+∞ ⎪⎝⎭.解析:44.答案:(1)由题设得(,0),(,0),(0,1)A a B a G -.则(1)(1)AG a GB a ==-,,,.由8AG GB ⋅=得218a -=,即3a =. 所以E 的方程为2219x y +=.(2)设()()1122,,,,(6,)C x y D x y P t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<. 由于直线PA 的方程为(3)9t y x =+,所以()1139ty x =+.直线PB 的方程为(3)3t y x =-,所以()2233ty x =-.可得()()1221333y x y x -=+.由于222219x y +=,故()()2222339x x y +-=-,可得()()12122733y y x x =-++,即 ()()22121227(3)(3)0m y ym n y y n ++++++=.①将x my n =+代入2219x y +=得()2229290my mny n +++-=.所以212122229,99mn n y y y y m m -+=-=++. 代入①式得()()()22222792(3)(3)90m n m n mn n m +--++++=. 解得3n =-(舍去),32n =. 故直线CD 的方程为32x my =+,即直线CD 过定点3,02⎛⎫ ⎪⎝⎭.若0t =,则直线CD 的方程为0y =,过点3,02⎛⎫⎪⎝⎭.综上,直线CD 过定点3,02⎛⎫⎪⎝⎭.解析:45.答案:(1)当1k =时,414cos ,:sin ,x t C y t ⎧=⎨=⎩消去参数t 得221x y +=,故曲线1C 是圆心为坐标原点,半径为1的圆.(2)当4k =时,414cos ,:sin ,x t C y t ⎧=⎨=⎩消去参数t 得1C1=, 2C 的直角坐标方程为41630x y -+=.由1,41630x y =-+=⎪⎩解得1,41.4x y ⎧=⎪⎪⎨⎪=⎪⎩故1C 与2C 的公共点的直角坐标为11()44,.解析:46.答案:(1)由题设知 13(),31()51(1)33(1).x x f x x x x x ⎧--≤-⎪⎪⎪=--<≤⎨⎪+>⎪⎪⎩,,,,()y f x =的图像如图所示.(2) 函数()y f x =的图像向左平移1个单位长度后得到函数(1)y f x =+的图像.()y f x =的图像与(1)y f x =+的图像的交点坐标为711,66⎛⎫-- ⎪⎝⎭.由图像可知当且仅当76x <-时,()y f x =的图像在()1y f x =+的图像上方.故不等式()()1f x f x >+的解集为7,6⎛⎫-∞- ⎪⎝⎭.解析:。
2020届全国1卷高考仿真模拟试卷文科数学含答案
数学(文科)答案及解析
一、选择题
1. 【答案】C 【解析】因为 A {x | log2 x 3} {x | 0 x 8},B {0,1,2} , 所以 A B {1,2} ,所以 ðU ( A B) {0 ,3,4} .故选 C.
2 022 2 023 2 023
12.【答案】C
【解析】由题得 f (x) x2 2ax a ,由函数 f (x) 在 x1 ,x2
(x1 x2 ) 处的导数相等,得 x1 x2 2a , f (x1 x2 ) m 恒成立, m f (2a)(a 1) 恒成立, 令 g(a) f (2a) 1(2a)3 a(2a)2 a 2a 1
13.【答案】 380 9
【解析】设所抽取的这 100 名住户的年龄的中位数为 m ,
则有10 (0.005 0.015 0.020) ( m 40) 0.045 0.5 ,
解得 m 380 . 9
14. 【答案】 (- 3,- 47 ) 24
【解析】由题意得, f (x) 2x 2 .当 2x 2 3 时,
则
x
1 k
y
1 ,代入
y2
4x
,得
y2
4 k
y
4
0
.设
A(x1 ,y1),
B(x2 ,y2 ) ,则
y1 y2
4 ,所以
x1x2
y12 4
y22 4
( y1y2 )2 16
1 ,因
为 OA OB x1x2 y1y2 1 4 3 0 ,所以 AOB 为钝角,即
OAB 为钝角三角形.故选 B.
3 4 a3 2a2 1(a 1) ,则 g(a) 4a2 4a 4a(a 1) .
(完整版)2020年普通高等学校招生全国统一考试模拟卷(1)(文科数学含答案详解)
)
A. 5 2
B.5
C.3
D. 5
【答案】D
【解析】由题意可得: OA 4,3 , OB 1, 2 ,则:
OA tOB 4,3 t 1, 2 4 t,3 2t
4 t 2 3 2t 2
5t2 20t 25 ,
Sufferi 第 2 页, 共 6 页
s to o n 结合二次函数的性质可得,当 t 2 时, OA tOB 5 4 20 2 25 5 . l min y o 本题选择 D 选项.
16
31 D.
32
so 【答案】C
me 【解析】i 1 ,
thi (1) x 2x 1,i 2 , ng a (2) x 22x 11 4x 3,i 3, nd (3) x 24x 31 8x 7,i 4 ,
A. 4
B. 4
C. 1 3
1
D.
3
【答案】C
【解析】因为
cos
2
a tim A.
1 3
,
B.
1 3
,
C.
1 2
,
D.
1 2
,
e a 【答案】D nd 【解析】设 F1F2 2c ,令 PF1 t ,由题意可得: t c 2a2 , t c 2a1 ,
All th 据此可得:a1 a2
c
1
,则:
e1
1 e2
1 , e1
e2 , e2 1
2
n,
2
,因此选
A.
thin 9.如图为正方体 ABCD A1B1C1D1 ,动点 M 从 B1点出发,在正方体表面上沿逆时针方向
g a 运动一周后,再回到 B1 的运动过程中,点 M 与平面 A1DC1 的距离保持不变,运动的路程 x 与 nd l MA1 MC1 MD 之间满足函数关系 l f x ,则此函数图象大致是( )
2020年高考文科数学(1卷):答案详细解析(最新)
打开导航窗口(书签),可以直接找到各个题目.
第 8 页 共 27 页
2020 年高考文科数学(全国 1 卷)答案详解及试题
(一)必考题:共 60 分
17.(12 分)(概率统计)
某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为 A,B,C,
D 四个等级,加工业务约定:对于 A 级品、B 级品、C 级品,厂家每件分别收取
第 6 页 共 27 页
2020 年高考文科数学(全国 1 卷)答案详解及试题
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。 2x y 2 0
13(. 线性规划)若 x,y 满足约束条件 x y 1 0 ,则 z=x+7y 的最大值为_____. y 1 0
【解析】由约束条件,作出可行域如图 A13 所示.
【答案】 y 2x
16. (数列)数列an 满足 an2 1n an 3n 1 ,前 16 项和为 540,则 a1 =____.
打开导航窗口(书签),可以直接找到各个题目.
第 7 页 共 27 页
2020 年高考文科数学(全国 1 卷)答案详解及试题
【解析】当 n 为偶数时,有 an2 an 3n 1,故
A. 1 16
B. 1 9
C. 1 8
D. 1 6
【解析】∵ a log3
4 log3 4a
2 ,∴ 4a
32
9 ,∴ 4a
1 4a
1. 9
【答案】B
9.(算法框图)执行右面的程序框图,则输出的 n
A. 17
B. 19
C. 21
D. 23
打开导航窗口(书签),可以直接找到各个题目.
第 4 页 共 27 页
2020年全国统一高考数学试卷(文科)(全国卷一)(含详细解析)
c 保密★启用前2020年全国统一高考数学试卷(文科)(全国卷一)您题号—总分得分注意事项:1.答题前垃写好自己的姓名、班级、考号等信息2.请将答案正确填写在答超卡上o:n o评卷人得分1.己知集合/!={x\xA.{—4,1}一、单选题3—4<0},8={-4,1,3,5},则』口=()B.(1,5}C.{3,5}D.{1,3}2.若z= l+2i+i3,则回=()A.0B.1C.41D.23.埃及胡夫金字塔是古代世界建筑志迹之一,它的形状可视为-个正四棱锥,以该四校锥的高为边长的正方形面积等于该四梭推一个侧面三角形的面积,鲫其侧面三角形底边上的高与底面正方形的边长的比值为()oO A旦R岂 C.旦 D.旦4242的概率为()5.某校一个课外学习小组为研充某作物种了•的发芽率.p 和温度工(单位:°C )的关系. 在20个不同的温度条件下进行种子发芽实验,由实验数据(.t r.Z )(/ = 1.2.-.2O )得到下 面的散点图;由此散点图•在10。
至40也之间・卜.面四个回归方程类型中最适宜作为发芽率*和温度X 的问归方程类型的是()A. ,= 〃 +版B. y = a + hx 2C. y-a + be l D・ y = a + b\nx6.已知圆xf 尸-6“0,过点(1, 2)的直线被该圆所截得的弦的忙度的最小值为A. 1C. 3B. 2D. 47 .设函数f (x ) = COS (5 +兰)在[-兀,71]的图像大致如卜图,则用)的最小止周期为()610n A. B.Inc. 8. A. 9.4丸设g4=2,则4"= <)1 B.1. 169执行下面的程序框图,则输出的〃=()D.C.A.3兀D.417 B.19 C.21 D.2310.设{虬}是等比数列,旦0+七+%=】•%+江/久=2.则%+"%=(A.12B.24C.30D.32y11.设%足是双仙线C:x2-^-=l的两个焦点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年高考全国1卷数学(文科)模拟试卷考试时间:120分钟 满分150分一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足(1+i)z =2i ,则∣z ∣= A .12B 2C 2D .22、已知集合{}|12A x x =-<,12|log 1B x x ⎧⎫=>-⎨⎬⎩⎭,则AB =A .{}|04x x <<B .{}|22x x -<<C .{}|02x x <<D .{}|13x x << 3、以下判断正确的个数是( )①相关系数r r ,值越小,变量之间的相关性越强;②命题“存在01,2<-+∈x x R x ”的否定是“不存在01,2≥-+∈x x R x ”; ③“q p ∨”为真是“p ”为假的必要不充分条件;④若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是08.023.1ˆ+=x y. A .4 B .2 C.3 D .14、设,a b 是非零向量,则“存在实数λ,使得=λa b ”是“||||||+=+a b a b ”的A .充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 5、 已知正三角形ABC 的顶点()()3,1,1,1B A ,顶点C 在第一象限,若点()y x ,在ABC ∆的内部,则y x z +-=的取值范围是 A.()2,31- B.()2,0 C.()2,13- D.()31,0+6、使函数)2cos()2sin(3)(θθ+++=x x x f 是偶函数,且在]4,0[π上是减函数的θ的一个值是 A .6π B .3π C .34π D .67π7、在如图的程序框图中,()i f x '为()i f x 的导函数,若0()sin f x x =,则输出的结果是8、已知数列{}n a 的前n 项和为n S ,且满足121a a ==,21n n S a +=-,则下列命题错误的是( ) A.21n n n a a a ++=+B.13599100a a a a a ++++=…C.2469899a a a a a ++++=…D.12398100100S S S S S ++++=-…9、某三棱锥的三视图如图所示,则下列说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形,③ 三棱锥四个面的面积中最大的值是32所有正确的说法 A 、①B 、①②C 、②③D 、①③10、已知双曲线)0,(12222>b a by a x =-的左、右顶点分别为B A ,,右焦点为F ,过点F 且垂直于x 轴的直线l 交双曲线于N M ,两点,P 为直线l 上的一点,当APB ∆的外接圆面积达到最小值时,点P 恰好在M (或N )处,则双曲线的离心率为 A.2 B.3 C.2 D.511、珠算被誉为中国的第五大发明,最早见于汉朝徐岳撰写的《数术记遗》•2013年联合国教科文组织正式将中国珠算项目列入教科文组织人类非物质文化遗产.如图,我国传统算盘每一档为两粒上珠,五粒下珠,也称为“七珠算盘”.未记数(或表示零)时,每档的各珠位置均与图中最左档一样;记数时,要拨珠靠梁,一个上珠表示“5”,一个下珠表示“1”,例如:当千位档一个上珠、百位档一个上珠、十位档一个下珠、个位档一个上珠分别靠梁时,所表示的数是5515.现选定“个位档”、“十位档”、“百位档”和“千位档”,若规定每档拨动一珠靠梁(其它各珠不动),则在其可能表示的所有四位数中随机取一个数,这个数能被3整除的概率为( ) A .12B .25C .38D .1312、已知函数()21ln (1)(0)2x ax a f a x x a =-+-+>的值域与函数()()f f x 的值域相同,则a 的取值范围为( ) A. (]0,1B. ()1,+∞C. 40,3⎛⎤ ⎥⎝⎦D. 4,3⎡⎫+∞⎪⎢⎣⎭二、填空题:本题共4小题,每小题5分,共20分。
13、已知23log 3a =,2log 12b =,则a +b 的值为__________.14、已知数列{}n a 满足*21()n n n a a a n N +++=∈,且11a =,22a =,则2018a =__________.15、已知,,A F P 分别为双曲线22221(0,0)x y a b a b-=>> 的左顶点、右焦点以及右支上的动点,若2PFA PAF ∠=∠恒成立,则双曲线的离心率为 。
16、如图,在平面直角坐标系xOy 中,边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点(),B x y 的轨迹方程是()y f x =,则()19f =_____________三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17、(12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,已知12=c ,64=b ,O 为ABC ∆的外接圆圆心.(1)若54cos =A ,求ABC ∆的面积S ;(2)若点D 为BC 边上的任意一点,1134DO DA AB AC -=+,求B sin 的值.18、(12分)某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()y g 与尺寸x (mm )之间近似满足关系式by c x =⋅(b 、c 为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间,97e e ⎛⎫⎪⎝⎭内时为优等品.现随机抽取6件合格产品,测得数据如下:根据测得数据作了初步处理,得相关统计量的值如下表:(ⅰ)根据所给统计量,求y 关于x 的回归方程;(ⅱ)已知优等品的收益z (单位:千元)与,x y 的关系为20.32z y x =-,则当优等品的尺寸x 为何值时,收益z 的预报值最大?(精确到0.1) 附:对于样本(,)i i v u (1,2,,)i n =,其回归直线u b v a =⋅+的斜率和截距的最小二乘估计公式分别为:1122211()()()nniii ii i nni i i i v v u u v u nvub v v v nv∧====---==--∑∑∑∑,a u bv ∧∧=-, 2.7182e ≈.19、(12分)如图,三棱柱111ABC A B C - 中,侧棱垂直于底面,1111A B B C ⊥ ,12AA AB == ,1BC = ,E 为11A C 中点. (I ) 求证:1A B ⊥平面11AB C ;(II) 求三棱锥1B ECC - 的体积;(III ) 设平面EAB 与直线11B C 交于点H ,求线段1B H 的长.20、(12分)已知椭圆22122:1(0)x y C a b a b +=>>的左、右焦点分别为12,F F ,且2F 为抛物线22:2(0)C y px p =>的焦点,2C 的准线被椭圆1C 和圆222x y a +=截得的弦长分别为和4.(Ⅰ)求1C 和2C 的方程;(Ⅱ)已知动直线l 与抛物线2C 相切(切点异于原点),且l 与椭圆1C 相交于N M ,两点,若椭圆1C 上存在点Q ,使得)0(≠=+λλOQ ON OM ,求实数λ的取值范围.21、(12分)已知函数31()4f x x ax =-+.(Ⅰ)若x 轴为曲线()y f x =的切线,求a 的值;(Ⅱ)求函数()f x 在[0,1]上的最大值和最小值.(二)选考题:共10分。
请考生在22、23两题中任选一题作答,注意:只能做选定的题目,若多做,则按所做的第1题记分. 22、(选修4-4坐标系与参数方程) 以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为22cos 2a ρθ=(a R ∈,a 为常数),过点(2,1)P 、倾斜角为30︒的直线l 的参数方程满足2x =+(t 为参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)若直线l 与曲线C 相交于A 、B 两点(点P 在A 、B 之间),且||||2PA PB ⋅=,求a 和||||||PA PB -的值.23、(选修4-5 不等式选讲) 已知函数()212()f x x mx m R =-++∈。
(1)若1m =,解不等式()6f x <;(2)若()f x 有最小值,且关于x 的方程()21f x x x =-++有两个不等实根,求实数m 的取值范围。
答案解析一、选择题 1-6题C C B B A B 7-12题 C C D A C D 二、填空题 13、3 14、16 15、4 16、3 部分(选填题)压轴题解析11. 解析:基本事件总数n =24=16,利用列举法求出这个数能被3整除包含的基本事件有6个,由此能求出这个数能被3整除的概率.选定“个位档”、“十位档”、“百位档”和“千位档”,规定每档拨动一珠靠梁(其它各珠不动), 则在其可能表示的所有四位数中随机取一个数,基本事件总数n =24=16,这个数能被3整除包含的基本事件有:5511,5115,5151,1155,1515,1551,共6个, 这个数能被3整除的概率为P .故选:C .12解析:()1(1)(1)1'ax a xf x x a x x +--+-==,1x >时,()'0f x <;01x <<时,()'0f x >, ∴()f x 在()0,1上递增,在()1,+∞上递减,()()max 3112f x f a ==-,即()f x 的值域为3,12a ⎛⎤-∞- ⎥⎝⎦.令()f x t =,则()()312y f f x f t t a ⎛⎫==≤-⎡⎤ ⎪⎣⎦⎝⎭,∵()f t 在()0,1上递增,在()1,+∞上递减,要使()y f t =的值域为3,12a ⎛⎤-∞- ⎥⎝⎦,则3112a -≥,43a ≥, ∴a 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭,故选D.16解:由题意,当42x -≤<-时,顶点(),B x y 的轨迹是以点()2,0A -为圆心,以2为半径的14圆; 当22x -≤<时,顶点(),B x y 的轨迹是以点()0,0D 为圆心,以22为半径的14圆; 当24x ≤<时,顶点(),B x y 的轨迹是以点()2,0C 为圆心,以2为半径的14圆; 当46x ≤<,顶点(),B x y 的轨迹是以点()4,0A 为圆心,以2为半径的14圆,因此函数()(y f x =的图像在[]4,4-恰好为一个周期的图像; 所以函数()y f x =的周期是8;∴(19)(3)3f f ==,其图像如下:三.解答题17解析:(1)由54cos =A 得53sin =A , ∴5214453122821sin 21=⨯⨯⨯==∆A bc S ABC .……………………………3分 (2)由AC AB DA DO 4131+=-, 可得AC AB AO 4131+=,于是AO AC AO AB AO AO ⋅+⋅=⋅4131, ……………………………………5分即OAC AO AC OAB AO AB AO ∠∠=41312,①又O 为△ABC AB OAB AO 21=∠OAC AO ∠AC 21,②7分将①代入②得到28161AC AB AO +=1288114461⨯+⨯=401624=+=解得102=AO .10分由正弦定理得10422sin ===AO R B b , 可解得552sin =B .…………12分 18.解:对by c x =⋅(,0b c >)两边取自然对数得ln ln ln y c b x =+,令ln ,ln i i i i v x u y ==,得u b v a =⋅+,且ln a c =, -------------6分 (ⅰ)根据所给统计量及最小二乘估计公式有,1222175.324.618.360.271101.424.660.542ni i i ni i v u nvub v nv∧==--⨯÷====-÷-∑∑--7分 118.324.6612a u b v ∧∧⎛⎫=-=-⨯÷= ⎪⎝⎭,得ˆˆln 1ac ==,故ˆc e = -----8分 所求y 关于x 的回归方程为12y e x =⋅ --------------9分由优等品质量与尺寸的比()12ˆ,7,997y ex e ex x⎛⎫==⇒⎪⎝⎭,即()49,81x∈令()7,9t=,222ˆ()0.3220.32()0.320.32e ez t t et t=-+=--+当()8.57,90.32et==≈∈时,ˆz取最大值-----------12分即优等品的尺寸72.3x≈(mm),收益ˆz的预报值最大.19、解:(Ⅰ)因为三棱柱111ABC A B C-中,侧棱垂直于底面,所以1BB⊥平面111A B C.因为11B C⊂平面111A B C,所以111BB B C⊥.又因为1111B C A B⊥,1111A B BB B=,所以11B C⊥平面11AA B B.因为1A B⊂平面11AA B B,所以111A B B C⊥.因为12AA AB==,所以四边形11AA B B为菱形.所以11A B AB⊥.因为1111B C AB B=,所以1A B⊥平面11AB C. ……..5分(Ⅱ)由已知,1BB⊥平面111A B C,11A B⊂平面111A B C,所以111BB A B⊥.因为1111A B B C⊥,1111B C BB B=,所以11A B⊥平面11BB C C.又112A B AB==,故1A到平面11BB C C的距离为2.因为E为11A C中点,所以E点到平面11BB C C距离为1.所以11111211323B ECC E BCCV V--==⨯⨯⨯⨯=.……..9分(Ⅲ)在三棱柱111ABC A B C-中,因为E,H为平面EAB与平面111A B C的公共点,所以平面EAB平面111A B C EH=.因为平面ABC//平面111A B C,AB⊂平面ABC,所以//AB平面111A B C.又平面111A B C平面EAB EH=, 所以//EH AB.又11//AB A B,所以11//EH A B.因为E为11A C中点, 所以H为11B C中点.所以1111122B H B C==..14分20、(1)由题得2224bab⎧=⎪⇒⎨⎪=⎩2,=24a b p c===,故22212:1,:884x yC C y x+==…4分(2)由题知l存在斜率且不为0,设),(:≠+=mnmyxl),(),,(),,(2211yxQyxNyxM……5分联立⇒⎩⎨⎧=+=xy nmy x 820882=--n my y ,因为l 与2C 相切,故02021=+⇒=∆n m ………6分联立⇒⎩⎨⎧=++=8222y x nmy x 082)2(222=-+++n mny y m ,两根为21,y y ,所以28,222221221+-=+-=+m n y y m mn y y …………………………………………7分)2,4(82840222-∈⇒+-=+<⇒>∆n n m n ,又022>-=n m ,因此)0,4(-∈n ………8分 由⇒=+OQ ON OM λ⎩⎨⎧=+=+021021y y y x x x λλ,由韦达定理,代入计算得⎪⎪⎩⎪⎪⎨⎧+-=+=)2(2)2(42020m mn y m n x λλ……9分而点),(00y x Q 在椭圆上,即822020=+y x ,代入得)0,4(,4228)2(8)2(162222222222222-∈-=+=⇒=+++n n n m n m n m m n λλλ………………………10分 令)8,4(4∈-=n t ,则)2,0()0,2()4,0()816(22 -∈⇒∈-+=λλtt …………………12分 21、解:(Ⅰ)由于x 轴为()y f x =的切线,设切点坐标为0(,0)x , ……1分 则300104x ax -+=,……① 又0()0f x '=,即2030x a -=, ……② ②代入①,解得012x =,所以34a =. ……4分(Ⅱ)2()3f x x a '=-,(1)当0≤a 时,()0≥f x ',()f x 在[0,1]单调递增, ……1分 所以0x =时,()f x 取得最小值14.1x =时,()f x 取得最大值54a -. ……3分 (2)当3a ≥时,()0f x '<,()f x 在[0,1]单调递减, ……4分 所以,1x =时,()f x 取得最小值54a -.0x =时,()f x 取得最大值14. (3)当03a <<时,令()0f x '=,解得x = ……5分x ,()f x ',()f x 在区间[0,1]的变化情况如下:由上表可知,当x =()f x取得最小值147分 由于1(0)4f =,5(1)4f a =-,当01a <<时,()f x 在1x =处取得最大值54a -, ……8分 当13a <≤时,()f x 在0x =处取得最大值14. ……9分 22、解:(1)由22cos 2a ρθ=得2222(cos sin )a ρθθ-=, --------------------------------------1分又cos x ρθ=,sin y ρθ=,得222x y a -=,∴C 的普通方程为222x y a -=,-------------------------------------------------------------------2分∵过点(2,1)P 、倾斜角为30︒的直线l的普通方程为2)13y x =-+,--------------3分由2x =+得112y t =+ ∴直线l的参数方程为2212x ty ⎧=+⎪⎪⎨⎪=+⎪⎩ (t 为参数);-----------------------------5分 (2)将212x ty ⎧=⎪⎪⎨⎪=+⎪⎩代入222x y a -=,得221)2(3)0t t a ++-=, --------------------------6分依题意知221)]8(3)0a ∆=-->则上方程的根1t 、2t 就是交点A 、B 对应的参数,∵2122(3)t t a ⋅=-,由参数t 的几何意义知1212||||||||||PA PB t t t t ⋅=⋅=⋅,得12||2t t ⋅=,∵点P 在A 、B 之间,∴120t t ⋅<,∴122t t ⋅=-,即22(3)2a -=-,解得24a =(满足0∆>),∴2a =±,-------------8分∵1212||||||||||||||PA PB t t t t -=-=+,又121)t t +=-,∴||||||2PA PB -=.-------------------------------------------------------------------------10分23.解:(Ⅰ) m =1,212)(++-=x x x f当x ≤21时,f (x )=3-x ,由f (x )<6解得x >-3,综合得-3<x ≤21, 当x >21时,f (x )=3x +1,由f (x )<6解得x <35,综合得21<x <35, 所以f (x )<6的解集是)353(,-. ………………………………………………5分(Ⅱ)当x >21时,f (x )=(2+m )x +1. 当x ≤21时,f (x )=(m -2)x +3,要使得f (x )有最小值,则⎩⎨⎧≤-≥+,,0202m m 解得-2≤m ≤2,且由图像可得,f (x )在x =21时取得最小值21m +2. y =-x 2+x +1在x =v 时取得最大值45,方程f (x )=-x 2+x +1有两个不等实根,则21m +2<45,解得m <-23.综上所述,m 的取值范围为-2≤m <-23.……………………………………10分。