带电粒子在电场和磁场中偏转的区别解读

合集下载

电场与磁场——带电粒子在电场中的加速与偏转讲义

电场与磁场——带电粒子在电场中的加速与偏转讲义

带电粒子在电场中的加速与偏转本专题主要讲解带电粒子(带电体)在电场中的直线运动、偏转,以及带电粒子在交变电场中运动等相关问题,强调学生对于直线运动、类平抛运动规律的掌握程度。

高考中重点考查学生利用动力学以及能量观点解决问题的能力,对于学生的相互作用观、能量观的建立要求较高。

带电粒子在电场中的直线运动(2021湖南联考)如图所示,空间存在两块平行的彼此绝缘的带电薄金属板A、B,间距为d,中央分别开有小孔O、P。

现有甲电子以速率v0从O点沿OP方向运动,恰能运动到P点。

若仅将B板向右平移距离d,再将乙电子从P′点由静止释放,则()A.金属板A、B组成的平行板电容器的电容C不变B.金属板A、B间的电压减小C.甲、乙两电子在板间运动时的加速度相同D.乙电子运动到O点的速率为2v0关键信息:电子以速率v0从O点沿OP方向运动、恰能运动到P点→粒子做减速运动,未涉及时间可用动能定理处理相关的运动问题仅将B板向右平移距离d→平行板电容器动态变化问题(Q不变)解题思路:根据平行板电容器动态变化问题,判断出电容C、电压U、场强E的变化,再由动能定理求解速度问题。

A .两板间距离变大,根据4r SC kdε=π可知,金属板A 、B 组成的平行板电容器的电容C 减小,选项A 错误;B .根据Q =CU ,Q 不变,C 减小,则U 变大,选项B 错误; C .根据4r U Q kQE d Cd Sεπ===,可知当d 变大时,两板间的场强不变,则甲、乙两电子在板间运动时的加速度相同,选项C 正确;D .设乙电子运动到O 点的速率为v ; 对甲粒子,根据动能定理得:eEd =12mv 02;对乙粒子,根据动能定理得:eE·2d =12mv 2;联立解得:v =2v 0,选项D 错误。

故选C 。

(2022四川联考题)多反射飞行时间质谱仪是一种测量离子质量的新型实验仪器,其基本原理如图所示,从离子源A 处飘出的离子初速度不计,经电压为U 的匀强电场加速后射入质量分析器。

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转

带电粒子在磁场中的偏转
带电粒子在磁场中的偏转是指在外加磁场作用下,带电粒子运动轨迹发生偏移的现象。

它是一种重要的物理现象,也是核物理学、凝聚态物理学、星系结构形成以及太阳物理学等诸多领域中最基本的现象之一。

在现实世界中,带电粒子的运动通常会受到外加磁场的影响,这种由外加磁场引起的偏转现象,即为“带电粒子在磁场中的偏转”。

带电粒子在磁场中的偏转,是带电粒子受到磁场作用时产生的一种物理现象,其原理可以由电磁力学来描述。

当外加磁场与带电粒子的运动方向不平行,带电粒子就会受到一个名为磁力线的力,这个力的大小与带电粒子的速度、外加磁场强度以及粒子与外加磁场方向之间的夹角有关。

这个磁力线的方向,永远是指向能让粒子的运动能量增加的方向,而磁力线的大小,则与粒子的速度成正比。

由于磁力线的作用,带电粒子的运动轨迹会受到偏转,这种偏转的大小与粒子的电荷量、其速度以及外加磁场的强度有关,并且随着粒子的磁场位置变化而变化。

由于外加磁场的方向是不断变化的,因此带电粒子在磁场中的运动轨迹也会发生偏移,从而使得粒子的运动轨迹呈现出一种环形的状态。

综上所述,带电粒子在磁场中的偏转是一种重要的物理现象,其本质是由外加磁场引起的磁力线对带电粒子的运动造成的影响,而这种影响会使得粒子的运动轨迹发生偏移,从而使得粒子的运动轨迹呈现出一种环形的状态。

它是核物理学、凝聚态物理学、星系结构形成以及太阳物理学中最基本的现象之一,对理解物质的性质、结构以及运动机制有着重要意义。

带电粒子在“电场”和“磁场”中的差别

带电粒子在“电场”和“磁场”中的差别

带电粒子在“电场”和“磁场”中的差别发表时间:2012-06-08T14:42:40.420Z 来源:《学习方法报·理化教研周刊》2012年第40期供稿作者:刘会丽[导读] 在磁场中,若带电粒子仅受洛伦兹力作用时,其洛伦兹力始终与速度方向垂直,所以其动能保持不变。

陕西省宝鸡市扶风县法门高中刘会丽带电粒子在电场和磁场中的运动是高考的重点、难点,也是学生的易混点。

准确理解并掌握电场和磁场对带电粒子作用的“差别”是解决问题的前提。

1. 受力特征的差别带电粒子在电场中一定受到电场力的作用,大小一定(F电=Eq)、方向一定(正电荷受力方向与电场方向一致,负电荷受力方向与电场方向相反),与带电粒子是否运动、速度大小、方向没有任何关系。

在匀强电场中的电场力是恒力。

带电粒子在磁场中,不一定受磁场力(洛伦兹力)作用。

只有带电粒子的速度方向与磁场方向不平行时,才受洛伦兹力,且洛伦兹力方向因粒子速度方向的不同而不同(满足左手定则),大小因速度大小不同而不同(F洛=Bqv);若带电粒子在匀强磁场中除受洛伦兹力外,还受其他外力,且做直线运动,则一定做匀速直线运动,其合外力为零。

2. 运动规律的差别带电粒子在匀强电场中,其初速度与电场力方向在同一直线时,带电粒子做匀变速直线运动,满足匀变速直线运动规律,即。

若初速度与电场力的方向不平行时,带电粒子做匀变速曲线运动;其中初速度与电场力方向垂直时,带电粒子做类平抛运动,其运动规律分别垂直于和平行于电场的两个方向给出,即带电粒子在匀强磁场中,若仅受洛伦兹力时,其洛伦兹力会使粒子做变速曲线运动,即匀速圆周运动或部分圆周运动。

其运动规律分别从周期、半径两方面给出如下表达式:在磁场中,粒子运动方向,所能偏转的角度不受限制,即,且相等时间内偏转角度总是相等的。

3. 轨迹的差别带电粒子在匀强电场中,初速度方向与电场力方向在同一直线上时,运动轨迹为直线;初速度方向与电场力方向垂直时,运动轨迹为抛物线。

磁偏转与电偏转的区别

磁偏转与电偏转的区别

磁偏转与电偏转的区别【知识要点】洛仑兹力与电场力的比较 1、与带电粒子运动状态的关系带电粒子在电场中所受到的电场力的大小和方向,与其运动状态无关。

但洛伦兹力的大小和方向,则与带电粒子本身运动的速度紧密相关。

2、决定大小的有关因素电荷在电场中所受到的电场力 F = qE ,与两个因素有关:本身电量的多少和电场的强弱。

运动电荷在磁场中所受到的磁场力,与四个因素有关:本身电量的多少、运动速度 v 的大小、速度 v 的方向与磁感应强度 B 方向间的关系 、磁场的磁感应强度B . 3、方向的区别电荷所受电场力的方向,一定与电场方向在同一条直线上( 正电荷同向,负电荷反向 ),但洛伦兹力的方向则与磁感应强度的方向垂直。

一.热身训练例题1.如图所示,在虚线范围内,用场强为E 的匀强电场可使初速度为v 0的某种正离子偏转θ角.在同样宽度范围内,若改用匀强磁场(方向垂直纸面向外),使该离子通过该区域并使偏转角度也为θ,则磁感应强度为多少?离子穿过电场和磁场的时间之比为多少?1.B=0V E cosθ,θθsin二、讲练平台例题2.某空间存在着一个变化的电场和一个变化的磁场,电场方向向右(如图(a )中由B 到C 的方向),电场变化如图(b)中E-t 图象,磁感应强度变化如图(c )中B-t 图象.在A 点,从t=1 s (即1 s )开始,每隔2 s ,有一个相同的带电粒子(重力不计)沿AB 方向(垂直于BC )以速度v 射出,恰能击中C 点,若BC AC 2=且粒子在AC 间运动的时间小于1 s ,求(1)图线上E 0和B 0的比值,磁感应强度B 的方向.(2)若第1个粒子击中C 点的时刻已知为(1+Δt )s,那么第2个粒子击中C 点的时刻是多少?解析:(1)3400=B E v ,磁场方向垂直纸面向外;(2)第2个粒子击中C 点的时刻为(2+3π·v d2)例题3.(04全国理综)空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示。

物理专题三带电粒子在复合场(电场磁场)中的运动解读

物理专题三带电粒子在复合场(电场磁场)中的运动解读

物理专题三 带电粒子在复合场(电场磁场)中的运动解决这类问题时一定要重视画示意图的重要作用。

⑴带电粒子在匀强电场中做类平抛运动。

这类题的解题关键是画出示意图,要点是末速度的反向延长线跟初速度延长线的交点在水平位移的中点。

⑵带电粒子在匀强磁场中做匀速圆周运动。

这类题的解题关键是画好示意图,画示意图的要点是找圆心、找半径和用对称。

例1 右图是示波管内部构造示意图。

竖直偏转电极的板长为l =4cm ,板间距离为d =1cm ,板右端到荧光屏L =18cm ,(本题不研究水平偏转)。

电子沿中心轴线进入偏转电极时的速度为v 0=1.6×107m/s ,电子电荷e =1.6×10-19C ,质量为0.91×10-30kg 。

为了使电子束不会打在偏转电极的极板上,加在偏转电极上的电压不能超过多少?电子打在荧光屏上的点偏离中心点O 的最大距离是多少?[解:设电子刚好打在偏转极板右端时对应的电压为U ,根据侧移公式不难求出U (当时对应的侧移恰好为d /2):2212⎪⎭⎫ ⎝⎛⋅=v l dm Ue d ,得U =91V ;然后由图中相似形对应边成比例可以求得最大偏离量h =5cm 。

]例2 如图甲所示,在真空中,足够大的平行金属板M 、N 相距为d ,水平放置。

它们的中心有小孔A 、B ,A 、B 及O 在同一条竖直线上,两板的左端连有如图所示的电路,交流电源的内阻忽略不计,电动势为U ,U 的方向如图甲所示,U 随时间变化如图乙所示,它的峰值为ε。

今将S 接b 一段足够长时间后又断开,并在A 孔正上方距A 为h (已知d h <)的O 点释放一个带电微粒P ,P 在AB 之间刚好做匀速运动,再将S 接到a 后让P 从O 点自由下落,在t=0时刻刚好进入A 孔,为了使P 一直向下运动,求h 与T 的关系式?[解析:当S 接b 一段足够长的时间后又断开,而带电微粒进入A 孔后刚好做匀速运动,说明它受到的重力与电场力相等,有d q mg ε= 若将S 接a 后,刚从t=0开始,M 、N 两板间的电压为,2ε,故带电粒子进入电场后,所受到的电场力为mg d q F 22==ε,也就是以大小为g 、方向向上的加速度作减速运动。

电偏转和磁偏转的规律、区别与应用

电偏转和磁偏转的规律、区别与应用

电偏转和磁偏转的规律、区别与应用作者:姜玉斌来源:《物理教学探讨》2008年第08期电偏转和磁偏转是电磁学中两种常见的偏转,它们相互联系又有区别,是高考的热点、复习的难点,下面从两种偏转的规律、区别以及在解题中的应用加以分析。

1 两种偏转的规律1.1 电偏转如图1所示,有一质量为m、电荷量为+q的粒子(不计重力),以初速度v0从两板中间进入匀强电场E,在电场力的作用下粒子运动发生了偏转,偏转角为θ,发生的侧移距离为y,已知极板长为L,两极板间距为d。

粒子在电场中做类平抛运动运动,与处理平抛问题方法相似,可以将粒子的运动分解为水平方向的匀速直线运动和竖直方向的匀加速直线运动,列方程有水平方向:竖直方向:运动时间:t=Lv0 (粒子能从场中射出)(粒子打在极板上)侧移距离:偏转角正切:重要结论作粒子离开电场时速度的反向延长线,设交AB于O点,O点与A点间的距离为x,则x=ytanθ=L2,由此式可知,粒子从偏转电场中射出时,就好象是从极板的中间O点沿直线射出似的。

1.2 磁偏转如图2所示,有一质量为m、电荷量为+q的粒子(不计重力),以初速度v0进入匀强磁场B,在磁场力的作用下粒子运动发生了偏转,偏转角为θ。

粒子在磁场中做圆弧运动,由洛仑兹力提供向心力,设粒子的轨道半径为r,有轨道半径:偏转角:偏转角等于圆心角,即运动时间:2 两种偏转的区别电偏转与磁偏转分别是利用电场与磁场对运动电荷施加作用,从而控制其运动方向,由于电场和磁场对运动电荷的作用不同,所以两种偏转也不同。

类型问题电偏转磁偏转受力方面受到的电场力是恒力受到的洛仑兹力是变力运动方面类平抛运动匀速圆周运动(或圆弧运动)偏转方面偏转的角度受到θ能量方面电场力对粒子做正功,粒子的动能不断增加洛仑兹力对粒子不做功,粒子的动能不变3 两种偏转在解题上的应用3.1 已知场的情况,求粒子的运动情况题1 如图3所示的真空管中,电子从灯丝K发出(初速度不计),经电压为U1的加速电场加速后沿中心线进入两平行金属板M、N间的匀强电场中,通过偏转电场后打到荧光屏上的P点处,设M、N板间电压为U2,两板间距离为d,板长为L1,板右端到荧光屏的距离为L2,已知电子的电荷量为e,质量为m。

带电粒子的偏转公式

带电粒子的偏转公式

带电粒子的偏转公式在物理学中,带电粒子的偏转公式可是一个相当重要的知识点呢!咱们先来说说带电粒子在电场中的偏转。

想象一下,一个小小的带电粒子,就像一个调皮的小精灵,在电场的作用下左冲右突。

这时候,就轮到我们的偏转公式大显身手啦!带电粒子在电场中的偏转公式为:y = (qUL²) / (2mdv₀²) 。

这里的y 表示带电粒子在电场中的偏转位移,q 是粒子的电荷量,U 是电场的电压,L 是电场的长度,m 是粒子的质量,v₀是粒子进入电场时的初速度。

咱们来举个例子感受一下这个公式的威力。

假设在一个实验室里,有一个带电的小粒子,电荷量为 1.6×10⁻¹⁹库仑,质量是 9.1×10⁻³¹千克,它以 1×10⁶米每秒的初速度水平进入一个长度为 0.1 米,电压为 100 伏的电场。

这时候,我们把这些数值代入公式,就能算出这个小粒子在电场中的偏转位移啦。

还记得我当年在学校学习这个知识点的时候,老师为了让我们更深刻地理解,专门在课堂上做了一个实验。

老师拿出一个类似示波器的装置,在上面调整各种参数,然后让我们观察带电粒子的运动轨迹。

那时候,我们一群同学都瞪大了眼睛,紧紧盯着那个小小的屏幕,心里充满了好奇和期待。

当看到带电粒子按照我们计算的轨迹偏转时,那种兴奋和成就感简直难以言表。

再来说说带电粒子在磁场中的偏转。

带电粒子在磁场中的偏转公式是:r = mv / (qB) 。

这里的 r 表示带电粒子在磁场中的偏转半径,m 还是粒子的质量,v 是粒子的速度,q 是电荷量,B 是磁场的磁感应强度。

比如说,有一个带电粒子,质量为 1×10⁻²⁷千克,电荷量为1.6×10⁻¹⁹库仑,速度是 1×10⁷米每秒,处在一个磁感应强度为 1 特斯拉的磁场中。

我们把这些数值代入公式,就能算出偏转半径啦。

学习带电粒子的偏转公式,就像是掌握了一把解开物理世界神秘大门的钥匙。

《带电粒子在电场中的偏转》知识讲解

《带电粒子在电场中的偏转》知识讲解


④ a qU
md

qE yEk1 2m 21 2m 0 2
L2 0t2 ① y2 t2 ②
y总(L21 L2)tan
【例1】一束电子流在经U =5000V的加速电压 加速后,在距两极板等距处垂直进入平行 板间的匀强电场,如图所示.若两板间距d =1.0 cm,板长l =5.0 cm,那么,要使电子 能 从平行板间飞出,两个极板上最多能加
2
若经电压U0加速后射入偏转电场,则
与带电粒子的质量m、电荷量q及 射入偏转电场的初速无关
小结: 加速电压U1
-
d
L0
qU1
1 2
m02

L0
2
t加速

沿初速 方向:
沿电场 方向:
0
2qU1 m
y 偏转电压U2 v0
l1
L2
L 0t
E U2 d

t L

0
a qE m
y 1 at 2 2
at
大而增大。
3、离开电场速度大小:
(1)用速度合成方法:
E U d

Hale Waihona Puke a qE m②02 2
at ③
(2)用动能定理求解:
02
2qEy m
qE 1 2 ym 21 2m 0 21 2m 2
y
m
2
2 qE
4、偏转角θ的计算
E U d

a qE ② m
at ③
v
v0
y L tan
(3)粒子在整个运动过程中动能的变化量。
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢

带电粒子的偏转

带电粒子的偏转

带电粒子的偏转
带电粒子的偏转是指在磁场中,带电粒子受到磁场力的作用而发生的偏转现象。

这个现象在物理学中被广泛应用,比如在核物理、粒子物理、天体物理等领域都有重要应用。

首先,我们需要了解磁场力的作用原理。

磁场力是由磁场对带电粒子的作用力所引起的,其大小和方向都与粒子的电荷量、速度和磁场的强度和方向有关。

当带电粒子进入磁场时,由于磁场力的作用,粒子会发生偏转,其轨迹会呈现出圆弧状或螺旋状。

在实际应用中,带电粒子的偏转可以用来测量粒子的电荷量、质量、速度等物理量。

例如,在粒子物理实验中,通过测量带电粒子在磁场中的偏转,可以确定其电荷量和质量。

在核物理中,通过测量带电粒子在磁场中的偏转,可以确定核的磁矩和核自旋等重要物理量。

此外,带电粒子的偏转还可以用来研究宇宙射线和太阳风等天体物理现象。

宇宙射线中含有大量的高能带电粒子,它们在地球磁场中的偏转轨迹可以被探测器所测量,从而研究宇宙射线的来源和性质。

太阳风中也含有大量的带电粒子,它们在太阳系磁场中的偏转轨迹可以被探测器所测量,从而研究太阳风的来源和性质。

总之,带电粒子的偏转是一种重要的物理现象,它在物理学的各个领域都有广泛
的应用。

通过对带电粒子在磁场中的偏转轨迹的测量和分析,可以深入研究物质的基本结构和性质,以及宇宙中的各种物理现象。

带电粒子在磁场中偏转问题的动量解法

带电粒子在磁场中偏转问题的动量解法

带电粒子在磁场中偏转问题的动量解法带电粒子在电场力作用下的运动和在洛伦兹力作用下的运动,有着不同的运动规律。

带电粒子在电场中运动时,通过电场力做功,使带电粒子在电场中加速和偏转,导致粒子的速度方向和速度大小发生变化;当带电粒子在匀强磁场中运动时,洛伦兹力不做功,因此粒子的速度大小始终不变,只有速度方向发生变化。

在高考压轴题中,经常出现把这二者的运动结合起来,让带电粒子分别通过电场和磁场,把两种或者两种以上的运动组合起来,全面考察我们队各种带电粒子运动规律的掌握情况。

求解这一类问题,一方面我们要按照顺序对题目上给出的运动过程进行分段分析,将复杂的问题分解为一个一个的简单熟悉的物理模型,另一方面我们也要全面准确分析相关过程中功能关系的变化,弄清楚各个状态之间的能量变化,便于我们按照动能定理或者能量守恒定律写方程。

在对带电粒子在每个场中的运动状况分析时,必须特别注意粒子到场与场交接处的运动情况,因为这通常就是一个临界状态,一定必须分析确切此刻粒子的速度大小和方向以及适当的边线关系,这通常对于步入另一个场中的运动存有决定性的影响!还有一些是两场共存或者是三场共存的问题,这些运动会更加复杂,但是他本质上是一个力学问题,只要我们掌握的相应的规律,利用力学问题的研究思路和基本规律,都是可以顺利克服的!对于带电粒子在电场、磁场、无机场中运动时,重力与否考量分后三种情况:(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等一般应当考虑其重力。

(2)在题目中存有明晰表明与否必须考量重力的,这种情况按题目建议处置比较非正规,也比较简单。

(3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力。

类型一、拆分的电场与磁场带电粒子在电场中的加速运动可以利用牛顿第二定律结合匀变速直线运动规律,或者从电场力做功角度出发求出粒子进入下一个场的速度。

带电粒子在电场中加速在磁场中偏转

带电粒子在电场中加速在磁场中偏转

带电粒子在电场中加速在磁场中偏转高频考点:带电粒子在电场中加速、在磁场中的偏转动态发布:2009重庆理综第25题、2009山东理综第25题命题规律:带电粒子在电场中加速、在磁场中的偏转是带电粒子在电磁场中运动的重要题型,是高考考查的重点和热点,带电粒子在电场中加速、在磁场中的偏转常常以压轴题出现,难度大、分值高、区分度大。

命题分析考查方式一 考查带电粒子在恒定电场中加速、偏转、在匀强磁场中的偏转【命题分析】带电粒子在恒定电场中加速后进入偏转电场、然后进入匀强磁场中的偏转是高考常考题型,此类题过程多,应用知识多,难度大。

例1(2009重庆理综第25题)如图1,离子源A 产生的初速为零、带电量均为e 、质量不同的正离子被电压为U 0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直于边界MN 进入磁感应强度为B 的匀强磁场.已知HO=d ,HS=2d ,∠MNQ =90°.(忽略粒子所受重力)(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ;(2)求质量为m 的离子在磁场中做圆周运动的半径;(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上的正离子的质量范围.【标准解答】:(1)正离子在加速电场加速,eU 0=mv 12/2,正离子在场强为E 0的偏转电场中做类平抛运动,2d= v 1t ,d =at 2/2,eE 0=ma ,联立解得 E 0= U 0/d.由tan φ= v 1/ v ⊥,v ⊥=at ,解得φ=45°.(2)正离子进入匀强磁场时的速度大小v =221⊥+v v 离子在匀强磁场中运动,洛伦兹力提供向心力,evB=mv 2/R ,联立解得质量为m 的离子在磁场中做圆周运动的半径R =220eBmU (3)将质量4m 和16m 代人R 的表达式,得R 1=420eB mU ,R 2=820eBmU . 由图1JA 中几何关系得△s=()21222RR R ---R 1图1联立解得:△s =4(13-)20eBmU . 对于打在Q 点的正离子,由上图的几何关系得R ’2=(2R 1)2+(R ’— R 1)2,解得R ’=5 R 1/2.; 对于打在N 点的正离子(如图1JB 所示),其轨迹半径为R 1/2=R ,对应的正离子质量为m ,由R 1/2<r<5 R 1/2,得能打在NQ 上的正离子的质量m x 的范围m<m x <25m.考查方式二 考查带电粒子在交变电场中加速、在匀强磁场中的偏转 【命题分析】带电粒子在交变电场中加速后进入匀强磁场中偏转一般难度较大,常常作为压轴题,考查学生的综合能力。

带电粒子在电场和磁场中的运动(2)解读

带电粒子在电场和磁场中的运动(2)解读

2011届高考黄冈中学物理冲刺讲解、练习题、预测题08:第4专题带电粒子在电场和磁场中的运动(2)经典考题带电粒子在电场、磁场以及复合场、组合场中的运动问题是每年各地高考的必考内容,留下大量的经典题型,认真地总结归纳这些试题会发现以下特点:①重这些理论在科学技术上的应用;②需要较强的空间想象能力.1.图示是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹.云室放置在匀强磁场中,磁场方向垂直照片向里,云室中横放的金属板对粒子的运动起阻碍作用.分析此径迹可知粒子[2009年高考·安徽理综卷](A.带正电,由下往上运动B.带正电,由上往下运动C.带负电,由上往下运动D.带负电,由下往上运动【解析】粒子穿过金属板后速度变小,由半径公式r=可知,半径变小,粒子的运动方向为由下向上;又由洛伦兹力的方向指向圆心以及左手定则知粒子带正电.[答案]A【点评】题图为安德森发现正电子的云室照片.2.图示为一“滤速器”装置的示意图.a、b为水平放置的平行金属板,一束具有各种不同速率的电子沿水平方向经小孔O进入a、b两板之间.为了选取具有某种特定速率的电子,可在a、b间加上电压,并沿垂直于纸面的方向加一匀强磁场,使所选电子仍能够沿水平直线OO′运动,由O′射出.不计重力作用.可能达到上述目的的办法是[2006年高考·全国理综卷Ⅰ](A.使a板的电势高于b板,磁场方向垂直纸面向里B.使a板的电势低于b板,磁场方向垂直纸面向里C.使a板的电势高于b板,磁场方向垂直纸面向外D.使a板的电势低于b板,磁场方向垂直纸面向外【解析】要使电子能沿直线通过复合场,电子所受电场力与洛伦兹力必是一对平衡力.由左手定则及电场的相关知识可知,选项A、D正确.[答案]AD3.图示是质谱仪的工作原理示意图.带电粒子被加速电场加速后,进入速度选择器.速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B和E.平板S上有可让粒子通过的狭缝P和记录粒子位置的胶片A1A2.平板S下方有强度为B0的匀强磁场.下列表述正确的是[2009年高考·广东物理卷](A.质谱仪是分析同位素的重要工具B.速度选择器中的磁场方向垂直纸面向外C.能通过狭缝P的带电粒子的速率等于D.粒子打在胶片上的位置越靠近狭缝P,粒子的荷质比越小【解析】粒子在电场中加速有:qU=m v2,粒子沿直线通过速度选择器有:Eq=q v B,粒子在平板S下方磁场中做圆周运动有:r=,由上述过程遵循的规律可知选项A、B、C正确.[答案]ABC4.带电粒子的比荷是一个重要的物理量.某中学物理兴趣小组设计了一个实验,探究电场和磁场对电子运动轨迹的影响,以求得电子的比荷,实验装置如图所示.(1他们的主要实验步骤如下.A.首先在两极板M1M2之间不加任何电场、磁场,开启阴极射线管电源,发射的电子从两极板中央通过,在荧屏的正中心处观察到一个亮点.B.在M1M2两极板间加合适的电场:加极性如图所示的电压,并逐步调节增大,使荧屏上的亮点逐渐向荧屏下方偏移,直到荧屏上恰好看不见亮点为止,记下此时外加电压为U.请问本步骤的目的是什么?C.保持步骤B中的电压U不变,对M1M2区域加一个大小、方向均合适的磁场B,使荧屏正中心重现亮点,试问外加磁场的方向如何?(2根据上述实验步骤,同学们正确推算出电子的比荷与外加电场、磁场及其他相关量的关系为=.一位同学说,这表明电子的比荷将由外加电压决定,外加电压越大则电子的比荷越大.你认为他的说法正确吗?为什么?[2007年高考·广东物理卷][答案](1B.使电子刚好落在正极板的近荧幕端的边缘,利用已知量表达.C.垂直电场方向向外(垂直纸面向外(2说法不正确,电子的比荷是电子的固有参数.5.1932年,劳伦斯和利文斯顿设计出了回旋加速器.回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.磁感应强度为B的匀强磁场与盒面垂直.A处粒子源产生的粒子,质量为m、电荷量为+q,在加速器中被加速,加速电压为U.加速过程中不考虑相对论效应和重力作用.(1求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比.(2求粒子从静止开始加速到出口处所需的时间t.(3实际使用中,磁感应强度和加速电场频率都有最大值的限制.若某一加速器磁感应强度和加速电场频率的最大值分别为B m、f m,试讨论粒子能获得的最大动能E km.[2009年高考·江苏物理卷]【解析】(1设粒子第1次经过狭缝后的半径为r1,速度为v1,则qU=mv12qv1B=m解得:r1=同理,粒子第2次经过狭缝后的半径r2=则r2∶r1=∶1.(2设粒子到出口处被加速了n圈,则2nqU=mv2qvB=mT=t=nT解得:t=.(3加速电场的频率应等于粒子在磁场中做圆周运动的频率,即f=当磁感应强度为Bm时,加速电场的频率应为fBm=粒子的动能Ek=mv2当fBm≤fm时,粒子的最大动能由Bm决定qvmBm=m解得:Ekm=当fBm≥fm时,粒子的最大动能由fm决定vm=2πfmR解得:Ekm=2π2mfm2R2.[答案](1∶1(2(32π2mf m2R2【点评】回旋加速器为洛伦兹力的典型应用,在高考中多次出现.要理解好磁场对粒子的“加速”没有起作用,但回旋加速器中粒子所能获得的最大动能却与磁感应强度相关.6.如图甲所示,在x轴下方有匀强磁场,磁感应强度大小为B,方向垂直于xOy平面向外.P是y轴上距原点为h的一点,N0为x轴上距原点为a的一点.A是一块平行于x轴的挡板,与x轴的距离为,A的中点在y轴上,长度略小于.带电粒子与挡板碰撞前后,x方向的分速度不变,y方向的分速度反向、大小不变.质量为m、电荷量为q(q>0的粒子从P点瞄准N0点入射,最后又通过P点.不计重力.求粒子入射速度的所有可能值.[2009年高考·全国理综卷Ⅰ]甲【解析】设粒子的入射速度为v,第一次射出磁场的点为N0′,与板碰撞后再次进入磁场的位置为N1.粒子在磁场中运动的半径为R,有:R=乙粒子的速度不变,每次进入磁场与射出磁场的位置间的距离x1保持不变,则有:x1=N0′N0=2R sin θ粒子射出磁场与下一次进入磁场位置间的距离x2始终不变,与N0′N1相等.由图乙可以看出x2=a设粒子最终离开磁场时,与挡板相碰n次(n=0,1,2….若粒子能回到P点,由对称性可知,出射点的x坐标应为-a,即:(n+1x1-nx2=2a由以上两式得:x1=a若粒子与挡板发生碰撞,则有:x1-x2>联立解得:n<3v=·a式中sin θ=解得:v0=,n=0v1=,n=1v2=,n=2.[答案]v0=,n=0v1=,n=1v2=,n=2能力演练一、选择题(10×4分1.如图所示,真空中O点有一点电荷,在它产生的电场中有a、b两点,a点的场强大小为Ea,方向与ab连线成60°角,b点的场强大小为Eb,方向与ab连线成30°角.关于a、b两点的场强大小Ea、Eb及电势φa、φb的关系,以下结论正确的是(A.Ea=,φa>φbB.Ea=Eb,φa<φbC.Ea=3Eb,φa>φbD.Ea=3Eb,φa<φb【解析】由题图可知O点处为负电荷,故φb>φa,又因为Ea=、Eb==,可得Ea=3Eb.[答案] D2.一正电荷处于电场中,在只受电场力作用下从A点沿直线运动到B点,其速度随时间变化的图象如图所示,tA、tB分别对应电荷在A、B两点的时刻,则下列说法中正确的有(A.A处的场强一定大于B处的场强B.A处的电势一定低于B处的电势C.正电荷在A处的电势能一定大于B处的电势能D.由A至B的过程中,电场力一定对正电荷做负功【解析】由题图知正电荷在做加速越来越小的加速运动,说明电场线的方向为:A→B,可知:φA>φB,EA>EB,εA>εB,由A至B的过程中,电场力一定对正电荷做正功.[答案] AC3.如图所示,带正电的粒子以一定的初速度v0沿中线进入水平放置的平行金属板内,恰好沿下板的边缘飞出,已知板长为L,板间的电压为U,带电粒子所带电荷量为q,粒子通过平行金属板的时间为t,不计粒子的重力,则 (A.粒子在前时间内,电场力对粒子做的功为B.粒子在后时间内,电场力对粒子做的功为C.粒子在竖直方向的前和后位移内,电场力做的功之比为1∶2D.粒子在竖直方向的前和后位移内,电场力的冲量之比为1∶1【解析】粒子在匀强电场中运动,电场力做的功为:W电=qUAB=q·E·y,其中y为粒子在电场方向的位移又由题意知:at2=,a·(2=故在前内电场力做的功W1=qU,在后内电场力做的功W2=前后位移内电场力做的功之比为1∶1又从静止开始的匀加速直线运动通过连续相等位移的时间之比为1∶(-1∶(-∶(-故I前∶I后=1∶(-1.[答案]B4.如图所示,在一正交的电场和磁场中,一带电荷量为+q、质量为m的金属块沿倾角为θ的粗糙绝缘斜面由静止开始下滑.已知电场强度为E,方向竖直向下;磁感应强度为B,方向垂直纸面向里;斜面的高度为h.金属块滑到斜面底端时恰好离开斜面,设此时的速度为v,则(A.金属块从斜面顶端滑到底端的过程中,做的是加速度逐渐减小的加速运动B.金属块从斜面顶端滑到底端的过程中,机械能增加了qEhC.金属块从斜面顶端滑到底端的过程中,机械能增加了mv2-mghD.金属块离开斜面后将做匀速圆周运动【解析】金属块在下滑的过程中,随着速度的增大,洛伦兹力增大,对斜面的压力减小,故摩擦力f=μ(mg+qE-q v B不断减小,金属块做加速度逐渐增大的加速运动,选项A错误.又由功能关系得:ΔE机=W电-W f<qEh,选项B错误.机械能的变化量为:ΔE机=ΔE k+ΔE p=m v2-mgh,选项C正确.由题意知,mg>qE,故离开斜面后金属块不可能做匀速圆周运动,选项D错误.[答案]C5.如图所示,充电的两平行金属板间有场强为E的匀强电场和方向与电场垂直(垂直纸面向里的匀强磁场,磁感应强度为B,构成了速度选择器.氕核、氘核、氚核以相同的动能(Ek从两极板中间垂直于电场和磁场射入速度选择器,且氘核沿直线射出.不计粒子的重力,则射出时(A.动能增加的是氚核 B.动能增加的是氕核C.偏向正极板的是氚核 D.偏向正极板的是氕核【解析】带电粒子直线通过速度选择器的条件为:v0=对于氘核:qE=qB·对于氕核:qE<qB·,向正极偏转,动能减少对于氚核:qE>qB·,向负极偏转,动能增加.[答案]AD6.如图所示,竖直放置的两个平行金属板间有匀强电场,在两板之间等高处有两个质量相同的带电小球,P小球从紧靠左极板处由静止开始释放,Q小球从两板正中央由静止开始释放,两小球最后都能打在右极板上的同一点.则从开始释放到打到右极板的过程中(A.它们的运行时间t P>t QB.它们的电荷量之比q P∶q Q=2∶1C.它们的动能增加量之比ΔEk P∶ΔEk Q=4∶1D.它们的电势能减少量之比ΔE P∶ΔE Q=2∶1【解析】将两小球的运动都沿水平和竖直正交分解,竖直的分运动都为自由落体运动,故它们从开始释放到打在右极板的过程中运行时间相等,选项A错误.对于水平分运动,有:··t2=·t2故知qP∶qQ=2∶1,选项B正确.P球动能的增量ΔE k P=mgh+qPE·d,Q球动能的增量ΔE k Q=mgh+qQE·=mgh +·qPE·d,选项C错误.同理:ΔEP=qPE·d,ΔEQ=qQE·,可得ΔEP∶ΔEQ=4∶1,选项D错误.[答案]B7.均匀分布着等量异种电荷的半径相等的半圆形绝缘杆被正对着固定在同一平面上,如图所示.AB是两种绝缘杆所在圆圆心连线的中垂线而且与二者共面,该平面与纸面平行,有一磁场方向垂直于纸面,一带电粒子(重力不计以初速度v0一直沿直线AB运动.则(A.磁场是匀强磁场B.磁场是非匀强磁场C.带电粒子做匀变速直线运动D.带电粒子做变加速运动【解析】由对称性知直线AB上的电场方向与AB垂直,又由两绝缘杆的形状知AB上的电场并非处处相等.在AB上的每一点,由平衡条件知qE=qvB,故知磁场为非匀强磁场,带电粒子做匀速直线运动.[答案]B8.如图所示,带电粒子在没有电场和磁场的空间内以速度v0从坐标原点O沿x轴方向做匀速直线运动.若空间只存在垂直于xOy平面的匀强磁场时,粒子通过P点时的动能为Ek;当空间只存在平行于y轴的匀强电场时,则粒子通过P点时的动能为(A.E k B.2E k C.4E k D.5E k【解析】由题意知带电粒子只受电场力或洛伦兹力的作用,且有E k=mv02当空间只存在电场时,带电粒子经过P点,说明:·vPy·t=v0·t=10 cm,即vPy=2v0由动能的定义可得:E k P=mv02+mvPy2=5E k.[答案]D9.如图所示,一个带电荷量为+Q 的点电荷甲固定在绝缘平面上的O点;另一个带电荷量为-q、质量为m的点电荷乙,从A点以初速度v0沿它们的连线向甲滑行运动,运动到B 点静止.已知静电力常量为k,点电荷乙与水平面的动摩擦因数为μ,A、B间的距离为s.下列说法正确的是(A.O、B间的距离为B.点电荷乙从A运动到B的运动过程中,中间时刻的速度小于C.点电荷乙从A运动到B的过程中,产生的内能为m v02D.在点电荷甲产生的电场中,A、B两点间的电势差U AB=【解析】由题意知电荷乙做加速度越来越小的减速运动,v-t图象如图所示,可知点电荷乙从A运动到B的中间时刻的速度vC<,故选项B正确;这一过程一直有<μmg,故sOB>,选项A错误.点电荷乙由A运动到B的过程中,电场力做正功,设为W,由动能定理得:W-μmgs=0-m v02可得:此过程中产生的内能Q′=μmgs=W+mv02,选项C错误.由上可知,A、B两点间的电势差为:U AB==,选项D正确.[答案]BD10.如图甲所示,在第Ⅱ象限内有水平向右的匀强电场,电场强度为E,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带电粒子以垂直于x轴的初速度v0从x轴上的P点进入匀强电场中,并且恰好与y轴的正方向成45°角进入磁场,又恰好垂直进入第Ⅳ象限的磁场.已知OP之间的距离为d,则带电粒子在磁场中第二次经过x轴时,在电场和磁场中运动的总时间为(甲A. B.(2+5πC.(2+ D.(2+【解析】带电粒子的运动轨迹如图乙所示.由题意知,带电粒子到达y轴时的速度v=v0,这一过程的时间t1==又由题意知,带电粒子在磁场中的偏转轨道半径r=2d乙故知带电粒子在第Ⅰ象限中的运动时间为:t2===带电粒子在第Ⅳ象限中运动的时间为:t3=故t总=(2+.[答案]D二、非选择题(共60分11.(6分在“用描迹法画出电场中平面上的等势线”的实验中,所用灵敏电流表的指针偏转方向与电流的关系是:当电流从正接线柱流入电流表时,指针偏向正接线柱一侧.(1某同学在实验中接通电源开关,将两表笔E1、E2在导电纸上移动,不管怎样移动,表针都不偏转.经检查,电源与电流表均完好,则产生这一现象的原因可能是____________________.(2排除故障后,用这个电表探测基准点2两侧的等势点时,将电流表正接线柱的E1接在基准点2上,如图所示,把负接线柱的E2接在纸上某一点,若发现电表的指针发生了偏转,该同学移动E2的方向正确的是________.A.若电表的指针偏向正接线柱一侧,E2向右移动B.若电表的指针偏向正接线柱一侧,E2向左移动C.若电表的指针偏向负接线柱一侧,E2向右移动D.若电表的指针偏向负接线柱一侧,E2向左移动[答案](1导电纸导电一面向下(3分(2BC (3分12.(6分用示波器观察频率为900 Hz的正弦电压信号.把该信号接入示波器Y输入.(1当屏幕上出现如图所示的波形时,应调节______旋钮.如果正弦波的正负半周均超出了屏幕的范围,应调节______旋钮或______旋钮,或这两个钮配合使用,以使正弦波的整个波形出现在屏幕内.(2如需要屏幕上正好出现一个完整的正弦波形,应将______旋钮置于______位置,然后调节______旋钮.[答案] (1竖直位移(或↑↓衰减(或衰减调节Y增益(每空1分(2扫描范围 1 k挡位扫描微调(每空1分13.(10分一种半导体材料称为“霍尔材料”,用它制成的元件称为“霍尔元件”.这种材料内有一种称为“载流子”的可定向移动的电荷,每个载流子的电荷量q=1.6×10-19C.霍尔元件在自动检测、控制领域得到广泛应用,如录像机中用来测量录像磁鼓的转速,电梯中用来检测电梯门是否关闭以及自动控制升降电动机的电源的通断等.在一次实验中,由一块霍尔材料制成的薄板宽L1=ab=1.0×10-2 m、长bc=L2=4.0×10-2 m、厚h=1.0×10-3 m,水平放置在竖直向上的磁感应强度B=1.5 T 的匀强磁场中,bc方向通有I=3.0 A的电流,如图所示,沿宽度产生1.0×10-5 V的横向电压.(1假定载流子是电子,则a、b两端哪端的电势较高?(2薄板中形成电流I的载流子定向运动的速度是多少?【解析】(1根据左手定则可确定a端电势较高.(3分(2当导体内有载流子沿电流方向所在的直线做定向运动时,受到洛伦兹力的作用而产生横向分运动,产生横向电场,横向电场的电场力与载流子所受到的洛伦兹力平衡时,导体横向电压稳定.设载流子沿电流方向所在的直线做定向运动的速率为v,横向电压为Uab,横向电场强度为E.则:电场力FE=qE=(2分磁场力FB=qvB(2分平衡时FE=FB(1分解得:v=6.7×10-4 m/s.(2分[答案](1a端电势较高(26.7×10-4 m/s14.(10分图甲为电视机中显像管的工作原理示意图,电子枪中的灯丝加热阴极使电子逸出,这些电子再经加速电场加速后,从O点进入由磁偏转线圈产生的偏转磁场中,经过偏转磁场后打到荧光屏MN上,使荧光屏发出荧光形成图像.不计逸出电子的初速度和重力,已知电子的质量为m、电荷量为e,加速电场的电压为U.偏转线圈产生的磁场分布在边长为l的正方形abcd区域内,磁场方向垂直纸面,且磁感应强度B随时间t的变化规律如图乙所示.在每个周期内磁感应强度B都是从-B0均匀变化到B0.磁场区域的左边界的中点与O点重合,ab边与OO′平行,右边界bc与荧光屏之间的距离为s.由于磁场区域较小,且电子运动的速度很大,所以在每个电子通过磁场区域的过程中,可认为磁感应强度不变,即为匀强磁场,不计电子之间的相互作用.(1求电子射出电场时的速度大小.(2为使所有的电子都能从磁场的bc边射出,求偏转线圈产生磁场的磁感应强度的最大值.(3若所有的电子都能从bc边射出,求荧光屏上亮线的最大长度是多少?【解析】设电子射出电场的速度为v,则根据动能定理,对电子的加速过程有:mv2=eU (1分解得:v=.(1分(2当磁感应强度为B0或-B0时(垂直于纸面向外为正方向,电子刚好从b点或c点射出(1分丙设此时圆周的半径为R,如图丙所示.根据几何关系有:R2=l2+(R-2(1分解得:R=(1分电子在磁场中运动,洛伦兹力提供向心力,因此有:evB0=m(1分解得:B0=.(1分(3根据几何关系可知:tan α=(1分设电子打在荧光屏上离O′点的最大距离为d,则:d=+s tan α=+(1分由于偏转磁场的方向随时间变化,根据对称性可知,荧光屏上的亮线最大长度为:D=2d=l+.(1分[答案] (1(2(3l+15.(12分如图甲所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出;在第二象限内存在沿x轴负方向的匀强电场.一粒子源固定在x轴上的A点,A点坐标为(-L,0.粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上的C点,C点坐标为(0,2L,电子经过磁场偏转后恰好垂直通过第一象限内与x轴正方向成15°角的射线ON(已知电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用.求:甲(1第二象限内电场强度E的大小.(2电子离开电场时的速度方向与y轴正方向的夹角θ.(3圆形磁场的最小半径Rm.【解析】(1从A到C的过程中,电子做类平抛运动,有:L=t2(1分2L=v t(1分联立解得:E=.(1分(2设电子到达C点的速度大小为vC,方向与y轴正方向的夹角为θ.由动能定理,有:mvC2-mv2=eEL(2分乙解得:vC=vcos θ==(1分解得:θ=45°.(1分(3电子的运动轨迹图如图乙所示,电子在磁场中做匀速圆周运动的半径r==(1分电子在磁场中偏转120°后垂直于ON射出,则磁场最小半径为:Rm==rsin 60°(2分由以上两式可得:Rm=.(1分[答案] (1(245°(316.(13分如图甲所示,竖直挡板MN的左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度的大小E=40 N/C,磁感应强度的大小B随时间t变化的关系图象如图乙所示,选定磁场垂直纸面向里为正方向.在t=0时刻,一质量m=8×10-4 kg、带电荷量q=+2×10-4 C的微粒在O点具有竖直向下的速度v=0.12 m/s,O′是挡板MN上一点,直线OO′与挡板MN垂直,取g=10 m/s2.求:(1微粒下一次经过直线OO′时到O点的距离.(2微粒在运动过程中离开直线OO′的最大距离.(3水平移动挡板,使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件.【解析】(1由题意知,微粒所受重力G=mg=8×10-3 N电场力大小F=Eq=8×10-3 N(1分因此重力与电场力平衡微粒先在洛伦兹力的作用下做匀速圆周运动,则有:qvB=m(1分解得:R==0.6 m由T=(1分解得:T=10π s(1分则微粒在5π s内转过半个圆周,再次经直线OO′时与O点的距离l=2R=1.2 m.(1分(2微粒运动半周后向上匀速运动,运动的时间t=5π s,轨迹如图丙所示.丙位移大小x=vt=0.6π m=1.88 m(2分微粒离开直线OO′的最大距离h=x+R=2.48 m.(2分(3若微粒能垂直射到挡板上的某点P,P点在直线OO′下方时,挡板MN与O点间的距离应满足:L=(4n+1×0.6 m(n=0,1,2 (2)若微粒能垂直射到挡板上的某点P,P点在直线OO′上方时,挡板MN与O点间的距离应满足:L=(4n+3×0.6 m(n=0,1,2….(2分[若两式合写成L=(1.2n+0.6 m(n=0,1,2…同样给分][答案] (11.2 m(22.48 m(3P点在直线OO′下方时,距离L=(4n+1×0.6 m(n=0,1,2…P点在直线OO′上方时,距离L=(4n+3×0.6 m(n=0,1,2…[或L=(1.2n+0.6 m(n=0,1,2…]。

电偏转和磁偏转的原理及应用

电偏转和磁偏转的原理及应用

电偏转和磁偏转的原理及应用一、电偏转原理及应用:1.原理:电偏转是通过电场对带电粒子的偏转力进行控制,使粒子在电场作用下改变运动方向。

根据静电力公式F=E*q,其中E为电场强度,q为粒子电荷量,可以得出粒子受到的电偏转力的大小,进而控制粒子运动轨迹。

2.应用:电偏转广泛应用于粒子物理研究和粒子加速器中。

例如在质谱仪中,通过电偏转使带电粒子在磁场中的轨迹发生偏移,根据粒子偏转的程度和方向可以推断出带电粒子的质量、电荷量等信息。

在粒子加速器中,电偏转可以用来调整粒子束的流强和偏转角度,实现不同粒子的分离和控制。

二、磁偏转原理及应用:1.原理:磁偏转是通过磁场对带电粒子的偏转力进行控制,使粒子在磁场作用下改变运动方向。

根据洛伦兹力公式F=qvB,其中v为粒子速度,B为磁场强度,可以得出粒子受到的磁偏转力的大小,进而控制粒子运动轨迹。

2.应用:磁偏转同样广泛应用于粒子物理研究和粒子加速器中。

在粒子物理研究中,磁偏转常用于实验室中测量粒子的电荷量、质量、自旋等性质。

在粒子加速器中,磁偏转则是常见的加速和聚焦方法。

通过施加磁场,可以将粒子束偏转到我们所需的轨道上。

同时,通过调整磁场的强度和分布,可以实现对粒子束的聚焦和分离。

总结:电偏转和磁偏转是粒子物理研究和加速器技术中常用的方法,它们都利用物理力学中的偏转原理对带电粒子进行控制。

电偏转通过电场来控制粒子运动方向,磁偏转则通过磁场来控制粒子运动方向。

两种方法在实验室中用于测量粒子的性质,加速器中用于对粒子束的控制。

这些技术的发展和应用为粒子物理研究、加速器技术以及相关领域的发展做出了重要贡献。

带电粒子在电场和磁场中的运动解读

带电粒子在电场和磁场中的运动解读

带电粒子在电场和磁场中的运动要点归纳一、不计重力的带电粒子在电场中的运动1.带电粒子在电场中加速当电荷量为q 、质量为m 、初速度为v 0的带电粒子经电压U 加速后,速度变为v t ,由动能定理得:qU =12m v t 2-12m v 02.若v 0=0,则有v t =2qU m,这个关系式对任意静电场都是适用的. 对于带电粒子在电场中的加速问题,应突出动能定理的应用.2.带电粒子在匀强电场中的偏转电荷量为q 、质量为m 的带电粒子由静止开始经电压U 1加速后,以速度v 1垂直进入由两带电平行金属板产生的匀强电场中,则带电粒子在匀强电场中做类平抛运动,其轨迹是一条抛物线(如图4-1所示).图4-1 qU 1=12m v 12 设两平行金属板间的电压为U 2,板间距离为d ,板长为L .(1)带电粒子进入两板间后粒子在垂直于电场的方向上做匀速直线运动,有:v x =v 1,L =v 1t粒子在平行于电场的方向上做初速度为零的匀加速直线运动,有:v y =at ,y =12at 2,a =qE m =qU 2md. (2)带电粒子离开极板时侧移距离y =12at 2=qU 2L 22md v 12=U 2L 24dU 1轨迹方程为:y =U 2x 24dU 1(与m 、q 无关) 偏转角度φ的正切值tan φ=at v 1=qU 2L md v 12=U 2L 2dU 1若在偏转极板右侧D 距离处有一竖立的屏,在求电子射到屏上的侧移距离时有一个很有用的推论,即:所有离开偏转电场的运动电荷好像都是从极板的中心沿中心与射出点的连线射出的.这样很容易得到电荷在屏上的侧移距离y ′=(D +L 2)tan φ. 以上公式要求在能够证明的前提下熟记,并能通过以上式子分析、讨论侧移距离和偏转角度与带电粒子的速度、动能、比荷等物理量的关系.二、不计重力的带电粒子在磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m 、电荷量为q 的带电粒子以初速度v 垂直进入匀强磁场B 中做匀速圆周运动,其角速度为ω,轨道半径为R ,运动的周期为T ,则有:q v B =m v 2R =mRω2=m v ω=mR (2πT)2=mR (2πf )2 R =m v qBT =2πm qB (与v 、R 无关),f =1T =qB 2πm. 3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定①若已知粒子在圆周运动中的两个具体位置及通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向及圆轨迹的半径R ,可在该位置上作速度的垂线,垂线上距该位置R 处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2 图4-3 图4-4(2)粒子圆轨迹的半径的确定①可直接运用公式R =m v qB来确定. ②画出几何图形,利用半径R 与题中已知长度的几何关系来确定.在利用几何关系时,要注意一个重要的几何特点,即:粒子速度的偏向角φ等于对应轨迹圆弧的圆心角α,并等于弦切角θ的2倍,如图4-5所示.图4-5 (3)粒子做圆周运动的周期的确定①可直接运用公式T =2πm qB来确定. ②利用周期T 与题中已知时间t 的关系来确定.若粒子在时间t 内通过的圆弧所对应的圆心角为α,则有:t =α360°·T (或t =α2π·T ). (4)圆周运动中有关对称的规律①从磁场的直边界射入的粒子,若再从此边界射出,则速度方向与边界的夹角相等,如图4-6所示. ②在圆形磁场区域内,沿径向射入的粒子必沿径向射出,如图4-7所示.图4-6 图4-7(5)带电粒子在有界磁场中运动的极值问题刚好穿出磁场边界的条件通常是带电粒子在磁场中运动的轨迹与边界相切.三、带电粒子在复合场中的运动1.高中阶段所涉及的复合场有四种组合形式,即:①电场与磁场的复合场;②磁场与重力场的复合场;③电场与重力场的复合场;④电场、磁场与重力场的复合场.2.带电粒子在复合场中的运动性质取决于带电粒子所受的合外力及初速度,因此应把带电粒子的运动情况和受力情况结合起来进行分析.当带电粒子在复合场中所受的合外力为零时,带电粒子做匀速直线运动(如速度选择器);当带电粒子所受的重力与电场力等值、反向,由洛伦兹力提供向心力时,带电粒子在垂直磁场的平面内做匀速圆周运动;当带电粒子所受的合外力是变力,且与初速度的方向不在一条直线上时,粒子做非匀变速曲线运动,运动轨迹也随之不规范地变化.因此,要确定粒子的运动情况,必须明确有几种场,粒子受几种力,重力是否可以忽略.3.带电粒子所受三种场力的特征(1)洛伦兹力的大小跟速度方向与磁场方向的夹角有关.当带电粒子的速度方向与磁场方向平行时,f 洛=0;当带电粒子的速度方向与磁场方向垂直时,f 洛=q v B .当洛伦兹力的方向垂直于速度v 和磁感应强度B 所决定的平面时,无论带电粒子做什么运动,洛伦兹力都不做功.(2)电场力的大小为qE ,方向与电场强度E 的方向及带电粒子所带电荷的性质有关.电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与其始末位置的电势差有关.(3)重力的大小为mg ,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与其始末位置的高度差有关.注意:①微观粒子(如电子、质子、离子)一般都不计重力;②对带电小球、液滴、金属块等实际的物体没有特殊交代时,应当考虑其重力;③对未知名的、题中又未明确交代的带电粒子,是否考虑其重力,则应根据题给的物理过程及隐含条件具体分析后作出符合实际的决定.4.带电粒子在复合场中的运动的分析方法(1)当带电粒子在复合场中做匀速运动时,应根据平衡条件列方程求解.(2)当带电粒子在复合场中做匀速圆周运动时,往往应用牛顿第二定律和平衡条件列方程联立求解.(3)当带电粒子在复合场中做非匀速曲线运动时,应选用动能定理或动量守恒定律列方程求解.注意:如果涉及两个带电粒子的碰撞问题,要根据动量守恒定律列方程,再与其他方程联立求解. 由于带电粒子在复合场中的受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,并根据临界条件列出辅助方程,再与其他方程联立求解.热点、重点、难点一、根据带电粒子的运动轨迹进行分析推理图4-8●例1 如图4-8所示,MN 是一正点电荷产生的电场中的一条电场线.一个带负电的粒子(不计重力)从a 到b 穿越这条电场线的轨迹如图中虚线所示.下列结论正确的是( )A .带电粒子从a 到b 的过程中动能逐渐减小B .正点电荷一定位于M 点的左侧C .带电粒子在a 点时具有的电势能大于在b 点时具有的电势能D .带电粒子在a 点的加速度大于在b 点的加速度【解析】由做曲线运动的物体的受力特点知带负电的粒子受到的电场力指向曲线的内侧,故电场线MN 的方向为N →M ,正点电荷位于N 的右侧,选项B 错误;由a 、b 两点的位置关系知b 点更靠近场源电荷,故带电粒子在a 点受到的库仑力小于在b 点受到的库仑力,粒子在b 点的加速度大,选项D 错误;由上述电场力的方向知带电粒子由a 运动到b 的过程中电场力做正功,动能增大,电势能减小,故选项A 错误、C 正确.[答案] C【点评】本专题内容除了在高考中以常见的计算题形式出现外,有时候也以选择题形式出现,通过带电粒子在非匀强电场中(只受电场力)的运动轨迹来分析电场力和能的特性是一种重要题型,解析这类问题时要注意以下三点:①电场力一定沿电场线曲线的切线方向且一定指向轨迹曲线的内侧;②W 电=qU a b =E k b -E k a ;③当电场线为曲线时,电荷的运动轨迹不会与之重合.二、带电粒子在电场中的加速与偏转图4-9●例2 喷墨打印机的结构简图如图4-9所示,其中墨盒可以发出墨汁微滴,其半径约为1×10-5 m ,此微滴经过带电室时被带上负电,带电荷量的多少由计算机按字体笔画的高低位置输入信号加以控制.带电后的微滴以一定的初速度进入偏转电场,带电微滴经过偏转电场发生偏转后打到纸上,显示出字体.无信号输入时,墨汁微滴不带电,径直通过偏转板而注入回流槽流回墨盒.偏转板长1.6 cm ,两板间的距离为0.50 cm ,偏转板的右端距纸3.2 cm .若墨汁微滴的质量为1.6×10-10 kg ,以20 m/s 的初速度垂直于电场方向进入偏转电场,两偏转板间的电压是8.0×103 V ,其打到纸上的点距原射入方向的距离是2.0 mm .求这个墨汁微滴通过带电室所带的电荷量的多少.(不计空气阻力和重力,可以认为偏转电场只局限于平行板电容器的内部,忽略边缘电场的不均匀性)为了使纸上的字放大10%,请你分析并提出一个可行的方法.【解析】设墨汁微滴所带的电荷量为q ,它进入偏转电场后做类平抛运动,离开电场后做直线运动打到纸上,则距原入射方向的距离为:y =12at 2+L tan φ又a =qU md ,t =l v 0,tan φ=at v 0解得:y =qUl md v 02(l 2+L ) 代入数据得:q =1.25×10-13 C要将字体放大10%,只要使y 增大为原来的 1.1倍,可采用的措施为将两偏转板间的电压增大到8.8×103 V ,或将偏转板右端与纸的间距增大到3.6 cm .[答案] 1.25×10-13 C 将两偏转板间的电压增大到8.8×103 V ,或将偏转板右端与纸的间距增大到3.6 cm【点评】①本题也可直接根据推论公式y =(l 2+L )tan φ=(l 2+L )qUl md v 02进行计算. ②和平抛运动问题一样,这类题型中偏转角度的正切表达式在解题中往往较为关键,且有tan θ=2tan α(α为射出点的位移方向与入射方向的夹角)的特点.★同类拓展1 如图4-10甲所示,在真空中,有一半径为R 的圆形区域内存在匀强磁场,磁场方向垂直纸面向外.在磁场右侧有一对平行金属板M 和N ,两板间距为R ,板长为2R ,板间的中心线O 1O 2与磁场的圆心O 在同一直线上.有一电荷量为q 、质量为m 的带正电的粒子以速度v 0从圆周上的a 点沿垂直于半径OO 1并指向圆心O 的方向进入磁场,当从圆周上的O 1点水平飞出磁场时,给M 、N 两板加上如图4-10乙所示的电压,最后粒子刚好以平行于N 板的速度从N 板的边缘飞出.(不计粒子所受到的重力、两板正对面之间为匀强电场,边缘电场不计)图4-10 (1)求磁场的磁感应强度B .(2)求交变电压的周期T 和电压U 0的值.(3)当t =T 2时,该粒子从M 、N 板右侧沿板的中心线仍以速度v 0射入M 、N 之间,求粒子从磁场中射出的点到a 点的距离.【解析】(1)粒子自a 点进入磁场,从O 1点水平飞出磁场,则其运动的轨道半径为R .由q v 0B =m v 02R ,解得:B =m v 0qR. (2)粒子自O 1点进入电场后恰好从N 板的边缘平行极板飞出,设运动时间为t ,根据类平抛运动规律有:2R=v 0tR 2=2n ·qU 02mR (T 2)2 又t =nT (n =1,2,3…)解得:T =2R n v 0(n =1,2,3…) U 0=nm v 022q(n =1,2,3…).图4-10丙(3)当t =T 2时,粒子以速度v 0沿O 2O 1射入电场,该粒子恰好从M 板边缘以平行于极板的速度射入磁场,进入磁场的速度仍为v 0,运动的轨迹半径为R .设进入磁场时的点为b ,离开磁场时的点为c ,圆心为O 3,如图4-10丙所示,四边形ObO 3c 是菱形,所以Oc ∥O 3b ,故c 、O 、a 三点共线,ca 即为圆的直径,则c 、a 间的距离d =2R .[答案] (1)m v 0qR(2)2R n v 0 (n =1,2,3…) nm v 022q(n =1,2,3…) (3)2R 【点评】带电粒子在匀强电场中偏转的运动是类平抛运动,解此类题目的关键是将运动分解成两个简单的直线运动,题中沿电场方向的分运动就是“受力周期性变化的加速运动”.三、带电粒子在有界磁场中(只受洛伦兹力)的运动1.带电粒子在磁场中的运动大体包含五种常见情境,即:无边界磁场、单边界磁场、双边界磁场、矩形边界磁场、圆形边界磁场.带电粒子在磁场中的运动问题综合性较强,解这类问题往往要用到圆周运动的知识、洛伦兹力,还要牵涉到数学中的平面几何、解析几何等知识.因此,解此类试题,除了运用常规的解题思路(画草图、找“圆心”、定“半径”等)之外,更应侧重于运用数学知识进行分析.2.带电粒子在有界匀强磁场中运动时,其轨迹为不完整的圆周,解决这类问题的关键有以下三点. ①确定圆周的圆心.若已知入射点、出射点及入射方向、出射方向,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两直线的交点即为圆周的圆心;若已知入射点、出射点及入射方向,可通过入射点作入射线的垂线,连接入射点和出射点,作此连线的垂直平分线,两垂线的交点即为圆周的圆心.②确定圆的半径.一般在圆上作图,由几何关系求出圆的半径.③求运动时间.找到运动的圆弧所对应的圆心角θ,由公式t =θ2πT 求出运动时间. 3.解析带电粒子穿过圆形区域磁场问题常可用到以下推论:①沿半径方向入射的粒子一定沿另一半径方向射出.②同种带电粒子以相同的速率从同一点垂直射入圆形区域的匀强磁场时,若射出方向与射入方向在同一直径上,则轨迹的弧长最长,偏转角有最大值且为α=2arcsin R r =2arcsin RBq m v. ③在圆形区域边缘的某点向各方向以相同速率射出的某种带电粒子,如果粒子的轨迹半径与区域圆的半径相同,则穿过磁场后粒子的射出方向均平行(反之,平行入射的粒子也将汇聚于边缘一点).●例3 如图4-11甲所示,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (0,h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点,不计重力,求:图4-11甲(1)粒子到达x =R 0平面时的速度方向与x 轴的夹角以及粒子到x 轴的距离.(2)M 点的横坐标x M .【解析】(1)粒子做直线运动时,有:qE =qB v 0做圆周运动时,有:qB v 0=m v 02R 0只有电场时,粒子做类平抛运动,则有:qE =maR 0=v 0tv y =at解得:v y =v 0粒子的速度大小为:v =v 02+v y 2=2v 0速度方向与x 轴的夹角为:θ=π4粒子与x 轴的距离为:H =h +12at 2=h +R 02. (2)撤去电场加上磁场后,有:qB v =m v 2R解得:R =2R 0此时粒子的运动轨迹如图4-11乙所示.圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y轴的夹角均为π4.由几何关系可得C 点的坐标为:图4-11乙x C =2R 0y C =H -R 0=h -R 02 过C 点作x 轴的垂线,在△CDM 中,有:l CM =R =2R 0,l CD =y C =h -R 02解得:l DM =l CM 2-l CD 2=74R 02+R 0h -h 2 M 点的横坐标为:x M =2R 0+74R 02+R 0h -h 2. [答案] (1)π2 h +R 02 (2)2R 0+74R 02+R 0h -h 2 【点评】无论带电粒子在匀强电场中的偏转还是在匀强磁场中的偏转,偏转角往往是个较关键的量. ●例4 如图4-12甲所示,质量为m 、电荷量为e 的电子从坐标原点O 处沿xOy 平面射入第一象限内,射入时的速度方向不同,但大小均为v 0.现在某一区域内加一方向向外且垂直于xOy 平面的匀强磁场,磁感应强度大小为B ,若这些电子穿过磁场后都能垂直地射到与y 轴平行的荧光屏MN 上,求:图4-12甲 (1)荧光屏上光斑的长度.(2)所加磁场范围的最小面积.【解析】(1)如图4-12乙所示,要求光斑的长度,只要找到两个边界点即可.初速度沿x 轴正方向的电子沿弧OA 运动到荧光屏MN 上的P 点;初速度沿y 轴正方向的电子沿弧OC 运动到荧光屏MN 上的Q 点.图4-12乙设粒子在磁场中运动的半径为R ,由牛顿第二定律得:e v 0B =m v 02R ,即R =m v 0Be由几何知识可得:PQ =R =m v 0Be. (2)取与x 轴正方向成θ角的方向射入的电子为研究对象,其射出磁场的点为E (x ,y ),因其射出后能垂直打到屏MN 上,故有:x =-R sin θy =R +R cos θ即x 2+(y -R )2=R 2又因为电子沿x 轴正方向射入时,射出的边界点为A 点;沿y 轴正方向射入时,射出的边界点为C 点,故所加最小面积的磁场的边界是以(0,R )为圆心、R 为半径的圆的一部分,如图乙中实线圆弧所围区域,所以磁场范围的最小面积为:S =34πR 2+R 2-14πR 2=(π2+1)(m v 0Be)2. [答案] (1)m v 0Be (2)(π2+1)(m v 0Be)2 【点评】带电粒子在匀强磁场中偏转的试题基本上是年年考,大概为了求新求变,在2009年高考中海南物理卷(第16题)、浙江理综卷(第25题)中都出现了应用这一推论的题型.★同类拓展2 如图4-13甲所示,ABCD 是边长为a 的正方形.质量为m 、电荷量为e 的电子以大小为v 0的初速度沿纸面垂直于BC 边射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC 边上的任意点入射,都只能从A 点射出磁场.不计重力,求:图4-13甲(1)此匀强磁场区域中磁感应强度的方向和大小.(2)此匀强磁场区域的最小面积.[2009年高考·海南物理卷]【解析】(1)若要使由C 点入射的电子从A 点射出,则在C 处必须有磁场,设匀强磁场的磁感应强度的大小为B ,令圆弧AEC 是自C 点垂直于BC 入射的电子在磁场中的运行轨道,电子所受到的磁场的作用力f =e v 0B ,方向应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外.圆弧AEC 的圆心在CB 边或其延长线上.依题意,圆心在A 、C 连线的中垂线上,故B 点即为圆心,圆半径为a .按照牛顿定律有: f =m v 02a联立解得:B =m v 0ea. (2)由(1)中决定的磁感应强度的方向和大小,可知自C 点垂直于BC 入射的电子在A 点沿DA 方向射出,且自BC 边上其他点垂直于入射的电子的运动轨道只能在BAEC 区域中,因而,圆弧AEC 是所求的最小磁场区域的一个边界.为了决定该磁场区域的另一边界,我们来考察射中A 点的电子的速度方向与BA 的延长线交角为θ(不妨设0≤θ<π2)的情形.该电子的运动轨迹QP A 如图4-13乙所示.图中,圆弧AP 的圆心为O ,PQ 垂直于BC 边,由上式知,圆弧AP 的半径仍为a .过P 点作DC 的垂线交DC 于G ,由几何关系可知∠DPG =θ,在以D 为原点、DC 为x 轴、DA 为y 轴的坐标系中,P 点的坐标(x ,y )为:x =a sin θ,y =a cos θ图4-13乙 这意味着,在范围0≤θ≤π2内,P 点形成以D 为圆心、a 为半径的四分之一圆周AFC ,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界.因此,所求的最小匀强磁场区域是分别以B 和D 为圆心、a 为半径的两个四分之一圆周 AEC 和 AFC 所围成的,其面积为:S =2(14πa 2-12a 2)=π-22a 2. [答案] (1)m v 0ea 方向垂直于纸面向外 (2)π-22a 2 四、带电粒子在复合场、组合场中的运动问题●例5 在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如图4-14甲所示.磁场的磁感应强度B 随时间t 的变化情况如图4-14乙所示.该区域中有一条水平直线MN ,D 是MN 上的一点.在t =0时刻,有一个质量为m 、电荷量为+q 的小球(可看做质点),从M 点开始沿着水平直线以速度v 0做匀速直线运动,t 0时刻恰好到达N 点.经观测发现,小球在t =2t 0至t =3t 0时间内的某一时刻,又竖直向下经过直线MN 上的D 点,并且以后小球多次水平向右或竖直向下经过D 点.求:图4-14(1)电场强度E 的大小.(2)小球从M 点开始运动到第二次经过D 点所用的时间.(3)小球运动的周期,并画出运动轨迹(只画一个周期).【解析】(1)小球从M 点运动到N 点时,有:qE =mg解得:E =mg q. (2)小球从M 点到达N 点所用时间t 1=t 0小球从N 点经过34个圆周,到达P 点,所以t 2=t 0小球从P 点运动到D 点的位移x =R =m v 0B 0q小球从P 点运动到D 点的时间t 3=R v 0=m B 0q所以时间t =t 1+t 2+t 3=2t 0+m B 0q[或t =m qB 0(3π+1),t =2t 0(13π+1)]. (3)小球运动一个周期的轨迹如图4-14丙所示.图4-14丙 小球的运动周期为:T =8t 0(或T =12πm qB 0). [答案] (1)mg q (2)2t 0+m B 0q(3)T =8t 0 运动轨迹如图4-14丙所示【点评】带电粒子在复合场或组合场中运动的轨迹形成一闭合的对称图形的试题在高考中屡有出现.五、常见的、在科学技术中的应用带电粒子在电场、磁场中的运动规律在科学技术中有广泛的应用,高中物理中常碰到的有:示波器(显像管)、速度选择器、质谱仪、回旋加速器、霍耳效应传感器、电磁流量计等.●例6 一导体材料的样品的体积为a ×b ×c ,A ′、C 、A 、C ′为其四个侧面,如图4-15所示.已知导体样品中载流子是自由电子,且单位体积中的自由电子数为n ,电阻率为ρ,电子的电荷量为e ,沿x 方向通有电流I .图4-15(1)导体样品A ′、A 两个侧面之间的电压是________,导体样品中自由电子定向移动的速率是________.(2)将该导体样品放在匀强磁场中,磁场方向沿z 轴正方向,则导体侧面C 的电势________(填“高于”、“低于”或“等于”)侧面C ′的电势.(3)在(2)中,达到稳定状态时,沿x 方向的电流仍为I ,若测得C 、C ′两侧面的电势差为U ,试计算匀强磁场的磁感应强度B 的大小.【解析】(1)由题意知,样品的电阻R =ρ·c ab根据欧姆定律:U 0=I ·R =ρcI ab分析t 时间定向移动通过端面的自由电子,由电流的定义式I =n ·ab ·v ·t ·e t可得v =I nabe.(2)由左手定则知,定向移动的自由电子向C ′侧面偏转,故C 侧的电势高于C ′侧面.(3)达到稳定状态时,自由电子受到电场力与洛伦兹力的作用而平衡,则有:q Ub=q v B解得:B =neaUI .[答案] (1)ρcI ab I nabe (2)高于 (3)neaUI【点评】本例实际上为利用霍耳效应测磁感应强度的方法,而电磁流量计、磁流体发电机的原理及相关问题的解析都与此例相似.★同类拓展3 如图4-16甲所示,离子源A 产生的初速度为零、带电荷量均为e 、质量不同的正离子被电压为U 0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直于边界MN 进入磁感应强度为B 的匀强磁场.已知HO =d ,HS =2d ,∠MNQ =90°.(忽略离子所受重力)图4-16甲(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ. (2)求质量为m 的离子在磁场中做圆周运动的半径.(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上的正离子的质量范围.[2009年高考·重庆理综卷]【解析】(1)设正离子经电压为U 0的电场加速后速度为v 1,应用动能定理有:图4-16乙eU 0=12m v 12-0正离子垂直射入匀强偏转电场,受到的电场力F =eE 0产生的加速度a =F m ,即a =eE 0m垂直电场方向做匀速运动,有:2d =v 1t沿电场方向,有:d =12at 2联立解得:E 0=U 0d又tan φ=v 1at解得:φ=45°.(2)正离子进入磁场时的速度大小为: v =v 12+v ⊥2=v 12+(at )2正离子在匀强磁场中做匀速圆周运动,由洛伦兹力提供向心力,则有:e v B =m v 2R联立解得:正离子在磁场中做圆周运动的半径R =2mU 0eB 2.(3)将4m 和16m 代入R ,得R 1=24mU 0eB 2、R 2=216mU 0eB 2图4-16丙由几何关系可知S 1和S 2之间的距离Δs =R 22-(R 2-R 1)2-R 1联立解得:Δs =4(3-1)mU 0eB 2由R ′2=(2R 1)2+(R ′-R 1)2得:R ′=52R 1由12R 1<R <52R 1 得:m <m 正<25m .[答案] (1)45° (2)2mU 0eB 2(3)m <m 正<25m经典考题带电粒子在电场、磁场以及复合场、组合场中的运动问题是每年各地高考的必考内容,留下大量的经典题型,认真地总结归纳这些试题会发现以下特点:①重这些理论在科学技术上的应用; ②需要较强的空间想象能力. 1.图示是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹.云室放置在匀强磁场中,磁场方向垂直照片向里,云室中横放的金属板对粒子的运动起阻碍作用.分析此径迹可知粒子[2009年高考·安徽理综卷]( )。

(完整版)电偏转和磁偏转的原理及应用

(完整版)电偏转和磁偏转的原理及应用

磁偏转和电偏转的原理及应用步入高二,我们学习了电和磁的相关知识,在这些知识中,包括了电偏转和磁偏转,而这两大块内容又包括了很多应用,为了对电偏转和磁偏转有更深入的了解,我课题组对这两大部分进行了详细的研究,结果如下:一、电偏转相关理论受力特征:质量为m,电荷量为q的粒子以速度v0垂直射入电场强度为E的匀强电场中,所受电场力,与粒子的速度无关,是恒力。

运动规律:受力是恒定的,会使粒子做匀变速曲线运动——类平抛运动,其运动规律分别从垂直于电场方向和平行于电场方向给出。

偏转情况:粒子的运动方向所能偏转的角度,且在相等的时间内偏转的角度是不相等的。

动能变化:由于电场力与粒子运动方向之间的夹角越来越小,粒子的动能将不断增大,且随时间的变化越来越快。

应用:示波管Ⅰ定义:示波管是电子示波器的心脏。

示波管的主要部件有:电子枪,偏转板,加速级,荧光屏,刻度格子。

Ⅱ工作原理:电子枪产生了一个聚集很细的电子束,并把它加速到很高的速度。

这个电子束以足够的能量撞击荧光屏上的一个小点,并使该点发光。

电子束离开电子枪,就在两副静电偏转板间通过。

偏转板上的电压使电子束偏转,一副偏转板的电压使电子束上下运动;另一副偏转板的电压使电子左右运动。

而这些运动都是彼此无关的。

因此,在水平输入端和垂直输入端加上适当的电压,就可以把电子束定位到荧光屏的任何地方。

Ⅲ示波管的电源为使示波管正常工作,对电源供给有一定要求。

规定第二阳极与偏转板之间电位相近,偏转板的平均电位为零或接近为零。

阴极必须工作在负电位上。

栅极G1相对阴极为负电位(—30V~—100V),而且可调,以实现辉度调节。

第一阳极为正电位(约+100V~+600V),也应可调,用作聚焦调节。

第二阳极与前加速极相连,对阴极为正高压(约+1000V),相对于地电位的可调范围为±50V。

由于示波管各电极电流很小,可以用公共高压经电阻分压器供电。

Ⅳ相关计算式设加速电场电压为U,偏转电场电压为U2,偏转电场两板间的距离为d,偏转电场电场强度为E,电子质量为m,偏转电场长度为l,电子所带电荷量为e,则eU1=12mv02 ,解之得v0=√2eU1m竖直方向加速度:a=eEm=eU2md电场中竖直方向位移y2=at122=U2l24U1d二、磁偏转相关理论受力特征:质量为m,电荷量为q的粒子以速度v垂直射入磁感应强度为B的匀强磁场中,所受磁场力(即洛伦兹力)使粒子的速度方向发生变化,而速度方向的变化反过来又使洛伦兹力的方向变化,洛伦兹力是变力。

“带电粒子在电磁场中运动”题型解析

“带电粒子在电磁场中运动”题型解析


,・
/ 且
,× × × × ×

×
【 】2 1全 国卷 1 5 9 ) 图 , 例1 (0 1 第2 题1 分 如 与水平 面成4 o 5角
的平 面 MN 空 间分 成 I Ⅱ两 个 区 域 。 质 量 为m、 将 和 一 电荷 量 为 q q 0 的 粒 子 以速 度 v从 平 面 MN 的p点 水 平 右 射 人 I区 。 (> ) 上 粒 子 在 I区 运 动 时 , 只受 到大 小 不 变 、 向竖 直 向下 的 电场 作 方 用, 电场 强 度 大 小 为 E: Ⅱ区 运 动 时 . 受 到 匀 强 磁 场 的 作 在 只 用 , 感 应 强 度 大 小 为 B 方 向 垂 直 于纸 面 向里 。 粒 子 首 次 从 磁 , 求 Ⅱ区 离 开 时 到 出发 点 P的距 离 。 ( 子 的重 力 可 以忽 略 ) 粒
【 】2 1高考安徽试题 1分 ) 例2 (0 1 6 如图所示 , 在以坐标原点
O 圆心 、 径 为 R的半 圆形 区 域 内 , 相 互 垂 直 的 匀 强 电 场 为 半 有 和 匀 强 磁 场 , 感 应 强 度 为B, 场 方 向垂 直 -x y 面 向里 。 磁 磁 JO 平 : 带 正 电 的粒 子 ( 不计 重力 ) O 从 点沿 Y 正 方 向 以 某 一 速 度 射 轴 入 , 电粒 子 恰 好做 匀 速 直 线 运 动 , 间从 P 射 出 。 带 经t 时 点

血 × × × × × x一
× ) × ( × 一 ×

( ) 电 场 强 度 的 大小 和方 向 。 1求 ( ) 仅 撤 去 磁场 , 电 粒 子仍 从O 以相 同 的速 度 射入 . 2若 带 点

高三物理“电偏转”和“磁偏转”的区别

高三物理“电偏转”和“磁偏转”的区别

“电偏转”和“磁偏转”的区别“电偏转”和“磁偏转”分别是利用电场和磁场对运动电荷施加作用,从而控制其运动方向。

由于电场和磁场对运动电荷的作用具备着不同的特征,这使得两种偏转也存在着以下几个方面的差别。

(一)受力特征的差别在“电偏转”中,质量为m ,电荷量为q 的粒子以速度v 0垂直射入电场强度为E 的匀强电场中时,所受到的电场力F 电=qE 与粒子的速度v 0无关,F 电是恒力。

在“磁偏转”中,质量为m ,电荷量为q 的粒子以速度v 0垂直射入磁感应强度为B 的匀强磁场中时,所受到的磁场力(即洛伦磁力)F 磁=qvB 与粒子的速度v 0有关,F 磁所产生的加速度是粒子的速度方向发生变化,而速度方向的变化反过来又导致F 磁的方向变化,F 磁是变力。

(二)运动规律的差别在“电偏转”中,恒定的F 电使粒子做匀变速曲线运动——“类平抛运动”,其运动规律分别由沿垂直于电场和平行于电场的两个相互垂直的方向给出:沿平行于电场的方向:粒子做匀速直线运动,有v x = v 0 x= v 0t沿垂直于电场的方向: 粒子做初速度为零的匀加速直线运动,有a=qE m v y =qE m ⋅t y=12qE m⋅t 2在“磁偏转”中,变化的F 磁使粒子做变速曲线运动——匀速圆周运动,其运动规律由洛伦磁力充当向心力可得:F 磁=F 向 即qvB=m 2v R∴R=mvqB又由T=2R v π 得 T=2mqBπ(三)偏转情况的差别在“电偏转”中,粒子的运动方向的偏转角tan θ=y xv v ,显然θ<2π,且在相等时间内偏转的角度往往是不相等的。

在“磁偏转”中,粒子的运动方向所能偏转的角度不受限制, θ=ωt=vt R =qBmt ,且在相等时间内偏转的角度总是相等的。

(四)动能变化的差别在“电偏转”中,由于F 电与粒子的运动方向间的夹角越来越小,且总小于900,F 电对粒子做正功,所以其动能将不断增大,且增大越来越快。

电偏转和磁偏转的比较

电偏转和磁偏转的比较

返回
[解析]
(1)轨迹如图 3-2 所示。
(2)带电粒子在磁场中运动时, 由牛顿运动定 v2 律,有 qvB=m R
- mv 6.4×10 27×4×104 R= qB = 3.2×10-19×2×10-3
m=0.4 m。 图 3-2
1 (3)Ek=EqL+2mv2=40×3.2×10-19×0.2 J 1 +2×6.4×10-27×(4×104)2 J=7.68×10-18 J。
返回
在磁偏转中,质量为 m,电荷量为 q 的粒子以速度 v 垂直射 入磁感应强度为 B 的匀强磁场中时,所受的洛伦兹力 F 洛=qvB 与粒子的速度 v 有关。洛伦兹力所产生的加速度使粒子的速度发 生变化,而速度方向的变化反过来又导致 F 洛的方向变化,故 F 洛 是变力。 (2)运动规律的差别。 在电偏转中,恒定的电场力 F 电使粒子做匀变速曲线运动, 即匀加速直线运动。两分运动的表达形式 qE 1 2 1qE 2 分别为:vx=v0,x=v0t;vy=at= m · t,y= at = m · t。 2 2
返回
在磁偏转中, 变化的磁场力 F 洛使粒子做匀速圆周运动, 其 运动规律分别从时间 (周期 )和空间 (半径 )两个侧面给出如下表 mv 2πm 达形式:T= qB ,r= qB 。 (3)动能变化的差别。 在电偏转中, 电场力 F 电对粒子做功, 使粒子的动能发生变 化。而在磁偏转中,磁场力 F 洛与粒子运动方向始终垂直,不对 粒子做功,所以其动能的数值保持不变。
返回
(4)偏转情况的差别。 π 在电偏转中,粒子的运动方向所能偏转的角度受到 θ< 的 2 限制,且相等时间内偏转的角度往往是不相等的。 在磁偏转中,粒子的运动方向所能偏转的角度不受限制,θ vt qB =ωt= r = m t,且相等的时间内偏转的角度总是相等的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解题思路:带电粒子垂直射入电场作类平抛运动,须用运动的分解处理
带电粒子垂直射入磁场作匀速圆周运动,须利用几何关系求解。

例1.如图所示,在宽L 的范围内有方向如图的匀强电场,场强为E ,一带电粒子以速度V 垂直于电场方向、也垂直于场区边界射入电场,不计重力,射出场区时,粒子速度方向偏转了θ角,去掉电场,改换成方向垂直纸面向外的匀强磁场,此粒子若原样射入磁场,它从场区的另一侧射出时,也偏转了θ角,求此磁场的磁感应强度B ?
练习1.如图所示,abcd 是一个正方形的盒子,在ab 边的中点有一小孔e ,盒子中存在着沿ad 方向的匀强电场,场强大小为E .一粒子源不断地从a 处的小孔沿ab 方向向盒内发射相同的带电粒子,粒子的初速度为V0,经电场作用后恰好从e 处的小孔射出.现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出.(带电粒子的重力和粒子之间的相互作用力均可忽略)
(1)判断所加的磁场方向.
(2)求分别加电场和磁场时,粒子从e 孔射出时的速率。

(3)求电场强度E 与磁感应强度B 的比值.
例题2、某空间存在着一个变化的电场和另一个变化的磁场, 电场方向向右(即图(a)中由B 到C 的方向), 电场大小变化如图(b)中 E — t 图象, 磁感应强度变化如B —t 图象。

在A 点,从t=1s (即1s 末)开始每隔2s 有一相同的带电粒子(不计重力)沿AB 方向(垂直于BC )以速度v 射出,恰能击中C 点,若AC=2BC 且粒子在AC 间的运动的时间小于1s 。

求:
(1)图线中E 0、B 0的比值。

(2)磁场方向
(3)若第一个粒子击中C 点的时刻已知为(1+△t )s ,那
么第二个粒子击中C 点的时刻是多少?
励志格言:不要等待机会,而要创造机会。

相关文档
最新文档