工程光学实验指导
工程光学实验1—6指导书
实验一 放大率法测量焦距和截距 Measurement Of Focus And Intercept一、实验目的:1.通过对透镜的焦距和截距测量熟悉焦距仪的测量原理及测量方法,掌握基本的实验技能。
2.了解焦距仪的结构及平行光臂的使用,学会螺旋丝杠式测微目镜读数方法。
3.掌握校正显微镜放大率的方法。
二、实验要求:基本理论:理想光学系统的共线成像理论。
基本知识:了解焦距仪的结构,平行光管的使用,理想光学系统焦点、焦平面、主平面、焦 距和截距的概念。
基本技能:学会在焦距仪上进行同轴等高调节。
学会使用螺旋丝杠式测微目镜及读数方法。
三、实验内容及测量原理:焦距和截距是光学系统重要的特性参数,就几何光学来说,焦距是光学系统的特征值。
只要知道焦距和焦点的位置,就能完全确定任何位置上的物体经过该光学系统所成像的位置、大小、正倒和虚实。
1.焦距的测量原理:光学系统的主点到焦点的距离称为焦距。
物方焦距、像方焦距分别用f 、'f 表示。
放大率法测量焦距是利用平行光管物镜焦面上分化板的一对刻线在被测透镜焦面上成像的比例关系,求出被测透镜焦距的大小。
如平行光管分化板上一对刻线间距为y ,经被测透镜成的像为'y ,平行光管物镜和被测透镜焦距分别为'0f 和'f ,由图一可看出它们的关系如下: 0f y tg -=ω '''f y tg -=ω∵'ωω= ∴''0f y f y -=- 即yy f f ''0'∙-= 式中f0'、y 为已知,f'与y'成正比。
这样只要测出y',即可求出被测透镜焦距。
图一2.焦距的测量:光学系统的最后一个表面顶点到像方焦点的距离为后焦距,用lp'表示。
很显然,对于一个光学系统知道了焦距和截距的大小,就可确定焦点和主点的位置。
图二在测量截距的同时,可以进行透镜截距'F l的测量。
工程光学实验指导书
工程光学实验指导书厦门工学院电子信息工程系2014.9目录实验一Tracepro基本功能学习及反光杯建模 (3)实验二聚光镜的建立 (6)实验三导光管建立 (8)实验四液晶背光模组建立 (15)实验一Tracepro基本功能学习及反光杯建模一、实验目的1. 熟悉tracepro基本功能。
2. 熟悉建模及表面属性、材料定义方法。
二、球形反光碗设计球形反光碗是使用耐热玻璃(例如:PYREX)压制成型,其内部经高光洁度抛光处理并涂镀反光膜,可将投影灯的后部光能有效地反射至前方,提高投影灯光能利用率。
球形反光碗实物图形如下:球形反光碗设计步骤:1.打开TracePro3.24→新建名为球形反光碗的文件,或使用CtrL+N2.点击→,选择Conic类型,形状为球形(Spherical),厚度(Thickness)输入4mm,反光碗高(length)为18mm,孔大小为0,半径(radius)为33mm, 起点坐标值和旋转坐标值保持默认,输入结果为图1.1图框所示:图1.14.点击Insert,使用工具栏图标区缩小图形后,点击下拉菜单View →Render进行渲染以后,反光碗实体模型如图1.2:图1.25.使用工具栏图标区箭头工具,在图形区完全选中反光碗,或点中导航选项卡中“模型树”Object 1,单击鼠标右键,在弹出下拉菜单中选择进行材料属性设置,在材料目录(Catalog)中选择IR,克斯(PYREX)耐热玻璃,运用(Apply)此属性,吸收、透过和折射率将显示如图1.3:注:PYREX相关知识:PYREX玻璃是美国康宁玻璃公司(CORNING)研究人员薛利文(Sullivan)1915年发明的,并取得发明专利。
这种玻璃在美国叫“派莱克斯”(PYREX)玻璃,PYREX是美国康宁公司产品的一个商标。
派莱克斯玻璃专利失效以后,这种玻璃被各国广泛采用。
70多年来,很多专家学者都想研究一种新的玻璃,超过派莱克斯玻璃的性能,都没有成功。
工程光学基础实验指导书
哈尔滨理工大学实验指导书课程名称:工程光学基础学院:测控技术与通信工程学院系部专业:测控技术及仪器1实验一:放大镜、显微镜和望远镜光路并搭及视角放大率的测量实验类型:综合型适用专业:测控技术及仪器一、实验目的:通过光路拼搭,将理想光学系统平面成像、实际光组的光束限制等理论结合起来,形成的综合实验,掌握放大镜、显微镜和望远镜的工作原理及光路特点,并通过视角放大率估测,加深对视角放大率的理解。
二、实验内容:分别拼搭放大镜、显微镜和望远镜的光路及视角放大率的估测。
三、实验用设备仪器及材料:简易光具座、光源、透镜、像屏、玻璃刻线板等。
四、实验方法及步骤:1、放大镜:(1)、玻璃刻线板和正透镜放好,移动正透镜,使玻璃刻线板放在距正透镜一倍焦距以内靠近焦点处,则正透镜起放大镜作用,可观察到玻璃刻线板的放大正立的虚像。
(2)、测量视角放大率:在刻线板旁再放上另一块刻线相同的玻璃刻线板并使它距人眼250mm,两眼同时观察,右眼通过放大镜观察放大的像g1’,左眼直接观察另一刻线板g2,若放大像g1’的n个刻线值正好与g2上的m个刻线值相当,则放大镜的视角放大率就是 m / n。
(3)、理论放大镜的视角放大率为250 / f放。
2、显微镜:(1)、将刻线板g1,正透镜L1 放置在光具座上,刻线板g1放在L1的一倍焦距到两倍焦距之间的地方,使g1成一个放大倒立的实像g1’。
然后将正透镜L2 放置好,并使g1’在L2 的物方一倍焦距以内,放大镜L2使g1’再放大到g1”。
这样就构成了一个显微镜。
(2)、测量视角放大率:显微镜的视角放大率与放大镜的测量方法相同。
右眼通过显微镜观察放大的像g1”左眼直接观察另一刻线板g2,若放大像g1”的n个刻线值正好与g2上的m个刻线值相当,则显微镜的视角放大率就是m / n。
2(3)、根据公式得到显微镜理论的视角放大率为:△ / f1 * 250 / f2’3、望远镜:(1)、开普勒式望远镜:用长焦距的正透镜L1和短焦距的正透镜L2构成,当L1的像方焦点和L2的物方焦点重合时就组成开普勒式望远镜。
工程光学基础实验报告
一、实验目的1. 理解和掌握光学基本原理和实验方法;2. 学习使用光学仪器,观察光学现象;3. 分析光学实验数据,提高实验技能。
二、实验仪器与设备1. 光具座;2. 平面镜;3. 凸透镜;4. 薄透镜;5. 光屏;6. 光具箱;7. 刻度尺;8. 毫米尺;9. 精密水准仪;10. 光学显微镜;11. 光电传感器;12. 数据采集器。
三、实验原理1. 几何光学:利用光学仪器观察光的传播、反射、折射等现象,研究光与物质之间的相互作用。
2. 物理光学:研究光的波动性质,包括光的干涉、衍射、偏振等现象。
四、实验内容与步骤1. 观察平面镜成像现象:将平面镜放置在光具座上,调整光源和光屏,观察物体在平面镜中的成像。
2. 观察凸透镜成像现象:将凸透镜放置在光具座上,调整光源和光屏,观察物体在凸透镜中的成像。
3. 观察薄透镜成像现象:将薄透镜放置在光具座上,调整光源和光屏,观察物体在薄透镜中的成像。
4. 光的干涉现象:利用干涉仪观察光的干涉条纹,研究光的波长、相位等信息。
5. 光的衍射现象:利用衍射光栅观察光的衍射条纹,研究光的波长、衍射角等信息。
6. 光的偏振现象:利用偏振片观察光的偏振现象,研究光的偏振方向和强度。
7. 光电传感器实验:将光电传感器连接到数据采集器,观察光强度与光电传感器输出电压之间的关系。
五、实验数据与结果分析1. 观察平面镜成像现象:实验结果显示,物体在平面镜中的成像与物体本身位置关于平面镜对称。
2. 观察凸透镜成像现象:实验结果显示,物体在凸透镜中的成像为实像或虚像,成像位置与物体位置、透镜焦距有关。
3. 观察薄透镜成像现象:实验结果显示,物体在薄透镜中的成像为实像或虚像,成像位置与物体位置、透镜焦距有关。
4. 光的干涉现象:实验结果显示,干涉条纹间距与光的波长、干涉仪间距有关。
5. 光的衍射现象:实验结果显示,衍射条纹间距与光的波长、衍射光栅间距有关。
6. 光的偏振现象:实验结果显示,光的偏振方向与光的传播方向有关。
工程光学实验1—6指导书.
实验一 放大率法测量焦距和截距 Measurement Of Focus And Intercept一、实验目的:1.通过对透镜的焦距和截距测量熟悉焦距仪的测量原理及测量方法,掌握基本的实验技能。
2.了解焦距仪的结构及平行光臂的使用,学会螺旋丝杠式测微目镜读数方法。
3.掌握校正显微镜放大率的方法。
二、实验要求:基本理论:理想光学系统的共线成像理论。
基本知识:了解焦距仪的结构,平行光管的使用,理想光学系统焦点、焦平面、主平面、焦 距和截距的概念。
基本技能:学会在焦距仪上进行同轴等高调节。
学会使用螺旋丝杠式测微目镜及读数方法。
三、实验内容及测量原理:焦距和截距是光学系统重要的特性参数,就几何光学来说,焦距是光学系统的特征值。
只要知道焦距和焦点的位置,就能完全确定任何位置上的物体经过该光学系统所成像的位置、大小、正倒和虚实。
1.焦距的测量原理:光学系统的主点到焦点的距离称为焦距。
物方焦距、像方焦距分别用f 、'f 表示。
放大率法测量焦距是利用平行光管物镜焦面上分化板的一对刻线在被测透镜焦面上成像的比例关系,求出被测透镜焦距的大小。
如平行光管分化板上一对刻线间距为y ,经被测透镜成的像为'y ,平行光管物镜和被测透镜焦距分别为'0f 和'f ,由图一可看出它们的关系如下: 0f y tg -=ω '''f y tg -=ω∵'ωω= ∴''0f y f y -=- 即yy f f ''0'∙-= 式中f0'、y 为已知,f'与y'成正比。
这样只要测出y',即可求出被测透镜焦距。
图一2.焦距的测量:光学系统的最后一个表面顶点到像方焦点的距离为后焦距,用lp'表示。
很显然,对于一个光学系统知道了焦距和截距的大小,就可确定焦点和主点的位置。
图二在测量截距的同时,可以进行透镜截距'F l的测量。
工程光学实验指导书
工程光学实验指导书目录实验一光学实验主要仪器、光路调整与技巧实验二物镜焦距截距的测量实验三光的干涉实验实验四光学物镜参数测试设计性实验实验一光学实验主要仪器、光路调整与技巧一. 引言不论光学系统如何复杂,精密,它们都是由一些通用性很强的光学元器件组成,因此掌握一些常用的光学元器件的结构和性能,特点和使用方法,对安排试验光路系统时正确的选择光学元器件,正确的使用光学元器件有重要的作用二.实验目的掌握光学专业基本元件的功能;调整光路,主要包括共轴调节、调平行光和针孔滤波。
三.基本原理(一)、光学实验仪器概述:主要含:激光光源,光学元件,观察屏或信息记录介质1. 激光光源;激光器即Laser(L ight Amplification by stimulated emission of radiation),原意是利用受激辐射实现光的放大.然而实际上的激光器,一般不是放大器,而是振荡器,即利用受激辐射实现光的振荡,或产生相干光。
.960年,梅曼制成了世界上第一台红宝石激光器.现在被广泛用于各个行业激光的特性:(1)高度的相干性(2)光束按高斯分布激光器的分类:(1)气体激光器——He-Ne激光器,Ar离子激光器(2)液体激光器——染料激光器(3)固体激光器———半导体激光器,红宝石激光器本套实验方案的选择的激光器是气体型He-Ne内腔式激光器,波长为632.8nm的红光,功率2mW。
个别实验中还会用到白光点光源。
2、用于光学实验的元件一般包括:防震平台、分束镜、扩束镜、准直镜、反射镜、成像透镜、傅立叶变换透镜、多自由度微调器、可变光栏、观察屏等部件。
如果是全息实验还需要快门、干版架、自动曝光和显定影定时器、记录干版等。
(本实验方案中,扩束镜采用针孔空间滤波器,准直镜、成像透镜、傅立叶变换透镜均采用双凸透镜)⑴防震平台光学实验需要一个稳定的工作平台。
特别是对于全息图制作实验,由于是参考波和物光波干涉条纹的记录,如果在曝光过程中因为振动导致两光波有变化,就要影响干涉条纹的调制度。
工程光学 实验报告
工程光学实验报告引言光学是研究光的传输、变化和控制的学科。
工程光学是应用光学原理和技术解决实际工程问题的学科。
本实验旨在通过一系列实验,深入了解工程光学的相关原理和应用。
实验目的1.了解光的传播和折射的基本原理;2.学习光的干涉、衍射和偏振现象;3.掌握光学元件的使用方法和调整技巧;4.训练实验操作的能力和科学观察的能力。
实验器材•光源:白炽灯、激光器•光学元件:平面镜、凸透镜、凹透镜、棱镜等•光学仪器:干涉仪、衍射仪、偏振片等•其他常用实验器材:光屏、直尺、卡尺等实验步骤实验一:光的传播和折射1.将白炽灯放在适当位置,并使用光屏接收光线;2.调整光源和光屏的位置,观察光线在直线传播中的特点;3.将平面镜插入光路中,记录光线的折射现象;4.在实验中使用凸透镜、凹透镜等光学元件,观察并记录光线的变化。
实验二:光的干涉1.使用激光器作为光源,将光线通过一个狭缝;2.在光线传播路径上放置一个玻璃片,观察光线的干涉现象;3.在实验中改变光源、狭缝和玻璃片的位置,观察干涉现象的变化。
实验三:光的衍射1.将光源调整为单色光,例如使用激光器;2.在光线传播路径上放置一个狭缝,观察光线的衍射现象;3.在实验中改变狭缝的宽度和光源的位置,观察衍射现象的变化。
实验四:光的偏振1.使用激光器作为光源,将光线通过一个偏振片;2.在光线传播路径上放置一个旋转的偏振片,观察光线的偏振现象;3.在实验中改变偏振片的角度,观察偏振现象的变化。
实验结果与讨论通过实验,我们观察到光在直线传播中的特点,以及在不同光学元件中的折射、干涉、衍射和偏振现象。
这些现象是光的基本特性,对于工程光学的应用具有重要的意义。
实验结论1.光在直线传播时具有一定的传播速度和直线传播的特点;2.光在不同介质中会发生折射现象,折射角度与入射角度和介质的折射率有关;3.光的干涉现象是由光波的叠加效应引起的,光的干涉可以产生亮暗相间的干涉条纹;4.光的衍射现象是光波通过一个狭缝或物体边缘时发生的现象,产生的衍射图样具有特定的衍射角度和衍射图样形状;5.光的偏振现象是光波在特定方向上振动的现象,偏振片可以选择特定方向上的光波进行透过。
工程光学1实验指导书教材
实验仪器简介1、仪器结构及测量原理光具座结构如图1 — 1所示,它由平行光管(1)、透镜夹持器(2)、测量 显微镜(3)及带有刻度尺的导轨(4)组成(1)平行光管常用的平行光管物镜焦距有 550mm 、1000mm 和2000mm 等。
在平行光管 物镜物方焦平面上有一可更换的分划板,分划板经平行光管成像为一无限远物 体,作为测量标记。
常用的分划板有图 1—2所示的用于测量焦距用的玻罗板, 图1—3所示的检测光学系统分辨率的鉴别率板和检验成像质量的星点板等。
2\ 22- M 25图1 — 3分辨率板(2)测量显微镜测量显微镜是用来测量经被测物镜所成的像 (或物体)大小的。
它由物镜和 测微目镜组成,物镜是可以更换的(根据被测物的大小可以更换不同放大倍率的 物镜)。
测微目镜是用来读取测量数值的,其结构如图 1—4所示。
光具座1 2图1 — 1光具座结构示意图图1— 2玻罗板图1—4测微目镜结构图测微目镜由目镜(1)、固定分划板(2)、活动分划板(3)和测微读数鼓轮(4)四部分组成。
测量原理是:读数鼓轮每旋转一圈(即测微螺杆移动一个螺距)活动分划板上刻线移动量为固定分划板刻线的一个格。
测量时,首先旋转读数鼓轮使活动分划板上十字叉丝瞄准被测物体起始位置,由活动分划板双刻线在固定分划板刻线位置读取毫米数(整数),再从读数鼓轮读取小数,然后再次旋转读数鼓轮使活动分划板上十字叉丝瞄准被测物体终止位置,继续读取数据,两次读数之差即为被测物体大小。
2、仪器技术指标(1)550mn光具座①平行光管物镜名义焦距?’= 550 mm通光口径 D = 55 mm相对孔径1:10②平行光管物镜物方焦平面上分划板玻罗板刻线间距:1、2、4、10、20mm星点板十字线分划板鉴别率板U号、川号③测量显微镜物镜:1倍测微目镜:分划板格值1mm测微鼓轮格值0.01 mm(2)GJZ —1型光具座①平行光管物镜名义焦距?’= 1000 mm 实测焦距?’= 997.47 mm 通光口径 D = 100 mm相对孔径1:10②平行光管物镜物方焦平面上分划板玻罗板刻线间距:1、2、4、10、20mm星点板星点直径:0.005 mm、0.008 mm、0.01 mm十字线分划板 刻度范围±20, 格值 鉴别率板1 、2、3、 4、 5号③测量显微镜物 镜:1 倍 NA = 0.0752.5倍NA = 0.0810 倍NA = 0.25 测微目镜: 分划板格值 1mm测微鼓轮格值被测物镜最大口径 被测物镜焦距范围 (3)CXW —1 型光具座 ①平行光管物镜 名义焦距 通光口径 相对孔径复消色差)? = 2000 mm D = 150 mm 1:13.3实测焦距=1973.9 mm1mm 0.01 mm±40° 25 mm测微鼓轮格值 0.01 mm②平行光管物镜物方焦平面上分划板玻罗板 刻线间距: 1、2、4、10、20、40mm星点板 星点直径: 0.005 mm 、0.008 mm 、0.01 mm十字线分划板 刻度范围 ±20, 格值鉴别率板1 、2、3、 4、 5号③测量显微镜物 镜:0.25倍 NA = 0.015 0.5倍 NA = 0.031 倍 NA = 0.0752.5倍 NA = 0.0810 倍NA = 0.25测微目镜: 分划板格值 测微鼓轮格值 测量显微镜偏摆角度 测量显微镜横向移动量测量显微镜高度升降范围±5 mm 被测物镜最大口径 ① 130 mm 被测物镜焦距范围±1200 mm3、仪器调整与操作( 1 )根据测量项目选择平行光管物镜物方焦平面上分划板。
工程光学实验指导书
前言本课程的实验环节其设计思想是与课堂教学相结合,除了进一步巩固和深化学生基础知识之外,以更开放、更灵活的方式培养学生动手能力、合作精神和对工程技术问题的思考方式,形成开放式创新思维。
通过实验,进一步加深对几何光学的基本现象、概念、原理与定律的理解,了解和熟悉有关光学仪器及装置的结构、原理及使用,掌握基本的实验方法和技能,学会用实验的方法分析一些光学现象。
实验是工程光学课程体系的重要一环。
实验环节的目标是:使学生能够比较牢固地建立研究意识、工程意识、分工合作的工作方式,培养独立自主地分析和解决问题的能力。
本实验教学环节采用模块化实验组合,学生可以小组为单位进行实验,力求培养学生的自主学习与创新能力和团队协作精神。
基本要求:要求实验前做好预习,理解每个实验的原理、步骤;实验时正确操作仪器,认真观察各种实验现象,仔细记录、分析数据;实验结束后及时做好实验报告。
主要内容:模块一光组的成像特性 (2)模块二光组的焦距测量 (6)模块三典型光学系统设计及特性测量 (8)附录 (11)思考题 (16)模块一 光组的成像特性实验目的1.验证物像位置关系,深入了解透镜成像特性。
2.掌握望远镜、显微镜、复合透镜的组合方法。
3.观察光线在棱镜中传播的情况,并了解各种棱镜的成像特性,熟悉各种棱镜的结构。
‴ 透镜成像特性1. 实验仪器及设备指标、透镜架、透镜、成像屏、光具座、照明系统。
图1 透镜成像特性实验装置2. 实验原理l 和l’分别表示物像距,f’为光组的焦距,则当光组处于空气中时,有:(1)可知,对于具有一定焦距的光组,其像的位置随物体位置的变化而变化,而其相应的横向放大率可表示如下:(2) 3. 实验内容与步骤取一正透镜使物体(指标)位于 ①② ③ ④ ; 取一负透镜使物体位于① ② ③ ④ 。
分别记录物体经透镜所成像的大小、正倒及位置。
‴光组组合1. 实验仪器及设备六只正透镜、二只负透镜、光具座、一只平行光管、平面反射镜、投影屏。
工程光学实验指导书解析
前言本课程的实验环节其设计思想是与课堂教学相结合,除了进一步巩固和深化学生基础知识之外,以更开放、更灵活的方式培养学生动手能力、合作精神和对工程技术问题的思考方式,形成开放式创新思维。
通过实验,进一步加深对几何光学的基本现象、概念、原理与定律的理解,了解和熟悉有关光学仪器及装置的结构、原理及使用,掌握基本的实验方法和技能,学会用实验的方法分析一些光学现象。
实验是工程光学课程体系的重要一环。
实验环节的目标是:使学生能够比较牢固地建立研究意识、工程意识、分工合作的工作方式,培养独立自主地分析和解决问题的能力。
本实验教学环节采用模块化实验组合,学生可以小组为单位进行实验,力求培养学生的自主学习与创新能力和团队协作精神。
基本要求:要求实验前做好预习,理解每个实验的原理、步骤;实验时正确操作仪器,认真观察各种实验现象,仔细记录、分析数据;实验结束后及时做好实验报告。
主要内容:模块一光组的成像特性 (2)模块二光组的焦距测量 (6)模块三典型光学系统设计及特性测量 (8)附录 (11)思考题 (16)模块一光组的成像特性实验目的1.验证物像位置关系,深入了解透镜成像特性。
2.掌握望远镜、显微镜、复合透镜的组合方法。
3.观察光线在棱镜中传播的情况,并了解各种棱镜的成像特性,熟悉各种棱镜的结构。
※透镜成像特性1. 实验仪器及设备指标、透镜架、透镜、成像屏、光具座、照明系统。
图1 透镜成像特性实验装置2.实验原理l和l’分别表示物像距,f’为光组的焦距,则当光组处于空气中时,有:(1)可知,对于具有一定焦距的光组,其像的位置随物体位置的变化而变化,而其相应的横向放大率可表示如下:(2)3.实验内容与步骤取一正透镜使物体(指标)位于①②③④;取一负透镜使物体位于①②③④。
分别记录物体经透镜所成像的大小、正倒及位置。
※光组组合1. 实验仪器及设备六只正透镜、二只负透镜、光具座、一只平行光管、平面反射镜、投影屏。
在平行光管物镜的物方焦平面上置一块带指标的分划板,分划板通过物镜成像于无穷远,即可在实验室条件下提供“无穷远物体”。
工程光学实验讲义样本
实验一光学实验主要仪器、光路调整与技巧1.引言不论光学系统如何复杂, 精密, 它们都是由一些通用性很强的光学元器件组成的, 因此, 掌握一些常见的光学元器件的结构, 光学性能、特点和使用方法, 对于安排实验光路系统时, 正确的选择和使用光学元器件具有重要的作用。
2.实验目的1)掌握光学专业基本元件的功能;2)掌握基本光路调试技术, 主要包括共轴调节和调平行光。
3.实验原理3.1光学实验仪器概述:光学实验仪器主要包括: 光源, 光学元件, 接收器等。
3.1.1常见光源光源是光学实验中不可缺少的组成部分, 对于不同的观测目的, 常需选用合适的光源, 如在干涉测量技术中一般应使用单色光源, 而在白光干涉时又需用能谱连续的光源( 白炽灯) ; 在一些实验中, 对光源尺寸大小还有点、线、面等方面的要求。
光学实验中常见的光源可分为以下几类:1)热辐射光源热辐射光源是利用电能将钨丝加热, 使它在真空或惰性气体中达到发光的光源。
白炽灯属于热辐射光源, 它的发光光谱是连续的,分布在红外光、可见光到紫外光范围内, 其中红外成分居多, 紫外成分很少, 光谱成分和光强与钨丝温度有关。
热辐射光源包括以下几种: 普通灯泡, 汽车灯泡, 卤钨灯。
2) 热电极弧光放电型光源这类光源的电路基本上与普通荧光灯相同, 必须经过镇流器接入220V点源, 它是使电流经过气体而发光的光源。
实验中最常见的单色光源主要包括以下两种: 纳光灯( 主要谱线: 589.3nm、589.6nm) , 汞灯( 主要谱线: 623.4nm、579.0nm、577.0nm、546.1nm、491.6nm、435.8nm、407.9nm、404.7nm)3) 激光光源激光( Light Amplification by Stimulated Emission of Radiation, 缩写: LASER), 是指经过辐射的受激辐射而实现光放大, 即受激辐射的光放大。
工程光学实验指导书
实验一 光路分析及焦距测量一.实验目的1. 掌握简单光路的分析与调整方法;2. 了解、掌握自准直法测量透镜焦距的原理和方法; 3. 了解、掌握贝塞尔法测量透镜焦距的原理和方法;二.实验原理(一)自准直法测量透镜焦距的原理(如图1所示)当发光点(物)处在凸透镜的焦平面时,它所发出的光线通过透镜后将成为一束平行光。
若用与主光轴垂直的平面镜将此光线反射回去,反射光线再次通过透镜后仍会聚于透镜的焦平面上,其会聚点(像点)将在发光点(物点)相对于光轴的对称位置上。
图1 自准直测量透镜焦距原理图(二)贝塞尔法(位移法)测量透镜焦距的原理(如图2所示)对凸透镜而言,当物象之间的距离大于四倍焦距时,在物屏之间移动透镜,必然会在屏上出现两次清晰的像,一次为放大的像,一次为缩小的像。
则两次清晰成像时透镜所处位置的的距离d 和物屏之间距离L 、透镜焦距f '的关系为:()Ld Lf 422-='三.实验仪器1.光学平台;2.带有毛玻璃的白炽灯光源;3.品字形物像屏;4.平面反射镜;反射镜5.白屏;6.凸透镜(焦距分别为300mm和190mm);7.二维底座;8.二维调整架;9.通用底座(三个)图2贝塞尔法测量透镜焦距原理图四.自准直法测量焦距实验步骤1.按照图1原理所示选择所用光学元件。
2.把所选元件按原理图摆放在光学平台上,靠拢并调至共轴。
3.前后移动凸透镜,使在物像屏上成一清晰的品字形像。
4.调整反射镜的倾角,使得物像屏上的像和物重合。
5.前后微小移动凸透镜,使得物像屏上的像既清晰又和物大小相同。
6.分别记下物像屏和透镜的位置1a和2a。
7.把物像屏和透镜都转动180度,重复前面四步。
8.再次记下物像屏和透镜的位置1b和2b9.按照上述方法,分别测出两个透镜的焦距。
五.贝塞尔法测量焦距实验步骤1.按照图2原理所示选择所用光学元件。
2.把全部元件按原理图摆放在光学平台上,靠拢并调至共轴。
并使得物像之间的距离大于4倍的焦距。
工程光学-电子教材-上海理工大学
工程光学系列实验实验指导书上海理工大学光电学院目录实验一平行光管调校 (1)实验二放大率法测量透镜焦距 (5)实验三望远系统参数的测定 (9)实验四单透镜的球差和色差 (15)实验五近视远视及其校正 (19)实验六畸变及其校正 (24)实验七照相机的景深 (26)实验一 平行光管调校一. 实验目的1. 了解平行光管的结构及工作原理,掌握平行光管的调整方法。
2. 了解利用自准直法、五角棱镜法调校平行光管的原理,并熟练掌握它们的调校方法。
3. 分析自准直法、五角棱镜法的调校误差,并比较这两种方法的优缺点。
二. 测量原理和方法平行光管是最基本的测试设备,用来提供无限远的目标或给出一束平行光。
其外貌如图1所示。
平行光管使用时,因测试的需要,常常要换上不同的分划板(平行光管常用分划板如图2所示),每次更换后都必需对平行光管进行调校。
包括两个方面的调校,1.纵向调校,其目的是使平行光管分化板的刻线面准确地调整到平行光管物镜的焦面位置上。
2.横向调校,其目的是调整十字分划板中心在平行光管主光轴上。
图 1 平行光管外貌1. 纵向调校。
调整分划板座的中心使其位于平行光管的主光轴上,且使分划板严格位于物镜的焦平面上。
实现该调校方法很多,这里只介绍最常见的两种方法:自准直法和五角棱镜法。
(1)自准直法将待调校的平行光管的分划板座上装上一十字分划板,并在该分划板后面配置一自准直目镜,这时由平行光管和自准直目镜一起构成自准直望远镜。
调校时,在平行光管物镜前放置一个平面度良好的平面反射镜,如图3所示。
人眼通过自准直目镜观察分划板和由平面镜反射回来的分划板的像,当人眼判断分划板和分划板的像在纵向(即平行光管的分划板图2十字分划板)(a 号鉴别率板2)(b 玻罗板)(e 号鉴别率板3)(c 星点板)(d 插头变压器 照明灯座 分划板调节螺钉 镜管底座 十字旋手 物镜组 .8.7.6.5.4.3.2.1光轴方向)一致时,则认为平行光管已调校好。
工程光学实验指导书(电子版)
距和成像法、自准法测凹透镜焦距; 4、观察透镜的像差。
二、实验仪器 光具座,凸透镜,凹透镜,光源,物屏,平面反射镜,水平尺和滤光片等。
图 1-7 自准法测凹透镜焦距
四、实验要求 1、光具座上各光学元件同轴等髙的调节:先利用水平仪将光具座的导轨在实验
桌上调水平,然后进行各光学元件共轴等髙的粗调和细调(用位移法的两像中心 重合或不同大小的实像中心重合的方法),直到各光学元件的光轴共轴,并与光 具座导轨平行为止。
2、利用粗测法之外的五种方法测量透镜的焦距。参考原理,自拟测量步骤。 3、数据处理:计算出标准不确定度的 A 类评定、标准不确定度的 B 类评定及合 成不确定度;给出正确的结果表镜自准法 如图 1-7 所示,在光路共轴的条件下,使物屏上物 AB 发出的光经凸透镜 L1
后成实像 A'B'。现将待测凹透镜 L2 置于 L1 与 A'B'之间,若在 L2 后面垂直于光轴放 置一个平面反射镜 M,并移动凹透镜 L2 使在物屏上得到一个与物 AB 大小相等的倒 立实像。此时,A'B'成为 L2 的 虚 物 , 若 虚 物 A'B'正 好 在 L2 的焦平面上,则 从 L2 出射的光是平行光,该平行光经反射镜反射并再依次通过 L2 和 L1,最后必 然在物屏上成等大的倒立实像 A"B"。这样,分别记录 L2 的 位 置 O 2 及 实 像 A'B' 的 位 置 , 则 0 2 到 实 像 A'B'间的距离即为 f2。
工程光学实验报告重庆大学
工程光学实验报告作者:[Author Name]一、引言工程光学实验是光学课程中的重要实践环节,通过实验的方式探究光的特性和光学器件的工作原理。
本实验报告旨在总结并分析在重庆大学进行的工程光学实验。
二、实验目的•了解光的基本性质和光学器件的基本原理•学习光传输与成像的相关知识•掌握实验中使用的光学仪器设备的操作方法三、实验设备和材料•实验台•光源•凸透镜•物体•白纸•尺子四、实验步骤1.首先,将实验台平放在水平台面上,确保实验台的平稳性。
2.将光源放置在实验台的合适位置,并将其连接电源。
3.在凸透镜前放置一个物体,并调整物体与凸透镜的距离。
4.调整光源的位置和角度,使光线射向凸透镜。
5.移动白纸,使其位于凸透镜后方,并观察到物体的倒立像在白纸上的成像情况。
6.使用尺子测量凸透镜与白纸之间的距离,并记录。
五、实验结果和数据分析通过实验观察和测量,得到以下结果: - 凸透镜与白纸之间的距离为X cm - 物体在白纸上的成像位置为Y cm根据光学成像的原理,可以通过以下计算得到光的传输路径和物体成像距离的关系:物体距离 + 物体高度 = 成像距离 + 从凸透镜到白纸的距离六、讨论与结论在本次工程光学实验中,我们通过观察和测量得到了物体在凸透镜上的成像位置,并计算得到了光的传输路径和物体成像距离的关系。
根据实验结果及计算,进一步深入探究光的特性和光学器件的工作原理。
实验结果与理论分析基本吻合,验证了光学理论的准确性。
总的来说,通过本次工程光学实验,我们对光的传输与成像有了更深入的了解,掌握了实验过程中的操作方法,并且加深了对光学知识的理解和应用能力。
七、参考文献无八、附录实验数据记录表:实验项目数据记录凸透镜与白纸距离X cm物体在白纸上的成像位置Y cm。
工程光学实验指导书
21.0
22.4
22.3
21.2
23.6
20.0
25.0
18.9
26.5
17.8
28.1
16.8
29.7
15.9
31.5
15.0
33.4
14.1
35.4
13.3
37.5
12.6
39.7
11.9
42.0
11.2
44.5
10.6
47.2
10.0
50.0
15
实验四 用麦克尔逊干涉仪测量纳光的波长
一、 实验目的 (1)通过对麦克尔逊干涉仪的调整和使用,掌握双光束干涉
1
2
3
04
4
图 1-4 测微目镜结构图 1.目镜 2.固定分划板 3.活动分划板 4.螺旋测微读数装置
五、实验步骤 1. 将平行光管(1)接通电源。 2. 将被测的光学透镜夹在透镜夹持器(2)上。 3. 调整平行光管、被测透镜、测量显微镜基本同轴。 4. 测量显微镜,使之在视场中能清楚地看到目镜分划板的象
4
实验一 物镜焦距的测定
一、实验目的
焦距是光学透镜及光学系统的最基本的特性参数之一。其实
际焦距值与理论计算值存在一定的偏差。为了控制其精度,就必 须对零件或系统进行具有一定精度的测量。本实验就是使同学们 掌握用定焦距平行光管法测量光学系统焦距的方法。
二、试验用的仪器
光具座、准直管(F550 平行光管) 三、测量原理
同时调到也能看到平行光管玻螺板的象。
7
5. 用测微目镜对选定的一组刻线读数。首先对准该组刻线左 边一条(右边也可),读的一个数。再对准右边一条,读的一个数。 两个读数之差即为该组刻线经被测物镜所成象之大小。重复三遍, 取平均值。将测得的数代入公式(1-1)计算出被测透镜焦距 f ' 。
《工程光学》实验报告完整版(含答案)
本科生实验报告实验课程工程光学学院名称核技术与自动化工程学院专业名称测控技术与仪器学生姓名苏语稻香学生学号指导教师实验地点6C803实验成绩二〇一八年四月二〇一八年六月填写说明1、适用于本科生所有的实验报告(印制实验报告册除外);2、专业填写为专业全称,有专业方向的用小括号标明;3、格式要求:①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。
②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm,左右2.54cm,页眉1.5cm,页脚1.75cm)。
字符间距为默认值(缩放100%,间距:标准);页码用小五号字底端居中。
③具体要求:题目(二号黑体居中);摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体);关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体);正文部分采用三级标题;第1章××(小二号黑体居中,段前0.5行)1.1 ×××××小三号黑体×××××(段前、段后0.5行)1.1.1小四号黑体(段前、段后0.5行)参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。
实验一透镜焦距测量和光学系统基点的测定一、实验目的1.掌握简单光路的分析和调整方法。
2.了解、掌握自准法、位移法测量凸透镜焦距的原理及方法。
3.了解透镜组节点的特性,掌握测透镜组节点的方法。
二、实验任务1.自准法测薄凸透镜焦距f2.用位移法测薄凸透镜焦距f3.测量透镜组节点和焦距。
三、实验内容1.自准法测薄凸透镜焦距f1.1实验原理将物AB放在凸透镜的前焦面上,这时物上任一点发出的光束经透镜后成为平行光,由平面镜反射后再经透镜会聚于透镜的前焦平面上,得到一个大小与原物相同的倒立实像A´B´。
工程光学实验报告
一、实验目的1. 熟悉光学实验的基本原理和实验方法;2. 掌握光学仪器的基本操作和调整方法;3. 培养实验操作技能和数据分析能力;4. 了解光学元件的特性和光学系统的性能。
二、实验原理1. 光的传播规律:光在同种均匀介质中沿直线传播,光的折射定律和反射定律是光学实验的基础;2. 光学元件:包括透镜、棱镜、光栅等,它们在光学系统中起着重要的作用;3. 光学系统:由光学元件组成,能够实现特定光学功能的系统,如显微镜、望远镜等。
三、实验仪器与设备1. 光具座:用于固定光学元件;2. 平面镜:用于反射光线;3. 凸透镜:用于折射光线;4. 棱镜:用于折射和反射光线;5. 光栅:用于衍射光线;6. 光电传感器:用于检测光信号;7. 数据采集系统:用于记录实验数据。
四、实验步骤1. 实验一:光的折射现象(1)将平面镜、凸透镜和光电传感器依次放置在光具座上;(2)调整凸透镜的位置,使光线从平面镜反射后经过凸透镜,进入光电传感器;(3)观察光电传感器的输出信号,记录光线的折射角度;(4)改变凸透镜的焦距,重复步骤(3),记录不同焦距下的折射角度;(5)分析数据,验证折射定律。
2. 实验二:光的反射现象(1)将平面镜和光电传感器依次放置在光具座上;(2)调整平面镜的角度,使光线从平面镜反射后进入光电传感器;(3)观察光电传感器的输出信号,记录光线的反射角度;(4)改变平面镜的角度,重复步骤(3),记录不同角度下的反射角度;(5)分析数据,验证反射定律。
3. 实验三:光的衍射现象(1)将光栅和光电传感器依次放置在光具座上;(2)调整光栅的角度,使光线通过光栅后发生衍射;(3)观察光电传感器的输出信号,记录衍射光线的角度;(4)改变光栅的角度,重复步骤(3),记录不同角度下的衍射光线角度;(5)分析数据,验证光栅衍射公式。
五、实验结果与分析1. 实验一:通过实验验证了折射定律,即入射角、折射角和折射率之间的关系;2. 实验二:通过实验验证了反射定律,即入射角和反射角相等;3. 实验三:通过实验验证了光栅衍射公式,即衍射角度与光栅常数、入射角和衍射级次之间的关系。
工程光学实验指导讲义2010.11.25_HJH
具体结构有:
(1)平行光管:放置于光源和光栅之间,作用是获得均匀的平行光束以 照亮光栅产生莫尔条纹。 (2)光栅掩膜板:两块,分别是连接在被测物上的标尺光栅G和固定不 动的指示光栅G,两者配合产生莫尔条纹。 (3)光电转换器:放置在G后的光电转换元件E与一个整形放大电流的组 合装置。接收并转换条纹信号。 (4)计数器:输出或显示装置,计量条纹变化的个数。 (5)测量杆:测量杆与导轨的滑块及标尺光栅G连接在一起,测量物体 的长度。
Jh.huang@
实验3 莫尔光栅计量实验*
测量内容和步骤:
(1)照亮掩膜板: A 点亮激光源; B 调节平行光管; C 调整掩膜板与光束垂直。 (2)检查计数器: A 打开计数器的电源; B 将计数器复位(按复零按钮)。 (3)检查测量杆: A 检查测量杆的灵敏度; B 连接被测物体。 (4)以上准备工作完成后,移动工件,记录条纹变化的个数,计算结 果。
Jh.huang@
实验2 最小偏向角法测量折射率
实验步骤
测量前的调整:将仪器完全按照实验指导书中的“仪器调整”中所述的方法调整好。 测量顶角: (1)取下平行平板,放上被测棱镜,适当调整工作台高度,用自准直法观察,使AB面 和AC面都垂直于望远镜光轴; (2)调好游标盘的位置,使游标盘在测量过程中不被平行光管或望远镜挡住,锁紧制 动架(二)和游标盘、载物台和游标盘的止动螺钉; (3)使望远镜对准AB面,锁紧转座与度盘、制动架(一)和底座的止动螺钉; (4)旋转制动架(一)末端上的调节螺钉,对望远镜进行微调(旋转),使亮十字与 十字丝完全重合; (5)记下对径方向上游标所指示的度盘的两个读数,取其平均值Am; (6)放松制动架(一)与底座上的止动螺钉,旋转望远镜,使对准AC面,锁紧制动架 (一)和底座上的止动螺钉; (7)重复4)和5)得到平均值Bm; (8)计算顶角: 1800 ( Bm Am ) 重复测量三次,求得平均值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一物镜焦距、截距的测定一、实验目的掌握用定焦距平行光管法测量光学系统焦距、截距的方法二、实验内容掌握测量方法,做好测量前的准备工作,测量给定的照相物镜、望远物镜和显微物镜的象方焦距和截距、物方焦距和截距。
三、实验原理测量焦距的方法很多,其中的定焦距平行光管法、(即放大率法)测量范围大,测量精度高,相对误差一般在1%以下,是目前常用的方法,其测量原理如图1-1。
图1-1焦距截距的测定原理图其中O 是平行光管物镜,L 是被测透镜,y0 是位于平行光管物镜焦平面上的一对刻线的间隔距离。
y0 经过平行光管物镜后成像在无限远处,再经过被测透镜L 后,在它的焦平面上得到y0 的像y`。
这种方法的原理就是通过测量像y`的大小,然后计算出被测透镜的焦距。
从图1-1 看出下面两个关系式,用作图成像的方法很容易得出:w=w`(1-1)这就是用定焦距平行光管法测定焦距所用的公式,其中f0`是平行光管物镜的焦距,是已知的。
Y0 是位于平行光管物镜焦平面处的分划板上的一对刻线的间隔距离,它的大小也是事先已知的。
Y`是这对刻线y0 经过被测透镜后所成的像,如果能测量出此像y`的大小,那么就很容易用公式(1-1)计算出被测透镜的焦距f`。
利用本公式及方法,可以测量正负透镜、望远物镜、照相物镜、放映物镜,各种目镜的焦距。
应当注意要正确选择测量显微镜的物镜,使之与被测光学系统相匹配。
如测负焦距系统使要选择长工作距的显微物镜。
这是因显微物镜的倍率不同,故(1-1)式变化如下(1-2)式中:β――――――测量显微镜放大倍数四、实验设备焦距仪、待测物镜(照相物镜、照相物镜、显微物镜)焦距仪结构示意如图1-2,它包括一个平行光管、一个透镜夹持器、一个带有目镜的读数显微镜和把它们连在一起的一根带有长度刻尺的导轨组成。
图1-2焦距仪结构示意图1.平行光管、2.透镜夹持器、3.测微目镜组成1.平行光管本实验采用的平行光管物镜的焦距为550mm。
位于物镜物方焦平面上可更换的分划板的形式很多、其中用于测量焦距的分划板称为玻罗板,550mm 焦距仪所用的玻罗板,板上刻有 5 组间隔不同的平行线,它们的间距分别为1、2、4、10 和20mm。
2.带测微目镜的读数显微镜读数显微镜是用来测量待测物镜所成像高y`的,它由物镜和测微物镜组成,物镜放大倍率可以更换,一般有0.5、1、2.5 和 5 倍等。
测微目镜的结构如图1-3所示,是由目镜、固定分划板、活动分划板和螺旋测微读数装置四部分组成。
测微丝杠转一圈,活动分划板上刻线移动量为固定分划板刻线的一格。
通常测微螺旋的螺距S 是0.25~1mm,读数鼓轮一圈等分为100 格,格值为S/100。
固定分划板上有若干等分刻线,其格值与螺距相符。
活动分划板上刻有瞄准用的双刻线和叉丝线。
测量时由测微丝杠推动活动分划板,使双刻线和叉丝线对准所选的起始刻线,从固定分划板上读毫米数,再从读数鼓轮上读取微小读数,然后将双刻线和叉丝线对准最终刻线,依法读数,两次读数之差即为起始到终点的刻线距离。
图1-3测微目镜的结构1.目镜2.固定分划板3.活动分划板4. 螺旋测微读数装置五、实验步骤1.将平行光管(1)接通电源,注意选用低压变压器。
2.将被测的光学透镜夹在透镜夹持器(2)上。
3.选择好测量显微镜的倍率并装在显微镜上。
4.调整平行管、被测件、测量显微镜基本同轴。
5.调节测量显微镜,使之在视场中能清楚地看到目镜分划板的像,同时调到也能看到平行光管玻罗板上的像。
6.用测微目镜对选定的一组刻线读数,首先对准该刻线左边一条(右边也可),读得一个数,再对准另一条,读得一个数,两个读数之差即为该组刻线经被测物镜所成像之大小,重复读三遍,取平均值。
7.将测得的数代入公式(1—1)计算出被测光学透镜焦距f’来。
8.截距测量:截距是被测物镜后表面到该物镜所成像面间的距离。
在测焦距的同时,利用光具座导轨上长刻度尺测出被测物镜的截距。
图1-4截距测量示意图在测焦距时,测量显微镜是调焦在被测物镜镜面y’上的,这时显微镜处在光具座长刻度尺某一位置上记下读数,再将显微镜慢慢地向前移动,直到在显微镜能观察到被测物镜后表面的灰尘为止,这时显微镜已处在光具座上一位置上,也记下读数,二次读数之差值,即为显微镜移动的距离S’F,也是被测物镜的后截距S”F,同样将物镜反转180゜,可测出其前截距,测试如图1-5 所示。
图1-5滑块在光具座上的读数六、思考题1.不同波长的光源对所测焦距有何影响?2.请画出所测的物方:焦点、焦面、主点、主面;像方:焦点、焦面、主点、主面来。
附:消视差方法光学实验中经常要准确地测量像的大小、位置等,在调整过程中一定要注意消视差。
视差产生的原因:若度量标尺〔或分划板)与被测物体〔或像〕不共面时,随眼睛的晃动〔观察位置稍微改变),标尺与被测物体之间会有相对移动,难以准确测量。
若待测像与标尺之间有视差时,说明两者不共面,应稍稍调节像或标尺的位置,并同时微微晃动眼睛,直到待测像与标尺之间无相对移动即无视差,此时可准确读数。
被测物体和标尺不共面,产生视差。
用一只眼睛观察,当晃动眼睛时,物与标尺间有相对移动。
离眼晴远者,移动方向与眼睛晃动方向相同,离眼暗近若,移动方向与限暗晃动方向相反。
实验二物镜象差观察一、实验目的和内容1.了解和熟悉检验物镜像差的一般性方法——星点法。
2.了解以CCD 摄像头为主要元件搭建的光电图像采集系统的组成、性能指标、工作原理和一般调整方法。
3.观察通过各种物镜后所成的数字化星点图像,分析几何像差对成像的影响,定性判断物镜像差的性质和大小,加深对像差理论的理解。
二、实验用仪器和设备光具座一台、被检物镜若干、星点板、分辨率板(用于辅助光路的调整)、数字图像采集和显示系统(包括CCD 摄像头、图像采集卡和个人电脑)三、实验原理相干照明物体或自发光物体,成像光学系统的作用是把物面上的光强分布转换为像面上的光强分布。
由于衍射、像差和各种工艺疵病等原因,物像分布不可能完全一致。
为了评定系统的成像质量,并为改善像质提供必要的信息,通常选用星点(发光点)作为代表性的物体,通过描述它的像的全部特征来反映系统的像质。
由于任意物的分布都可以看成是无数个具有不同强度的、独立的发光点的集合;任意物的像就是这无数个星点像的集合。
因此,星点像的光强分布函数就决定了该系统的成像质量。
另外星点像的光强分布比较易于描述,所以星点检验法是检验成像光学系统质量时最基本、最简单的一种方法。
传统的星点检测方法是:光源通过聚光镜照亮位于平行光管焦面的星点板小孔,从平行光管出射的平行光经待测物镜,在其焦面上成像,然后用目镜(测量显微镜)对所成的像进行观察。
随着CCD 和计算机技术的发展,光学图像数字化已成为必然的趋势。
用计算机采集星点图像,不但能够减轻人眼观察的疲劳,而且可以同时再现焦前、焦面和焦后的星点图像,便于比较、判断像差的性质和大小,也有利于学生全面理解和掌握像差理论。
改进后的系统如图2-1 所示。
图2-1几何像差系统数字采集系统在原星点观察系统的显微镜后放置CCD 摄像头,摄像头接计算机中的图像采集卡,经模—数变换后,在计算机的显示器上显示图像。
图像可单帧采集也可实时采集。
为了方便采集某一种像差对应的焦前、焦后、焦面的图像,让摄像头与观察显微镜同时移动。
实验中可将观察显微镜的目镜和摄像头的物镜部分同时拆下,使用专门设计的一个接口,连接观察显微镜的目镜筒和摄像头的成像CCD。
观察显微镜的物镜倍数可调,一般选2.5 倍,图像大小合适。
四、星点衍射图像分析为了能够根据星点像的形状、特征对被检系统的疵病做出正确的“诊断”,除了要求掌握星点检验的基本原理,正确选择合适检验仪器外,还要有丰富的实践经验。
因此了解每一种像差及常见误差所具有的星点像的特征是十分重要的。
下面就单独具有某种像差或误差的几种典型星点像作一分析(假定入瞳是圆形的)。
1.球差光学系统仅有球差时,根据球差的性质可知,出射波面是一个非球面的旋转对称面,因此星点像的衍射环还是圆的,但光强分布规律与理想情况不同,表现为光能由中央亮斑向各衍射环分散,结果中央亮斑变暗,各亮环变亮,且暗环的光强也不再为零。
但最明显的特征是焦前焦后对称面上的衍射图样不再相同。
2.慧差仅有慧差时,慧差较小时,中央亮斑稍稍偏离第一衍射亮环的中心,同时该亮环的粗细和亮暗都不再一致,中央亮斑靠近的一侧,环变细变暗,远离的一侧则变粗变亮。
慧差增加,中央亮斑偏心加大,第一亮环的亮暗差也加大以至断开。
波像差大于0.5λ后,星点像开始呈现出彗星状,即有一个明亮的头部和一条渐渐扩展、变暗的尾巴。
如果被检系统的轴上点也出现慧差,说明系统存在工艺疵病,主要是单片透镜中心偏差、胶合透镜偏心差和装配时某些镜片的偏心等疵病。
但是偏心量都比较小,否则不仅出现慧差还会出现像散。
用检查轴上点星点像有无慧差来判断光学系统在装配和其他工艺过程中是否引进了偏心差是一个很好的办法。
它有很高的灵敏度,当偏心差产生的波像差为λ/20 或更小时,人们就能检测出来。
但星点检验用于测定像差大小时就十分不利。
3.像散仅有像散的星点图的特征是:焦前、焦后都呈现椭圆形星点图,但其长轴互相垂直。
像散很小时,中央亮斑还是圆形的,在子午和弧失焦线处,第一暗环皆成长方形,但彼此垂直;在两焦线间总能找到第一暗环成正方形的像面位置;这是有像散时的焦面位置。
造成光学系统出现轴上像散的主要原因有两个,一是光学面有较大的偏心,二是光学面变形。
如果星点像的主要特征表现为像散,慧差并不明显,这时的像散往往主要由光学面变形产生。
如果像散和慧差都明显,则主要是光学面有较大偏心造成。
因为小量偏心时首先在星点图中出现慧差,偏心加大,慧差增加,像散更快地增加,致使两种像差在星点像中都明显呈现。
4.其他疵病在光学玻璃熔炼中、光学零件加工和装配中产生各种工艺疵病时,星点像都将呈现与之相应的特征。
这些特征往往反映在星点图的形状变化而不是光能分布的变化上,因而能以很高的灵敏度发现这些疵病。
如果某种疵病引起星点像的变化很不明显,说明它对像质的影响不大。
例如玻璃退火时残留的应力,即使应力较大,从星点像中还不易发觉。
但它对光学面面形和加工工艺形的影响却是很大的。
因此,最好用应力仪检查这种疵病。
五.实验结果(部分)图 2 -2球差图2 -3慧差实验三典型系统组合及特性参数测量一、实验目的通过对望远系统等特性参数的实际测量,进一步掌握望远系统的基本成像原理,同时加深对其各参数的理解。
二、实验内容1、根据设计要求选择透镜,组合成望远系统;2、实际测量望远系统的出瞳及出瞳距的大小,以及各参数。
三、实验仪器平行光管、待测望远系统(经纬仪或水平仪)、倍率计、组合用透镜等。
图3-1 望远系统参数测量仪器图3-2望远系统参数测量原理四、测量原理对于望远系统来而言,物镜框就是孔径光阑,也为入瞳;物镜框经后面的目镜所成的像即为望远系统的出瞳D′,出瞳到望远系统目镜最后一面的顶点的距离就是出瞳距离。