浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (865)

合集下载

浙教版八年级上册数学第二章特殊三角形全部知识点考点及练习

浙教版八年级上册数学第二章特殊三角形全部知识点考点及练习

浙教版数学八年级上册第二章《特殊三角形》复习一、知识结构本章主要学习了等腰三角形的性质与判定、直角三角形的性质与判定以及勾股定理、HL 定理等知识,这些知识点之间的结构如下图所示:等腰Rt两直角三角形全等的判定直角三角形的性质和判定等边三角形的性质和判定等腰三角形的性质和判定直角三角形等边三角形等腰三角形特殊三角形二、重点回顾1.等腰三角形的性质:等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对_____);等腰三角形三线合一,这三线是指________________、________________、________________,也就是说一条线段充当三种身份;等腰三角形是________图形,它的对称轴有_________条。

2.等腰三角形的判定:有____边相等的三角形是等腰三角形;有_____相等的三角形是等腰三角形(即在同一个三角形中,等角对_____)。

注意:有两腰相等的三角形是等腰三角形,这句话对吗? 3.等边三角形的性质:等边三角形各条边______,各内角_______,且都等于_____;等边三角形是______图形,它有____条对称轴。

4.等边三角形的判定:有____边相等的三角形是等边三角形;有三个角都是______的三角形是等边三角形;有两个角都是______的三角形是等边三角形;有一个角是______的______ 三角形是等边三角形。

5.直角三角形的性质:直角三角形两锐角_______;直角三角形斜边上的中线等于_______;直角三角形两直角边的平方和等于________(即勾股定理)。

30°角所对的直角边等于斜边的________ 6.直角三角形的判定:有一个角是______的三角形是直角三角形;有两个角_______的三角形是直角三角形;两边的平方和等于_______的三角形是直角三角形。

一条边上的中线等于该边长度的一半,那么该三角形是直角三角形,但不能直接拿来判断某三角形是直角三角形,但有助于解题。

第2章 特殊三角形单元测试题 2021——2022学年浙教版八年级数学上册

第2章 特殊三角形单元测试题 2021——2022学年浙教版八年级数学上册

第2章特殊三角形一、选择题(每小题5分,共35分)1.下列图形中是轴对称图形的是()图12.已知等腰三角形的一个内角为40°,则这个等腰三角形的顶角为()A.40°B.100°C.40°或100°D.70°或50°3.已知a,b,c是△ABC的三边长,且满足(a-b)2+|c2-a2-b2|=0,则下列对△ABC的形状的判断最准确的为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等边三角形4.如图2所示,△ABC的面积为8 cm2,AP垂直∠ABC的平分线BP于点P,则△PBC的面积为()图2A.2 cm2B.3 cm2C.4 cm2D.5 cm25.如图3,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连结CD,则∠ACD的度数是()图3A.50°B.40°C.30°D.20°6.如图4,已知点P在∠AOB的边OA上,OP=10,点M,N在边OB上,PM=PN.若MN=2,OM=5,则PM的长为()图4A.6B.8C.√65D.97.如图5,在锐角三角形ABC中,∠BAC=45°,AB=2,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是()A.1B.1.5C.√2D.√3二、填空题(每小题5分,共30分)8.定理“直角三角形的两个锐角互余”的逆定理是______________________.图59.如图6,已知AB是Rt△ABC和Rt△ABD的斜边,O是AB的中点,其中OC=2 cm,则OD=________cm.图610.如图7,在△ABC中,BO,CO分别平分∠ABC,∠ACB,OM∥AB,ON∥AC,BC=10 cm,则△OMN的周长为________cm.图711.如图8,在长方形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,使点C落在点C'处,BC'交AD于点E,则线段DE的长为________.图812.将45°的∠AOB按如图9所示的方式摆放在一把刻度尺上,顶点O与刻度尺下沿的端点重合,OA与刻度尺下沿重合,OB与刻度尺上沿的交点B在刻度尺上的读数为2 cm.若按相同的方式将30°的∠AOC放置在该刻度尺上,OC与刻度尺上沿的交点为C,则点C在刻度尺上的读数为________cm.图913.如图10,一个直径为8 cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外1 cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端刚好触到杯口,则筷子的长度为________cm.图10三、解答题(共35分)14.(10分)如图11,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足为D,E.若BD=4 cm,CE=3 cm,求DE的长.图1115.(12分)如图12,已知AC⊥BC,AD⊥BD,E为AB的中点.(1)如图①,求证:△ECD是等腰三角形;(2)如图②,CD与AB交于点F,若AD=BD,EF=3,DE=4,求CD的长.图1216.(13分)定义:把斜边重合,且直角顶点不重合的两个直角三角形叫做“共边直角三角形”. (1)概念理解:如图13①所示,在△ABC中,∠C=90°,作出△ABC的“共边直角三角形”(画一个即可);(2)问题探究:如图②所示,在△ABC中,∠ACB=90°,AC=6,BC=8,△ABD与△ABC是“共边直角三角形”,连结CD,当CD⊥AB时,求CD的长;(3)拓展延伸:如图③所示,△ABC和△ABD是“共边直角三角形”,BD=CD.求证:AD平分∠CAB.图13答案1.D2.C[解析] 当40°角是等腰三角形的顶角时,则顶角就是40°;当40°角是等腰三角形的底角时,则顶角是180°-40°×2=100°.3.C[解析] ∵(a-b)2+|c2-a2-b2|=0,∴a-b=0,c2-a2-b2=0,解得a=b,a2+b2=c2,∴△ABC为等腰直角三角形.故选C.4.C[解析] 如图,延长AP交BC于点E.∵AP垂直∠ABC的平分线BP于点P,∴∠APB=∠EPB=90°,∠ABP=∠EBP.又∵BP=BP,∴△ABP≌△EBP,∴S△ABP=S△EBP,AP=PE,∴S△APC=S△PCE,∴S△PBC=S△EBP+S△PCE=1S△ABC=4 cm2.25.D[解析] ∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°.∵BC=BD,∴∠BCD=∠BDC=1×(180°-40°)=70°,2∴∠ACD=90°-70°=20°.因此本题选D.6.C7.C[解析] 过点B作BH⊥AC,垂足为H,交AD于点M',过点M'作M'N'⊥AB,垂足为N',则BM'+M'N'为所求的最小值.∵AD是∠BAC的平分线,∴M'H=M'N'.∵BH⊥AC,∠BAC=45°,∴∠ABH=45°,∴AH=BH.又∵AB=2,∴BH=√2,∴BM+MN 的最小值是BM'+M'N'=BM'+M'H=BH=√2.故选C .8.有两个角互余的三角形是直角三角形9.2 [解析] ∵AB 是Rt △ABC 和Rt △ABD 的斜边,O 是AB 的中点,∴OC=12AB=OD. ∵OC=2 cm, ∴OD=2 cm .故答案为2.10.10 [解析] ∵BO 平分∠ABC ,∴∠ABO=∠MBO.∵OM ∥AB ,∴∠ABO=∠MOB , ∴∠MBO=∠MOB ,∴OM=BM ,同理ON=CN.∵BC=10 cm,∴△OMN 的周长=OM+MN+ON=BM+MN+CN=BC=10 cm .故答案为10.11.154 [解析] 设DE=x ,则AE=6-x.∵四边形ABCD 为长方形, ∴AD ∥BC , ∴∠EDB=∠DBC.由折叠的性质,得∠EBD=∠DBC ,∴∠EDB=∠EBD , ∴BE=DE=x.在Rt △ABE 中,由勾股定理, 得BE 2=AB 2+AE 2,即x 2=9+(6-x )2,解得x=154,∴DE=154. 12.√1213.8.5 [解析] 设杯子的高度是x cm,那么筷子的长度是(x+1)cm . 由题意,得x 2+42=(x+1)2,整理,得16=2x+1, 解得x=7.5,∴x+1=8.5.∴筷子的长度为8.5 cm .故答案为8.5.14.解:∵∠BAC=90°,∠ADB=∠AEC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°, ∴∠CAE=∠ABD.又∵AB=CA ,∴△ABD ≌△CAE , ∴AD=CE ,BD=AE ,∴DE=AD+AE=CE+BD=7 cm .15.解:(1)证明:∵AC ⊥BC ,AD ⊥BD ,∴∠ACB=90°,∠ADB=90°.又∵E 为AB 的中点,∴CE=12AB ,DE=12AB , ∴CE=DE ,即△ECD 是等腰三角形. (2)∵AD=BD ,E 为AB 的中点,∴DE ⊥AB. ∵DE=4,EF=3,∴在Rt △DEF 中,由勾股定理,得DF=5.过点E 作EH ⊥CD 于点H.∵∠FED=90°,EH ⊥DF , ∴S △DEF =12EF ·ED=12DF ·EH , ∴EH=EF ·ED DF =125,∴DH=√DE 2-EH 2=165. ∵△ECD 是等腰三角形,∴CD=2DH=325.16.解:(1)略.(2)如图①所示,设AB ,CD 交于点E ,取AB 的中点O ,连结CO ,DO. 在Rt △ABC 中,∵AC=6,BC=8, ∴AB=10.∵△ABC 和△ABD 是共边直角三角形, ∴OC=OD=12AB. ∵CD ⊥AB , ∴CD=2CE.∵S △ABC =12AC ·BC=12AB ·CE , ∴CE=4.8,∴CD=4.8×2=9.6.(3)证明:设AD ,BC 交于点E ,如图②,分别延长BD 和AC 交于点F .∵△ABC 和△ABD 是共边直角三角形, ∴AC ⊥BC ,AD ⊥BF . ∵BD=CD , ∴∠CBD=∠BCD.∵∠CBD+∠F=∠BCD+∠DCF=90°, ∴∠DCF=∠F , ∴CD=FD , ∴BD=FD ,即AD 为线段BF 的垂直平分线,∴AF=AB ,∴AD 平分∠CAB (等腰三角形三线合一).。

浙教版八年级上册数学第二章《特殊三角形》测试卷含答案

浙教版八年级上册数学第二章《特殊三角形》测试卷含答案

浙教版八年级上册数学第二章《特殊三角形》测试卷含答案(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--浙教版八年级上册数学第二章《特殊三角形》测试卷考试时间:120分钟满分:120分一、选择题(本大题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.1.下列图形中是轴对称图形的是()A. B. C. D.2.已知等腰三角形的一边长为3,另一边长为6,则这个等腰三角形的周长为()A. 12B. 12或15 C. 15 D. 93.在中,,,则BC边上的高为()A. 12B. 10C. 9D. 84.若等腰三角形一个外角等于100 ,则它的顶角度数为()A. 20°B. 80°C. 20°或80° D. 50°或80°5.如图△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D 交AC于点E,那么下列结论中正确的是()①△BDF和△CEF都是等腰三角形②DE=BD+CE③△ADE的周长等于AB和AC的和④BF=CFA. ①②③④B. ①②③C. ①②D. ①6.如图,将绕点A按逆时针方向旋转100°,得到,若点在线段BC 的延长线上,则的大小为()A. 70°B. 80°C. 84°D. 86°(第5题)(第6题)(第7题)(第9题)7.如图,正方形A,B,C的边长分别为直角三角形的三边长,若正方形A,B的边长分别为3和5,则正方形C的面积为( )A. 4B. 15C. 16D. 188.以下列长度的线段不能围成直角三角形的是()A. 5,12, 13B.C. ,3,4 D. 2,3,49.如图由于台风的影响,一棵树在离地面处折断,折断后树干上部分与地面成30度的夹角,折断前长度是()A. B. C.D. .10.如图,AC=BC,AE=CD,AE⊥CE于点E,BD⊥CD于点D,AE=7,BD=2,则DE 的长是()A. 7B. 5C. 3D. 2(第10题)(第11题)11.“三等分角”大约是在公元前五世纪由古希腊人提出来的。

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (85)

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (85)

浙教版初中数学试卷2019-2020年八年级数学上册《特殊三角形》测试卷学校:__________题号一二三总分得分评卷人得分一、选择题1.(2分)在△ABC中,分析下列条件:①有一个角等于60°的等腰三角形;②有两个角等于60°的三角形;③有3条对称钠的三角形;④有两边相的三角形. 其中能说明△ABC是等边三角形的有()A.①B.①②C.①②③D.①②③④2.(2分)若直角三角形的一条直角边长为 5,斜边上的中线长为 6.5,则另一条直角边长等于()A. 3 B.12 C. 7 D. 43.(2分)三角形的三边长a、b、c满足等式22()2+−=,则此三角形是()a b c abA.锐角三角形B.直角三角形C.钝角三角形D.等边三角形4.(2分)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点0,过点O作EF∥BC,交AB于点E,交AC于点F,△ABC的周长是24cm ,BC=10cm,则△AEF的周长是()A.10 cm B.12cm C.14 cm D.34 cm5.(2分)下列各组条件中,能判定△ABC为等腰三角形的是()A.∠A=60°,∠B=40°B.∠A=70°,∠B=50°C.∠A=90°,∠B=45°D.∠A=120°,∠B=15°6.(2分)如图,在△ABC中,∠BAC=90°,AD⊥BC,则图中与∠B相等的角是()A.∠BAD B.∠C C.∠CAD D.没有这样的角7.(2分)把等边三角形ABC一边AB延长一倍到D,则∠ADC是()A.等腰三角形B.直角三角形C.等边三角形D.不能确定8.(2分)连结等边三角形各边的中点所得到的三角形是()A.等边三角形B.直角三角形C.非等边三角形D.无法确定9.(2分) 等腰三角形的一个外角为140°,则顶角的度数为()A.40°B. 40°或 70°C.70°D. 40°或 100°10.(2分)等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D.顶角的平分线、底边上的高及底边上的中线三线互相重合11.(2分)等腰三角形的“三线合一”是指()A.中线、高、角平分线互相重合B.腰上的中线、腰上的高、底角的平分线互相重合C.顶角的平分线、中线、高线三线互相重合D.顶角的平分线、底边上的高及底边上的中线三线互相重合评卷人得分二、填空题12.(2分)如图,在△ABC中,AB=AC,AD、CE 分别平分∠BAC 与∠ACB,AD 与 CE 相交于点 F .若∠B =62° , 则∠AFC = .13.(2分)如图,∠BCA = ∠E = 90°,BC= E,要利用“HL”来说明 Rt△ABC≌Rt△ADE,则还需要补充条件 .14.(2分)等腰三角形一边长为2 cm,另一边长为5cm,它的周长是 cm.15.(2分)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条路,他们仅仅少走了步路(假设2步为l m),却踩伤了花草.16.(2分)如图,在△ABC中,点D是BC上一点,∠BAD=80°,AB=AD=DC,则∠C= .17.(2分)如图所示,在△ABC中,∠ACB=90°,BC=5,D是AB的中点,△BCD的周长是l8,则AB的长是.18.(2分)如图,在△ABC中,∠BAC=90°,∠C=30°, AD⊥BC于D,BC=12,则BD= .19.(2分)如果一个三角形一边上的中线恰好与该边上的高重合,那么这个三角形 (填“一定”或“不一定”)是等腰三角形.20.(2分) 如图,在△ABC 中,AB=AD=DC,∠BAD=26°,则∠C= .评卷人得分三、解答题21.(7分)如图,在6×6的正方形网络中,有A、B、C三点.分别连接 AB、BC、AC,试判断△ABC的形状.22.(7分)如图,∠ABC的平分线BF 与△ABC 中∠ACB的相邻外角的平分线CF相交于点F,过F作DF∥BC,交AB于D,交AC于E,则:(1)图中有哪几个等腰三角形?并说明理由.(2)BD,CE,DE之间存在着什么关系?请证明.23.(7分)如果将直角三角形的三条边长同时扩大一倍,得到三角形还是直角三角形吗?扩大n倍呢(n为正整数)?24.(7分)如图,从山下到山上的一个小亭子修了138级台阶,每级台阶的高大约是24 cm,宽大约是32 cm,从山下到小亭子大约要走多远(精确至0.1 m)?25.(7分)一艘潜艇在水下800 m处用声纳测得水面上一艘静止的轮船与它的直线距离为l000m,潜艇的速度为20m/s,若它向这艘轮船方向驶去(深度保持不变),则经多少时间它会位于轮船正下方?26.(7分)如图,Rt△ABC中,∠ACB=90°,D是AB的中点,过点D作DE⊥BC于E 点,F是BD的中点,连结EF.说明:CD=2EF.27.(7分)将两块三角尺的直角顶点重合成如图的形状,若∠AOD=127°,则∠BOC度数是多少?28.(7分)如图,∠A=∠B,CE∥DA,CE交AB于E,△CEB是等腰三角形吗?说明理由.29.(7分)如图,陈华同学想测量一个无法直接测量的深沟的宽度(即图中A、B之间的距离),他从点B出发,沿着与直线AB成80°角的BC方向(即∠CBD=80°)前进至C,在C 处测得∠C=40°,他量出BC的长为20米,于是就说这深沟的宽度也为20米,你认为陈华同学的说法对吗?你能说出理由吗?30.(7分)如图,在△ABC 中,∠ABC= 50°,∠ACB=70°,延长 CB 至D使 BD=BA,延长 BC 至E使 CE=CA. 连结 AD、AE,求△ADE 各内角的度数.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C2.B3.B4.C5.C6.C7.B8.A9.D10.D11.D二、填空题12.121°13.AB=AD14.1215.416.25°17.1318.319.一定20.38.5°三、解答题21.设小正方形的边长为1.∵,222125AB=+=,2222420BC=+=,2223425AC=+=,∴222AB BC AC+=,∴△ABC是直角三角形22.(1)2个等腰三角形:△BDF和△CEF,理由略(2)BD=DE+CE,理由略23.均是直角三角形24.55.2 m25.30s26.说明EF=12BD=12CD27.53°28.是等腰三角形,说明∠CEB=∠B 29.陈华同学的说法正确,理由略30.∠D=25°,∠E=35°,∠DAF=120°。

2020年秋浙教版八年级上册数学第2章特殊三角形单元提高测试卷

2020年秋浙教版八年级上册数学第2章特殊三角形单元提高测试卷

2020 年秋浙教版八年级数学上册第 2 章特殊三角形单元提高测试卷一、选择题(共 10 题;共 30 分)1.永州市教育部门高度重视校园安全教育,要求各级各类学校从认识安全警告标志入手开展安全教 育.下列安全图标不是轴对称的是()A. C. D.2.等腰三角形的一个内角为 70°,则另外两个内角的度数分别是( )A. 55°,55°B. 70°,40°或 70°,55°C. 70°,40°D. 55°,55°或 70°,40° 3.如图, ΔABC 中, 垂直平分 ,垂足为 D ,交 于 E ,若 ∠B = 32° , ,则AC = CEDE AB BC ∠C 的度数是( )A. °B. ° 55C. °D. ° 52 60 65 4.以下命题:(1)如果 a <0, b >0 ,那么 a + b <0;(2)相等的角是对顶角;(3)同角的补角 相等;(4)如果两条直线被第三条直线所截,那么同位角相等.其中真命题的个数是( ) A. 0B. 1C. 2D. 35.在△ABC 中,∠A 、∠B 、∠C 的对边分别为 a 、b 、c ,下列条件中不能说明△ABC 是直角三角形的 是( )A. a =3 , b =4 , c =5 22 2 B. a =9,b =12,c =15 C. ∠A :∠B :∠C =5:2:3D. ∠C ﹣∠B =∠A6.如图,在 Rt△ABC 中,∠ACB =90°,AC =6,BC =8,AE 平分∠BAC ,ED⊥AB ,则 ED 的长 ( )A. 3B. 4C. 5D. 67.如图,三角形纸片 ABC ,点 D 是 BC 边上一点,连接 AD ,把△ABD 沿着 AD 翻折,得到△AED , DE 与 AC 交于点 G ,连接 BE 交 AD 于点 F.若 DG =GE ,AF =3,BF =2,△ADG 的面积为 2,则点 F 到 BC 的距离为( )A. B. C. D. , √552√554√554√338.如图,将长方形 折叠,使点 C 和点 A 重合,折痕为 与 交于点 O 若 ,AE = 5ABC D EF EF AC ,则 的长为()BF = 3 A O A. B. C. D. 4√53 √5√5 2√529.如图,在 中, ∠ACB = 90° ,点 H 、E 、F 分别是边 的值为( )CH、 、 的中点,若 CARt △ ABC AB BC ,则EF + CH = 8 A. 3 B. 4 C. 5 D. 610.如图,在 Rt△ABC 中,∠ACB=90°,CD 为中线,延长 CB 至点 E ,使 BE=BC ,连结 DE ,F 为 DE 中点,连结 BF.若 AC=8,BC=6,则 BF 的长为( )A. 2B. 2.5C. 3D. 4二、填空题(共 8 题;共 24 分)△11.在等腰ABC 中,AB=AC,∠B=50°,则∠A的大小为________.12.如图,在△ABC中,AB=AC,∠BAC的平分线 AD 交 BC 于点 D,E 为 AB 的中点,若 BC=12,AD=8,则 DE 的长为________.13.在中,∠C=90°,若,则的长是________.Rt△ABC AB−AC=2,BC=8AB△△14.如图,ABC 中,AB=AC=4,以 AC 为斜边作 Rt ADC,使∠ADC=90°,∠CAD=∠CAB =30°,E、F 分别是 BC、AC 的中点,则 ED=________.OB15.如图,以原点 O 为圆心,为半径画弧与数轴交于点A,则点 A 在数轴上表示的数为________.16.如图所示,△ABC为等边三角形,AQ=PQ,PR⊥AB于点 R,PS⊥AC于点 S,PR=PS,有下列四个结论:①点 P 在∠BAC的平分线上;②AS=AR;③QP∥AB;④△BRP≌△CSP.其中,正确的有________(填序号即可).17.如图,在 Rt△ABC 中,∠C=90°,AC=10,BC=5,线段 PQ=AB , P , Q 两点分别在 AC 和过点 A 且垂直于 AC 的射线 AO 上运动,当 AP=________时,△ABC 和△PQA 全等.18.如图, ΔABC 中,点在边 上, , ∠ ∠ , 垂直于 的延长线 E 于点BEAC EB = EA 的长为________.BCA = 2 CBE CD D , ,AC = 11,则边BD = 8 三、解答题(共 6 题;共 46 分)19.如图,正方形网格中每个小正方形的边长为1,试回答问题:∠BCD 是直角吗?说明理由.20.如图,在笔直的铁路上 两点相距 , 为两村庄, , ,CB = 14kmA, B 20km C, D DA = 8km 于 , 于 . 现要在 上建一个中转站 ,使得 , 两村到 站的距离DA ⊥ AB A CB ⊥ AB B AB E C D E 相等,求 的长.AE 21.如图,在△ABC 中,∠ABC>60°,∠BAC<60°,以 AB 为边作等边△ABD(点 C 、D 在边 AB 的 同侧),连接 CD ,(Ⅰ)若∠ABC=90°,∠BAC=30°,求∠BDC 的度数; (Ⅱ)当∠BAC=2∠BDC 时,请判断△ABC 的形状并说明理由; (Ⅲ)当∠BCD 等于多少度时,∠BAC=2∠BDC 恒成立。

浙教版数学八年级上册-第二章-特殊三角形-巩固练习(解析版)

浙教版数学八年级上册-第二章-特殊三角形-巩固练习(解析版)

浙教版数学八年级上册-第二章-特殊三角形-巩固练习一、单选题1.如图,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面3尺.突然一阵大风吹过,红莲被吹至一边,花朵刚好齐及水面,如果知道红莲移动的水平距离为6尺,则水是()尺.A. 3.5B. 4C. 4.5D. 52.如图,直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与点B 重合,折痕为DE,则CE的长是()A. B. C. D.3.如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是()A. 6cmB. 8cmC. 10cmD. 12cm4.如图所示,点D是△ABC的边长AC上一点(不含端点),AD=BD,则下列结论正确的是()A. ∠A=∠ABCB. AC=BCC. ∠A>∠ABCD. AC>BC5.由下列条件可以作出等腰三角形的是()A. 已知等腰三角形的两腰B. 已知一腰和一腰上的高C. 已知底角的度数和顶角的度数D. 已知底边长和底边上的中线的长6.园丁住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA=13米,且AB⊥BC,这块草坪的面积是()A. 24米2B. 36米2C. 48米2D. 72米27.下列几组数能作为直角三角形的三边长的是()A. 2,2,B. ,2,C. 9,12,18D. 12,15,208.如图,PB⊥AB于B,PC⊥AC于C,且PB=PC,则△APB≌△APC的理由是()A. SASB. ASAC. HLD. AAS二、填空题9.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4km,B,C两地的距离是3km,则A,B两地的距离是________km;若A地在C地的正东方向,则B地在C地的________方向.10.在△ABC中,AB=10,AC=2 ,BC边上的高AD=6,则另一边BC等________.11.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB= ,则CD=________.12.如图,在4×4方格中,点A、B在格点上,以AB为一边,第三个顶点也在格点上的等腰三角形可以作出________个.13.已知等腰三角形一腰上的中线将它的周长分为6和9两部分,则它的底边长是________.14.如图,在凸四边形ABCD中,AB=BC=BD,∠ABC=80°,则∠ADC等于 ________15.如图,点D是∠ABC内一点,点B在射线BA上,且∠DBE=∠BDE=15°,DE∥BC,过点D 作DF⊥BC,垂足为点F,若BE=10,则DF=________.三、解答题16.如图,已知AD=4,CD=3,BC=12,AB=13,∠ADC=90°,求四边形ABCD的面积.17.如图,△ABC的边AB=8,BC=5,AC=7.求BC边上的高.四、综合题18.已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1________,并直接写出点A1、B1、C1的坐标________;(2)△ABC的面积是________(3)点P(a+1,b-1)与点C关于x轴对称,则a=________,b=________.19.已知:四边形ABCD中,AC⊥BC,AB=17,BC=8,CD=12,DA=9;(1)求AC的长;(2)求四边形ABCD的面积.20.如图,AD⊥BC于点D,∠B=∠DAC,点E在BC上,△EAC是以EC为底的等腰三角形,AB=4,AE=3.(1)判断△ABC的形状;(2)求△ABC的面积.答案一、单选题1.【答案】C【解析】【解答】解:红莲被吹至一边,花朵刚好齐及水面即AC为红莲的长.如图,设水深h尺,由题意得:Rt△ABC中,AB=h,AC=h+3,BC=6,由勾股定理得:AC2=AB2+BC2,即(h+3)2=h2+62,解得:h=4.5.故答案为:C.【分析】根据题意画出图形,由由勾股定理求出水的尺度.2.【答案】D【解析】【分析】设CE=x,则AE=8-x,∵△BDE是△ADE翻折而成,∴BE=AE=8-x,在Rt△BCE中,BE2=BC2+CE2,即(8﹣x)2=62+x2,解得x=.故选D.3.【答案】C【解析】【解答】解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB==10(cm).故选C.【分析】此题最直接的解法,就是将圆柱展开,然后利用两点之间线段最短解答.4.【答案】D【解析】【解答】∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以A选项和C 选项不符合题意;∴AC>BC,所以D选项符合题意;B选项不符合题意.故答案为:D.【分析】利用等边对等角可得∠A=∠ABD,由图形可知∠ABC>∠ABD,从而可得∠ABC>∠A,据此可判断A、C;在三角形中,大角对大边,由∠ABC>∠ABD=∠A,据此判断B、D;5.【答案】D【解析】【解答】A、已知等腰三角形的两腰,顶角不确定,不能作出等腰三角形,A不符合题意;B、已知一腰和一腰上的高,角度不确定,不能作出等腰三角形,B不符合题意;C、已知底角的度数和顶角的度数,只知道三个角,不能作出等腰三角形,C不符合题意;D、已知底边长和底边上的中线的长可作出等腰三角形,D符合题意.故答案为:D【分析】根据等腰三角形的顶角可以是直角,钝角,锐角,故知道等腰三角形的两腰,顶角不确定,不能作出等腰三角形;已知一腰和一腰上的高,角度不确定,不能作出等腰三角形;反过来知道角的度数,边长不知道也固定不了三角形的形状,故已知底角的度数和顶角的度数,只知道三个角,不能作出等腰三角形;从而得出答案。

浙教版2020八年级数学上册第二章特殊三角形单元综合能力测试题1(附答案详解)

浙教版2020八年级数学上册第二章特殊三角形单元综合能力测试题1(附答案详解)

浙教版2020八年级数学上册第二章特殊三角形单元综合能力测试题1(附答案详解)1.如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A.24πB.22πC.1 D.22.已知一元二次方程x2﹣6x+9=1的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.10 B.10或8 C.9 D.83.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65°B.65°或80°C.50°或65°D.40°4.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是()A.5,12,13 B.8,15,17 C.3,4,7 D.6,8,10 5.下边的图案是由下面五种基本图形中的两种拼接而成,这两种基本图形是()A.②⑤B.②④C.③⑤D.①⑤6.下列几组数中,为勾股数的是()A.13,14,15B.3,4,6C.5,12,13D.0.9,1.2,1.57.O是等边△ABC内的一点,OB=1,OA=2,∠AOB=150°,则OC的长为()A3B5C7D.38.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )A.0个B.1个C.2个D.3个9.如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A 在x轴上运动时,点C随之在y轴上运动.在运动过程中,点B到原点的最大距离是( ).A.6B.26C.22+2D.2510.如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是()A.2B.3C.5D.211.在镜中看到的一串数字是“80008”,则这串数字是______________12.在∠A(0°<∠A<90°)的内部画线段,并使线段的两端点分别落在角的两边AB、AC 上,如图所示,从点A1开始,依次向右画线段,使线段与线段在两端点处互相垂直,A1A2为第1条线段.设AA1=A1A2=A2A3=1,则∠A =_____;若记线段A2n-1A2n的长度为a n(n为正整数),如A1A2=a1,A3A4=a2,则此时a2=_______,a n=________(用含n的式子表示).13.轴对称图形对应点连线被________,对应角对应线段都________.14.等腰三角形的周长为13cm,其中一边长为5cm,则该等腰三角形的腰边长为_____cm..15.在△ABC中,AB=2,AC=3,cos∠ACB=22,则∠ABC的大小为________度.16.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为____________ .17.如图,在凸四边形ABCD 中,AB=BC=BD ,∠ABC=80°,则∠ADC 等于_______18.已知点P (x ,x+y )与点Q (5,x ﹣7)关于x 轴对称,则点P 的坐标为_____. 19.如图①,在边长为4cm 的正方形ABCD 中,点P 以每秒2cm 的速度从点A 出发,沿AB BC →的路径运动,到点C 停止.过点P 作PQ //BD ,PQ 与边AD(或边CD)交于点Q ,PQ 的长度()y cm 与点P 的运动时间x(秒)的函数图象如图②所示.当点P 运动2.5秒时,PQ 的长度是______cm .20.如图,长方体ABCD —A 1B l C l D 1中,AD =3,AA l =4,AB =5,则从A 点沿表面到C l 的最短距离为______.21.如图,ABC 中,AB AC =,D ,E ,F 分别为AB ,BC ,CA 上的点,且BD CE =,DEF B ∠=∠.(1)求证:BDE ≌CEF ;(2)若40A ∠=,求EDF ∠的度数.22.台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风暴,有极强的破坏力,据气象观察,距沿海某城市A正南220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心正以15千米/时的速度沿北偏东30°方向向C移动,且台风中心风力不变,若城市受到的风力达到或超过四级,则称受台风影响.(1)该城市是否会受到这次台风的影响?为什么?(2)若受到台风影响,那么台风影响该城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?23.在如图所示的5×5网格中,小方格的边长为1.(1)图中格点正方形ABCD的面积为________;(2)若连接AC,则以AC为边的正方形的面积为________;(3)在所给网格中画一个格点正方形,使其各边都不在格线上且面积最大,你所画的正方形面积为_____.24.在平面直角坐标系中,,点在第二象限的角平分线上,、的垂直平分线交于点.(1)求证:;(2)设交轴于点,若,求点的坐标;(3)作交轴于点,若,求点的坐标.25.如图,D 是△ABC 的BC 边上的一点,∠B =40°,∠ADC=80°.(1)求证:AD=BD ;(2)若∠BAC=70°,判断△ABC 的形状,并说明理由.26.如图1,已知A (a ,0),B (0,b )分别为两坐标轴上的点,且a 、b 满足2)60a b b -+-=(,OC ∶OA =1∶3.(1)求A 、B 、C 三点的坐标;(2)若D (1,0),过点D 的直线分别交AB 、BC 于E 、F 两点,设E 、F 两点的横坐标分别为E F x x 、.当BD 平分△BEF 的面积时,求E F x x +的值;(3)如图2,若M (2,4),点P 是x 轴上A 点右侧一动点,AH ⊥PM 于点H ,在HM 上取点G ,使HG =HA ,连接CG ,当点P 在点A 右侧运动时,∠CGM 的度数是否改变?若不变,请求其值;若改变,请说明理由.27.如图,隧道的截面由半圆和长方形构成,长方形的长BC 为8m ,宽AB 为1m ,该隧道内设双向行驶的车道(共有2条车道),若现有一辆货运卡车高4m ,宽2.3m .则这辆货运卡车能否通过该隧道?说明理由.28.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A、B 是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是多少米?参考答案1.C【解析】【分析】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,利用等腰直角三角形的性质得,∠A=∠B=45°,OC ⊥AB ,OC=OA=OB=1,∠OCB=45°,再证明Rt △AOP ≌△COQ 得到AP=CQ ,接着利用△APE 和△BFQ 都为等腰直角三角形得到PE=2AP=2CQ ,QF=2BQ ,所以PE+QF=2BC=1,然后证明MH 为梯形PEFQ 的中位线得到MH=12,即可判定点M 到AB 的距离为12,从而得到点M 的运动路线为△ABC 的中位线,最后利用三角形中位线性质得到点M 所经过的路线长.【详解】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC=BC=2,∠A=∠B=45°, ∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC=OA=OB=1,∴∠OCB=45°, ∵∠POQ=90°,∠COA=90°, ∴∠AOP=∠COQ ,在Rt △AOP 和△COQ 中A OCQ AO COAOP COQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △AOP ≌△COQ ,∴AP=CQ ,易得△APE 和△BFQ 都为等腰直角三角形,∴,BQ ,∴PE+QF=2(CQ+BQ)=2BC=22=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=12(PE+QF)=12,即点M到AB的距离为12,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=12AB=1,故选C.【点睛】本题考查了等腰直角三角形的判定与性质、梯形的中位线、点运动的轨迹,通过计算确定动点在运动过程中不变的量,从而得到运动的轨迹是解题的关键. 2.A【解析】【分析】先求得方程的两根,再把方程两根分别为底可求得三角形的三边长,即可求得答案.【详解】解方程x2−6x+9=1可得x=2或x=4,当△ABC的底为2时,则三角形的三边长为2、4、4,满足三角形三边关系,其周长为10,当△ABC的底为4时,则三角形的三边长为4、2、2,不满足三角形三边关系,舍去,∴△ABC的周长为10.故答案选:A.【点睛】本题考查了三角形的三边关系与等腰三角形的性质以及解一元二次方程,解题的关键是熟练的掌握三角形的三边关系与等腰三角形的性质以及根据因式分解法解一元二次方程.3.C【解析】【分析】已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.【详解】当50°是等腰三角形的顶角时,则底角为(180°﹣50°)×=65°;当50°是底角时也可以.故选C.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.4.C【解析】【分析】根据勾股定理逆定理逐个分析即可.如果a2+b2=c2,那么以a,b,c为边的三角形是直角三角形. 【详解】因为52+122=132;82+152=172;32+42≠72;62+82=102所以,以5,12,13;8,15,17;6,8,10为长度的三条线段能组成直角三角形,以3,4,7为长度的三条线段不能组成直角三角形.故选C【点睛】本题考核知识点:勾股定理逆定理. 解题关键点:熟记勾股定理逆定理.5.A【解析】试题分析:右边的图案中由两种基本图形拼接而成,分别是②⑤,左上方和右下方的基本图形是②,左下方和右上方的基本图形是⑤考点:图形拼接点评:本题考查图形拼接,考查学生的观察图形的能力6.C【解析】【分析】可以构成一个直角三角形三边的一组正整数,称之为勾股数,根据这个概念进行判断即可. 【详解】A:13,14,15不是整数,故其不为勾股数;B:222346+≠,故其不为勾股数;C:22251213+=,故其为勾股数;D:0.9,1.2,1.5不是整数,故其不为勾股数.故选:C.【点睛】考查勾股数的定义,熟练掌握定义是解题的关键.7.B【解析】如图,将△AOB绕B点顺时针旋转60°到△BO′C的位置,由旋转的性质,得BO=BO′,∴△BO′O为等边三角形,由旋转的性质可知∠BO′C=∠AOB=150°,∴∠CO′O=150°-60°=90°,又∵OO′=OB=1,CO′=AO=2,∴在Rt△COO′中,由勾股定理,得OC=2222+=+=.O O O C''125故选B.8.B【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.【详解】①对顶角相等的逆命题是相等的角是对顶角,逆命题错误;②全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确;③如果两个实数是正数,它们的积是正数的逆命题是如果两个数的积为正数,那么这两个数也是正数,逆命题错误,也可以有都是负数,所以逆命题成立的只有一个,故选B.【点睛】本题考查了互逆命题,真命题与假命题,真命题要运用相关知识进行推导,假命题要通过举反例来进行否定.9.C【解析】【分析】点A,C分别在x轴、y轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点O在到AC的中点的距离不变.本题可通过设出AC的中点坐标,根据B、D、O在一条直线上时,点B到原点O的最大可得出答案.【详解】作AC的中点D,连接OD、DB,∵OB≤OD+BD,∴当O、D、B三点共线时OB取得最大值,∵D是AC中点,∴OD=12AC=2, ∵BD=22222=2+,OD=12AC=2, ∴点B 到原点O 的最大距离为2+22, 故选D . 【点睛】此题主要考查了两点间的距离,以及勾股定理的应用,本题的难度较大,理解D 到O 的距离不变是解决本题的关键. 10.C 【解析】∵展开后由勾股定理得:AB 2=12+(1+1)2=5, ∴AB=5, 故选C .【点睛】本题考查了平面展开-最短路径问题,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键. 11.80008【解析】根据镜面对称可得这串数字是80008,故答案为:80008. 12.22.5︒ 12+ (112n -+【解析】∵A 1A 2=A 2A 3,A 1A 2⊥A 2A 3, ∴△A 1A 2A 3为等腰直角三角形, ∴∠A 2A 1A 3=45°, 又AA 1=A 1A 2, ∴∠A =∠AA 2A 1,又∠A 2A 1A 3为△AA 2A 1的外角, ∴∠A =∠AA 2A 1=12∠A 2A 1A 3=22.5°;∵AA1=A1A2=A2A3=1,∴A1A2=a1=1;在Rt△A1A2A3中,根据勾股定理得:A1A3,∴AA3=A3A4=a2=AA1+A1A3;同理AA5=A5A6=a3=AA3+A3A5()=()2;以此类推,a n=()n-1.故答案为:22.5°;;()n-1.点睛:此题考查了等腰直角三角形的性质,勾股定理,以及三角形的外角性质,属于规律型题,锻炼了学生归纳总结的能力,是中考中常考的题型.13.对称轴垂直平分相等【解析】【分析】根据轴对称图形对应点和对应角的性质可解得此题.【详解】根据轴对称图形的性质:轴对称图形对应点连线被对称轴垂直平分,对应角对应线段都相等.【点睛】此题考查了学生轴对称图形知识,掌握轴对称图形的性质是解决此题的关键.14.5或4【解析】【分析】此题分为两种情况:5cm是等腰三角形的底边或5cm是等腰三角形的腰,然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:当5cm是等腰三角形的底边时,则其腰长是(13-5)÷2=4(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是13-5×2=3(cm),能够组成三角形.故答案为:4或5.【点睛】此题考查了等腰三角形的两腰相等的性质与三角形的三边关系,解题时要注意分类讨论思想的运用. 15.30或150 【解析】如图,作AD ⊥BC 于点D ,在Rt △ACD 中,∵AC=3、cos ∠ACB=223,∴CD=ACcos ∠ACB=3×223=22,则AD=()2222322AC CD -=-=1,①若点B 在AD 左侧,∵AB=2、AD=1,∴∠ABC=30°;②若点B 在AD 右侧,则∠AB′D=30°,∴∠AB′C=150°,故答案为30或150.16.96m 2 【解析】试题解析:如图,连接AC .在△ACD 中,∵AD=12m ,CD=9m ,∠ADC=90°, ∴AC=15m ,又∵AC 2+BC 2=152+202=252=AB 2, ∴△ABC 是直角三角形,∴这块地的面积=△ABC 的面积-△ACD 的面积=12×15×20-12×9×12=96(平方米). 故答案为:96m 2. 17.140° 【解析】 【分析】根据等腰三角形的性质和三角形内角和定理可得1902ADB ABD ∠=︒-∠,1902CDB CBD ∠=︒-∠,由于∠ADC=∠ADB+∠CDB ,∠ABC=80°,依此即可求解.【详解】 ∵AB =BC =BD ,∴11909022ADB ABD CDB CBD ,,∠=︒-∠∠=︒-∠ ∴11909022ADC ADB CDB ABD CBD ∠=∠+∠=-∠+-∠11180()1808018040140.22ABD CBD =-∠+∠=-⨯=-=故答案为140. 【点睛】考查等腰三角形的性质以及三角形的内角和,得到190,2ADB ABD ∠=︒-∠ 190,2CDB CBD ∠=︒-∠是解题的关键.18.(5,2)【解析】试题解析:由点P (x ,x+y )与点Q (5,x ﹣7)关于x 轴对称,得 x=5,x+y=7﹣x . 解得x=5,y=﹣3, 点P 的坐标为(5,2).点睛:对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.19.【解析】 【分析】根据运动速度乘以时间,可得P 的位置,根据线段的和差,可得CP 的长,最好根据勾股定理,可得PQ 的长度. 【详解】由题可得:点P 运动2.5秒时,P 点运动了5cm , 此时,点P 在BC 上,853cmCP∴=-=,Rt PCQ中,由勾股定理,得223332cmPQ=+=,故答案为:32.【点睛】本题考查了动点函数图象,依据点P的位置,利用勾股定理进行计算是解题关键.20.74【解析】【分析】A点沿表面到C l共有三种情况,一是经平面AB1,A1C1,二是经平面AB1,BC1,三是经平面AC,BC1,画出三种情况下的图形,并利用勾股定理进行求解,最后比较三个结果,最小的即为答案.【详解】从A点沿表面到C l的情况可以分为以下三种:与A1B1相交,如下图示:此时174AC②与BB1相交,如下图示:此时180AC=③与BC相交,如下图示:此时190AC=综上,从A点沿表面到C l7474【点睛】考查多面体表面上的最短路径问题,利用数形结合思想,根据两点之间,线段最短,用勾股定理求解即可.21.(1)证明见解析;(2)55°.【解析】【分析】(1)根据三角形外角的性质可得到∠CEF=∠BDE,可证△BDE≌△CEF;(2)由(1)可得DE=FE,即△DEF是等腰三角形,由等腰三角形的性质可求出∠B=70°,即∠DEF=∠B=70°,从而求出∠EDF的度数.【详解】(1)∵∠DEC=∠B+∠BDE=∠CEF+∠DEF,∠DEF=∠B,∴∠CEF=∠BDE.∵AB =AC ,∴∠C =∠B .又∵CE =BD ,∴△BDE ≌△CEF . (2)∵△BDE ≌△CEF ,∴DE =FE . ∴△DEF 是等腰三角形,∴∠EDF =∠EFD . ∵AB =AC ,∠A =40°,∴∠B =70°.∵∠DEF =∠B ,∴∠DEF =70°,∴∠EDF =∠EFD =12×(180°﹣70°)=55°. 【点睛】本题考查了等腰三角形的性质和判定、三角形的外角与内角的关系及全等三角形的判定及性质;证得三角形全等是正确解答本题的关键.22.(1)该城市会受到这次台风的影响(2)415小时(3)6.5级 【解析】试题分析:(1)求是否会受到台风的影响,其实就是求A 到BC 的距离是否大于台风影响范围的半径,如果大于,则不受影响,反之则受影响.如果过A 作AD BC ⊥于D ,AD 就是所求的线段 Rt △ABD 中,有ABD ∠的度数,有AB 的长,AD 就不难求出了.(2)受台风影响时,台风中心移动的距离,应该是A 为圆心,台风影响范围的半径为半径,所得圆截得的BC 上的线段的长即EF 得长,可通过在Rt AED △和Rt AFD 中,根据勾股定理求得.有了路程,有了速度,时间就可以求出了.(3)风力最大时,台风中心应该位于D 点,然后根据题目给出的条件判断出时几级风. 试题解析:(1)该城市会受到这次台风的影响。

2022-2023学年浙教版八年级数学上册第2章《特殊三角形》易错题精选(原卷版)

2022-2023学年浙教版八年级数学上册第2章《特殊三角形》易错题精选(原卷版)

保密★启用前2022-2023学年浙教版八年级数学上册第2章《特殊三角形》易错题精选学校:___________姓名:___________班级:___________考号:___________ 注意事项∶1. 答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

2. 所有答案都必须写到答题卷上。

选择题必须使用2B 铅笔填涂;非选择题必须使用黑色字迹的签字笔或钢笔书写,字体要工整,笔迹要清楚。

3.本试卷分试题卷和答题卷两部分,满分100分。

考试时间共90分钟。

一、选择题(本题有10个小题,每小题3分,共30分)1.(本题3分)(2022·浙江衢州·八年级期末)如图图案中,成轴对称图形的是( ) A . B . C . D . 2.(本题3分)(2020·浙江·模拟预测)等腰三角形的两边长为3和8则这个等腰三角形的周长是( )A .14B .19C .14或19D .203.(本题3分)(2021·浙江·八年级期末)如图,在ABC 中,,30AB AC A =∠=︒,直线//,m n 顶点C 在直线n 上,直线m 交AB 于点,D 交AC 于点E ,若1150,∠=︒则2∠的度数是( )A .45B .40C .35D .304.(本题3分)(2020·浙江·绍兴市锡麟中学八年级阶段练习)有下列命题:①对顶角相等;②同位角相等,两直线平行;③若a =b ,则|a|=|b|;④全等三角形的对应角相等.它们的逆命题一定成立的有( )A .①②③④B .①④C .②④D .②5.(本题3分)(2022·浙江杭州·八年级期末)在Rt ABC 中,90ACB ∠=︒,分别以A 点,B 点为圆心以大于12AB 为半径画弧,两弧交于E ,F ,连接EF 交AB 于点D ,连接CD ,以C 为圆心,CD 长为半径作弧,交AC 于G 点,则:CG AB =( )A .B .1:2C .D .6.(本题3分)(2021·浙江杭州·八年级期中)在锐角ABC 中,15AB =,13AC =,高12AD =,则BC 的长度为( )A .16B .15C .14D .137.(本题3分)(2021·浙江湖州·八年级阶段练习)如图,AO ,BO 分别平分CAB ∠,CBA ∠,且点O 到AB 的距离2OD =,ABC 的周长为28,则ABC 的面积为( )A .7B .14C .21D .288.(本题3分)(2022·浙江绍兴·八年级期末)如图,斜靠在墙上的一根竹竿,AB =10m ,BC =6m ,若A 端沿垂直于地面的方向AC 下移2m ,则B 端将沿CB 方向移动的距离是( )米.A .1.6B .1.8C .2D .2.29.(本题3分)(2022·浙江宁波·八年级期末)如图,△ABC 中,90ACB ∠=,以其三边分别向外侧作正方形,然后将整个图形放置于如图所示的长方形中,若要求图中两个阴影部分面积之和,则只需知道( )A .以BC 为边的正方形面积B .以AC 为边的正方形面积 C .以AB 为边的正方形面积D .△ABC 的面积10.(本题3分)(2022·浙江绍兴·八年级期末)在Rt △ABC 中,AC =3,BC =4,∠ACB=90°,点P ,Q 分别是边AB 和BC 上的动点,始终保持AP =BQ ,连接AQ ,CP ,则AQ CP+的最小值为( )A .BC .D .6二、填空题(本题有7个小题,每小题3分,共21分)11.(本题3分)(2021·浙江宁波·八年级期中)等腰三角形的顶角是40°,则底角的度数为________°.12.(本题3分)(2019·浙江杭州·八年级期末)如图,已知O 是等边△ABC 内一点,D 是线段BO 延长线上一点,且 OD OA =,AOB ∠=120°,那么BDC ∠=_____.13.(本题3分)(2022·浙江·台州市书生中学八年级期中)已知直角三角形的两边长分别为3和4,则斜边上的中线长为______.14.(本题3分)(2021·浙江·乐清市英华学校八年级期中)课本第78页阅读材料《从勾股定理到图形面积关系的拓展》中有如下问题:如图①分别以直角三角形的三条边为边,向形外分别作正三角形,则图中的S 1,S 2,S 3满足的数量关系是S 1+S 2=S 3.现将△ABF 向上翻折,如图②,已知S 甲=9,S 乙=8,S 丙=7,则△ABC 的面积是______ .15.(本题3分)(2021·浙江·杭州英特外国语学校八年级期中)如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于D ,DE ⊥AB 于E ,且AB =8cm ,则△BED 的周长是______.16.(本题3分)(2022·浙江·浦江县实验中学八年级期中)图1是一张可以折叠的小床展开后支撑起来放在地面的示意图,此时点A 、B 、C 在同一直线上,且∠ACD =90°,图2是小床支撑脚CD 折叠的示意图,在折叠过程中,△ACD 变形为四边形ABC'D',最后折叠形成一条线段BD ''.某家装厂设计的折叠床是AB =4cm ,BC =8cm , (1)此时CD 为_________ cm ;(2)折叠时,当AB ⊥BC′时,四边形ABC′D′的面积为_______cm 2 .17.(本题3分)(2022·浙江宁波·八年级期末)如图,△ABC 中,13AB AC ==,24BC =,点D 在BC 上()BD CD >,△AED 与△ACD 关于直线AD 轴对称,点C 的对称点是点E ,AE 交BC 于点F ,连结BE ,CE . 当DE BC ⊥时,∠ADE 的度数为________,CE 的长为________.三、解答题(请写出必要的解题过程,本题共6个小题,共49分)18.(本题6分)(2019·浙江·八年级期中)如图,在△ABC 中,AB =BC ,∠ABC =90°,点E 在BC 上,点F 在AB 的延长线上,且AE =CF .(1)求证:△ABE ≌△CBF .(2)若∠ACF =70°,求∠EAC 的度数.19.(本题8分)(2022·浙江嘉兴·八年级期末)如图,在7×7的正方形网格中,A ,B 两点都在格点上,连结AB ,请完成下列作图:(1)在图1中找一个格点C,使得△ABC是等腰三角形(作一个即可);(2)在图2中找一个格点D,使得△ABD是以AB为直角边的直角三角形(作一个即可).20.(本题8分)(2022·浙江绍兴·八年级期末)如图,在△ABC中,AB=AC,点D在AC 边上(不与A,C重合),连接BD,BD=AB.(1)设∠C=α,∠ABD=β.①当α=50°时,求β.②直接写出β与α之间的等量关系及α的取值范围.(2)若AB=5,BC=6,求AD的长.21.(本题8分)(2022·浙江宁波·八年级期末)如图,M,N分别为锐角AOB∠边OA,OB上的点,把AOB∠所在平面内的点C处.∠沿MN折叠,点O落在AOB(1)如图1,点C 在AOB ∠的内部,若20CMA ∠=︒,50CNB ∠=︒,求AOB ∠的度数.(2)如图2,若45AOB ∠=︒,ON =折叠后点C 在直线OB 上方,CM 与OB 交于点E ,且MN ME =,求折痕MN 的长.(3)如图3,若折叠后,直线MC OB ⊥,垂足为点E ,且5OM =,3ME =,求此时ON 的长.22.(本题9分)(2022·浙江杭州·八年级期末)如图,C 是线段BD 上的一点,以,BC CD 为斜边在线段BD 同侧作等腰直角三角形ABC 和CDE △,过D 作DF DE ⊥于点D ,且DF AB =,连接AF 交BD 于点G ,连接,AE EF .(1)求证:AGB FGD △≌△;(2)请判断AEF 的形状,并说明理由;(3)请写出CAG ∠与DEF ∠的数量关系,并说明理由.23.(本题10分)(2022·浙江宁波·八年级期末)如果平面内一点到三角形的三个顶点的距离中,最长距离的平方等于另两个距离的平方和,则称这个点为该三角形的勾股点,如图1,平面内有一点P 到△ABC 的三个顶点的距离分别为P A 、PB 、PC ,若,PC PA PC PB >>,且222PC PA PB =+,则点P 就是△ABC 的勾股点.⨯的方格纸中,每个小正方形的边长均为1,△ABC的顶点在格点(小(1)如图2,在32正方形的顶点)上,格点P是△ABC的勾股点吗?请说明理由;(2)如图3,△ABC为等边三角形,过点A作AB的垂线,点E在该垂线上,以CE为边在其右侧作等边△CDE,连结AD.①求证:点A是△CDE的勾股点;②若AC=1AE=,直接写出等边△CDE的边长.。

2020年浙教新版八年级上册数学《第2章特殊三角形》单元测试卷(解析版)

2020年浙教新版八年级上册数学《第2章特殊三角形》单元测试卷(解析版)

2020年浙教新版八年级上册数学《第2章特殊三角形》单元测试卷一.选择题(共10小题)1.下列判定直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等2.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°3.具备下列条件的三角形为等腰三角形的是()A.有两个角分别为20°,120°B.有两个角分别为40°,80°C.有两个角分别为30°,60°D.有两个角分别为50°,80°4.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°5.下面算式中,每个汉字代表0,l,2,…,9中的一个数字,不同的汉字代表不同的数字.算式中的乘数应是()A.2B.3C.4D.≥56.如图所示,∠MON=45°,点P为∠MON内一点,点P关于OM、ON对称的对称点分别为点P1、P2,连接OP、OP1、OP2、PP1、PP2、P1P2,P1P2分别与OM、ON交于点A、B,连接AP,BP,则∠APB的度数为()A.45°B.90°C.135°D.150°7.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B'恰好落在CD上,若∠BAD =α,则∠ACB的度数为()A.45°B.α﹣45°C.αD.90°﹣α8.以下是几种垃圾分类的图标,其中是轴对称图形的是()A.B.C.D.9.下列图形中轴对称图形是()A.B.C.D.10.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°二.填空题(共8小题)11.如果两个直角三角形的分别对应相等,那么这两个直角三角形全等.12.已知,等腰△ABC中,AB=AC,∠BAC=120°,P为直线BC上一点,BP=AB,则∠APB的度数为.13.用反证法证明“两条直线相交,只能有一个交点”,应假设.14.用反证法证明“三角形中必有一个内角不小于60°”,应当先假设这个三角形中.15.如图,四边形ABCD中,AB=BC,点C关于BD的对称点E恰好落在AD上,若∠BDC =α,则∠ABC的度数为(用含a的代数式表示).16.已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,连接P1P2交OA、OB于E、F,若P1E=,OP=,则EF的长度是.17.写出一个成轴对称图形的大写英文字母:.18.下列说法中,正确的有(把所有正确的答案都写上)①圆、线段、角、梯形、平行四边形都是轴对称图形;②若两图形成轴对称,则对称轴两侧的对应点所连成的线段被对称轴垂直平分;③如果三角形中有两边上的高相等,则这个三角形一定是等腰三角形;④等腰三角形顶角的外角平分线与底边平行;⑤等腰三角形的一个内角为80°,则另外两个内角必然都是50°.三.解答题(共8小题)19.如图:AB=AD,∠ABC=∠ADC=90°,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF.求证:Rt△BCE≌Rt△DCF.20.综合与实践:问题情境:已知在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D为直线BC上的动点(不与点B,C重合),点E在直线AC上,且AE=AD,设∠DAC=n.(1)如图1,若点D在BC边上,当n=36°时,求∠BAD和∠CDE的度数;拓广探索:(2)如图2,当点D运动到点B的左侧时,其他条件不变,试猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动点C的右侧时,其他条件不变,请直接写出∠BAD和∠CDE的数量关系.21.如图,已知AB∥CD,CD⊥EF,垂足为N,AB与EF交于点M,求证:AB⊥EF.(用反证法证明)22.用反证法证明:如果x>,那么x2+2x﹣1≠0.23.等边三角形有条对称轴.24.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?25.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点,并求出BF的长;(2)△AEF与四边形ABCD重叠部分的面积为.26.如图,一个牧童在距小河边1千米的点A处牧马,而牧童家在河边同侧且距河边7千米的点B处,已知点A与点B的直线距离是10千米.他想先把马牵到河边去饮水,然后再回家,求他要完成这件事情所走的最短路程是多少千米.(精确到0.1千米,参考数据:≈1.41,≈1.73)2020年浙教新版八年级上册数学《第2章特殊三角形》单元测试卷参考答案与试题解析一.选择题(共10小题)1.下列判定直角三角形全等的方法,错误的是()A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等【分析】根据全等三角形的判定方法对A、B、C、D选项逐个分析是否可求证两三角形全等,然后即可得出正确选项.【解答】解:如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确.如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS也可判断两三角形全等,故选项B正确.如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL也可判断两三角形全等,故选项C正确.故选:D.【点评】此题主要考查学生对直角三角形全等得判定的理解和掌握,解得此题的关键是根据A、B、C选项给出的已知条件都可判断出三角形全等,所以答案就很明显了.2.若等腰△ABC中有一个内角为40°,则这个等腰三角形的一个底角的度数为()A.40°B.100°C.40°或100°D.40°或70°【分析】由于不明确40°的角是等腰三角形的底角还是顶角,故应分40°的角是顶角和底角两种情况讨论.【解答】解:当40°的角为等腰三角形的顶角时,底角的度数==70°;当40°的角为等腰三角形的底角时,其底角为40°,故它的底角的度数是70°或40°.故选:D.【点评】此题主要考查学生对等腰三角形的性质这一知识点的理解和掌握,由于不明确40°的角是等腰三角形的底角还是顶角,所以要采用分类讨论的思想.3.具备下列条件的三角形为等腰三角形的是()A.有两个角分别为20°,120°B.有两个角分别为40°,80°C.有两个角分别为30°,60°D.有两个角分别为50°,80°【分析】分别求出第三个内角的度数,即可得出结论.【解答】解:A、有两个角分别为20°,120°的三角形,第三个内角为180°﹣120°﹣20°=40°,∴有两个角分别为20°,120°的三角形不是等腰三角形,选项A不符合题意;B、有两个角分别为40°,80°的三角形,第三个内角为180°﹣40°﹣80°=60°,∴有两个角分别为40°,80°的三角形不是等腰三角形,选项B不符合题意;C、有两个角分别为30°,60°的三角形,第三个内角为180°﹣30°﹣60°=90°,∴有两个角分别为30°,60°的三角形不是等腰三角形,选项C不符合题意;D、有两个角分别为50°,80°的三角形,第三个内角为180°﹣50°﹣80°=50°,有两个角相等,是等腰三角形;∴有两个角分别为50°,80°的三角形是等腰三角形,选项D符合题意;故选:D.【点评】本题考查了等腰三角形的判定以及三角形内角和定理;熟练掌握三角形内角和定理和等腰三角形的判定是解题的关键.4.反证法证明“三角形中至少有一个角不小于60°”先应假设这个三角形中()A.有一个内角小于60°B.每个内角都小于60°C.有一个内角大于60°D.每个内角都大于60°【分析】此题要运用反证法,由题意先假设三角形的三个角都小于60°成立.然后推出不成立.得出选项.【解答】解:设三角形的三个角分别为:a,b,c.假设,a<60°,b<60°,c<60°,则a+b+c<60°+60°+60°,即,a+b+c<180°与三角形内角和定理a+b+c=180°矛盾.所以假设不成立,即三角形中至少有一个角不小于60°.故选:B.【点评】此题考查的知识点是反证法,解答此题的关键是由已知三角形中至少有一个角不小于60°假设都小于60°进行论证.5.下面算式中,每个汉字代表0,l,2,…,9中的一个数字,不同的汉字代表不同的数字.算式中的乘数应是()A.2B.3C.4D.≥5【分析】对于一个命题,当使用直接证法比较困难时,可以采用间接证法,反证法就是一个间接证法.【解答】解:假设:“好”≥5,则“客”=1,故“好“=7或9.若“好”=7,则“居“=3,引出矛盾;假设:“好“=9,则“居’’=9,引出矛盾.故“好’’≤4.显然“好“≠1;假设:“好”=2,则“客”≤4,只有“客“=4,从而“居”=7,引出矛盾;假设:“好”=3,则“客“≤2,但若“客”=1,则“居”=7,引出矛盾;假设:“客“=2,则“居“=4,引出矛盾.故只有“好”=4.故选:C.【点评】本题考查了用反证法证明命题的正确性,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.6.如图所示,∠MON=45°,点P为∠MON内一点,点P关于OM、ON对称的对称点分别为点P1、P2,连接OP、OP1、OP2、PP1、PP2、P1P2,P1P2分别与OM、ON交于点A、B,连接AP,BP,则∠APB的度数为()A.45°B.90°C.135°D.150°【分析】依据轴对称的性质,即可得到∠APO=∠AP1O,∠AOP=∠AOP1,∠BPO=∠BP2O,∠BOP=∠BOP2,进而得出∠OP1P2+∠OP2P1=90°,再根据∠APB=∠APO+∠BPO=∠AP1O+∠BP2O,即可得出结论.【解答】解:由轴对称可得,OP=OP1、AP=AP1,而AO=AO,∴△AOP≌△AOP1(SSS),∴∠APO=∠AP1O,∠AOP=∠AOP1,同理可得,∠BPO=∠BP2O,∠BOP=∠BOP2,∴∠P1OP2=2∠AOB=90°,∴∠OP1P2+∠OP2P1=90°,∴∠APB=∠APO+∠BPO=∠AP1O+∠BP2O=90°,故选:B.【点评】本题主要考查了轴对称的性质,轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.7.如图,四边形ABCD中,AB=AD,点B关于AC的对称点B'恰好落在CD上,若∠BAD =α,则∠ACB的度数为()A.45°B.α﹣45°C.αD.90°﹣α【分析】连接AB',BB',过A作AE⊥CD于E,依据∠BAC=∠B'AC,∠DAE=∠B'AE,即可得出∠CAE=∠BAD=,再根据四边形内角和以及三角形外角性质,即可得到∠ACB=∠ACB'=90°﹣.【解答】解:如图,连接AB',BB',过A作AE⊥CD于E,∵点B关于AC的对称点B'恰好落在CD上,∴AC垂直平分BB',∴AB=AB',∴∠BAC=∠B'AC,∵AB=AD,∴AD=AB',又∵AE⊥CD,∴∠DAE=∠B'AE,∴∠CAE=∠BAD=,又∵∠AEB'=∠AOB'=90°,∴四边形AOB'E中,∠EB'O=180°﹣,∴∠ACB'=∠EB'O﹣∠COB'=180°﹣﹣90°=90°﹣,∴∠ACB=∠ACB'=90°﹣,故选:D.【点评】本题主要考查了轴对称的性质,四边形内角和以及三角形外角性质的运用,解决问题的关键是作辅助线构造四边形AOB'E,解题时注意:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.8.以下是几种垃圾分类的图标,其中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念判断.【解答】解:A、不是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选:B.【点评】本题考查的是轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9.下列图形中轴对称图形是()A.B.C.D.【分析】根据轴对称图形的概念判断即可.【解答】解:A、不是轴对称图形;B、不是轴对称图形;C、是轴对称图形;D、不是轴对称图形;故选:C.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.10.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°【分析】分别作点P关于OA、OB的对称点P1、P2,连P1、P2,交OA于M,交OB于N,△PMN的周长=P1P2,然后得到等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,即可得出∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°.【解答】解:分别作点P关于OA、OB的对称点P1、P2,连接P1P2,交OA于M,交OB于N,则OP1=OP=OP2,∠OP1M=∠MPO,∠NPO=∠NP2O,根据轴对称的性质,可得MP=P1M,PN=P2N,则△PMN的周长的最小值=P1P2,∴∠P1OP2=2∠AOB=80°,∴等腰△OP1P2中,∠OP1P2+∠OP2P1=100°,∴∠MPN=∠OPM+∠OPN=∠OP1M+∠OP2N=100°,故选:B.【点评】本题考查了轴对称﹣最短路线问题,正确正确作出辅助线,得到等腰△OP1P2中∠OP1P2+∠OP2P1=100°是关键.凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.二.填空题(共8小题)11.如果两个直角三角形的两条直角边分别对应相等,那么这两个直角三角形全等.【分析】直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL,添加条件AC=DE,BC=EF,根据SAS推出两三角形全等即可.【解答】解:如图所示∵在Rt△ACB和Rt△DEF中,∴Rt△ACB≌Rt△DEF(SAS).故答案为:两条直角边.【点评】本题考查了直角三角形全等的判定,注意:直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL,此题是一道开放性的题目,答案不唯一.12.已知,等腰△ABC中,AB=AC,∠BAC=120°,P为直线BC上一点,BP=AB,则∠APB的度数为75°或15°.【分析】首先根据题意画出图形,然后利用等腰三角形的性质求解即可求得答案,注意分为点P在边BC上或在CB的延长线上.【解答】解:如图1,∵在等腰△ABC中,AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵BP=AB,∴∠APB==75°;如图2,在等腰△ABC中,AB=AC,∠BAC=120°,∴∠ABC=∠C=30°,∵BP=AB,∴∠APB=∠ABC=15°.综上所述:∠APB的度数为75°或15°.故答案为:75°或15°.【点评】此题考查了等腰三角形的性质.注意结合题意画出图形,利用图形求解是关键.13.用反证法证明“两条直线相交,只能有一个交点”,应假设两条直线相交,有两个或两个以上交点.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行解答.【解答】解:用反证法证明“两条直线相交,只能有一个交点”,应假设两条直线相交,有两个或两个以上交点,故答案为:两条直线相交,有两个或两个以上交点.【点评】本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.14.用反证法证明“三角形中必有一个内角不小于60°”,应当先假设这个三角形中三角形中每一个内角都小于60°.【分析】反证法的第一步是假设命题的结论不成立,据此可以得到答案.【解答】解:用反证法证明“三角形中必有一个内角不小于60°”时,应先假设三角形中每一个内角都小于60°.故答案为:三角形中每一个内角都小于60°.【点评】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.15.如图,四边形ABCD中,AB=BC,点C关于BD的对称点E恰好落在AD上,若∠BDC =α,则∠ABC的度数为180°﹣2α(用含a的代数式表示).【分析】依据轴对称的性质,即可得出△BCD≌△BED,∠A=∠AEB,再根据四边形ABCD 中,∠ABC+∠ADC=180°,∠ADC=2∠BDC=2α,即可得到∠ABC=180°﹣2α.【解答】解:如图所示,连接BE,∵点C关于BD的对称点E恰好落在AD上,∴BC=BE=AB,DE=DC,∴△BCD≌△BED,∠A=∠AEB,∴∠BCD=∠BED,又∵∠BED+∠AEB=180°,∴∠A+∠BCD=180°,∴四边形ABCD中,∠ABC+∠ADC=180°,又∵∠ADC=2∠BDC=2α,∴∠ABC=180°﹣2α,故答案为:180°﹣2α.【点评】本题主要考查了轴对称的性质以及四边形内角和的运用,如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.16.已知∠AOB=45°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,连接P1P2交OA、OB于E、F,若P1E=,OP=,则EF的长度是.【分析】由P,P1关于直线OA对称,P、P2关于直线OB对称,推出OP=OP1=OP2,∠AOP=∠AOP1,∠BOP=∠BOP2,推出∠P1OP2=90°,由此即可判断△P1OP2是等腰直角三角形,由轴对称可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,进而得出∠EPF=90°,最后依据勾股定理列方程,即可得到EF的长度.【解答】解:∵P,P1关于直线OA对称,P、P2关于直线OB对称,∴OP=OP1=OP2=,∠AOP=∠AOP1,∠BOP=∠BOP2,∵∠AOB=45°,∴∠P1OP2=2∠AOP+2∠BOP=2(∠AOP+∠BOP)=90°,∴△P1OP2是等腰直角三角形,∴P1P2==2,设EF=x,∵P1E==PE,∴PF=P2F=﹣x,由轴对称可得,∠OPE=∠OP1E=45°,∠OPF=∠OP2F=45°,∴∠EPF=90°,∴PE2+PF2=EF2,即()2+(﹣x)2=x2,解得x=.故答案为:.【点评】本题考查轴对称的性质、等腰直角三角形的判定等知识,解题的关键是灵活运用对称的性质解决问题,依据勾股定理列方程求解.17.写出一个成轴对称图形的大写英文字母:A、B、D、E中的任一个均可.【分析】根据轴对称图形的概念,分析得出可以看成轴对称图形的字母.【解答】解:大写字母是轴对称的有:A、B、D、E等.故答案可为:A、B、D、E中的任一个均可.【点评】此题考查了轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,难度一般.18.下列说法中,正确的有②③④(把所有正确的答案都写上)①圆、线段、角、梯形、平行四边形都是轴对称图形;②若两图形成轴对称,则对称轴两侧的对应点所连成的线段被对称轴垂直平分;③如果三角形中有两边上的高相等,则这个三角形一定是等腰三角形;④等腰三角形顶角的外角平分线与底边平行;⑤等腰三角形的一个内角为80°,则另外两个内角必然都是50°.【分析】根据轴对称图形的定义判断①②;根据等腰三角形的判定判断③;根据平行线的判定判断④;根据等腰三角形线段的性质判断⑤.【解答】解:①梯形、平行四边形不是轴对称图形,故本项错误;②若两图形成轴对称,则对称轴两侧的对应点所连成的线段被对称轴垂直平分,本项正确;③如果三角形中有两边上的高相等,则这个三角形一定是等腰三角形,本项正确;④等腰三角形顶角的外角平分线与底边平行,本项正确;⑤等腰三角形的一个内角为80°,则另外两个内角为50°,50°或80°,20°,故本项错误,故答案为:②③④.【点评】本题主要考查了轴对称图形的定义、等腰三角形的判定、平行线的判定、等腰三角形线段的性质.熟练掌握定理及性质是解题的关键.三.解答题(共8小题)19.如图:AB=AD,∠ABC=∠ADC=90°,EF过点C,BE⊥EF于E,DF⊥EF于F,BE=DF.求证:Rt△BCE≌Rt△DCF.【分析】连接BD,根据等腰三角形的性质和判定,求出BC=DC,根据直角三角形全等的判定定理HL推出两三角形全等即可.【解答】证明:连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC=90°,∴∠CBD=∠CDB,∴BC=DC,∵BE⊥EF,DF⊥EF,∴∠E=∠F=90°,在Rt△BCE和Rt△DCF中,∴Rt△BCE≌Rt△DCF(HL).【点评】本题考查了等腰三角形的性质和判定,直角三角形全等的判定的应用,主要培养学生运用定理进行推理的能力,题型较好,难度适中.20.综合与实践:问题情境:已知在△ABC中,∠BAC=100°,∠ABC=∠ACB,点D为直线BC上的动点(不与点B,C重合),点E在直线AC上,且AE=AD,设∠DAC=n.(1)如图1,若点D在BC边上,当n=36°时,求∠BAD和∠CDE的度数;拓广探索:(2)如图2,当点D运动到点B的左侧时,其他条件不变,试猜想∠BAD和∠CDE的数量关系,并说明理由;(3)当点D运动点C的右侧时,其他条件不变,请直接写出∠BAD和∠CDE的数量关系.【分析】(1)如图1,将∠BAC=100°,∠DAC=36°代入∠BAD=∠BAC﹣∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=104°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=72°,那么∠CDE=∠ADC﹣∠ADE=32°;(2)如图2,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB﹣∠AED=,再由∠BAD=∠BAC﹣∠DAC得到∠BAD=n﹣100°,从而得出结论∠BAD =2∠CDE;(3)如图3,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD﹣∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【解答】解:(1)∠BAD=∠BAC﹣∠DAC=100°﹣36°=64°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+64°=104°.∵AE=AD,∴∠ADE=∠AED.∵∠DAC=36°,∴∠ADE=∠AED=72°.∴∠CDE=∠ADC﹣∠ADE=104°﹣72°=32°.(2)∠BAD=2∠CDE.理由如下:在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴.∵∠ACB=∠CDE+∠E,∴=.∵∠BAC=100°,∠DAC=n,∴∠BAD=n﹣100°.∴∠BAD=2∠CDE.(3)∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=.∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD﹣∠AED=140°﹣=,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点评】本题考查了等腰三角形的性质,三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.21.如图,已知AB∥CD,CD⊥EF,垂足为N,AB与EF交于点M,求证:AB⊥EF.(用反证法证明)【分析】根据反证法的一般步骤,假设AB与EF不垂直,根据平行线的性质证明∠CNE ≠90°,与已知相矛盾,从而肯定原命题的结论正确.【解答】证明:假设AB与EF不垂直,则∠AME≠90°,∵AB∥CD,∴∠AME=∠CNE,∴∠CNE≠90°,这与CD⊥EF相矛盾,∴AB⊥EF.【点评】本题考查的是反证法的应用,反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.22.用反证法证明:如果x>,那么x2+2x﹣1≠0.【分析】假设x2+2x﹣1=0,根据一元二次方程的解法解出方程,证明方程的两个根小于即可.【解答】解:假设x2+2x﹣1=0,x=,x1=﹣1+,x2=﹣1﹣,∵2,∴,∴﹣1+,∴x1<,易得x2<,这与已知相矛盾,∴假设不成立,∴如果x>,那么x2+2x﹣1≠0.【点评】本题考查的是反证法的应用,反证法的步骤是:假设结论不成立;从假设出发推出矛盾;假设不成立,则结论成立.23.等边三角形有3条对称轴.【分析】轴对称就是一个图形的一部分,沿着一条直线对折,能够和另一部分重合,这样的图形就是轴对称图形,这条直线就是对称轴,依据定义即可求解.【解答】解:等边三角形有3条对称轴.故答案为:3【点评】本题考查了轴对称的性质,正确理解轴对称图形的定义是解决本题的关键,是一个基础题.24.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?【分析】根据轴对称、轴对称图形的概念以及对称轴的概念进行解答即可.【解答】解:图中有阴影的三角形与三角形1、3成轴对称,整个图形是轴对称图形,它共有2条对称轴.【点评】本题考查的是轴对称和轴对称图形的概念,掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴是解题的关键.25.如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点,并求出BF的长;(2)△AEF与四边形ABCD重叠部分的面积为6.【分析】(1)根据轴对称的性质确定出点B关于AE的对称点F即可;(2)即DC与EF的交点为G,由四边形ADGE的面积=平行四边形ADCE的面积﹣△ECG的面积求解即可.【解答】解:(1)如图1所示:在Rt△BEF中,由勾股定理得:BF===6.(2)如图2所示:重叠部分的面积=S ADEC﹣S△GEC=×(2+2)×4﹣=8﹣2=6.故答案为:6.是解题的【点评】本题主要考查的是轴对称变换,重叠部分的面积转化为S ADEC﹣S△GEC 关键.26.如图,一个牧童在距小河边1千米的点A处牧马,而牧童家在河边同侧且距河边7千米的点B处,已知点A与点B的直线距离是10千米.他想先把马牵到河边去饮水,然后再回家,求他要完成这件事情所走的最短路程是多少千米.(精确到0.1千米,参考数据:≈1.41,≈1.73)【分析】根据对称性,作点A关于小河l的对称点A′,连接A′B,则A′B的长度就是牧童完成这件事情所走的最短路线.【解答】解:过点A作点A关于小河l的对称点A′,连接A′B,与小河l交于点P,点P就是马饮水的地方.则A′B的长度就是牧童完成这件事情所走的最短路线.过点A、A′分别作l的平行线与过点B作的l的垂线分别相交于M、N两点,如图所示:在Rt△ABM中,AB=10,BM=6,∴AM=8,在Rt△BNA′中,A′N=AM=8,BN=BM+MN=6+2=8,∴A′B==8≈11.3.答:他要完成这件事情所走的最短路程是11.3千米.【点评】本题考查了最短路线问题、近似数和有效数字,解决本题的关键是掌握轴对称性质.。

浙教版八年级数学上《第2章特殊三角形》单元测试含答案

浙教版八年级数学上《第2章特殊三角形》单元测试含答案

第2章特殊三角形一、选择题1.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°2.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°3.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°4.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°5.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9 C.12或9 D.9或76.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或127.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或128.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80° B.90° C.100°D.105°9.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.14710.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6或8 D.7或811.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1712.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°13.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.1814.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30° B.45° C.60° D.90°15.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°16.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或1717.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36° B.54° C.18° D.64°18.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36° B.60° C.72° D.108°19.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°20.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()A .B .C .D .二、填空题21.等腰三角形的一个外角是60°,则它的顶角的度数是______.22.如图,△ABC 中,D 是BC 上一点,AC=AD=DB ,∠BAC=102°,则∠ADC=______度.23.如图,a ∥b ,∠ABC=50°,若△ABC 是等腰三角形,则∠α=______°(填一个即可)24.一个等腰三角形的两边长分别是2cm 、5cm ,则它的周长为______cm .25.若等腰三角形的两条边长分别为7cm 和14cm ,则它的周长为______cm .26.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是______.27.如图,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=______.第2章特殊三角形参考答案一、选择题1.D;2.C;3.A;4.A;5.A;6.B;7.C;8.B;9.B;10.D;11.A;12.B;13.A;14.B;15.A;16.D;17.B;18.C;19.A;20.A;二、填空题21.120°;22.52;23.130;24.12;25.35;26.110°或70°;27.9;。

浙教版八上第二章:特殊三角形知识点复习

浙教版八上第二章:特殊三角形知识点复习

类型之一轴对称及轴对称图形1.下列图形中,是轴对称图形的为()A B C D2.如图2-1,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD 的周长为____.(第2题图)(第8题图)(第9题图)类型之二等腰三角形的性质与判定3. 等腰三角形的一个角是80°,则它的顶角度数是.4.已知实数x,y满足|x-4|+y-8=0,则以x,y的值为两边长的等腰三角形的周长_____ 5.等腰三角形的周长为40,其中一边长为15,那么它的底边长为.6.等腰三角形一腰上的高线与另一腰的夹角为30°,则顶角的度数为_______.7.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,则腰长为,底边长为.8.如图2-3,在△ABC中,△ABC=63°,点D,E分别是△ABC的边BC,AC上的点,且AB=AD=DE=EC,则△C的度数是()A.21°B.19°C.18°D.17°9.已知等边三角形ABC的边长为12,D是AB上的动点,过D作DE△AC于点E,过E作EF△BC于点F,过F作FG△AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.910.如图,点C ,E 和点B ,D ,F 分别在△GAH 的两边上,且AB =BC =CD =DE =EF.若△A =18°,则△GEF 的度数是 .11.如图,在等腰△ABC 中,△ABC =90°,D 为AC 边上的中点,过点D 作DE △DF ,交AB 于点E ,交BC 于点F .若AE =4,FC =3,则EF 的长为 .12.如图,在等边三角形ABC 中,D ,E 分别为AB ,BC 边上的两动点,且总使AD =BE ,AE 与CD 交于点F ,AG△CD 于点G ,则△FAG = .13.△ABC ,△CDE 均为等边三角形,BD ,AE 交于点O ,BC 与AE 交于点P .求证:△AOB =60°.14.已知:在△ABC 中,AD △BC ,垂足为D ,BE △AC ,垂足为E ,M 为AB 边的中点,连结ME ,MD ,ED .求证: (1)△MED 为等腰三角形; (2)△EMD =2△DAC .(第13题图)(第14题图)(第11题图)(第10题图)(第12题图)类型之三 勾股定理的应用1.将下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( ) A.3,4, 5 B .1,2,3 C .6,7,8 D .2,3,4 2.若一个三角形的三边长a ,b ,c 满足(a +c )(a -c )=b 2,则该三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .都有可能3.如图,以三角形的三边长为直径向外作三个半圆,若较小的两个半圆的面积之和等于较大的半圆的面积,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形 4.如图,在5×5的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数是( )A. 6B. 7C. 8D. 95.四个全等的直角三角形按图2-7的方式围成正方形ABCD ,过各较长直角边的中点作垂线,围成面积为S 的小正方形EFGH .己知AM 为Rt△ABM 较长直角边,AM =22EF ,则正方形ABCD 的面积为( ) A .12S B .10S C .9S D .8S6.在△ABC 中,BC =42,AB =9,AC =7,则△C =_____.7. 某个直角三角形斜边上的中线是5 cm ,其周长为24 cm ,则此三角形的面积是____cm 2. 8.若三角形的三边长分别为n +1,n +2,n +3,当n =____时,这个三角形是直角三角形. 9.在△ABC 中,AB =AC =12,BC =12,则BC 边上的中线AD =_____.10.△ACB =90°,AB =5,AC =3,CD 是AB 边上的高线,则CD =_____.11.一张三角形纸片ABC ,△C =90°,AC =8 cm ,BC =6 cm ,现将纸片折叠:使点A 与点B 重合,那么折痕长等于____cm.(第11题图)(第9题图)(第10题图)(第5题图)(第3题图)(第4题图)12.如图是一块地的平面示意图,已知AD =4 m ,CD =3 m ,AB =13 m ,BC =12 m ,△ADC =90°,则这块地的面积为__ _m 2.13.如图,长方体的底面边长分别为 2 cm 和 4 cm ,高为5 cm.若一只蚂蚁从点P 开始经过4个侧面爬行一圈到达点Q ,则蚂蚁爬行的最短路径长为____cm.14.如图,在△ABC 中,CD 是边AB 上的高线,BC =2,CD =3,AC =2 3.求证:△ABC 是直角三角形.15.如图,已知AC △BC ,垂足为C ,AC =4,BC =33,将线段AC 绕点A 按逆时针方向旋转60°,得到线段AD ,连结DC ,DB . (1)线段DC =____; (2)求线段DB 的长度.16.如图△,一架梯子AB 长2.5 m ,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5 m ,梯子滑动后停在DE 的位置上,如图△所示,测得BD =0.5 m ,求梯子顶端A 下滑的距离.类型之四 直角三角形(第13题图)(第12题图)1.在全等三角形的判定方法中,一般三角形不具有,而直角三角形具有的判定方法是( ) A .SSS B .SAS C .ASA D .HL 2.如图,用“HL ”判定Rt △ABC 和Rt △DEF 全等的条件可以是( ) A .AC =DF ,BC =EF B .△A =△D ,AB =DE C .AC =DF ,AB =DE D .△B =△E ,BC =EF3.如图,已知AD 是△ABC 的BC 边上的高,下列能使△ABD△△ACD 的条件是( ) A .AB =AC B .△BAC =90° C .BD =AC D .△B =45°4.如图,P 是AD 上一点,PE △AC 于点E ,PF △AB 于点F .若PE =PF ,△CAD =20°,则△BAD 为( ) A. 10° B. 20° C. 30° D. 40°5.已知点P 在△BAC 的角平分线OD 上,且PE △AB 于点E,PF △AC 于点F .若PE =3cm,则PF = cm. 6.如果Rt△ABC △Rt△DEF ,AC =DF =4,AB =7, △C =△F =90°,则DE = ,EF = .7.如图,AB =AC ,CD △AB 于点D ,BE △AC 于点E ,BE 与CD 相交于点O ,图中有 对全等的直角三角形.8.如图,CA △AB ,垂足为点A ,AB =8 cm ,AC =4 cm ,射线BM △AB ,垂足为点B ,一动点E 从A 点出发以2 cm /s 的速度沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED =CB ,当点E 运动 秒时,△DEB 与△BCA 全等.9.如图,Rt △ABC 中,△ACB 是直角,D 是AB 上一点,BD =BC ,过D 作AB 的垂线交AC 于点E ,求证:CD △BE .10.在Rt△ABC 中,△A =90°,D 为斜边BC 上一点,且BD =BA ,过点D 作BC 的垂线交AC 于点E .求(第2题图)(第4题图)(第3题图)(第8题图)(第7题图)(第9题图)证:点E在△ABC的平分线上.11.如图,在△ABC中,AB=CB,△ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE△Rt△CBF;(2)若△CAE=30°,求△ACF的度数.(第11题图)12.(1)如图△,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高线AG与正方形的边长相等,求△EAF的度数;(2)如图△,在Rt△BAD中,△BAD=90°,AB=AD,点M,N是BD边上的任意两点,且△MAN=45°.将△ABM 绕点A逆时针旋转90°至△ADH位置,连结NH,试判断MN,ND,DH之间的数量关系,并说明理由;专项训练:思想方法荟萃名师点金:本章涉及的数学思想方法有:(1)分类讨论思想:在等腰三角形中,当角没确定是底角还是顶角时,当边没确定是底边还是腰时常用分类讨论思想;(2)方程思想:在解决有关等腰三角形边角问题时常通过设适当的边或角为未知数,列方程求解;(3)数形结合思想:在解决有关实际问题时,常从实际问题中抽象出几何图形,借助几何图形来解决;(4)转化思想:证线段的和,差关系时,通常将分散的线段转化到同一条线段上,使复杂的问题简单化.分类讨论思想1.等腰三角形的一个外角等于110°,则这个三角形的顶角应该为____________.2.已知等腰三角形的两边长分别为a,b,且a,b满足2a-3b+5+(2a+3b-13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10方程思想3.如图,在△ABC中,AB=AC,BC=BD,AD=DE=EB,求∠A的度数.4.如图,P是等边三角形ABC边AB上任一点,AB=2,PE⊥BC于E,EF⊥AC于F,FQ⊥AB 于Q,设BP=x.(1)用含有x的式子表示AQ;(2)当x等于多少时,点P和点Q重合?数形结合思想5.上午8时,一条渔船从海岛A出发,以15海里/时的速度匀速向正北航行,10时到达海岛B处.已知在海岛A测得灯塔C在北偏西42°方向上,在海岛B测得灯塔C在北偏西84°方向上.求海岛B到灯塔C的距离.转化思想6.如图,已知在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于E,求证:BE=12(AC-AB).。

浙教版八年级数学上册第二章知识点+注意点+经典例题

浙教版八年级数学上册第二章知识点+注意点+经典例题

八年级上册第二章《特殊三角形》2.1图形的轴对称[轴对称图形]1.如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.2.有的轴对称图形的对称轴不止一条,如圆就有无数条对称轴.3.折叠后重合的点是对应点,叫做对称点.[轴对称]有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,•那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.ﻭ[图形轴对称的性质]①关于某直线对称的两个图形是全等形。

②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称.[轴对称与轴对称图形的区别][线段的垂直平分线](1)经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点在这条线段的垂直平分线上.因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.2。

2等腰三角形+2。

3等腰三角形性质定理+2。

4等腰三角形判定定理[等腰三角形]★1. 有两条边相等的三角形是等腰三角形。

★2。

在等腰三角形中,相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.[等腰三角形的性质]★性质1:等腰三角形的两个底角相等(简写成“等边对等角”)★性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一).特别的:(1)等腰三角形是轴对称图形。

(2)等腰三角形两腰上的中线、角平分线、高线对应相等.[等腰三角形的判定定理]★如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边").特别的:(1)有一边上的角平分线、中线、高线互相重合的三角形是等腰三角形. (2)有两边上的角平分线对应相等的三角形是等腰三角形.(3)有两边上的中线对应相等的三角形是等腰三角形.(4)有两边上的高线对应相等的三角形是等腰三角形.[等边三角形]三条边都相等的三角形叫做等边三角形,也叫做正三角形.[等边三角形的性质]★等边三角形的三个内角都相等,•并且每一个内角都等于60°[等边三角形的判定方法]★(1)三条边都相等的三角形是等边三角形;★(2)三个角都相等的三角形是等边三角形;★(3)有一个角是60°的等腰三角形是等边三角形.2。

浙教版八年级数学上第二章特殊三角形单元测试题含答案解析

浙教版八年级数学上第二章特殊三角形单元测试题含答案解析

第二章特殊三角形单元测试一、单选题(共10题;共30分)1、已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A、25海里B、30海里C、35海里D、40海里2、如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A、(1,2)B、(2,2)C、(3,2)D、(4,2)3、如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A、27B、18C、18D、94、如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A、AC=ADB、AB=ABC、∠ABC=∠ABDD、∠BAC=∠BAD5、在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A、75°B、60°C、45°D、30°6、对于命题“如果a>b>0,那么a2>b2.”用反证法证明,应假设()A、a2>b2B、a2<b2C、a2≥b2D、a2≤b27、图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A、0B、1C、D、8、用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A、假定CD∥EFB、已知AB∥EFC、假定CD不平行于EFD、假定AB不平行于EF9、如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M 是OP的中点,则DM的长是()A、2B、C、D、10、在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是()A、a2+b2=c2B、b2+c2=a2C、a2+c2=b2D、c2﹣a2=b2二、填空题(共8题;共24分)11、用反证法证明“一个三角形中至多有一个钝角”时,应假设 ________12、在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是 ________ .(只添加一个)13、如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________14、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________ 米.15、如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.16、如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为________ m2.17、在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2.18、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三、解答题(共5题;共40分)19、已知直线m、n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20、在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm,求斜边的长.21、如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.22、如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于多少cm?23、如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四、综合题(共1题;共6分)24、如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一、单选题1、【答案】D【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离。

2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)

2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)

2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.下面说法错误的个数有()(1)全等三角形对应边上的中线相等.(2)有两条边对应相等的等腰直角三角形全等.(3)一条斜边对应相等的两个直角三角形全等.(4)两边及其一边上的高也对应相等的两个三角形全等.A.1个B.2个C.3个D.4个2.观察下面A,B,C,D四幅图,其中与如图成轴对称的是()A.B.C.D.3.如图,∠BAC=110°,若A,B关于直线MP对称,A,C关于直线NQ对称,则∠P AQ 的大小是()A.70°B.55°C.40°D.30°4.如图案分别表示“福”“禄”“寿”“喜”,其中不是轴对称图形的是()A.B.C.D.5.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA.有如下结论:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④EA=ED;⑤BP=EQ.其中正确的结论个数是()A.4个B.3个C.2个D.1个6.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF的值最小时,∠AEB的度数为()A.105°B.115°C.120°D.130°7.如图,在△ABC中,AB=AC,以点B为圆心,BC的长为半径画弧交AC于点C、E,再分别以点C与点E为圆心,大于CE长的一半为半径画弧,两弧交于点F,连接BF交AC于点D,若∠A=50°,则∠CBD的大小是()A.25°B.40°C.50°D.65°8.已知射线OC平分∠AOB,点P、M、N分别在射线OC、OA、OB上,且PM=PN,PE ⊥OA于点E,若∠PNO=110°,则∠EPM的度数为()A.20°B.35°C.55°D.70°9.如图,△ABC中,AB=AC,∠B=40°,D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E,以下四个结论:①∠CDE=∠BAD;②当D为BC中点时,DE⊥AC;③当△ADE为等腰三角形时,∠BAD=20°;④当∠BAD =30°时,BD=CE.其中正确的结论的个数是()A.1B.2C.3D.410.如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是()A.∠B=∠C B.AD⊥BC C.∠BAD=∠CAD D.AB=2BC二.填空题(共6小题,满分24分)11.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的直角三角形有对.12.如图,在△ABC中,∠BAC=90°,AB=4,AC=3,点D是BC上一动点(点D与点B不重合),连接AD,作B关于直线AD的对称点E,当点E在BC的下方时,连接BE、CE,则CE的取值范围是;△BEC面积的最大值为.13.如图,△APT与△CPT关于直线PT对称,∠A=∠APT,延长AT交PC于点F,当∠A =°时,∠FTC=∠C.14.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)15.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出个格点三角形与△ABC成轴对称.16.如图,∠A=∠C=90°,且AB=AC=4,D,E分别为射线AC和射线CF上两动点,且AD=CE,当BD+BE有最小值时,则△BDE的面积为.三.解答题(共7小题,满分56分)17.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.18.如图,直线l1∥l2,直线l3交直线l1于点B,交直线l2于点D,O是线段BD的中点.过点B作BA⊥l2于点A,过点D作DC⊥l1于点C,E是线段BD上一动点(不与点B,D 重合),点E关于直线AB,AD的对称点分别为P,Q,射线PO与射线QD相交于点N,连接PQ.(1)求证:点A是PQ的中点;(2)请判断线段QN与线段BD是否相等,并说明理由.19.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.20.如图,直线a⊥b,请你设计两个不同的轴对称图形,使a、b都是它的对称轴.21.如图,△ABC在正方形网格中,已知网格的单位长度为1,点A,B,C均在格点上,按要求回答下列问题:(1)分别写出点A,B,C的坐标;(2)求△ABC的面积;(3)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称.22.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE=β.(1)如图(1),点D在线段BC上移动时,①角α与β之间的数量关系是;②若线段BC=2,点A到直线BC的距离是3,则四边形ADCE周长的最小值是;(2)如图(2),点D在线段BC的延长线上移动时,①请问(1)中α与β之间的数量关系还成立吗?如果成立,请说明理由;②线段BC、DC、CE之间的数量是.23.如图,在△ABC中,AB=AC,∠A=2∠ABD,当△BDC是等腰三角形时,求:∠DBC 的度数.参考答案一.选择题(共10小题,满分40分)1.解:(1)全等三角形对应边上的中线相等.正确;(2)有两条边对应相等的等腰直角三角形一定全等.正确;(3)一条斜边对应相等的两个直角三角形不一定全等.错误;(4)两边及其一边上的高也对应相等的两个三角形一定全等.错误;故选:B.2.解:与已知图形成轴对称的图形是选项C:.故选:C.3.解:∵∠BAC=110°,∴∠B+∠C=70°,∵A,B关于直线MP对称,A,C关于直线NQ对称,又∵MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠P AQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:C.4.解:第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,故选:A.5.解:∵△ABD和△ACE是△ABC的轴对称图形,∴∠BAD=∠CAE=∠BAC,AB=AE,AC=AD,∴∠EAD=3∠BAC﹣360°=3×150°﹣360°=90°,故①正确;∴∠BAE=∠CAD=(360°﹣90°﹣150°)=60°,由翻折的性质得,∠AEC=∠ABD=∠ABC,又∵∠EPO=∠BP A,∴∠BOE=∠BAE=60°,故②正确;∵△ACE≌△ADB,∴S△ACE=S△ADB,BD=CE,∴BD边上的高与CE边上的高相等,即点A到∠BOC两边的距离相等,∴OA平分∠BOC,故③正确;只有当AC=AB时,∠ADE=30°,才有EA=ED,故④错误;在△ABP和△AEQ中,∠ABD=∠AEC,AB=AE,∠BAE=60°,∠EAQ=90°,∴BP<EQ,故⑤错误;综上所述,结论正确的是①②③共3个.故选:B.6.解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图,此时BE+EF最小.∵AD是△ABC的角平分线,∴∠BAD=∠B′AD=25°,∴∠AE′F′=65°,∵BB′⊥AD,∴∠AGB=∠AGB′=90°,∵AG=AG,∴△ABG≌△AB′G(ASA),∴BG=B′G,∠ABG=∠AB′G,∴AD垂直平分BB′,∴BE=BE′,∴∠E′B′G=∠E′BG,∵∠BAC=50°,∴∠AB′F′=40°,∴∠ABE=40°,∴∠BE′F′=50°,∴∠AE′B=115°.故选:B.7.解:∵AB=AC,∠A=50°,∴∠ACB=(180°﹣50°)÷2=65°,由题意可知,BC=BE,∴∠BEC=∠ACB=65°,∴∠CBE=180°﹣65°×2=50°,∴∠CBD=∠CBE=25°.故选:A.8.解:连接MN,∵射线OC平分∠AOB,PM=PN,∴OP⊥MN,∠MOP=∠NOP,∴∠MPO=∠NPO,在△MOP与△NOP中,,∴△MOP≌△NOP(ASA),∴∠OMP=∠PNO=110°,∴∠EPM=∠OMP﹣∠OEP=110°﹣90°=20°.故选:A.9.解:①∵AB=AC,∴∠B=∠C=40°,∴∠BAD=180°﹣40°﹣∠ADB,∠CDE=180°﹣40°﹣∠ADB,∴∠BAD=∠CDE;故①正确;②∵D为BC中点,AB=AC,∴AD⊥BC,∴∠ADC=90°,∴∠CDE=50°,∵∠C=40°,∴∠DEC=90°,∴DE⊥AC,故②正确;③∵∠C=40°,∴∠AED>40°,∴∠ADE≠∠AED,∵△ADE为等腰三角形,∴AE=DE,∴∠DAE=∠ADE=40°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=60°,或∵△ADE为等腰三角形,∴AD=DE,∴∠DAE=∠AED=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=30°,故③错误,④∵∠BAD=30°,∴∠CDE=30°,∴∠ADC=70°,∴∠CAD=180°﹣70°﹣40°=70°,∴∠DAC=∠ADC,∴CD=AC,∵AB=AC,∴CD=AB,∴△ABD≌△DCE(ASA),∴BD=CE;故④正确;故选:C.10.解:A.∵AB=AC,∴∠B=∠C,故A不符合题意;B.∵AB=AC,点D是BC边中点,∴AD⊥BC,故B不符合题意;C.∵AB=AC,点D是BC边中点,∴∠BAD=∠CAD,故C不符合题意;所以排除A,B,C,故选:D.二.填空题(共6小题,满分24分)11.解:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵AC=AB,∵∠CAE=∠BAD,∴△AEC≌△ADB(AAS);∴CE=BD,∵AC=AB,∴∠CBE=∠BCD,∵∠BEC=∠CDB=90°,∴△BCE≌△CBD(AAS);∴BE=CD,∴AD=AE,∵AO=AO,∴Rt△AOD≌Rt△AOE(HL);∵∠DOC=∠EOB,∴△COD≌△BOE(AAS);∴OB=OC,∵AB=AC,∴CF=BF,AF⊥BC,∴△ACF≌△ABF(SSS),△COF≌△BOF(SSS),综上所述,共有6对全等的直角三角形.故答案是:6.12.解:∵B、E关于AD对称,∴AE=AB=4,则可知E点在以A点为圆心、AE为半径的圆上,如图,在Rt△ABC中,AB=4,AC=3,则BC=5,当E点与B点重合时,有CE最长,即为5;又∵B、E不重合,∴CE<5,当E点移动到F点时,使得A、C、F三点共线,此时CF最短,且为CF=AF﹣AC=4﹣3=l,即CE最短为l,即CE的取值范围为:1≤CE<5;当点E移动到使得AE⊥BC时,A点到BC的距离最短,则E点到BC的距离最大,则此时△BCE的面积最大,设AE交BC于点G点,利用面积可知AB×AC=BC×AG,∴AG=2.4,∵AE=AB=4,∴EG=4﹣2.4=1.6,∴△BCE的面积最大值为:1.6×5×=4,∴△BCE的面积的最大值为4;故答案为:1≤CE<5;4.13.解:∵△APT与△CPT关于直线PT对称,∴∠A=∠C,TA=TC,∠APT=∠CPT,∵∠A=∠APT,∴∠A=∠C=∠APT=∠CPT,∵∠FTC=∠C,∴∠AFP=∠C+∠FTC=2∠C=2∠A,∵∠A+∠APF+∠AFP=180°,∴5∠A=180°,∴∠A=36°,故答案为:36°.14.解:AD=CD,理由:在△ABD与△CBD中,,∴△ABD≌△CBD,∴四边形ABCD是一个轴对称图形,故答案为:AD=CD.15.解:如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.16.解:过点B作BE⊥CF于点N,∵∠A=∠C=90°,且AB=AC=4,∴四边形ACNB是正方形,∴AC=CN,∵AD=CE,∴CD=NE△BEN≌△NDC,∴BE=DN,延长BA到M.使得AM=AB,则B,M关于AC对称,∴BD=MD,∴BD+BE=MD+DN,最小时,M,N,D三点共线,此时D为AC的中点,△BDE的面积为:0.5×(2+4)×4﹣0.5×4×2﹣0.5×2×2=6.故答案为:6.三.解答题(共7小题,满分56分)17.证明:(1)在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC为公共边,∴Rt△ABC≌Rt△DCB(HL);(2)△OBC是等腰三角形,∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DBC,∴OB=OC,∴△OBC是等腰三角形.18.(1)证明:连接AE.∵点E关于直线AB,AD的对称点分别为P,Q,∴AP=AE,AQ=AE,∠1=∠2,∠3=∠4,∴AP=AQ,∵AB⊥l2,∴∠2+∠3=90°,∴∠1+∠2+∠3+∠4=180°,∴P,A,Q三点在同一条直线上,∴点A是PQ的中点.(2)解:结论QN=BD,理由如下:连接PB.∵点E关于直线AB,AD的对称点分别为P,Q,∴BP=BE,DQ=DE,∠5=∠6,∠7=∠8,∵l1∥l2,DC⊥l1,∴DC⊥l2,∴∠7+∠9=90°,∴∠8+∠10=90°,∴∠9=∠10,又∵AB⊥l2,DC⊥l2,∴AB∥CD,∴∠6=∠9,∴∠5+∠6=∠9+∠10,即∠OBP=∠ODN,∵O是线段BD的中点,∴OB=OD,又∠BOP=∠DON,在△BOP和△DON中,∴△BOP≌△DON(AAS),∴BP=DN,∴BE=DN,∴QN=DQ+DN=DE+BE=BD.19.解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)(1)中结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.20.解:如下图所示:(答案不唯一).21.解:(1)由图知,A(0,3)、B(﹣4,4)、C(﹣2,1);(2)△ABC的面积为3×4﹣×2×2﹣×1×4﹣×2×3=5,答:△ABC的面积为5;(3)如图所示,△A1B1C1即为所求.22.解:(1)①α+β=180°;理由如下:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC∴∠CAE=∠BAD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°,故答案为:α+β=180°;②由①知,△ABD≌△ACE,∴BD=CE,AD=AE,∴CD+CE=BD+CD=BC=2,当AD⊥BC时,AD最短,即四边形ADCE周长的值最小,∵点A到直线BC的距离是3,∴AD=AE=3,∴四边形ADCE周长的最小值是2+3+3=8,故答案为:8;(2)①成立,理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∴∠BAC+∠BCE=∠DCE+∠BCE=180°,即α+β=180°;②∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,∵BD=BC+CD,∴CE=BC+CD,故答案为:CE=BC+CD.23.解:∵AB=AC,∴∠ABC=∠C.①当BD=CD时,∠C=∠CBD<∠ABC,故不成立;②当BD=BC时,∠C=∠BDC=∠A+∠ABD,∵∠A+∠ABC+∠C=180°,∴∠A+∠A+∠ABD+∠A+∠ABD=180°,∴3∠A+2∠ABD=180°,4∠A=180°,∴∠A=45°,∴∠ABD=22.5°,∴∠ABC=(180°﹣45°)=67.5°,∴∠DBC=∠ABC﹣∠ACD=45°;③当CB=CD时,∠CBD=∠CDB=∠A+∠ABD,设∠ABD=x,∴∠A=2x,∴∠CBD=∠CDB=3x,∴∠ABC=∠C=4x,∵∠A+∠ABC+∠C=180°,∴2x+4x+4x=180°,∴x=18°,∴∠DBC=54°;综上所述:∠DBC的度数为54°或45°.。

最新2019-2020年度浙教版八年级数学上册《特殊三角形》单元综合测试题及答案解析-精品试题

最新2019-2020年度浙教版八年级数学上册《特殊三角形》单元综合测试题及答案解析-精品试题

第二章特殊三角形单元检测一.选择题(共10小题,满分30分,每小题3分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°3.(3分)如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°4.(3分)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD 的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个5.(3分)(2016•贵阳模拟)如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.90°6.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个7.(3分)如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形 B.直角三角形C.等边三角形 D.非等腰三角形8.(3分)等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于()A.30°B.30°或150°C.120°或150° D.30°或120°或150°9.(3分)(2016春•龙岗区期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.410.(3分)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a2二、填空题(共8小题,满分32分,每小题4分)11.(4分)如图,已知△ABC中,AB=5,AC=7,AD⊥BC于点D,点M为AD上任意一点,则MC2﹣MB2等于______.12.(4分)(2016•厦门校级模拟)在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为______.13.(4分)(2016春•高安市期中)如图,在△ABC中,AB=AC=5,P是BC边上除点B、C外的任意一点,则AP2+PB•PC=______.14.(4分)如图,在等腰△ABC中,AB=AC,将△ABC沿DE折叠,使底角顶点C 落在三角形三边的垂直平分线的交点O处,若BE=BO,则∠ABC=______度.15.(4分)(2016•迁安市一模)如图,在矩形ABCD 中,AB=12cm ,BC=6cm .点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则整个阴影部分图形的周长为______.16.(4分)(2016•湖州一模)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F ,若AB=6,BC=4,则FD 的长为______.17.(3分)(2016春•乌拉特前旗期末)如图,以直角△ABC 的三边向外作正方形,其面积分别为S 1,S 2,S 3且S 1=4,S 2=8,则S 3=______.18.(4分)(2016•萧山区模拟)如图,将正方形ABCD 的边AD 和边BC 折叠,使点C 与点D 重合于正方形内部一点O ,已知点O 到边CD 的距离为a ,则点O 到边AB 的距离为______.(用a 的代数式表示)三.选择题(共12小题,满分90分)19.(6分)(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC 的平分线,求∠BDC的度数.20.(6分)(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?21.(6分)(2016春•芦溪县期中)如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,且交∠BAC的平分线于点D,求证:MD=MA.22.(6分)(2016春•临清市期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.23.(6分)如图,在△ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.24.(8分)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.25.(8分)(2016春•十堰期末)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.26.(8分)(2016春•太仓市期末)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.27.(8分)(2016•丹东模拟)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.28.(12分)(2016•徐州模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.29.(14分)如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:AM⊥CD.第二章特殊三角形单元检测参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.(3分)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°【分析】求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,【解答】解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.【点评】本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.3.(3分)如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°【分析】根据∠A=36°,AB=AC求出∠ABC的度数,根据角平分线的定义求出∠ABD 的度数,根据三角形的外角的性质计算得到答案.【解答】解:∵∠A=36°,AB=AC,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=36°,∴∠1=∠A+∠ABD=72°,故选:C.【点评】本题考查的是三角形的外角的性质和等腰三角形的性质,掌握等腰三角形的两个底角相等和三角形的一个外角等于与它不相邻的两个内角之和是解题的关键.4.(3分)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD 的角平分线,则图中的等腰三角形有()A.5个B.4个C.3个D.2个【分析】根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,即可得出答案.【解答】解:共有5个.(1)∵AB=AC∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:A.【点评】此题主要考查学生对等腰三角形判定和三角形内角和定理的理解和掌握,属于中档题.5.(3分)(2016•贵阳模拟)如图,每个小正方形的边长都相等,A、B、C是小正方形的顶点,则∠ABC的度数为()A.30°B.45°C.60°D.90°【分析】根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.【解答】解:连接AC,设每个小正方形的边长都是a,根据勾股定理可以得到:AC=BC=a,AB=a,∵(a)2+(a)2=(a)2,∴AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°,故选B.【点评】本题主要考查了勾股定理,利用勾股定理判断△ABC是等腰直角三角形是解决本题的关键.6.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;故选D【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.7.(3分)如图,在线段AE同侧作两个等边三角形△ABC和△CDE(∠ACE<120°),点P与点M分别是线段BE和AD的中点,则△CPM是()A.钝角三角形 B.直角三角形C.等边三角形 D.非等腰三角形【分析】首先根据等边三角形的性质,得出AC=BC,CD=CE,∠ACB=∠ECD=60°,则∠BCE=∠ACD,从而根据SAS证明△BCE≌△ACD,得∠CBE=∠CAD,BE=AD;再由点P与点M分别是线段BE和AD的中点,得BP=AM,根据SAS证明△BCP≌△ACM,得PC=MC,∠BCP=∠ACM,则∠PCM=∠ACB=60°,从而证明该三角形是等边三角形.【解答】解:∵△ABC和△CDE都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠ECD=60°.∴∠BCE=∠ACD.∴△BCE≌△ACD.∴∠CBE=∠CAD,BE=AD.又点P与点M分别是线段BE和AD的中点,∴BP=AM.∴△BCP≌△ACM.∴PC=MC,∠BCP=∠ACM.∴∠PCM=∠ACB=60°.∴△CPM是等边三角形.故选:C.【点评】三角形中位线性质应用比较广泛,尤其是在三角形、四边形方面起着非常重要作用,本题结合三角形全等的知识,考查了等边三角形的性质.8.(3分)等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于()A.30°B.30°或150°C.120°或150° D.30°或120°或150°【分析】题中没有指明等腰三角形一腰上的高是哪边长的一半,故应该分三种情况进行分析,从而不难求解.【解答】解:①如图,∵∠ADB=90°,AD=AB,∴∠B=30°,∵AC=BC,∴∠CAB=30°,∴∠ACB=180°﹣30°﹣30°=120°.②如图,∵∠ADB=90°,AD=AC,∴∠ACD=30°,∵AC=BC,∴∠CAB=∠B=15°,∠ACB=180°﹣30°=150°.③如图,∵∠ADB=90°,AD=BC,∴∠B=30°,∵AB=BC,∴∠CAB=∠C=75°,∴∠B=30°.故选D.【点评】此题主要考查等腰三角形的性质,三角形内角和定理及三角形外角性质的综合运用.9.(3分)(2016春•龙岗区期末)如图△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,已知AP=3,则PP′的长度是()A.3 B.C.D.4【分析】根据旋转前后的图形全等,即可得出△APP'等腰直角三角形,再根据等腰直角三角形的性质,进行计算即可.【解答】解:∵△ACP′是由△ABP绕点A逆时针旋转后得到的,∴△ACP′≌△ABP,∴AP=AP′,∠BAP=∠CAP′.∵∠BAC=90°,∴∠PAP′=90°,故可得出△APP'是等腰直角三角形,又∵AP=3,∴PP′=3.故选B.【点评】此题考查了旋转的性质,解答本题的关键是掌握旋转前后对应边相等、对应角相等,另外要掌握等腰三角形的性质,难度一般.10.(3分)如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG 的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A.a2B.a2C.a2D.a2【分析】过E作EP⊥BC于点P,EQ⊥CD于点Q,△EPM≌△EQN,利用四边形EMCN 的面积等于正方形PCQE的面积求解.【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN =S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.【点评】本题主要考查了正方形的性质及全等三角形的判定及性质,解题的关键是作出辅助线,证出△EPM≌△EQN.二.选择题(共8小题,满分32分,每小题4分)11.(4分)如图,已知△ABC中,AB=5,AC=7,AD⊥BC于点D,点M为AD上任意一点,则MC2﹣MB2等于24 .【分析】在Rt△ABD及RtADC中可分别表示出BD2及CD2,在Rt△BDM及RtCDM 中分别将BD2及CD2的表示形式代入表示出BM2和MC2,然后作差即可得出结果.【解答】解:∵AD⊥BC,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ADC中,BD2=AB2﹣AD2,CD2=AC2﹣AD2,在Rt△BDM和Rt△CDM中,BM2=BD2+MD2=AB2﹣AD2+MD2,MC2=CD2+MD2=AC2﹣AD2+MD2,∴MC2﹣MB2=(AC2﹣AD2+MD2)﹣(AB2﹣AD2+MD2)=AC2﹣AB2=72﹣52=24.故答案为:24.【点评】本题考查了勾股定理的知识,题目有一定的技巧性,比较新颖,解答本题需要认真观察,分别两次运用勾股定理求出MC2和MB2是本题的难点,重点还是在于勾股定理的熟练掌握.12.(4分)(2016•厦门校级模拟)在等腰△ABC中,AB=AC,AC腰上的中线BD将三角形周长分为15和21两部分,则这个三角形的底边长为16或8 .【分析】本题由题意可知有两种情况,AB+AD=15或AB+AD=21.从而根据等腰三角形的性质及三角形三边关系可求出底边为8或16.【解答】解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,此时BC=21﹣x=21﹣5=16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴这个三角形的底边长为8或16.故答案为:16或8.【点评】本题主要考查等腰三角形的性质及三角形三边关系;注意:求出的结果一定要检验时符合三角形三边性质.分类讨论是正确解答本题的关键.13.(4分)(2016春•高安市期中)如图,在△ABC中,AB=AC=5,P是BC边上除点B、C外的任意一点,则AP2+PB•PC=25 .【分析】首先过点A作AD⊥BC于D,可得∠ADP=∠ADB=90°,又由AB=AC,根据三线合一的性质,可得BD=CD,由勾股定理可得PA2=PD2+AD2,AD2+BD2=AB2,然后由AP2+PB•PC=AP2+(BD+PD)(CD﹣PD),即可求得答案.【解答】解:过点A作AD⊥BC于D,∵AB=AC=5,∠ADP=∠ADB=90°,∴BD=CD,PA2=PD2+AD2,AD2+BD2=AB2,∴AP2+PB•PC=AP2+(BD+PD)(CD﹣PD)=AP2+(BD+PD)(BD﹣PD)=AP2+BD2﹣PD2=AP2﹣PD2+BD2=AD2+BD2=AB2=25.故答案为25.【点评】本题考查了勾股定理与等腰三角形的性质的正确及灵活运用.注意得到AP2+PB•PC=AP2+(BD+PD)(CD﹣PD)是解此题的关键.14.(4分)如图,在等腰△ABC中,AB=AC,将△ABC沿DE折叠,使底角顶点C 落在三角形三边的垂直平分线的交点O处,若BE=BO,则∠ABC= 63 度.【分析】首先连接OC,设∠OCE=x°,由折叠的性质易得:∠COE=∠OCE=x°,又由三角形三边的垂直平分线的交于点O,可得OB=OC,且O是△ABC外接圆的圆心,然后利用等边对等角与三角形外角的性质,可用x表示出∠OBC、∠BOE,∠OEB 的度数,又由三角形内角和定理,可得方程x+2x+2x=180,解此方程求得∠OCE的度数,继而求得∠ABC的度数.【解答】解:连接OC,设∠OCE=x°,由折叠的性质可得:OE=CE,∴∠COE=∠OCE=x°,∵三角形三边的垂直平分线的交于点O,∴OB=OC,且O是△ABC外接圆的圆心,∴∠OBC=∠OCE=x°,∠BOC=2∠A,∵∠OEB=∠OCE+∠COE=2x°,BE=BO,∴∠BOE=∠OEB=2x°,∵△OBE中,∠OBC+∠BOE+∠OEB=180°,∴x+2x+2x=180,解得:x=36,∴∠OBC=∠OCE=36°,∴∠BOC=180°﹣∠OBC ﹣∠OCE=108°,∴∠A=∠BOC=54°,∵AB=AC ,∴∠ABC=∠ACB==63°,故答案为:63.【点评】此题考查了折叠的性质、等腰三角形的性质、三角形内角和定理、三角形外角的性质以及三角形外接圆的性质.此题难度较大,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.15.(4分)(2016•迁安市一模)如图,在矩形ABCD 中,AB=12cm ,BC=6cm .点E 、F 分别在AB 、CD 上,将矩形ABCD 沿EF 折叠,使点A 、D 分别落在矩形ABCD 外部的点A 1、D 1处,则整个阴影部分图形的周长为 36cm .【分析】根据折叠的性质,得A 1E=AE ,A 1D 1=AD ,D 1F=DF ,则阴影部分的周长即为矩形的周长.【解答】解:根据折叠的性质,得A 1E=AE ,A 1D 1=AD ,D 1F=DF .则阴影部分的周长=矩形的周长=2(12+6)=36(cm ).【点评】此题要能够根据折叠的性质得到对应的线段相等,从而求得阴影部分的周长.16.(4分)(2016•湖州一模)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F ,若AB=6,BC=4,则FD 的长为 4 .【分析】根据点E 是AD 的中点以及翻折的性质可以求出AE=DE=EG ,然后利用“HL”证明△EDF 和△EGF 全等,根据全等三角形对应边相等可证得DF=GF ;设FD=x ,表示出FC 、BF ,然后在Rt △BCF 中,利用勾股定理列式进行计算即可.【解答】解:∵E 是AD 的中点,∴AE=DE ,∵△ABE 沿BE 折叠后得到△GBE ,∴AE=EG ,AB=BG ,∴ED=EG ,∵在矩形ABCD 中,∴∠A=∠D=90°,∴∠EGF=90°,在Rt △EDF 和Rt △EGF 中,,∴Rt △EDF ≌Rt △EGF (HL ),∴DF=FG ,设DF=x ,则BF=6+x ,CF=6﹣x ,在Rt △BCF 中,(4)2+(6﹣x )2=(6+x )2,解得x=4.故答案为:4.【点评】本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,翻折的性质,熟记性质,找出三角形全等的条件ED=EG 是解题的关键.17.(3分)(2016春•乌拉特前旗期末)如图,以直角△ABC 的三边向外作正方形,其面积分别为S 1,S 2,S 3且S 1=4,S 2=8,则S 3= 12 .【分析】根据勾股定理的几何意义解答.【解答】解:∵△ABC 直角三角形,∴BC 2+AC 2=AB 2,∵S 1=BC 2,S 2=AC 2,S 3=AB 2,S 1=4,S 2=8,∴S 3=S 1+S 2=12.【点评】解决本题的关键是根据勾股定理得到三个面积之间的关系.18.(4分)(2016•萧山区模拟)如图,将正方形ABCD的边AD和边BC折叠,使点C与点D重合于正方形内部一点O,已知点O到边CD的距离为a,则点O到边AB 的距离为(3+2)a .(用a的代数式表示)【分析】作OG⊥CD于G,交AB于H,根据翻转变换的性质得到OA=AD,OB=BC,∠EOA=∠D=90°,∠FOB=∠C=90°,根据直角三角形的性质和勾股定理求出DE、EF、FC,得到正方形的边长,计算即可.【解答】解:作OG⊥CD于G,交AB于H,∵CD∥AB,∴OH⊥AB于H,由翻转变换的性质可知,OA=AD,OB=BC,∠EOA=∠D=90°,∠FOB=∠C=90°,∴△OAB是等边三角形,∠EOF=120°,∴∠OEF=30°,∴EO=2a,EG=a,∴DE=OE=2a,OF=FC=2a,EF=2EG=2a,∴DC=4a+2a,∴点O到边AB的距离为4a+2a﹣a=3a+2a=(3+2)a.故答案为:(3+2)a.【点评】本题考查的是翻转变换的性质和等边三角形的性质,翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三.解答题(共12小题,满分88分)19.(6分)(2016•长春二模)如图,在△ABC中,AB=AC,∠A=40°,BD是∠ABC 的平分线,求∠BDC的度数.【分析】首先由AB=AC,利用等边对等角和∠A的度数求出∠ABC和∠C的度数,然后由BD是∠ABC的平分线,利用角平分线的定义求出∠DBC的度数,再根据三角形的内角和定理即可求出∠BDC的度数.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,∴∠BDC=180°﹣∠DBC﹣∠C=75°.【点评】本题考查了等腰三角形的性质,角平分线的定义,三角形内角和定理等知识,解答本题的关键是正确识图,利用等腰三角形的性质:等边对等角求出∠ABC与∠C 的度数.20.(6分)(2016春•罗湖区期末)上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求从B处到灯塔C的距离?【分析】根据已知条件“上午8时,一条船从A处出发以30海里/时的速度向正北航行,12时到达B处”可以求得AB=120海里,然后根据三角形的内角和定理求得∠C=32°,所以△ABC是等腰三角形;最后由等腰三角形的两腰相等的性质来求从B处到灯塔C的距离.【解答】解:根据题意,得AB=30×4=120(海里);在△ABC中,∠NAC=32°,∠ABC=116°,∴∠C=180°﹣∠NAC﹣∠ABC=32°,∴∠C=∠NAC,∴BC=AB=120(海里),即从B处到灯塔C的距离是120海里.【点评】本题考查了等腰三角形的性质、方向角.解答该题时充分利用了三角形的内角和定理.21.(6分)(2016春•芦溪县期中)如图,在△ABC中,∠B=90°,M是AC上任意一点(M与A不重合)MD⊥BC,且交∠BAC的平分线于点D,求证:MD=MA.【分析】由MD⊥BC,且∠B=90°得AB∥MD,∠BAD=∠D,再利用AD为∠BAC 的平分线得∠BAD=∠MAD,利用等量代换即可证明.【解答】证明:∵MD⊥BC,且∠B=90°,∴AB∥MD,∴∠BAD=∠D又∵AD为∠BAC的平分线∴∠BAD=∠MAD,∴∠D=∠MAD,∴MA=MD【点评】此题考查学生对等腰三角形的判定与性质和平行线段的判定与性质的理解和掌握,难度不大,是一道基础题.22.(6分)(2016春•临清市期中)如图:四边形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.试求:(1)∠BAD的度数;(2)四边形ABCD的面积.【分析】连接AC,则在直角△ABC中,已知AB,BC可以求AC,根据AC,AD,CD的长可以判定△ACD为直角三角形,(1)根据∠BAD=∠CAD+∠BAC,可以求解;(2)根据四边形ABCD的面积为△ABC和△ACD的面积之和可以解题.【解答】解:(1)连接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB ⊥CB 于B ,∴S △ABC =,S △DAC =,∵AB=CB=,DA=1,AC=2,∴S △ABC =1,S △DAC =1而S 四边形ABCD =S △ABC +S △DAC ,∴S 四边形ABCD =2.【点评】本题考查了勾股定理在直角三角形中的运用,考查了根据勾股定理逆定理判定直角三角形,考查了直角三角形面积的计算,本题中求证△ACD 是直角三角形是解题的关键.23.(6分)如图,在△ABC 中,AB=AC ,AD 是BC 边上的中线,BE ⊥AC 于点E .求证:∠CBE=∠BAD .【分析】根据三角形三线合一的性质可得∠CAD=∠BAD ,根据同角的余角相等可得:∠CBE=∠CAD ,再根据等量关系得到∠CBE=∠BAD .【解答】证明:∵AB=AC,AD是BC边上的中线,BE⊥AC,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD=∠BAD,∴∠CBE=∠BAD.【点评】考查了余角的性质,等腰三角形的性质:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.24.(8分)如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.【分析】首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.【解答】证明:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD,∴∠ABC=∠CBD+∠D,∵AD∥BC,∴∠CBD=∠D,∴∠ABC=∠D+∠D=2∠D,又∵∠C=∠ABC,∴∠C=2∠D.【点评】(1)此题主要考查了等腰三角形的性质和应用,考查了分类讨论思想的应用,要熟练掌握,解答此题的关键是要明确:①等腰三角形的两腰相等.②等腰三角形的两个底角相等.③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(2)此题还考查了平行线的性质和应用,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.25.(8分)(2016春•十堰期末)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2中,画一个直角三角形,使它们的三边长都是无理数;(3)在图3中,画一个正方形,使它的面积是10.【分析】(1)利用勾股定理,找长为有理数的线段,画三角形即可.(2)画一个边长,2,的三角形即可;(3)画一个边长为的正方形即可.【解答】解:(1)三边分别为:3、4、5 (如图1);(2)三边分别为:、2、(如图2);(3)画一个边长为的正方形(如图3).【点评】考查了格点三角形的画法.本题需仔细分析题意,结合图形,利用勾股定理和正方形的性质即可解决问题.26.(8分)(2016春•太仓市期末)如图,已知△ABC中,AB=BD=DC,∠ABC=105°,求∠A,∠C度数.【分析】由于AB=BD=DC,所以△ABD和△BDC都是等腰三角形,可设∠C=∠CDB=x,则∠BDA=∠A=2x,根据等腰三角形的性质和三角形内角和定理的推论,可以求出∠A,∠C度数.【解答】解:∵AB=BD,∴∠BDA=∠A,∵BD=DC,∴∠C=∠CBD,设∠C=∠CBD=x,则∠BDA=∠A=2x,∴∠ABD=180°﹣4x,∴∠ABC=∠ABD+∠CDB=180°﹣4x+x=105°,解得:x=25°,所以2x=50°,即∠A=50°,∠C=25°.【点评】本题考查了等腰三角形的性质及三角形内角和定理;解题中运用了等腰三角形“等边对等角”的性质,并联系三角形的内角定理求解有关角的度数问题.27.(8分)(2016•丹东模拟)如图,四边形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于点E.求证:AD=BE.【分析】此题根据直角梯形的性质和CE⊥BD可以得到全等条件,证明△ABD≌△BCE,然后利用全等三角形的性质证明题目的结论.【解答】证明:∵AD∥BC,∴∠ADB=∠DBC.∵CE⊥BD,∴∠BEC=90°.∵∠A=90°,∴∠A=∠BEC.∵BD=BC,∴△ABD≌△BCE.∴AD=BE.【点评】本题考查了直角三角形全等的判定及性质;此题把全等三角形放在梯形的背景之下,利用全等三角形的性质与判定解决题目问题.28.(12分)(2016•徐州模拟)一、阅读理解:在△ABC中,BC=a,CA=b,AB=c;(1)若∠C为直角,则a2+b2=c2;(2)若∠C为锐角,则a2+b2与c2的关系为:a2+b2>c2;(3)若∠C为钝角,试推导a2+b2与c2的关系.二、探究问题:在△ABC中,BC=a=3,CA=b=4,AB=c,若△ABC是钝角三角形,求第三边c的取值范围.【分析】一、(1)由勾股定理即可得出结论;(2)作AD⊥BC于D,则BD=BC﹣CD=a﹣CD,由勾股定理得出AB2﹣BD2=AD2,AC2﹣CD2=AD2,得出AB2﹣BD2=AC2﹣CD2,整理得出a2+b2=c2+2a•CD,即可得出结论;(3)作AD⊥BC于D,则BD=BC+CD=a+CD,由勾股定理得出AD2=AB2=BD2,AD2=AC2﹣CD2,得出AB2﹣BD2=AC2﹣CD2,整理即可得出结论;二、分两种情况:①当∠C为钝角时,由以上(3)得:<c<a+b,即可得出结果;②当∠B为钝角时,得:b﹣a<c<,即可得出结果.【解答】一、解:(1)∵∠C为直角,BC=a,CA=b,AB=c,∴a2+b2=c2;(2)作AD⊥BC于D,如图1所示:则BD=BC﹣CD=a﹣CD,在△ABD中,AB2﹣BD2=AD2,在△ACD中,AC2﹣CD2=AD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a﹣CD)2=b2﹣CD2,整理得:a2+b2=c2+2a•CD,∵a>0,CD>0,∴a2+b2>c2;(3)作AD⊥BC于D,如图2所示:则BD=BC+CD=a+CD,在△ABD中,AD2=AB2=BD2,在△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,∴c2﹣(a+CD)2=b2﹣CD2,整理得:a2+b2=c2﹣2a•CD,∵a>0,CD>0,∴a2+b2<c2;二、解:当∠C为钝角时,由以上(3)得:<c<a+b,即5<c<7;当∠B为钝角时,得:b﹣a<c<,即1<c<;综上所述:第三边c的取值范围为5<c<7或1<c<.【点评】本题考查了勾股定理的综合运用、完全平方公式;熟练掌握勾股定理,通过作辅助线运用勾股定理是解决问题的关键.29.(14分)如图所示,∠BAC=∠DAE=90°,M是BE的中点,AB=AC,AD=AE,求证:AM⊥CD.【分析】延长AM到F,使MF=AM,交CD于点N,构造平行四边形,利用条件证明△ABF≌△CAD,可得出∠BAF=∠ACD,再结合条件可得到∠ANC=90°,可证得结论.【解答】证明:延长AM到F,使MF=AM,交CD于点N,∵BM=EM,∴四边形ABFE是平行四边形,∴BF=AE,∠ABF+∠BAE=180°,∵∠BAC=∠DAE=90°,∴∠CAD+∠BAE=180°,∴∠ABF=∠CAD,∵BF=AE,AD=AE,∴BF=AD,在△ABF和△CAD中,,∴△ABF≌△CAD(SAS),∴∠BAF=∠ACD,∵∠BAC=90°,∴∠BAF+∠CAN=90°,∴∠ACD+∠CAN=90°,∴∠ANC=90°,∴AM⊥CD.【点评】本题主要考查全等三角形的判定和性质,通过辅助线构造平行四边形证明三角形全等得到∠BAF=∠ACD是解题的关键.。

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (856)

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (856)

A.30°
B.、△ADE 及△EFG 都是等边三角形,D 和 G 分别为 AC 和 AE 的中
点。若 AB=4 时,则图形 ABCDEFG 外围的周长是( )
A.12
B.15
C.18
D.21
5.(2 分)如图,直线 l1 、 l2 、 l3 表示三条相互交叉的公路,现要建一个货物中转站,要求
22.3 23.(1)40°;(2)20° 24.30°或 75° 25.等腰
评卷人 得分
三、解答题
26.我所找的等腰三角形是:△ABC(或△BDC 或△DAB). 证明:在△ABC 中,∵∠A=36°,∠C=72°, ∴∠ABC=180°-(72°+36°)=72°. ∵∠C=∠ABC,∴AB=AC, ∴△ABC 是等腰三角形. 27.方法一:测量 BD、ED 的长度,看是否相等;方法二:测量∠B、∠C 的度数,看是 否相等 28.(1)是;(2)不是 29.△ABC 是等边三角形.说明三个内角都是 60° 30.15°
予证明.
我找的等腰三角形是:
.
证明:
27.(7 分)如图是斜拉桥的剖面图.BC 是桥面,AD 是桥墩,设计大桥时工程师要求斜拉的 钢绳 AB= AC.大桥建成以后,工程技术人员要对大桥质量进行验收,由于桥墩 AD 很
高,无法直接测量钢绳 AB、AC 的长度.请你用两种方法检验 AB、AC 的长度是否相等, 并说明理由.
浙教版初中数学试卷
2019-2020 年八年级数学上册《特殊三角形》测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一

三 总分
得分
评卷人 得分

浙教版数学八年级上册 第2章 特殊三角形 检测试题(解析版)

浙教版数学八年级上册 第2章 特殊三角形 检测试题(解析版)

第2章特殊三角形检测题一.选择题1.下列图形中,对称轴的条数最多的图形是()A.B.C.D.2.下列四边形中是轴对称图形的个数是()A.4个B.3个C.2个D.1个3.若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为()A.5B.4C.3D.4或54.已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm5.如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠C的度数为()A.30°B.36°C.45°D.72°6.如图,等腰△ABC中,AB=AC,∠A=36°.用尺规作图作出线段BD,则下列结论错误的是()A.AD=BD B.∠DBC=36°C.S△ABD=S△BCD D.△BCD的周长=AB+BC7.等腰三角形的一个内角为80°,则此三角形其余两个内角的度数分别为()A.50°,50°B.80°,20°C.80°,50°D.50°,50°或80°,20°8.在△ABC中,AB=AC=10,BD是AC边上的高,DC=4,则BD等于()A.2B.4C.6D.89.如图,在△ABE中,BA=BE,F为AE中点.若∠ABC=34°,∠C=50°,则∠ADB的度数为()A.60°B.63°C.67°D.70°10.如图,在△ABC中,AB=3cm、AC=4cm、BC=5cm,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画的条数为()A.3B.4C.5D.611.在△ABC中,∠ABC与∠ACB的平分线交于点I,过点I作DE∥BC交BA于点D,交AC于点E,AB=5,AC=3,∠A=50°,则下列说法错误的是()A.△DBI和△EIC是等腰三角形B.I为DE中点C.△ADE的周长是8D.∠BIC=115°12.如图,△ABC的面积为9cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.3cm2B.4cm2C.4.5cm2D.5cm213.在等腰三角形△ABC(AB=AC,∠BAC=120°)所在平面上有一点P,使得△P AB,△PBC,△P AC都是等腰三角形,则满足此条件的点P有()A.1个B.2个C.3个D.4个14.用反证法证明“a≥b”,对于第一步的假设,下列正确的是()A.a≤b B.a≠b C.a<b D.a=b15.用反证法证明:“一个三角形中,至少有一个内角大于或等于60°”.应假设()A.一个三角形中没有一个角大于或等于60°B.一个三角形中至少有一个角小于60°C.一个三角形中三个角都大于等于60°D.一个三角形中有一个角大于等于60°16.如图所示,在△ABC中,∠C=90°,则∠B为()A.15°B.30°C.50°D.60°17.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,则下列结论成立的是()A.EC=EF B.FE=FC C.CE=CF D.CE=CF=EF18.直角三角形的三边为a、b、c,其中a、b两边满足+|b﹣8|=0,那么这个三角形的面积为()A.48B.6C.6或24D.6或2419.如图,在Rt△ABC中,∠ACB=90°,正方形AEDC,BCFG的面积分别为25和144,则AB的长度为()A.13B.169C.12D.520.如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB≌△COD,理由是()A.HL B.SAS C.ASA D.AAS二.填空题21.等腰三角形的底边长为6cm,一腰上的中线把三角形分成的两部分周长之差为4cm,则这个等腰三角形周长为cm.22.如图,在△ABC中、∠ACB=90°,CD⊥AB于D.若AB=10,AC=6,则CD的长为.23.若一直角三角形的两直角边长为,1,则斜边长为.24.如图,△ABC中,∠ACB=90°,CD⊥AB,DE⊥AC,图中等于∠A的角是.25.用反证法证明“若|a|<2,则a2<4”时,应假设.三.解答题26.如图,在△ABC中,∠ABC=90°,过点B作BD⊥AC于点D,BE平分∠ABD交AC于点E.(1)求证:CB=CE;(2)若∠CEB=80°,求∠DBC的大小.27.等腰△ABC中,AB=AC,CE为△ABC的外角∠ACD的平分线,∠ACB=2∠D,BF⊥AD.(1)求证:BF∥CE;(2)若∠BAC=40°,求∠ABF的度数.28.如图,四边形ABCD中,AD=CD,∠A=∠C.求证:AB=BC.29.如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,HE=HF.若∠E=25°,∠FGC=62°,求∠FGH的度数.30.如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.(1)证明:△ADF是等腰三角形;(2)若∠B=60°,BD=4,AD=2,求EC的长,第2章特殊三角形检测题参考答案与试题解析一.选择题1.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、圆有无数条对称轴,故此选项正确;B、此图形有1条对称轴,故此选项错误;C、矩形有2条对称轴,故此选项错误;D、有1条对称轴,故此选项错误;故选:A.【点评】此题主要考查了轴对称图形,关键是正确确定对称轴.2.【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,结合各图形的特点即可得出答案.【解答】解:由轴对称图形的概念得:矩形、菱形、正方形是轴对称图形,共3个.故选:B.【点评】本题主要考查了轴对称图形的概念,属于基础题,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【分析】先求出a、b的值,根据等腰三角形的性质求出答案即可.【解答】解:(a﹣1)2+|b﹣2|=0,a﹣1=0,b﹣2=0,a=1,b=2,∵a、b为等腰三角形的边长,∴有两种情况:①当三边为1,1,2时,1+1=2,不符合三角形的三边关系定理,不能组成等腰三角形;②当三边为1,2,2时,符合三角形的三边关系定理,能组成等腰三角形,此时三角形的周长为1+2+2=5;所以等腰三角形的周长是5,故选:A.【点评】本题考查了等腰三角形的性质,三角形的三边关系定理,偶次方和绝对值的非负性等知识点,能求出符合的所有情况是解此题的关键.4.【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.【点评】此题考查等腰三角形的性质与三角形的三边关系.此题难度不大,注意掌握分类讨论思想的应用是解此题的关键.5.【分析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠C的度数.【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得2x=,解得:x=36°,则∠C=72°,故选:D.【点评】此题考查了等腰三角形的性质,以及三角形内角和定理,熟练掌握等腰三角形的性质是解本题的关键.6.【分析】根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.【解答】解:∵等腰△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,由作图痕迹发现BD平分∠ABC,∴∠A=∠ABD=∠DBC=36°,∴AD=BD,故A、B正确;∵AD≠CD,∴S△ABD=S△BCD错误,故C错误;△BCD的周长=BC+CD+BD=BC+AC=BC+AB,故D正确,故选:C.【点评】考查了等腰三角形的性质,能够发现BD是角平分线是解答本题的关键.7.【分析】80°的角可作底角,也可作顶角,故分两种情况进行计算即可.【解答】解:①当80°的角是顶角,则两个底角是50°、50°;②当80°的角是底角,则顶角是20°.故三角形其余两个内角的度数分别为50°,50°或20°、80°.故选:D.【点评】本题考查了等腰三角形的性质,解题的关键是注意分情况进行讨论.8.【分析】求出AD,在Rt△BDA中,根据勾股定理求出BD即可.【解答】解:∵AB=AC=10,CD=4,∴AD=10﹣4=6,∵BD是AC边上的高,∴∠BDA=90°,由勾股定理得:BD===8,故选:D.【点评】本题考查了勾股定理的应用,主要考查学生能否正确运用勾股定理进行计算,注意:在直角三角形中,两直角边的平方和等于斜边的平方.9.【分析】根据等腰三角形的性质可求∠DBC,再根据三角形外角的性质即可求解.【解答】解:∵在△ABE中,BA=BE,F为AE中点,∠ABC=34°,∴∠DBC=17°,∵∠C=50°,∴∠ADB=67°.故选:C.【点评】本题主要考查了等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.10.【分析】首先根据勾股定理的逆定理判定△ABC是直角三角形,再根据等腰三角形的性质分别利用AC、BC为腰以及AB为底得出符合题意的图形即可.【解答】解:如图所示:BC=3,AC=4,AB=5,∵32+42=52,∴△ABC是直角三角形,∠ACB=90°.当CD1=AC=4,CD3=AD3,BA=BD4=3,AB=AD2=3,D5A=AB,BD6=CD,故能得到符合题意的等腰三角形6个.故选:D.【点评】此题考查了勾股定理的逆定理,等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论是解题关键.11.【分析】由角平分线以及平行线的性质可以得到等角,从而可以判定△IDB和△IEC是等腰三角形,所以BD=DI,CE=EI,△ADE的周长被转化为△ABC的两边AB和AC的和,即求得△ADE 的周长为8.【解答】解:∵BI平分∠DBC,∴∠DBI=∠CBI,∵DE∥BC,∴∠DIB=∠IBC,∴∠DIB=∠DBI,∴BD=DI.同理,CE=EI.∴△DBI和△EIC是等腰三角形;∴△ADE的周长=AD+DI+IE+EA=AB+AC=8;∵∠A=50°,∴∠ABC+∠ACB=130°,∴∠IBC+∠ICB=65°,∴∠BIC=115°,故选项A,C,D正确,故选:B.【点评】此题考查了等腰三角形的性质与判定以及角平分线的定义.此题难度适中,注意掌握数形结合思想与转化思想的应用.12.【分析】根据已知条件证得△ABP≌△EBP,根据全等三角形的性质得到AP=PE,得出S△ABP =S△EBP,S△ACP=S△ECP,推出S△PBC=S△ABC,代入求出即可.【解答】解:延长AP交BC于E,∵BP平分∠ABC,∴∠ABP=∠EBP,∵AP⊥BP,∴∠APB=∠EPB=90°,在△ABP和△EBP中,,∴△ABP≌△EBP(ASA),∴AP=PE,∴S△ABP=S△EBP,S△ACP=S△ECP,∴S△PBC=S△ABC=×9cm2=4.5cm2,故选:C.【点评】本题考查了全等三角形的性质和判定,三角形的面积的应用,注意:等底等高的三角形的面积相等.13.【分析】根据等腰三角形的判定,“在同一三角形中,有两条边相等的三角形是等腰三角形(简称:在同一三角形中,等边对等角)”解答即可.【解答】解:如图,满足条件的所有点P的个数为2,故选:B.【点评】本题考查了等腰三角形的判定与性质,熟练掌握等腰三角形的判定和性质定理是解题的关键.14.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:反证法证明“a≥b”,第一步是假设,a<b,故选:C.【点评】本题考查的是反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.15.【分析】根据反证法的步骤,假设的命题肯定不成立.从这一点出发,一一判断即可.【解答】解:要证明原命题成立,则反证法假设的命题肯定不成立.从这一点出发,可以排除B,D这两个选项;反证法的核心是假设出原命题的相反面(或者说除原命题外的其他情况),证明假设的命题不成立,进而间接的证明原命题成立!原命题中出现“至少有一个”,则其对立面应该是“没有”、“不存在”、“没有一个”,所以应假设:一个三角形中没有一个角大于或等于60°故选:A.【点评】本题考查反证法,解题的关键是作为反证法的步骤,属于中考常考题型.16.【分析】根据直角三角形的两个锐角互余的性质解答.【解答】解:如图所示,在△ABC中,∠C=90°,则x+2x=90°.x=30°.所以2x=60°,即∠B为60°.故选:D.【点评】考查了直角三角形的性质,直角三角形的两个锐角互余,由此借助于方程求得答案.17.【分析】求出∠CAF=∠BAF,∠B=∠ACD,根据三角形外角性质得出∠CEF=∠CFE,即可得出答案;【解答】解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∵AF平分∠CAB,∴∠CAE=∠BAF,∴∠ACD+∠CAE=∠B+∠BAF,∴∠CEF=∠CFE,∴CE=CF.故选:C.【点评】本题考查了直角三角形的性质,等腰三角形的判定,正确的识别图形是解题的关键.18.【分析】根据非负数的性质分别求出a、b,分b是直角边、b是斜边两种情况,根据勾股定理、三角形的面积公式计算.【解答】解:∵+|b﹣8|=0,∴a2﹣12a+36=0,b﹣8=0,解得,a=6,b=8,当b是直角边时,这个三角形的面积=×6×8=24,当b是斜边时,另一条直角边==2,这个三角形的面积=×6×2=6,综上所述:这个三角形的面积为6或24,故选:C.【点评】本题考查的是勾股定理、非负数的性质,掌握勾股定理、灵活运用分情况讨论思想是解题的关键.19.【分析】根据勾股定理即可得到结论.【解答】解:AB==13,故选:A.【点评】本题考查的是勾股定理的应用,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.20.【分析】结合图形,利用直角三角形判定全等的方法判断即可.【解答】解:在Rt△AOB和Rt△COD中,,∴Rt△AOB≌Rt△COD(HL),则如图,已知AC⊥BD,垂足为O,AO=CO,AB=CD,则可得到△AOB≌△COD,理由是HL,故选:A.【点评】此题考查了直角三角形全等的判定,以及全等三角形的判定,熟练掌握直角三角形全等的判定方法是解本题的关键.二.填空题21.【分析】首先设腰长为xcm,等腰三角形底边长为6cm,一腰上的中线将其周长分成两部分的差为4cm,可得x﹣6=4或6﹣x=4,继而可求得答案.【解答】解:设腰长为xcm,根据题意得:x﹣6=4或6﹣x=4,解得:x=10或x=2(舍去),∴这个等腰三角形的周长为10+10+6=26cm.故答案为:26.【点评】此题考查了等腰三角形的性质.此题难度不大,注意掌握方程思想与分类讨论思想的应用.22.【分析】利用勾股定理,可求出BC,再利用三角形面积不变,用两种方法表示,即可求出CD 的长.【解答】解:Rt△ABC中,∵AB=10,AC=6,∴BC===8,∵S△ABC==,∴CD=4.8,故答案为:4.8.【点评】本题利用了勾股定理以及直角三角形的面积公式(其面积=×两直角边的积=×斜边×斜边上的高).23.【分析】根据勾股定理计算,得到答案.【解答】解:斜边长==2,故答案为:2.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.24.【分析】利用等角的余角相等,平行线的性质即可判断.【解答】解:∵CD⊥AB,DE⊥AC,∴∠CDA=∠DEC=90°,∴∠A+∠DCA=90°,∠DCA+∠CDE=90°,∴∠A=∠CDE,∵∠DEA=∠ACB=90°,∴DE∥BC,∴∠BCD=∠CDE,∴∠BCD=∠A,故答案为∠CDE,∠BCD.【点评】本题考查直角三角形的性质,等角的余角相等,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25.【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断.【解答】解:用反证法证明“若|a|<2,则a2<4”时,应假设a2≥4.故答案为:a2≥4.【点评】此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.三.解答题26.【分析】(1)想办法证明∠CBE=∠CEB即可.(2)利用等腰三角形的性质求出∠C即可解决问题.【解答】(1)证明:∵BD⊥AC,∴∠CDB=90°,∵∠ABC=90°,∴∠A+∠C=90°,∠DBC+∠C=90°,∵BE平分∠ABD,∴∠ABE=∠DBE,∵∠CBE=∠CBD+∠DBE,∠CEB=∠A+∠ABE,∴∠CBE=∠CEB,∴CB=CE.(2)解:∵∠CEB=∠CBE=80°,∴∠C=180°﹣2×80°=20°,∵∠CDB=90°,∴∠DBC=90°﹣20°=70°.【点评】本题考查等腰三角形的判定和性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27.【分析】(1)根据三角形外角的性质可得∠DAC=∠D,可得CA=CD,再根据等腰三角形的性质和平行线的判定即可求解;(2)根据等腰三角形的性质可求∠ACB,再根据三角形外角的性质可得∠CAD,再根据三角形内角和为180°即可求解.【解答】(1)证明:∵∠ACB=2∠D,∴∠DAC=∠D,∴CA=CD,∵CE为△ABC的外角∠ACD的平分线,∴CE⊥AD,∵BF⊥AD,∴BF∥CE;(2)解:∵∠BAC=40°,∴∠ACB=70°,∴∠DAC=35°,∴∠ABF=180°﹣90°﹣(40°+35°)=15°.【点评】考查了等腰三角形的性质,平行线的判定,三角形外角的性质,关键是得到CA=CD.28.【分析】连接AC,利用等腰三角形的性质及角的和差证明∠BAC=∠BCA即可.【解答】解:连接AC,∵AD=CD,∴∠DAC=∠DCA.∵∠BAD=∠BCD,∴∠BAC=∠BCA.∴BA=BC.【点评】本题主要考查了等腰三角形的判定和性质,解题的关键是利用角相等证明线段相等.29.【分析】根据等腰三角形的性质得到∠EFH=∠E=25°,求得∠FHG=∠E+∠EFH=50°,根据平行线的性质得到∠HFG=∠FGC=62°,于是得到结论.【解答】解:∵HE=HF,∠E=25°,∴∠EFH=∠E=25°,∴∠FHG=∠E+∠EFH=50°,∵AB∥CD,∴∠HFG=∠FGC=62°,∴∠FGH=180°﹣∠FHG﹣∠HFG,=180°﹣50°﹣62°=68°【点评】本题考查了等腰三角形的性质,平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.30.【分析】(1)由AB=AC,可知∠B=∠C,再由DE⊥BC,可知∠F+∠C=90°,∠BDE+∠B =90,然后余角的性质可推出∠F=∠BDE,再根据对顶角相等进行等量代换即可推出∠F=∠FDA,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【解答】解:(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=4,∴BE=BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=4.【点评】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.。

【八年级】八年级数学上第二章三角形单元测试题(浙教版附答案)

【八年级】八年级数学上第二章三角形单元测试题(浙教版附答案)

【八年级】八年级数学上第二章三角形单元测试题(浙教版附答案)第2章三角形检测题(本次考试满分:100分,时间:90分钟)一、(每小题3分,共24分)1.(2022长沙)如果三角形的两条边的长度分别为2和4,则第三条边的长度可能为()a.2b.4c.6d.82.(2022年向阳)如图所示△, 点是延长线上的一个点,=40°,=120°,那么它等于()a.60°b.70°c.80°d.90°3.如图所示,已知以下条件可使△≌△ 是的()a.b.c.d.三个答案都是如果△ 那么图中的温度是36度△ 在(=2024)方面a.18°b.24°c、30°d.36°5.(2021新疆)等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()a、 12b。

十五c.12或15d.186.(2022年湘潭)如图所示△, 该点位于上方并连接。

如果只添加了一个条件,则添加的条件不能是()a.b.c.d.图6、图7、图87.(2021遂宁)如图,在△中,=90°,=30°,以点为圆心,任意长为半径画弧分别交于点和,再分别以点为圆心,大于的长为半径画弧,两弧交于点,连接并延长交于点,则下列说法中正确的个数是()① 是的,平分线;②=60°;③ 该点位于该点的垂直线上;④=1∶3.a、 1b。

2c。

3d。

四8.(2021威海)如图,在△中,=36°的垂直平分线交于点交于点连接.下列结论错误的是()a、 =2b。

平分c.d.点为线段的黄金分割点二、问题(每个子问题3分,共24分)9.如图所示,△的高相交于点.请你添加一对相等的线段或一对相等的角作您添加的条件是10.(2021威海)将一副直角三角板如图摆放,点在上,ac经过点d.已知∠a=∠ EDF=90°,ab=AC,∠ e=30°,以及∠ BCE=40°,则∠ CDF=11.(2021上海)当三角形中一个内角是另一个内角的两倍时,我们称此三角形为“特征三角形”,其中称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.12.(2022雅安)如果+=0,等腰三角形的周长为13.(2021乌鲁木齐)如图,在△abc中,ad是中线,ae是角平分线,cf⊥ae于点f,ab=5,ac=2,则df的长对于14.如图所示,ad是△abc的角平分线,de⊥ab于点e,df⊥ AC在点F处,连接EF和相交ad在点G处,则ad和EF之间的位置关系为15.如图所示,∠e=∠f=90°,∠b=∠c,ae=af.给出下列结论:①∠1=∠2;②be=cf;③△acn≌△ab④ CD=DN。

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (800)

浙教版初中数学八年级上册第二章《特殊三角形》单元复习试题精选 (800)

浙教版初中数学试卷2019-2020年八年级数学上册《特殊三角形》测试卷学校:__________题号一 二 三 总分 得分评卷人得分 一、选择题1.(2分)如图,在△ABC 中,∠B = 90°,DE ∥AC ,交AB 边于点 D ,交BC 边于点E. 若∠C = 30°,则∠1 等于( )A .40°B .50°C .60°D .70°2.(2分)有四个三角形,分别满足下列条件:(1)一个内角的的度等于另两个内角的度数之和;(2)三个内角的度数之比为 3:4:5;(3)三边长之比为3:4:5;(4)三边长分别为 7、24、25. 其中直角三角形有( )A . 1个B .2个C .3个D .4个3.(2分)判断两个直角三角形全等,下列方法中,不能应用的是( )A . AASB .HLC .SASD . AAA4.(2分)如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .85.(2分)已知在△ABC 和△DFE 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A.AB=DE,AC=DF B.AC=EF,BC=DF C.AB=DE,BC=FE D.∠C=∠F,BC=FE 6.(2分)如图AB=AC,DE⊥AB,DF⊥AC,AD⊥BC,则图中的全等三角形有()A.1对B.2对C.3对D.4对7.(2分)如图,两条垂直相交的道路上,一辆自行车和一辆摩托车相遇后又分别向北、向东驶去.如果自行车的速度为2.5 m/s,摩托车的速度为10 m/s,那么10 s后,两车大约相距()A.55 m B.l03 m C.125 m D.153 m8.(2分)在一个直角三角形中,有两边长为6和8,下列说法正确的是()A.第三边一定为10 B.三角形周长为25C.三角形面积为48 D.第三边可能为109.(2分)如图所示,已知直角三角形ABC中,∠ABC=90°,BD平分∠ABC,CE平分∠ACB,CE、BD相交于点F,∠EFB=65°,则∠A=()A.30°B.40°C.45°D.50°10.(2分)在△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定11.(2分)等腰三角形的顶角是底角的 4倍,则其顶角为()A.20°B.30°C.80°D.12012.(2分)等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边上的高所在的直线C.顶角平分线所在的直线D.腰上的高所在的直线13.(2分)等腰三角形的周长为l3,各边长均为自然数,这样的三角形有()A.0个B.l个C. 2个D.3个评卷人得分二、填空题14.(2分)如图,在△ABC中,AB=AC,AD、CE 分别平分∠BAC 与∠ACB,AD 与 CE 相交于点 F .若∠B =62° , 则∠AFC = .15.(2分)在△ABC中,与∠A相邻的外角等于l35°,与∠B相邻的外角也等于l35°,则△ABC 是三角形.16.(2分)若等腰三角形的顶角为34°,则它的底角的度数为. .17.(2分)一等腰三角形一腰上的中线把这个三角形的周长分成15cm和18cm两部分,则这个等腰三角形的底边长是 cm.18.(2分)等腰三角形的一个外角是130°,它的一个底角是 .19.(2分)如图,在△ABC中,∠ACB=90°,AC=BC,∠ACD=52°,则∠BDC= .20.(2分)如图,△ABC是等边三角形,中线BD、CE相交于点0,则∠BOC= .21.(2分)如果一个三角形一边上的中线恰好与该边上的高重合,那么这个三角形 (填“一定”或“不一定”)是等腰三角形.22.(2分)在△ABC 中,AB= AC= 6,BC= 5,AD⊥BC 于 D,则 CD= .23.(2分)已知等腰三角形的两条边长为3和5,求等腰三角形的周长.评卷人得分三、解答题24.(7分)如图所示,正方形ABCD中,E是AD的中点,点F在DC上且DF=14DC,试判断BE与EF的关系,并作出说明.25.(7分)如图所示,小明在距山脚下C处500 m的D处测山高,测得∠ADB=15°,又测得∠ACB=30°,求山的高度AB.26.(7分)如图,在四边形ABCD中,BD⊥AD,AC⊥BC,E是AB的中点,试判断△CDE的形状并说明理由?27.(7分)如图所示,D、E分别在等边三角形ABC的边AC、AB的延长线上,且CD=AE,试说明DB=DE.28.(7分)如图,∠A=∠B,CE∥DA,CE交AB于E,△CEB是等腰三角形吗?说明理由.29.(7分)取出一张长方形的纸,沿一条对角线折叠,如图所示,问:重叠部分是一个什么三角形?并说明理由.30.(7分)如图,在△ABC 中,∠ABC= 50°,∠ACB=70°,延长 CB 至D使 BD=BA,延长 BC 至E使 CE=CA. 连结 AD、AE,求△ADE 各内角的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C2.C3.D4.C5.B6.C7.B8.D9.D10.C11.D12.C13.D二、填空题14.121°15.等腰直角16.73°17.9或1318.50°或65°19.97°20.120°21.一定22.2.523.11或l3三、解答题24.BE⊥EF.说明BE2+EP2=BF225.250 m26.△CDE为等腰三角形27.延长AE至F,使EF=AB,连接DF,先证明△ADF为等边三角形,再证明△ABD≌△FED28.是等腰三角形,说明∠CEB=∠B29.等腰三角形,说明∠ABD=∠C′DB=∠BDC30.∠D=25°,∠E=35°,∠DAF=120°。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版初中数学试卷
2019-2020年八年级数学上册《特殊三角形》测试卷
学校:__________
题号一二三总分
得分
评卷人得分
一、选择题
1.(2分)如图,点A 的坐标是(2,0),若点B在y轴上,且△ABO是等腰三角形,则点B
的坐标是()
A.(-2,0)B.(0,-2)
C.(0,2)D.(0,-2)或(0,2)
2.(2分)如图,在 Rt△ABC 中,∠B = 90°,ED 垂直平分AC,交AC边于点D,交BC 边于E. ∠C= 35°,则∠BAE为()
A. 10°B.15°C.20°D.25°
3.(2分)如图,△ABC中,∠ACB=120°,在AB上截取AE=AC,BD=BC,则∠DCE等于()
A.20°B.30°C.45°D.60°
4.(2分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN等于()
A

6
5
B.
9
5
C.
12
5
D.
16
5
5.(2分)如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,正方形A的边长为6cm、B的边长为5cm、C的边长为5cm,则正方形D的边长为()
A.14cm B.4cm C.15cm D.3cm
6.(2分)如图,在边长为4的等边三角形ABC中,AD是BC边上的高,点E、F是AD上的两点,则图中阴影部分的面积是()
A.43B.33C.23D.3
7.(2分)三角形的三边长a、b、c满足等式22
()2
a b c ab
+-=,则此三角形是()
A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形
8.(2分)如图,在ΔABC中,AC=DC=DB,∠ACD=100°,则∠B等于()
A.50°B.40°C.25°D.20°
9.(2分)如图,跷跷板的支柱OC与地面垂直,点O是AB的中点,AB可以绕着点O上下转动.当A端落地时,∠OAC=20°,那么横板上下可转动的最大角度(即∠A′OA)是()
A.40°B.30°C.20°D.10°
10.(2分)如图,直线
1
l、
2
l、
3
l表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有()
A.一处B.两处C.三处D.四处
11.(2分)如图,在等边△ABC中,BD、CE分别是AC、AB上的高,它们相交于点0,则∠BOC等于()
A
M
N
C
B
A.100°B.ll0°C.120°D.130°
12.(2分)下列各组条件中,能判定△ABC为等腰三角形的是()
A.∠A=60°,∠B=40°B.∠A=70°,∠B=50°
C.∠A=90°,∠B=45°D.∠A=120°,∠B=15°
13.(2分)等腰三角形的周长为l8 cm,其中一边长为8 cm,那么它的底边长为()A.2 cm B.8 cm C.2 cm或8 cm D.以上都不对
评卷人得分
二、填空题
14.(2分)如图,在△ABC中,AB=BC=2,∠ABC=900,D是BC的中点,且它关于AC的对称点是D′,则BD′= .
15.(2分)△ABC中,∠A=40°,当∠C= 时,△ABC是等腰三角形.
中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则16.(2分)如图,ABC
CD= .
17.(2分)等腰三角形的一个外角是130°,它的一个底角是 .
18.(2分)如图,B、C是河岸两点,A是对岸一点,测得∠ABC=45°,BC=60m ,∠ACB=45°,则点A到岸边BC的距离是 m.
图1
图2
D
C E
A
B
19.(2分)在△ABC 中,若AC 2+AB 2=BC 2,则∠B+∠C= 度.
20.(2分)如图,在△ABC 中,∠ACB=90°,∠B=25°,CD ⊥AB 于D ,则∠ACD= .
21.(2分)等腰三角形的周长是l0,腰比底边长2,则腰长为 . 评卷人 得分
三、解答题
22.(7分)如图,在△ABC 中,AB = AC ,∠BAC =28°,分别以AB 、,AC 为边作等腰直角三角形ABD 和等腰直角三角形 ACE ,使∠BAD= ∠CAE =90°. (1)求∠DBC 的度数;
(2)分别连按BE 、CD. 试说明CD=BE.
23.(7分)如图,AB=AC ,BD=BC. 若∠A = 38°,求∠DBC 的度数.
24.(7分)两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .
E
D
C
B
A
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:DC BE ⊥.
25.(7分)已知:如图,△ABC 和△
ECD 都是等腰直角三角形,︒=∠=∠90DCE ACB ,D 为AB 边上一点.
求证:(1)△ACE ≌△BCD ; (2)2
2
2
DE AE AD =+.
26.(7分)仅用一块没有刻度的直角三角板能画出任意角的平分线吗?
(1)小明想出了这样的方法:如图所示,先将三角板的一个顶点和角的顶点0重合,一条直角边与OA 重合,沿另一条直角边画出直线1l ,再将三角板的同一顶点与0重合,同一条直角边与0B 重合,又沿另一条直角边画出直线2l ,1l 与2l 交于点P ,连结OP ,则0P 为∠AOB 的平分线,你认为小明的方法正确吗?为什么? (2)你还有别的方法吗?请叙述过程并说明理由.
27.(7分)如图,在四边形ABCD 中,AC ⊥DC ,∠ADC 的面积为30cm 2,DC=12 cm ,AB=3 cm ,BC=4 cm,求△ABC 的面积.
28.(7分)根据下列条件,分别判断以a ,b ,c 为边的三角形是不是直角三角形. (1) a=8,b=15,c=17; (2)23a =
,1b =,23
c =
29.(7分)试判断:三边长分别为222n n +,21n +、2221n n ++(n>O)的三角形是否是直角三角形?并说明理由.
30.(7分)将两块三角尺的直角顶点重合成如图的形状,若∠AOD=127°,则∠BOC 度数是多少?
【参考答案】***试卷处理标记,请不要删除
评卷人 得分
一、选择题
1.D 2.C 3.B 4.C
5.A
6.C
7.B
8.D
9.A
10.D
11.C
12.C
13.C
二、填空题
14.答案:5
15.40°或70°
16.3
17.50°或65°
18.30
19.90
20.25°
21.4
三、解答题
22.(1)在△ABC中,AB=AC,∠BAC=28°,∴∠ABC=1
2
×(180°-28°)=76°.
∵△ADB为等腰直角三角形,∴AD=AB,∠DBA=45°,
∴∠DBC=∠DBA+∠ABC=45°+76°=121°.
(2)∵△ABD和△ACE都是等腰直角三角形,AB=AD,AC=AE,∠BAD=∠CAE=90°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠BAE.
又∵AB=AC,∴AD=AB=AC=AE,∴△CAD≌△BAE,∴CD=BE.
23.在△ABC中.∵AB=AC,∠A=38,∴∠ABC=∠C=1
2
×(180°-∠A)=71°.
在△DBC中,∵BD=BC,∴∠BDC=∠C=71°.
∴∠D8C=180°-∠BDC-∠C=180°-71°-71°=38°. 24.(1)解:图2中ABE ACD △≌△. 证明如下:
ABC △与AED △均为等腰直角三角形,
AB AC ∴=,AE AD =,90BAC EAD ∠=∠=.
BAC CAE EAD CAE ∴∠+∠=∠+∠,即BAE CAD ∠=∠,ABE ACD ∴△≌△.
(2)证明:由(1)ABE ACD △≌△知45ACD ABE ∠=∠=,又45ACB ∠=,
90BCD ACB ACD ∴∠=∠+∠=,DC BE ∴⊥.
25.证明:(1) ∵ DCE ACB ∠=∠ ∴ ACE ACD BCD ACD ∠+∠=∠+∠ 即 ACE BCD ∠=∠ ∵ EC DC AC BC ==, ∴ △BCD ≌△ACE (2)∵ BC AC ACB =︒=∠,90, ∴ ︒=∠=∠45BAC B ∵ △BCD ≌△ACE ∴ ︒=∠=∠45CAE B
∴ ︒=︒+︒=∠+∠=∠904545BAC CAE DAE ∴ 2
22DE AE AD =+ 26.(1)正确,理由略;(2)略
27.6cm 2
28.(1)是;(2)不是 29.是直角三角形,理由略 30.53°。

相关文档
最新文档