集合的含义与表示同步练习题

合集下载

高中数学北师大版必修一1.1【同步练习】《集合的含义与表示 》

高中数学北师大版必修一1.1【同步练习】《集合的含义与表示 》

《集合的含义与表示》同步练习1、已知集合S ={a,b ,c}中的三个元素为△ABC 的三边长,那么△ABC 一定不是________三角形。

所有整数,④函数y =2x 的图像上的点。

能构成集合的个数为____。

4、设a ,b∈R,集合{1,a +b ,a}=⎩⎨⎧⎭⎬⎫0,b ,b a ,则b -a 等于 。

1、已知集合A ={x|-3<x <3,x ∈Z},B ={(x ,y)|y =x2+1,x ∈A},则集合B 用列举法表示。

2、若2∉{x|x -a >0},求实数a 的取值范围。

3、用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A ;(2)方程x 2-9=0的实数根组成的集合B ;(3)一次函数y =x +3与y =-2x +6的图象的交点组成的集合D 。

1、已知集合A ={1,0,a},若a2∈A ,求实数a 的值。

2。

(创新拓展)对于a ,b ∈N +,现规定a*b =+(与的奇偶性相同)(与的奇偶性不同)a b a b a b a b ⎧⎨⨯⎩集合M ={(a ,b)|a*b =36,a ,b ∈N +}(1)用列举法表示a ,b 奇偶性不同时的集合M ;(2)当a 与b 的奇偶性相同时集合M 中共有多少个元素?3、已知集合A ={x|ax 2+3x +1=0,x ∈R},(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围。

4、集合A ={x |x =3n +1,n ∈Z },B ={x |x =3n +2,n ∈Z },C ={x |x =6n +3,n ∈Z }。

(1)若c ∈C ,是否存在a ∈A ,b ∈B ,使c =a +b 成立?(2)对于任意a ∈A ,b ∈B ,是否一定有(a +b )∈C ?请证明你的结论。

答案与解析1、【解析】本题考查元素的三要素之一互异性,集合中a 、b 、c 为三个不同的元素,所以△ABC 的三边均不相等,故应填“等腰”。

集合的含义与表示同步练习

集合的含义与表示同步练习

集合的含义与表示同步练习基本知识练习 判断下列对象能否构成集合,回答“能” (1) (3) (5) (7) 1、 所有正三角形 所有数学难题 某班所有高个子的学生 一切很大的书 或“不能”(2)《数学》教材中所有的习题 (4)所有无理数 (6) (8)著名的艺术家 倒数等于它自身的实数 2、 3、4、5、 6、7、 8、 9、 “X” 判断下列说法是否正确,对的打“V” 0与{0}表示同一个集合;由1, 2, 3组成的集合可表示为{1,2, 3}或{3,2,1}; 方程(x-1 ) 2(x-2) 2=0的所有解的集合可表示为{1 , 1, 2};错的打 (1) (2)(3) (4) (5) (6) (7) 集合{x4cx<5}是有限集;{0}= 一 ;0「;{a } {a,b }集合\ N . x -3 ::: 2」用列举法表示应是在直角坐标系中,坐标轴上的点的集合可表示为若 1 € {2 , a+2, a 2+3a+3},则实数 a=若 A ={-2,2,3,4},B 二{x|x 二t 2t A },用列举法表示 B 已知集合S={a, b, c }中的三个元素是厶ABC 的三边长 那么△ ABC^定不是B D A 、锐角三角形C 、钝角三角形 若集合A={ (0,2 ), A 1个 B 、2个 )、直角三角形 、等腰三角形(0,4 )},则集合A 中元素的个数是C 、3个D 、4个F 列集合中,表示同一个集合的是 () A 、 B C 、 D M={(3,2)},N={(2,3)}M={3, 2},N={2, 3}M={(x ,y)|x+y=1) , N={y|x+y=1)}M={l ,2},N={(1,2)}10、已知 A={x| x < 3、2,x € R}, a=、、5,b=2.3,则( )A a € A 且 b'AB 、a'A 且 b € AC 、a € A 且 b € AD 、a 'A 且 b 'A11、点的集合M k {(x,y) | xy >0}是指 (A 、第一象限内的点集 BC 第一、第三象限内的点集D x y=1 12、方程组 x -y *1 的解集是()A 、{x=0,y=1}B 、{0,1}C 、{(0,1)}D 13、如果集合A={x| ax 2 + 2x +仁0}中只有一个元素,则a 的值是()A 、0B 、0或1C 、1D 不能确定 知识巩固思维训练:1、已知集合A =「1,x - 1,x 2 - 3 ,求实数x 应满足的条件.2、若|x+a| < b 的解集为{x|-1 <x < 5},求a 、b 的值分别为多少?2x > 43、不等式组$x 4,的解集是{x|x >2},求实数a 的取值范围l3x +a >04、设一元二次方程ax 2+bx+c=0(a<0)的根的判别式厶= b 2-4ac = 0,则不等式ax 2+bx+c-0的解集为 ) 第三象限内的点集 不在第二、第四象限内的点集、{(x,y)|x=0 或 y=1}A RB 、©C 、{xx 式—2}D > {—}2a2a5、已知集合A = {x|ax2+ 2x + 1 = 0,a^ R}(1) 若A中至多有一个元素,求a的取值范围;(2) 若A中至少有一个元素,求a的取值范围.6已知集合丄二{1,1 d,1 2d},三={1,r,r2},当d,r为何值时,二—?并求出此时的丄。

同步练习 集合的含义与表示含答案

同步练习 集合的含义与表示含答案

同步练习 集合的含义与表示学校: 姓名: 班级:一、选择题1 下列各组对象可以组成集合的是( )A .数学必修1课本中所有的难题B .小于8的所有素数C .直角坐标平面内第一象限的一些点D .所有小的正数2 给出下列关系:①12∈R ; ②2∉Q ; ③|-3|∉N ; ④|-3|∈Q ;⑤0∉N ,其中正确的个数为( ) A .1 B .2 C .3 D .43.由“book 中的字母”构成的集合中元素个数为( )A .1B .2C .3D .44.第一象限的点组成的集合可以表示为( )A .{(x ,y )|xy >0}B .{(x ,y )|xy ≥0}C .{(x ,y )|x >0且y >0}D .{(x ,y )|x >0或y >0}5. 方程组⎩⎨⎧=-=+9122y x y x 的解集是( ) A ()5,4 B ()4,5- C (){}4,5- D (){}4,5-6. 下列四个集合中,是空集的是( ) A }33|{=+x x B },,|),{(22R y x x y y x ∈-= C }0|{2≤x x D },01|{2R x x x x ∈=+- 7.在下列关系中错误的个数是( )①1∈{0,1,2}; ②{1}∈{0,1,2}; ③{0,1,2}⊆{0,1,2}; ④{0,1,2}={2,0,1};⑤{0,1}⊆{(0,1)};A .1B .2C .3D .48.集合M ={1,2,3}的子集个数为( )A .5B .6C .7D .8二、填空题9. 用符号“∈”或“∉”填空. -2________R ; -3________Q ; -1________N ; π________Z .10. 集合A 中的元素x 满足63-x∈N ,x ∈N ,则集合A 中的元素为________. 11. 设集合{=M 小于5的质数},则M 的子集的个数为. 三、解答题12. 求解下列问题: (1)0822=--x x (2)2113x x +<-13. 已知集合A ={x |x 2-x =0},B ={x |ax =1},且A ⊇B ,求实数a 的值.14.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若A ⊆B ,求实数m 的取值集合.同步练习 集合的含义与表示答案1. B 解析 A 中“难题”的标准不确定,不能构成集合;B 能构成集合;C 中“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合;D 中没有明确的标准,所以不能构成集合.2. B 解析 12是实数,①对;2不是有理数,②对;|-3|=3是自然数,③错;|-3|=3为无理数, ④错;0是自然数,⑤错.故选B.3. C4. C5. D 1594x y x x y y +==⎧⎧⎨⎨-==-⎩⎩得,该方程组有一组解(5,4)-,解集为{}(5,4)-; 6. D 选项A 所代表的集合是{}0并非空集,选项B 所代表的集合是{}(0,0)并非空集,选项C 所代表的 集合是{}0并非空集,选项D 中的方程210x x -+=无实数根; 7. B 解析 ①正确;因为集合{1}是集合{0,1,2}的真子集,而不能用符号∈来表示,所以②错误;③正确,因为任何集合都是它本身的子集;④正确,因为集合元素具有无序性;因为集合{0,1}表示数集,它有两个元素,而集合{(0,1)}表示点集,它只有一个元素,所以⑤错误,所以错误的个数是2.故选B.8. D 解析 ∵集合M 共有3个元素, ∴集合M 的子集的个数为23=8.9.答案 ∈ ∈ ∉ ∉10.答案 0,1,2解析 ∵x ∈N ,63-x ∈N , ∴0≤x ≤2且x ∈N . 当x =0时,63-x =63=2∈N ; 当x =1时,63-x =63-1=3∈N ;当x =2时,63-x =63-2=6∈N . ∴A 中元素有0,1,2. 11.412.略13.(1)当a =0时,B =∅⊆A ,符合题意.(2)当a ≠0时,B ={x |ax =1}={1a },∵1a ≠0,要使A ⊇B ,只有1a=1,即a =1. 综上,a =0或a =1.14.解 ∵A ⊆B ,∴当A =∅时,即方程x 2-4mx +2m +6=0无实根,故Δ=16m 2-8(m +3)<0,解得-1<m <32.当A ≠∅时,方程x 2-4mx +2m +6=0的根为负, 则⎩⎪⎨⎪⎧ Δ≥0,x 1+x 2<0,x 1x 2>0⇒⎩⎪⎨⎪⎧ m ≥32或m ≤-1,4m <0,2m +6>0⇒⎩⎪⎨⎪⎧ m ≥32或m ≤-1,m <0,m >-3⇒-3<m ≤-1. 综上,实数m 的取值集合是{m |-3<m <32}.。

集合的含义与表示练习题

集合的含义与表示练习题

集合的含义与表示练习题一、选择题1. 下列何者是集合的定义?A. 一些相同或相类似的元素的聚集。

B. 一些不同的元素的聚集。

C. 一些有序的元素的聚集。

D. 一些无序的元素的聚集。

2. 以下哪个符号表示“属于”关系?A. ∩B. ∪C. ∈D. ⊆3. 若集合A={1,2,3},则A的基数为:A. 3B. 6C. 1D. 04. 下列哪个运算符表示两个集合的交集?A. ∩B. ∪C. ∈D. ⊆5. 若集合A={a,b,c},集合B={b,c,d},则A∪B等于:A. {a,b,c,d}B. {a}C. {b,c,d}D. {b,c}二、填空题1. 若集合A={1,2,3},集合B={2,3,4},则A∩B={ }。

2. 集合A的幂集的基数为{ },其中集合A的基数为4。

3. 若集合A={1,2,3,4},集合B={2,4,6,8},则A∪B={ }。

三、解答题1. 请定义集合的并集、交集和补集,并举例说明。

2. 若集合A={a,b,c,d,e},集合B={c,d,e,f,g},找出满足以下条件的集合:a) A∪B的基数为6;b) A∩B的基数为2。

四、应用题1. 某班级有50名学生,其中30人会打篮球,20人会踢足球。

已知篮球队员中有10人同时会踢足球,问有多少人既会打篮球又会踢足球?2. 在某个购物网站上,有1000个用户喜欢购买手机,700个用户喜欢购买电脑,已知用户中有300人同时喜欢购买手机和电脑,问有多少人既喜欢购买手机又喜欢购买电脑?以上是关于集合的含义与表示的练习题,希望能帮助你更好地理解和掌握集合的概念与运算。

答案如下:一、选择题1. A2. C3. A4. A5. A二、填空题1. {2,3}2. 163. {1,2,3,4,6,8}三、解答题1. 并集:集合A∪B是包含A和B中所有元素的集合。

例如,A={1,2,3},B={2,3,4},则A∪B={1,2,3,4}。

交集:集合A∩B是包含A和B中共有元素的集合。

高中数学必修一全册同步练习含参考答案

高中数学必修一全册同步练习含参考答案

高中数学必修一同步练习1.1.1 集合的含义与表示课后作业· 练习案【基础过关】1.若集合中只含一个元素1,则下列格式正确的是A.1=B.0C.1D.12.集合的另一种表示形式是A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 3.下列说法正确的有①集合,用列举法表示为{1,0,l};②实数集可以表示为或;③方程组的解集为.A.3个B.2个C.1个D.0个4.直角坐标系中,坐标轴上点的集合可表示为A.B.C.D.5.若集合含有两个元素1,2,集合含有两个元素1,,且,相等,则____. 6.已知集合,,且,则为 . 7.设方程的根组成的集合为,若只含有一个元素,求的值. 8.用适当的方法表示下列集合:(1)所有被3整除的整数;(2)满足方程的所有x的值构成的集合B.【能力提升】集合,,,设,则与集合有什么关系?详细答案【基础过关】1.D【解析】元素与集合之间只存在“∈”与“∉”的关系,故1∈A正确.2.B【解析】由x-2<3得x<5,又,所以x=1,2,3,4,即集合的另一种表示形式是{1,2,3,4}.3.D【解析】对于①,由于x∈N,而-1∉N,故①错误;对于②,由于“{ }”本身就具有“全部”、“所有”的意思,而且实数集不能表示为{R},故②错误;对于③,方程组的解集是点集而非数集,故③错误.4.C【解析】坐标轴上的点分为x轴、y轴上的点,在x轴上的点纵坐标为0,在y轴上的点横坐标为0.5.【解析】由于P,Q相等,故,从而.6.(2,5)【解析】∵a∈A且a∈B,∴a是方程组的解,解方程组,得∴a为(2,5).7.A中只含有一个元素,即方程(a∈R)有且只有一个实根或两个相等的实根.(1)当a=0时,方程的根为;(2)当a≠0时,有△=4-4a=0,即a=1,此时方程的根为.∴a的值为0或1.【备注】误区警示:初学者易自然认为(a∈R)是一元二次方程,而漏掉对a 的讨论,导致漏解.举一反三:若把“若A只含有一个元素”改为“若A含有两个元素”,则结论又如何?由题意知,a≠0,且△=4-4a>0,解得a<1.所以a<1且a≠0.8.(1){x|x=3n,n∈Z};(2)B={x|x=|x|,x∈R}.【能力提升】∵a∈P,b∈M,c=a+b,设,,,,∴,又∴c∈M.1.1.2集合间的基本关系班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设,,若,则的取值范围是A. B. C. D.2.设集合,,则A.M =NB.M⊆NC.M ND.N3.已知集合,,若,求实数的值.4.满足条件{1,2,3}M{1,2,3,4,5,6}的集合的个数是A.8B.7C.6D.55.设集合和,那么与的关系为 .6.含有三个实数的集合,既可表示成,又可表示成,则.7.设集合,,求A∩B.8.已知M={x | x2-2x-3=0},N={x | x2+ax+1=0,a∈R},且N M,求a的取值范围.【能力提升】已知,,是否存在实数,使得对于任意实数,都有?若存在,求出对应的的值;若不存在,说明理由.答案【基础过关】1.D【解析】∵,∴a≥22.D【解析】本题考查集合间的基本关系.,;而;即N.选D.3.由A=B,可得,解得x=1.4.C【解析】本题考查子集.由题意得M={1,2,3,4},{1,2,3,5},{1,2,3,6},{1,2,3,4,5},{1,2,3,4,6},{1,2,3,6,5}共6个.选C. 5.M=P【解析】∵xy>0,∴x,y同号,又x+y<0,∴x<0,y<0,即集合M表示第三象限内的点.而集合P表示第三象限内的点,故M=P.6.-1【解析】本题考查相等集合.由题意得,所以,即;此时,所以,,且,解得.所以.7.,解得;所以.【解析】本题考查集合的基本运算.8.解:M={x | x 2-2x -3=0}={3,-1};∵N M,当N=∅时,N M 成立,N={x | x 2+ax+1=0},∴a 2-4<0, ∴-2<a <2;当N≠∅时,∵N M, ∴3∈N 或 -1∈N;当3∈N 时,32-3a+1=0即a= -310,N={3,31},不满足N M;当-1∈N 时,(-1)2-a+1=0即a=2,N={-1},满足N M;∴a 的取值范围是-2<a ≤2.【解析】本题考查集合间的基本关系. 【能力提升】不存在.要使对任意的实数b 都有,则1,2是A 中的元素,又∵A ={a -4,a +4},∴或这两个方程组均无解,故这样的实数a 不存在.1.1.3 集合的基本运算班级:__________姓名:__________设计人__________日期__________课后作业【基础过关】1.若,,,,则满足上述条件的集合的个数为A.5B.6C.7D.82.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5}, B={1,3,6},那么集合{2,7,8}是A.A∪BB.A∩BC.(∁U A)∩(∁U B)D.(∁U A)∪(∁U B)3.若集合P={x∈N|-1<x<3},Q={x|x=2a,a∈P},则P∩Q=A.⌀B.{x|-2<x<6}C.{x|-1<x<3}D.{0,2}4.设全集U=R,集合M={x|x>1或x<-1},N={x|0<x<2},则N∩(∁U M)=A.{x|-2≤x<1}B.{x|0<x≤1}C.{x|-1≤x≤1}D.{x|x<1}5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为.6.集合A={(x,y)|x+y=0},B={(x,y)|x-y=2},则A∩B= .7.设集合A={x|0<x-m<3},B={x|x≤0,或x≥3},分别求满足下列条件的实数m.(1)A∩B=⌀;(2)A∪B=B.8.已知集合A={x|2≤x<7},B={x|3<x<10},C={x|x<a}.(1)求A∪B,(∁R A)∩B;(2)若A∩C≠⌀,求a的取值范围.【能力提升】已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-x+2m=0}.(1)若A∪B=A,求a的值;(2)若A∩C=C,求m的取值范围.详细答案【基础过关】1.D2.C【解析】借助Venn图易得{2,7,8}=∁U(A∪B),即为(∁U A)∩(∁U B).3.D【解析】由已知得P={0,1,2},Q={0,2,4},所以P∩Q={0,2}.4.B【解析】∁U M={x|-1≤x≤1},结合数轴可得N∩(∁U M)={x|0<x≤1}.5.12【解析】设两项运动都喜爱的人数为x,依据题意画出Venn图,得到方程15-x+x+10-x+8=30,解得x=3,∴喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.6.{(1,-1)}【解析】A∩B={(x,y)|}={(1,-1)}.7.因为A={x|0<x-m<3},所以A={x|m<x<m+3}.(1)当A∩B=⌀时,需,故m=0.即满足A∩B=⌀时,m的值为0.(2)当A∪B=B时,A⊆B,需m≥3,或m+3≤0,得m≥3,或m≤-3.即满足A∪B=B时,m的取值范围为{m|m≥3,或m≤-3}.8.(1)因为A={x|2≤x<7},B={x|3<x<10},所以A∪B={x|2≤x<10}.因为A={x|2≤x<7},所以∁R A={x|x<2,或x≥7},则(∁R A)∩B={x|7≤x<10}.(2)因为A={x|2≤x<7},C={x|x<a},且A∩C≠⌀,所以a>2.【能力提升】A={1,2}.(1)因为A∪B=A,所以B⊆A,故集合B中至多有两个元素1,2.而方程x2-ax+a-1=0的两根分别为1,a-1,注意到集合中元素的互异性,有①当a-1=2,即a=3时,B={1,2},满足题意;②当a-1=1,即a=2时,B={1},满足题意.综上可知,a=2或a=3.(2)因为A∩C=C,所以C⊆A.①当C=⌀时,方程x2-x+2m=0无实数解,因此其根的判别式Δ=1-8m<0,即m>.②当C={1}(或C={2})时,方程x2-x+2m=0有两个相同的实数解x=1(或x=2),因此其根的判别式Δ=1-8m=0,解得m=,代入方程x2-x+2m=0,解得x=,显然m=不符合要求.③当C={1,2}时,方程x2-x+2m=0有两个不相等的实数解x1=1,x2=2,因此x1+x2=1+2≠1,x1x2=2=2m,显然不符合要求.综上,m>.1.2.1 函数的概念班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.下列函数中,值域为(0,+∞)的是( )A.y=B.y=C.y=D.y=x2+12.下列式子中不能表示函数的是A. B. C. D.3.函数y=+的定义域是( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.{-1,1}4.若满足,且,,则等于A. B. C. D.5.若为一确定区间,则的取值范围是 .6.函数的图象是曲线,其中点,,的坐标分别为(0,0),(1,2),(3,1),则的值等于 .7.求下列函数的定义域.(1);(2).8.已知.(1)求,的值;(2)求的值. 【能力提升】已知函数f(x)对任意实数a,b,都有f(ab)=f(a)+f(b)成立.(1)求f(0),f(1)的值;(2)若f(2)=p,f(3)=q(p,q为常数),求f(36)的值.答案【基础过关】1.B【解析】y=的值域为[0,+∞),y=的值域为(-∞,0)∪(0,+∞),y=x2+1的值域为[1,+∞).故选B.2.A【解析】一个x对应的y值不唯一.3.D【解析】要使函数式有意义,需满足,解得x=±1,故选D.4.B【解析】f(72)=f(8×9)=f(8)+f(9)=3f(2)+2f(3)=3p+2q.5.【解析】由题意3a-1>a,则.【备注】误区警示:本题易忽略区间概念而得出,则的错误.6.2【解析】由图可知f(3)=1,∴f[f(3)]=f(1)=2.【备注】误区警示:本题在求解过程中会因不理解f[f(3)]的含义而出错.7.(1)由已知得∴函数的定义域为.(2)由已知得:∵|x+2|-1≠0,∴|x+2|≠1,得x≠-3,x≠-1.∴函数的定义域为(-∞,-3)∪(-3,-1)∪(―1,+∞).8.(1),.(2)∵,∴==1+1+1++1(共2012个1相加)=2012.【能力提升】(1)令a=b=0,得f(0)=f(0)+f(0),解得f(0)=0;令a=1,b=0,得f(0)=f(1)+f(0),解得f(1)=0.(2)方法一令a=b=2,得f(4)=f(2)+f(2)=2p,令a=b=3,得f(9)=f(3)+f(3)=2q,令a=4,b=9,得f(36)=f(4)+f(9)=2p+2q.方法二因为36=22×32,所以f(36)=f(22×32)=f(22)+f(32)=f(2×2)+f(3×3)=f(2)+f(2)+f(3)+f(3)=2f(2)+2f(3)=2p+2q .【解析】题设只有一个函数方程,因此考虑特殊值0,1,通过解方程获解.1.2.2函数的表示法班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.已知是反比例函数,当时,,则的函数关系式为A. B. C. D.2.已知函数若,则的取值范围是A. B.C. D.3.已知函数f(x)=,则函数f(x)的图象是( )A. B. C. D.4.已知则A.2B.-2C.D.5.已知函数,且,则 .6.已知函数f(x)对于任意实数x满足条件f(x+2)=,若f(1)=-5,则f[f(5)]= .7.已知,为常数,且,,,方程有两个相等的实数根.求函数的解析式.8.如图,是边长为2的正三角形,记位于直线左侧的图形的面积为,试求函数的解析式.【能力提升】下图是一个电子元件在处理数据时的流程图:(1)试确定y与x的函数关系式;(2)求f(-3), f(1)的值;(3)若f(x)=16,求x的值.答案【基础过关】1.C【解析】根据题意可设(k≠0),∵当x=2时,y=1,∴,∴k=2.2.D【解析】若x∈[-1,1],则有f(x)=2∉[-1,1],∴f(2)=2;若x∉[-1,1],则f(x)=x∉[-1,1],∴f[f(x)]=x,此时若f[f(x)]=2,则有x=2.【备注】误区警示:本题易将x∉[-1,1]的情况漏掉而错选B.3.A【解析】当x=-1时,y=0,即图象过点(-1,0),D错;当x=0时,y=1,即图象过点(0,1),C错;当x=1时,y=2,即图象过点(1,2),B错.故选A.4.C【解析】∵,∴.【备注】无5.【解析】,∴,∴,解得.6.-【解析】由已知条件f(x+2)=可得f(x+4)==f(x),所以f(5)=f(1)=-5,所以f[f(5)]=f(-5)=f(-1)===-.7.∵,且方程f(x)=x有两个相等的实数根,∴,∴b=1,又∵f(2)=0,∴4a+2=0,∴,∴.8.OB所在的直线方程为.当t∈(0,1]时,由x=t,求得,所以;当t∈(1,2]时,;当t∈(2,+∞)时,,所以【能力提升】(1)由题意知y=.(2)f(-3)=(-3)2+2=11, f(1)=(1+2)2=9.(3)若x≥1,则(x+2)2=16,解得x=2或x=-6(舍去);若x<1,则x2+2=16,解得x=(舍去)或x=-.综上可得,x=2或x=-.1.3.1单调性与最大(小)值班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若函数在区间上是增函数,在区间上也是增函数,则函数在区间上A.必是增函数B.必是减函数C.先增后减D.无法确定单调性2.下列函数在(0,1)上是增函数的是A. B. C. D.3.函数,在上是A.减函数B.增函数C.先减后增D.无单调性4.下面说法错误的是A.函数的单调区间一定是函数的定义域B.函数的多个单调增区间的并集不一定是其单调增区间C.具有奇偶性的函数的定义域关于原点对称D.关于原点对称的图象一定是奇函数的图象5.已知函数在区间上为减函数,则的取值范围是_____________.6.设奇函数f(x)的定义域为[-5,5],且当x∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集是.7..已知函数,若.(l)求的值.(2)利用单调性定义证明函数在区间的单调性.8.首届世界低碳经济大会在南昌召开,大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下,进行技术攻关,采用了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?【能力提升】函数f(x)的图象如图所示.(1)说出f(x)的单调区间,以及在每一个单调区间上它是增函数还是减函数;(2)依据图象说明函数的最值情况.答案【基础过关】1.D【解析】因为(a,b),(c,d)不是两个连续的区间,所以无法确定其单调性.2.B【解析】选项A中y=1-2x为减函数,C中y=5为常数函数,D中的定义域为[1,+∞).3.B【解析】解答本题可先画出函数图象,由图象分析.函数f(x)的图象如图所示,由图结合单调性的定义可知,此函数在R上是增函数.4.A【解析】单调区间是定义域的子集,不一定是定义域,当多个单调区间并起来时,由单调性定义知,不再是单调区间.具有奇偶性的函数的定义域关于原点对称,是函数奇偶性判定的要求.奇函数的图象关于原点对称,反之,关于原点对称的图象一定是奇函数的图象.5.(-∞,1]6.(-2,0)∪(2,5]【解析】由图可知在区间(2,5]上f(x)<0,因为奇函数的图象关于原点对称,所以在(-2,0)上也有f(x)<0.7.(1)由2f(2)=f(3)+5,得,解得a=2.(2)由(1)知.任取x1,x2∈(1,+∞)且x1<x2,,因为1<x1<x2,所以x1-1>0,x2-1>0,x2-x1>0.所以f(x1)-f(x2)>0,即f(x1)>f(x2).所以f(x)在(1,+∞)上是减函数.8.(1)由题意可知,二氧化碳的每吨平均处理成本为令,可以证明t(x)在(0,400)为减函数,在[400,+∞)上是增函数,故每月处理量为400吨时,才能使每吨的平均处理成本最低,最低成本为200元.(2)设该单位每月获利为S,则.因为400≤x≤600,所以当x=400时,S有最大值-40 000.故该单位不获利,需要国家每月至少补贴40 000元,才能不亏损.【能力提升】(1)由题图可知:函数f(x)的单调增区间为[0,];单调减区间为(-∞,0)和(,+∞).(2)观察图象可知,函数没有最大值和最小值.1.3.2奇偶性班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.设在[-2,-1]上为减函数,最小值为3,且为偶函数,则在[1,2]上A.为减函数,最大值为3B.为减函数,最小值为-3C.为增函数,最大值为-3D.为增函数,最小值为32.已知函数是偶函数,其图象与轴有四个交点,则方程的所有实根之和是A.4B.2C.1D.03.函数是奇函数,图象上有一点为,则图象必过点A. B.C. D.4.设,其中为常数,若,则的值为A.-7B.7C.17D.-175.已知定义在上的奇函数,当时,,那么时,.6.若函数为区间[-1,1]上的奇函数,则;.7.作出函数的图象,并根据函数的图象找出函数的单调区间.8.已知函数是定义在R上的偶函数,且当时,该函数的值域为,求函数的解析式.【能力提升】已知函数f(x)=-x2+x,是否存在实数m,n(m<n),使得当x∈[m,n]时,函数的值域恰为[2m,2n]?若存在,求出m,n的值;若不存在,说明理由.答案【基础过关】1.D2.D3.C【解析】奇函数f(x)满足f(-x)=-f(x),故有f(-a)=-f(a).因为函数f(x)是奇函数,故点(a,f(a))关于原点的对称点(-a,-f(a))也在y=f(x)上,故选C.4.D【解析】∵,∴27a+3b=-12,∴f(3)=27a+3b-5=-17.5.-x2-|x|+16.0 07.当x-2≥0,即x≥2时,;当x-2<0,即x<2时,=.所以这是分段函数,每段函数图象可根据二次函数图象作出(如图),其中,[2,+∞)是函数的单调增区间;是函数的单调减区间.8.由f(x)为偶函数可知f(x)=f(-x),即,可得恒成立,所以a=c=0,故.当b=0时,由题意知不合题意;当b>0,x∈[1,2]时f(x)单调递增,又f(x)值域为[-2,1],所以当b<0时,同理可得所以或.【能力提升】假设存在实数m,n,使得当x∈[m,n]时,y∈[2m,2n],则在[m,n]上函数的最大值为2n.而f(x)=-x2+x=-(x-1)2+在x∈R上的最大值为,∴2n≤,∴n≤.而f(x)在(-∞,1)上是增函数,∴f(x)在[m,n]上是增函数,∴,即.结合m<n≤,解得m=-2,n=0.∴存在实数m=-2,n=0,使得当x∈[-2,0]时,f(x)的值域为[-4,0].2.1.1指数与指数幂的运算班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.化简的结果为A. B. C.- D.2.计算的结果是A. B. C. D.3.设,则有A. B.C. D.4.下列说法中正确的个数是( )(1)49的四次方根为7; (2)=a(a≥0);(3)()5=a5; (4)=(-3.A.1B.2C.3D.45.若10m=2,10n=4,则= . 6.已知x=(2 01-2 01),n∈N*,则(x+)n的值为. 7.化简下列各式:(1)(·)÷;(2)()·(-3)÷().8.求下列各式的值:(1)2; (2)(; (3)+(-π0.【能力提升】已知+=3,求下列各式的值:(1)x+x-1;(2).答案【基础过关】1.A【解析】要使式子有意义,需,故x<0,所以原式.2.A【解析】本题考查指数运算.注意先算中括号内的部分。

集合的含义与表示同步练习

集合的含义与表示同步练习

集合的含义与表示同步练习根本知识练习1、判断以下对象能否构成集合,答复“能〞或“不能〞〔1〕所有正三角形 〔2〕?数学?教材中所有的习题〔3〕所有数学难题 〔4〕所有无理数〔5〕某班所有高个子的学生 〔6〕著名的艺术家〔7〕一切很大的书 〔8〕倒数等于它自身的实数2、判断以下说法是否正确,对的打“√〞错的打“×〞〔1〕0与{0}表示同一个集合;〔2〕由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};〔3〕方程〔x-1〕2(x-2)2=0的所有解的集合可表示为{1,1,2};〔4〕集合{54<<x x }是有限集 ;〔5〕{0}=∅;〔6〕0∈∅;〔7〕{a}∈{a,b}3、集合{}23<-∈+x N x 用列举法表示应是 ;4、在直角坐标系中,坐标轴上的点的集合可表示为5、假设1∈{2,a+2,a 2+3a+3},那么实数a= .6、假设}4,3,2,2{-=A ,},|{2A t t x x B ∈==,用列举法表示B7、集合S={a ,b ,c }中的三个元素是△ABC 的三边长那么△ABC 一定不是 〔 〕A 、锐角三角形B 、直角三角形C 、钝角三角形D 、等腰三角形8、假设集合A={〔0,2〕,〔0,4〕},那么集合A中元素的个数是 〔 〕A 、1个B 、2个C 、3个D 、4个9、以下集合中,表示同一个集合的是 ( )A 、M={(3,2)},N={(2,3)}B 、M={3,2},N={2,3}C 、M={(x,y)|x+y=1),N={y|x+y=1)}D 、M={l,2},N={(1,2)}10、A ={x |x ≤32,x ∈R },a =5,b =23,那么〔 〕A 、a ∈A 且b ∉AB 、a ∉A 且b ∈AC 、a ∈A 且b ∈AD 、a ∉A 且b ∉A11、点的集合M ={(x,y)|xy ≥0}是指 〔 〕A 、第一象限内的点集B 、第三象限内的点集C 、第一、第三象限内的点集D 、不在第二、第四象限内的点集12、方程组 11x y x y +=-=- 的解集是 ( )A 、{x=0,y=1}B 、{0,1}C 、{(0,1)}D 、{(x,y)|x=0或y=1}13、如果集合A={x |ax 2+2x +1=0}中只有一个元素,那么a 的值是 〔 〕A 、0B 、0 或1C 、1D 、不能确定知识稳固思维练习:1、集合{}21,1,3A x x =--,求实数x 应满足的条件.2、假设|x +a |≤b 的解集为{x |-1≤x ≤5},求a 、b 的值分别为多少?3、不等式组⎩⎨⎧>+>03,42a x x 的解集是{x |x >2},求实数a 的取值范围4、设一元二次方程ax 2+bx+c=0(a<0)的根的判别式042=-=∆ac b ,那么不等式 ax 2+bx+c ≥0的解集为 〔 〕A 、RB 、φC 、{a b x x 2-≠} D 、{a b 2-}5、集合{}2210,A x ax x a R =++=∈ (1)假设A 中至多有一个元素,求a 的取值范围;(2)假设A 中至少有一个元素,求a 的取值范围.6、集合2{1,1,12},{1,,},d d r r A =++B =当,d r 为何值时,A =B ?并求出此时的A .答案根底知识练习1、〔1〕能 〔2〕能 〔3〕不能 〔4〕能 〔5〕不能 〔6〕不能 〔7〕不能 〔8〕能2、〔1〕× 〔2〕√ 〔3〕× 〔4〕× 〔5〕× 〔6〕× 〔7〕×3、{}1,2,3,44、(){},0x y xy =5、-26、{}4,9,16=7、D8、B9、B10、C11、D12、C13、B知识稳固思维练习1、21x x ≠±≠-且2、a=-2,b=33、a ≥-64、D5、〔1〕10a a ≥=且 〔2〕10a a ≤≠且6、3111,,1,,4242d r A ⎧⎫=-=-=-⎨⎬⎩⎭。

(完整版)集合的概念及表示练习题及答案

(完整版)集合的概念及表示练习题及答案

新课标集合的含义及其表示姓名:、选择题:1.下面四个命题:(1)集合N中的最小元素是1:( 2)若a N,则a N (3) x2的解集为{2 , 2} ; ( 4) 0.7 Q,其中不正确命题的个数为 ( )4xA. 0B. 1C.2D.32.下列各组集合中,表示同一集合的是A. M 3,2 , N 2,3B. 3,2 , N 2,3C. M x, y x y 1 , N y 1D. M 1,2 ,N 1.23.下列方程的实数解的集合为-的个数为(1) 4x2 9y2 4x 12y 5 0;(2)6x20;⑶ 2x 1 23x 2 0;(4)6x2A.1B.2C.3D.44.集合A x 1 0 ,B 6x 10 0 , x Q 4x 5 解集含有3个元素;(3) 0 (4)满足1 x x的实数的全体形成的集合。

其中正确命题的个数是( )A.0B. 1C. 2D.3二. 填空题:一,2x 4 08. 用列举法表示不等式组2x 4 0的整数解集合为1 x 2x 19. 已知集合A x x N,里I N用歹0举法表示集合A为6 x10. 已知集合A a-_41有惟一解,乂列举法表示集合A为x a三、解答题:11. 已知A= 1,a,b , B a, a2,ab,且A=B,求实数a,b ;12. 已知集合A xax2 2x 1 0, x R , a为实数(1)若A是空集,求a的取值范围(2)若A是单元素集,求a的值(3)若A中至多只有一个元素,求a的取值范围D xx为小丁2的质数,其中时空集的有A. 1 个B.2个C.3 个D.4 个5.下列关系中表述正确的是A. 0 x20B. 0 0,0C. 0D. 06.A. 下列表述正确的是(0 B. 1,2 2,1 C. D. 07. 卜面四个命题:(1)集合N中的最小元素是 1 : (2)方程13.设集合M a a x2 y2,a Z(1)请推断任意奇数与集合M的关系(2)关丁集合M你还可以得到一些什么样的结论参考答案:DBBBDBCa>1(2) a=0or1 (3) a=0-一一…- 178. 1,0,1,2 9 0,2,3,4,5 ; 10, 一,2,2 11,a= -1,b=0 ; 12, (1)4or a 113 (1)任意奇数都是集合M的元素(2)略。

集合的含义与表示 习题(含答案)

集合的含义与表示 习题(含答案)

集合的含义与表示 习题(含答案)一、单选题1.已知A 中元素x 满足x =3k -1,k∈Z,则下列表示正确的是( )A . -1∉AB . -11∈AC . 3k 2-1∈A D . -34∉A2.下列说法正确的有( )①NBA 联盟中所有优秀的篮球运动员可以构成集合;②0∈N ∗;③集合{y |y =x 2−1}与集合{(x,y )|y =x 2−1}是同一个集合;④空集是任何集合的真子集.A . 0个B . 1个C . 2个D . 3个3.已知集合A={1,x ,x 2-2x},且3∈A ,则x 的值为( )A . -1B . 3C . -1或3D . -1或 -34.下列说法:①集合{x∈N|x 3=x}用列举法表示为{-1,0,1};②实数集可以表示为{x|x 为所有实数}或{R};③方程组{x +y =3x −y =−1的解集为{x =1,y =2}. 其中正确的有( )A . 3个B . 2个C . 1个D . 0个5.集合M ={(1,2),(2,1)}中元素的个数是A . 1B . 2C . 3D . 46.如果A ={x|x >−1},那么( )A . 0⊆AB . {0}∈AC . φ∈AD . {0}⊆A7.设非空集合S={x|m≤x≤n}满足:当x∈S 时,有x 2∈S,给出如下三个命题:①若m=1则S={1}; ②若m=−12,则14≤n≤1; ③若n=12,则−√22≤m≤0.其中正确的命题的个数为( )A . 0B . 1C . 2D . 38.若集合A={x|ax 2+ax −1=0}只有一个元素,则a =( )A . -4B . 0C . 4D . 0或-49.已知集合A {x|x =a 0+a 1×2+a 2×22+a 3×23},其中a k ∈{0,1}(k =0,1,2,3),且a 3≠0,则A 中所有元素之和是( ).A . 120B . 112C . 92D . 8410.已知集合A ={(x , y)|x 2+y 2≤3 , x ∈Z , y ∈Z },则A 中元素的个数为A . 9B . 8C . 5D . 4二、解答题11.如图,用适当的方法表示阴影部分的点(含边界上的点)组成的集合M.12.用另一种方法表示下列集合:(1){绝对值不大于2的整数};(2){能被3整除,且小于10的正数};(3){x|x =|x|,x<5且x∈Z};(4){(x ,y)|x +y =6,x∈N +,y∈N +};(5){-3,-1,1,3,5}.三、填空题13.给出下列集合:①{(x,y)|x≠1,y≠1,x≠2,y≠-3};②{(x,y)|{x ≠1y ≠1 且{x ≠2y ≠−3 };③{(x,y)|{x ≠1y ≠1或{x ≠2y ≠−3}; ④{(x,y)|[(x -1)2+(y -1)2]·[(x-2)2+(y +3)2≠0]}.其中不能表示“在直角坐标系xOy 平面内,除去点(1,1)、(2,-3)之外所有点的集合”的序号有________.14.列举法表示方程x 2−(2a +3)x +a 2+3a +2=0的解集为______.15.若集合{x ∈R|a <x <2a -4}为空集,则实数a 的取值范围是________.参考答案1.C【解析】【分析】判断一个元素是不是集合A的元素,只要看这个元素是否满足条件x=3k−1,k∈Z;判断一个元素是集合A的元素,只需令这个数等于3k−1,解出k,判断k是否满足k∈Z,据此可完成解答.【详解】当k=0时,3k−1=−1,故−1∈A,故选项A错误;∉Z,故选项B错误;若−11∈A,则−11=3k−1,解得k=−103令3k2−1=3k−1,得k=0或k=1,即3k2−1∈A,故选项C正确;当k=−11时,3k−1=−34,故−34∈A,故选项D错误;故选C.【点睛】该题是一道关于元素与集合关系的题目,解题的关键是掌握集合的含义.2.A【解析】【分析】根据集合的定义,元素与集合的关系,列举法和描述法的定义以及空集的性质分别判断命题的真假.【详解】对于①,优秀的篮球队员概念不明确,不能构成集合,错误;对于②,元素与集合的关系应为属于或不属于,即0∉N*,错误;对于③,集合{y=x2-1}列举的是一个等式,集合{(x,y)|y=x2-1}表示的是满足等式的所有点,不是同一个集合,错误;对于④,空集是任何非空集合的真子集,错误;故选:A.【点睛】本题考查集合的确定性,元素与集合的关系,列举法和描述法表示集合以及空集的有关性质,属于基础题.3.A【解析】【分析】推导出x=3或x2-2x=3,分别代入集合A,能求出x的值.【详解】:∵集合A={1,x,x2-2x},且3∈A,∴x=3或x2-2x=3,当x=3时,A={1,3,3},不满足元素的互异性,故x≠3,当x2-2x=3时,解得x=-1或x=3(舍),当x=-1时,A={1,-1,3},成立.故x=-1.故选:A.【点睛】本题考查实数值的求法,考查元素与集合的关系等基础知识,考查化归与转化思想、分类与整合思想,是基础题.4.D【解析】【分析】x3=x的解为-1,0,1,因为x∈N从而可知①错误;实数集可以表示为{x|x为实数}或R,故②错误;集合{x=1,y=2}表示x=1与y=2两条直线,故③错误.【详解】∵x3=x的解为-1,0,1,∴集合{x∈Z|x3=x}用列举法表示为{-1,0,1},故①正确;实数集可以表示为{x|x为实数}或R,故②错误;方程组{x+y=3x−y=−1的解集为{(1,2)},集合{x=1,y=2}中的元素是x=1,y=2;故③错误;故选D.【点睛】本题考查了元素与集合的关系的判断及集合的表示法的应用,属于基础题.5.B【解析】【分析】根据题意,集合是用列举法表示的,集合M 是点集,只包含两个点。

集合的含义及表示(含答案)

集合的含义及表示(含答案)

集合的含义及表示(含答案)集合的含义及表示一、单选题(共14道,每道7分)1.在直角坐标内,坐标轴上的点构成的集合可表示为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:集合的表示法2.已知集合,用列举法可表示为( )A.{0,1,2}B.{-3,-1,0,1}C.{-3,0,1,2}D.{-2,-1,1,2}答案:A解题思路:试题难度:三颗星知识点:集合的表示法3.设集合,,则下列关系中正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:元素与集合的关系4.下面关于集合的表示,正确的个数是( )①;②;③.A.0B.1D.3答案:B解题思路:试题难度:三颗星知识点:集合的相等5.下列集合中,是空集的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:空集的定义、性质及运算6.下列集合中与相等的是( )A.{1,-1}B.{1,0,-1}C.{2,-2}D.{2,0,-2}答案:D解题思路:试题难度:三颗星知识点:集合的相等7.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x-y∈A},则B中所含元素的个数为( )A.3B.6C.8D.10答案:D解题思路:试题难度:三颗星知识点:元素与集合的关系8.已知:①;②;③;④,上述四个关系中,错误的个数是( )B.2C.3D.4答案:B解题思路:试题难度:三颗星知识点:集合的子集9.若集合中只有一个元素,则a=( )A.4B.2C.0D.0或4答案:A解题思路:试题难度:三颗星知识点:元素与集合的关系10.若以正实数a,b,c,d四个元素构成集合A,则以A中四个元素为边长构成的四边形可能是( )A.梯形B.平行四边形C.菱形D.矩形答案:A解题思路:试题难度:三颗星知识点:集合中元素的互异性11.下面各数中,集合中的x不能取的一个值是( )A.2B.3C.4D.5答案:B解题思路:试题难度:三颗星知识点:元素与集合的关系12.若,则x的值为( )A.-1B.2C.-1或2D.1或-2答案:B解题思路:试题难度:三颗星知识点:元素与集合的关系13.已知集合,集合.若集合A=B,则a的值为( )A.1B.3C.0D.0或1答案:C解题思路:试题难度:三颗星知识点:集合的相等14.已知集合,且A=B,则x,y的值分别为( )A.-1,0B.1,0C.1,-1或0D.-1,1答案:A解题思路:试题难度:三颗星知识点:集合的相等。

高中数学题集合的含义与表示同步测试题

高中数学题集合的含义与表示同步测试题

高中数学题的含义与表示同步测试题高中数学题集合的含义与表示同步测试题一、选择题:1.以下元素的全体不能够构成集合的是()A. 中国古代四大发明B. 地球上的小河流C. 方程的实数解D. 周长为10cm的三角形2.给出下列关系:① ;② ;③ ;④ . 其中正确的个数是()A. 1B. 2C. 3D. 43.有下列说法:( 1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为或{3,2,1};(3)方程的所有解的集合可表示为{1,1,2};(4)集合是有限集. 其中正确的说法是()A. 只有(1)和(4)B. 只有(2)和(3)C. 只有(2)D. 以上四种说法都不对4.下列各组中的两个集合M和N, 表示同一集合的是()A. ,B. ,C. ,D. ,5.下面有四个语句:①集合N*中最小的.数是0;②-aN,则aN;③aN,bN,则a +b的最小值是2;④x2+1=2x的解集中含有2个元素.其中正确语句的个数是().A.0 B.1 C.2 D.36.下列所给关系正确的个数是().①R;②3Q;③0N*;④|-4|N*.A.1 B.2 C.3 D.4二、填空题:7.已知实数,集合,则a与B的关系是 .8.方程组的解集是9.已知,则集合中元素x所应满足的条件为 .三、解答题:10.择适当的方法表示下列集合:(1)二次函数的函数值组成的集合;(2)函数的自变量的值组成的集合.11.知集合,试用列举法表示集合A.12.集合,若,求实数的值.1.1.1(1)集合的含义与表示答案16 BCC DAB7,8 ,9,10,(1)(2) .11,12,。

高一数学同步练习1(集合的含义与表示)

高一数学同步练习1(集合的含义与表示)

高一数学同步练习1〔集合的含义与表示〕一.选择题A ={(2,-2),(2,2)},那么集合A 中元素的个数是 ( )M ={1,2,x 2},那么x 满足 ( ) A.x ≠1且x ≠2B.x ≠±1C.x ≠±2D.x ≠±1且x ≠±2 3.集合{方程(x -2)2=0的解}为 ( ) A.{0} B.{2,2} C.{2} D.{4} 4.集合S ={c b a ,,}中的三个元素可构成∆ABC 的三条边长,那么∆ABC 一定不是 〔 〕 A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形5.以下四个集合中,是空集的是 〔 〕 A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-=C .}0|{2≤x x D .}01|{2=+-x x x 二、填空题“∈〞或“∉〞填空:〔1〕设A 为所有亚洲国家组成的集合,那么中国______A ,美国______A ,印度______A ,英国______A ; 〔2〕假设A ={方程x 2=1的解},那么-1______A ;〔3〕假设B ={方程x 2+x -6=0的解},那么3______B ;〔4〕假设C ={满足1≤x ≤10的自然数},那么8________C ,9.1________C.〔5〕设P ={}15|≤x x ,23=m ,那么m ________P 。

〔6〕0_______φ〔7〕1_______{}*2,1|N a a x x ∈+-=。

2.设直线32+=x y 上的点集为P ,那么P =___________。

点〔2,7〕与P 的关系为〔2,7〕___________P 。

3.集合{1,2}与集合{2,1}是否表示同一集合______;集合{1,2}与集合{(1,2)}是否表示同一集合______(填“是〞或“不是〞).4.对于集合A ={2,4,6},假设a ∈A ,那么6-a ∈A ,那么a 的值是.5.含有三个实数的集合可表示为{a ,ab,1},也可表示为{a 2,a +b ,0},那么a 2005+b 2006的值为________.6.}1,0,1,2{--=A ,}|{A x x y y B ∈==,那么B =. 三、解答题1.考查以下每组对象能否构成一个集合? a .著名的数学家;b .某校2001年在校的所有高个子同学;c .不超过20的非负数;d .方程092=-x 在实数内的解;e .直角坐标平面内第一象限内的一些点。

人教A版数学第一册第一单元《1.1.1 集合的含义与表示》同步检测(含答案)

人教A版数学第一册第一单元《1.1.1 集合的含义与表示》同步检测(含答案)

《1.1.1 集合的含义与表示》同步检测一、基础达标1.下列各组对象不能构成一个集合的是( )A.不超过20的非负实数B.方程x 2-9=0在实数范围内的解C.√3的近似值的全体D.某校身高超过170厘米的同学的全体2.下列各组中集合P 与Q 表示同一个集合的是( )A.P 是由元素1,√3,π构成的集合,Q 是由元素π,1,|-√3|构成的集合B.P 是由π构成的集合,Q 是由3.141 59构成的集合C.P 是由2,3构成的集合,Q 是由有序数对(2,3)构成的集合D.P 是满足不等式-1≤x≤1的自然数构成的集合,Q 是方程x 2=1的解集3.集合M 是由大于-2且小于1的实数构成的,则下列关系式正确的是( )A.√5∈MB.0∉MC.1∈MD.-π2∈M4.已知集合Ω中的三个元素l,m,n 分别是△ABC 的三边边长,则△ABC 一定不是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形5.(多选)下面几个命题中正确的命题有( )A.集合N *中最小的数是1B.若-a ∉N *,则a∈N *C.若a∈N *,b∈N *,则a+b 的最小值是2D.x 2+4=4x 的解集中有2个元素6.已知a,b 是非零实数,代数式|a |a +|b |b +|ab |ab 的值组成的集合是M,则下列判断正确的是( )A.0∈MB.-1∈MC.3∉MD.1∈M7.已知集合A是由全体偶数组成的,集合B是由全体奇数组成的,若a∈A,b∈B,则a+b A,ab A(填“∈”或“∉”).8.若集合A中有两个元素-1和2,集合B中有两个元素x,a2,若A与B相等,则x= ,a= .9.设集合A是由1,k2为元素构成的集合,则实数k的取值范围是.10.已知-3是由x-2,2x2+5x,12三个元素构成的集合中的元素,求x的值.二、能力提升11.已知集合M是方程x2-x+m=0的解组成的集合,若2∈M,则下列判断正确的是( )A.1∈MB.0∈MC.-1∈MD.-2∈M所以方程为x2-x-2=0,解得x1=-1,x2=2.故方程的另一个解为-1.选C.12.由实数x,-x,|x|,√x2,-√x33所组成的集合,其元素的个数最多为( )A.2B.3C.4D.513.已知关于x的不等式x-a≥0的解组成的集合为A,若3∉A,则实数a的取值范围是.14.已知集合A含有三个实数,分别为a2,ba,a,若0∈A且1∈A,则a2 020+b2020= .15.集合A中共有3个元素-4,2a-1,a2,集合B中也共有3个元素9,a-5,1-a,已知9∈A,且集合B中再没有其他元素属于A,根据上述条件求出实数a的值.三、素养综合16.已知集合M中有两个元素x,2-x,若-1∉M,则下列说法一定错误的是.(填序号)①2∈M;②1∈M;③x≠3.参考答案一、基础达标1.答案 CA项,不超过20的非负实数,元素具有确定性、互异性、无序性,能构成一个集合.B项,方程x2-9=0在实数范围内的解,元素具有确定性、互异性、无序性,能构成一个集合.C项,√3的近似值的全体,元素不具有确定性,不能构成一个集合.D项,某校身高超过170厘米的同学,元素具有确定性、互异性、无序性,能构成一个集合.故选C.2.答案 A3.答案 D√5>1,故A错;-2<0<1,故B错;1不小于1,故C错;-2<-π<1,故D正确.24.答案 D因为集合中的元素是互异的,所以l,m,n互不相等,即△ABC不可能是等腰三角形,故选D.5.答案ACN*是正整数集,最小的正整数是1,故A正确;当a=0时,-a∉N*,且a∉N*,故B错误;若a∈N*,则a的最小值是1,又b∈N*,b的最小值也是1,当a和b都取最小值时,a+b取最小值2,故C正确;x2+4=4x的解集为{2},故D错误.故AC正确.6.答案 B当a,b全为正数时,代数式的值是3;当a,b全是负数时,代数式的值是-1;当a,b 是一正一负时,代数式的值是-1.综上可知B正确.7.答案∉;∈解析∵a是偶数,b是奇数,∴a+b是奇数,ab是偶数,故a+b∉A,ab∈A.8.答案-1;±√2解析由集合相等的概念可知x=-1,a2=2,即a=±√2.9.答案k≠1且k≠-1解析∵1∈A,k2∈A,结合集合中元素的互异性可知k2≠1,解得k≠1且k≠-1.10.解析由题意知x-2=-3或2x2+5x=-3.当x-2=-3,即x=-1时,集合中的三个元素为-3,-3,12,不满足集合中元素的互异性,所以x=-1舍去.当2x2+5x=-3,即x=-32或x=-1(舍去)时,集合中的三个元素为-72,-3,12,满足集合中元素的互异性.综上可知x=-32.二、能力提升11.答案 C由2∈M可知,2为方程x2-x+m=0的一个解,所以22-2+m=0,解得m=-2.所以方程为x2-x-2=0,解得x1=-1,x2=2.故方程的另一个解为-1.选C.12.答案 A当x>0时,x=|x|=√x2,-√x33=-x,此时集合中共有2个元素;当x=0时,x=|x|=√x2=-√x33=-x,此时集合中共有1个元素;当x<0时,√x2=|x|=-√x33=-x,此时集合中共有2个元素.综上,此集合中最多有2个元素,故选A.13.答案a>3解析因为3∉A,所以3是不等式x-a<0的解,所以3-a<0,解得a>3.14.答案 1解析由0∈A,“0不能做分母”可知a≠0,故a2≠0,所以ba=0,即b=0.由1∈A,可知a2=1或a=1.当a=1时,得a2=1,由集合中元素的互异性,知a=1不符合题意; 当a2=1时,解得a=-1或a=1(舍去).故a=-1,b=0,所以a2 020+b2 020的值为1.15.解析∵9∈A,∴2a-1=9或a2=9,①若2a-1=9,则a=5,此时A中的元素为-4,9,25,B中的元素为9,0,-4,显然-4∈A且-4∈B,与已知矛盾,故舍去.②若a2=9,则a=±3.当a=3时,A中的元素为-4,5,9,B中的元素为9,-2,-2,B中有两个-2,与集合中元素的互异性矛盾,故舍去;当a=-3时,A中的元素为-4,-7,9,B中的元素为9,-8,4,符合题意.综上所述,a=-3.三、素养综合16.答案②解析依题意得{x≠-1,2-x≠-1,x≠2-x,解得x≠-1,x≠1且x≠3,当x=2或2-x=2,即x=2或x=0时,集合M中的元素为0,2,故①正确;当x=1或2-x=1,即x=1时,集合M中的元素为1,1,不满足集合中元素的互异性,故②不正确;③显然正确.。

高一数学 1.1.1集合的含义与表示同步练习 新人教A版必修1

高一数学   1.1.1集合的含义与表示同步练习  新人教A版必修1

1.1.1集合的含义与表示 同步练习一、选择题1、给出下列表述:1)联合国常任理事国2)3)方程210x x +-=的实数根4)全国著名的高等院校。

以上能构成集合的是( )A 、1)3)B 、1)2)C 、1)3)4)D 、1)2)3)4)2、集合{21,1,2x x --}中的x 不能取得值是( ) A 、2 B 、3 C 、4 D 、53、下列集合中表示同一集合的是( )A 、{(3,2)},{(2,3)}M N ==B 、{1,2},{(1,2)}M N ==C 、{(,)|1},{|1}M x y x y N y x y =+==+=D 、{3,2},{2,3}M N ==4、下列语句:(1)0与{0}表示同一个集合(2)由1,2,3组成的集合可表示为{1,2, 3}或{3,2,1};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2};(4)集合}54{<<x x 是有限集,正确的是 ( )A 、只有(1)和(4)B 、只有(2)和(3)C 、只有(2)D 、以上语句都不对5、如果3x y ==+,集合{|,}M m m a a b Q ==+∈,则有( ) A 、x M y M ∈∈且 B 、x M y M ∉∈且 C 、x M y M ∈∉且 D 、x M y M ∉∉且 6、集合A={x Z k k x ∈=,2} B={Z k k x x ∈+=,12} C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有 ( )A 、(a+b )∈ AB 、(a+b) ∈BC 、(a+b) ∈ CD 、 (a+b) ∈ A 、B 、C 任一个7、下列各式中,正确的是 ( )A 、-2{2}x x ∈≤ B 、{12<>x x x 且}C、{Zkkxx∈±=,14}},12{Zkkxx∈+=≠D、{Zkkxx∈+=,13}={Zkkxx∈-=,23}二、填空题8、由小于10的所有质数组成的集合是。

1.1.1集合的含义与表示同步练习及答案解析(打印版)(打印版)

1.1.1集合的含义与表示同步练习及答案解析(打印版)(打印版)

1.1.1 集合的含义与表示1.下列几组对象可以构成集合的是( )A .充分接近π的实数的全体B .善良的人C .某校高一所有聪明的同学D .某单位所有身高在1.7 m 以上的人2.下列四个说法中正确的个数是( )①集合N 中最小的数为1;②若a ∈N ,则-a N ;③若a ∈N ,b ∈N ,a b ,则a +b 的最小值 为2;④所有小的正数组成一个集合.A .0B .1C .2D .33.集合A ={y |y =x 2+1},集合B ={(x ,y )|y =x 2+1}(A ,B 中x ∈R ,y ∈R ),选项中元素与集合的关系都正确的是( )A .2∈A ,且2∈BB .(1,2)∈A ,且(1,2)∈BC .2∈A ,且(3,10)∈BD .(3,10)∈A ,且2∈B4.已知集合S 的三个元素a ,b ,c 是△ABC 的三边长,那么△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5.已知x 、y 、z 为非零实数,代数式x |x |+y |y |+z |z |+|xyz |xyz的值所组成的集合是M ,则下列判断正 确的是( )A .0MB .2∈MC .-4MD .4∈M6. 若集合}044|{2=++=x kx x A 中有且仅有一个元素,则实数k 的值为( )A.{0}k ∈B.{1}k ∈C.{1,0}k ∈D.{1,1}k ∈-二、填空题(本大题共3小题,每小题6分,共18分)7.用“∈”或“”填空.(1)-3 ______N ; (2)3.14 ______Q ;(3)13 ______Z ; (4)-12______R ; (5)1 ______N *; (6)0 _______N .8.定义集合运算A *B ={M |M =xy ,x ∈A ,y ∈B }.设A ={1,2},B ={0,2},则集合A *B 的所有元素之和为________.9.由下列对象组成的集体属于集合的是________(填序号).①不超过3的正整数;②高一数学课本中所有的难题;③中国的大城市;④平方后等于自身的数;⑤某校高一(2)班中考数学成绩在90分以上的学生.三、解答题(本大题共3小题,共46分)10.(14分)已知集合M={-2,3x2+3x-4,x2+x-4},若2∈M,求x11.(15分)下面三个集合:A={x|y=x2+1};B={y|y=x2+1};C={(x,y)|y=x2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?12.(17分)设A 为实数集,且满足条件:若a ∈A ,则a11∈A (a ≠1). 求证:(1)若2∈A ,则A 中必还有另外两个元素;(2)集合A 不可能是单元素集一、选择题1. D 解析:A 、B 、C 都不满足元素的确定性,故不能构成集合.2. A 解析:N 是自然数集,最小的自然数是0,故①错;当为0时,也为0,是自然数,故②错;③中最小值应为1,故③错;“所有小的正数”范围不明确,不满足集合元素的确定性,故不能构成集合,故④错.故选A.3.C 解析:集合A 中元素y 是实数,不是点,故选项B ,D 不对.集合B 的元素(x ,y )是点而不是实数,2∈B 不正确,所以A 错.4. D 解析:由元素的互异性知a ,b ,c 均不相等,故一定不是等腰三角形.5. D 解析 当x 、y 、z 中三个为正、两个为正、一个为正、全为负时,代数式的值分别为:4,0,0,-4,∴4∈M 正确,故选D.6.C 解析:(1)若0=k,则{1}A =-; (2)若0≠k ,16160k ∆=-=,1k =,∴{1,0}.k ∈ 二、填空题7. (1) (2)∈ (3) (4)∈ (5)∈ (6)∈解析:理解各符号的意义是关键.N 是自然数集,N *是正整数集,Q 是有理数集,Z 是整数集,R 是实数集.8. 6 解析: ∵A *B ={0,2,4},所以集合A *B 的所有元素之和为6.9.①④⑤ 解析:②中“难题”标准不明确,不满足确定性;③中“大城市”标准不明确,不满足确定性.三、解答题10.解:当3x 2+3x -4=2时,3x 2+3x -6=0,x 2+x -2=0,x =-2或x =1.经检验,x =-2,x =1均不合题意.当x 2+x -4=2时,x 2+x -6=0,x =-3或2.经检验,x =-3或x =2均合题意. ∴x =-3或x =2.11.解:(1)在、、三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合的代表元素是x ,满足=2+1,故={|=2+1}=.集合的代表元素是,满足=2+1的≥1,故={|=2+1}={|≥1}.集合的代表元素是(,),满足条件=2+1,即表示满足=2+1的实数对(,);也可认为满足条件=2+1的坐标平面上的点.12.证明:(1)若a ∈A ,则a-11∈A (≠1).又∵2∈A ,∴11-2=-1∈A . ∵-1∈A ,∴11-(-1)=12∈A .∵12∈A ,∴11-12=2∈A . ∴A 中必还有另外两个元素,为-1,12. (2)若A 为单元素集,则a =a -11,即a 2-a +1=0,方程无解. ∴a ≠a-11,∴A 不可能为单元素集。

集合的含义与表示练习题(附答案)

集合的含义与表示练习题(附答案)

第一章 集 合1.1 集合与集合的表示方法一、选择题1.下列各组对象①接近于0的数的全体; ②比较小的正整数全体;③平面上到点O 的距离等于1的点的全体;④正三角形的全体; ⑤2的近似值的全体.其中能构成集合的组数有( )A .2组B .3组C .4组D .5组2.设集合M ={大于0小于1的有理数},N ={小于1050的正整数},P ={定圆C 的内接三角形},Q ={所有能被7整除的数},其中无限集是( )A .M 、N 、PB .M 、P 、QC .N 、P 、QD .M 、N 、Q3.下列命题中正确的是( )A .{x |x 2+2=0}在实数范围内无意义B .{(1,2)}与{(2,1)}表示同一个集合C .{4,5}与{5,4}表示相同的集合D .{4,5}与{5,4}表示不同的集合4.直角坐标平面内,集合M ={(x ,y )|xy ≥0,x ∈R ,y ∈R }的元素所对应的点是( )A .第一象限内的点B .第三象限内的点C .第一或第三象限内的点D .非第二、第四象限内的点5.已知M ={m |m =2k ,k ∈Z },X ={x |x =2k +1,k ∈Z },Y ={y |y =4k +1,k ∈Z },则( )A .x +y ∈MB .x +y ∈XC .x +y ∈YD .x +y ∉M6.下列各选项中的M 与P 表示同一个集合的是( )A .M ={x ∈R |x 2+0.01=0},P ={x |x 2=0}B .M ={(x ,y )|y =x 2+1,x ∈R },P ={(x ,y )|x =y 2+1,x ∈R }C .M ={y |y =t 2+1,t ∈R },P ={t |t =(y -1)2+1,y ∈R }D .M ={x |x =2k ,k ∈Z },P ={x |x =4k +2,k ∈Z }二、填空题7.由实数x ,-x ,|x |所组成的集合,其元素最多有______个.8.集合{3,x ,x 2-2x }中,x 应满足的条件是______.9.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是______.10.用符号∈或∉填空:①1______N ,0______N .-3______Q ,0.5______Z ,2______R . ②21______R ,5______Q ,|-3|______N +,|-3|______Z . 11.若方程x 2+mx +n =0(m ,n ∈R )的解集为{-2,-1},则m =______,n =______.12.若集合A ={x |x 2+(a -1)x +b =0}中,仅有一个元素a ,则a =______,b =______.13.方程组⎪⎩⎪⎨⎧=+=+=+321x z z y y x 的解集为______.14.已知集合P ={0,1,2,3,4},Q ={x |x =ab ,a ,b ∈P ,a ≠b },用列举法表示集合Q =______.15.用描述法表示下列各集合:①{2,4,6,8,10,12}________________________________________________. ②{2,3,4}___________________________________________________________. ③}75,64,53,42,31{______________________________________________________.16.已知集合A ={-2,-1,0,1},集合B ={x |x =|y |,y ∈A },则B =______.三、解答题17.集合A ={有长度为1的边及40°的内角的等腰三角形}中有多少个元素?试画出这些元素来.18.设A 表示集合{2,3,a 2+2a -3},B 表示集合{a +3,2},若已知5∈A ,且5∉B ,求实数a 的值.19.实数集A 满足条件:1∉A ,若a ∈A ,则A a∈-11. (1)若2∈A ,求A ;(2)集合A 能否为单元素集?若能,求出A ;若不能,说明理由;(3)求证:A a∈-11.20.已知集合A ={x |ax 2-3x +2=0},其中a 为常数,且a ∈R①若A 是空集,求a 的范围;②若A 中只有一个元素,求a 的值;③若A 中至多只有一个元素,求a 的范围.21.用列举法把下列集合表示出来:①A =};99|{N N ∈-∈x x ②B =};|99{N N ∈∈-x x③C ={y |y =-x 2+6,x ∈N ,y ∈N };④D ={(x ,y )|y =-x 2+6,x ∈N ,y ∈N };⑤E =⋅∈∈=+=*},,5,|{N N q p q p x qp x22.已知集合A ={p |x 2+2(p -1)x +1=0,x ∈R },求集合B ={y |y =2x -1,x ∈A }.集合与集合的表示方法参考答案一、选择题1.A 2.B 3.C 4.D 5.A6.C 解析:在选项A 中,M =φ,P ={0},是不同的集合;在选项B 中,有M ={(x ,y )|y =x 2+1≥1,x ∈R },P ={(x ,y )|x =y 2+1≥1,y ∈R },是不同的集合,在选项C 中,y =t 2+1≥1,t =(y -1)2+1≥1,则M ={y |y ≥1},P ={t |t ≥1},它们都是由不小于1的全体实数组成的数集,只是用不同的字母代表元素,因此,M 和P 是同一个集合,在选项D 中,M 是由…,0,2,4,6,8,10,…组成的集合,P 是由…,2,6,10,14,…组成的集合,因此,M 和P 是两个不同的集合.答案:C .二、填空题7.2 8.x ≠3且x ≠0且x ≠-1根据构成集合的元素的互异性,x 满足⎪⎩⎪⎨⎧=/-=/-=/.2,32,322x x x x x x解之得x ≠3且x ≠0且x ≠-1.9.2或4 10.①∈,∈,∈,∉,∈.②∈,∉,∈,∉. 11.m =3,n =2.12.31=a,91=b .解析:由题意知,方程x 2+(a -1)x +b =0只有等根x =a ,则∆=(a -1)2-4b =0①,将x =a 代入原方程得a 2+(a -1)a +b =0②,由①、②解得91,31==b a . 13.{(1,0,2)} 14.Q ={0,2,3,4,6,8,12}15.①{x |x =2n ,n ∈N *且n ≤6},②{x |2≤x ≤4,x ∈N },或{x |(x -2)(x -3)(x -4)=0}③}6,2|{*<∈+=n n n n x x 且N 16.B ={0,1,2}解析:∵y ∈A ,∴y =-2,-1,0,1,∵x =|y |,∴x =2,1,0,∴B ={0,1,2}三、解答题17.解:有4个元素,它们分别是:(1)底边为1,顶角为40°的等腰三角形;(2)底边为1,底角为40°的等腰三角形;(3)腰长为1,顶角为40°的等腰三角形;(4)腰长为1,底角为40°的等腰三角形.18.解:∵5 ∈A ,且5∉B .∴⎩⎨⎧=/+=-+,53,5322a a a 即⎩⎨⎧=/=-=.2,24a a a 或∴a =-419.证明:(1)若2∈A ,由于2≠1,则A ∈-211,即-1∈A . ∵-1∈A ,-1≠1∴A ∈--)1(11,即A ∈21. ∵,121,21=/∈A ∴A ∈-2111,即2∈A . 由以上可知,若2∈A ,则A 中还有另外两个数-1和21∴}2,21,1{-=A . (2)不妨设A 是单元素的实数集.则有,11a a -=即a 2-a +1=0. ∵∆=(-1)2-4×1×1=-3<0,∴方程a 2-a +1=0没有实数根.∴A 不是单元素的实数集.(3)∵若a ∈A ,则A a∈-11 ∴A a ∈--1111,即A a ∈-11. 20.解:①∵A 是空集∴方程ax 2-3x +2=0无实数根∴⎩⎨⎧<-=∆=/,089,0a a 解得⋅>89a ②∵A 中只有一个元素,∴方程ax 2-3x +2=0只有一个实数根.当a =0时,方程化为-3x +2=0,只有一个实数根32=x ; 当a ≠0时,令∆=9-8a =0,得89=a ,这时一元二次方程ax 2-3x +2=0有两个相等的实数根,即A 中只有一个元素.由以上可知a =0,或89=a 时,A 中只有一个元素. ③若A 中至多只有一个元素,则包括两种情形,A 中有且仅有一个元素,A 是空集,由①、②的结果可得a =0,或89≥a . 21.解:①由9-x >0可知,取x =0,1,2,3,4,5,6,7,8验证,则x =0,6,8时199=-x,3,9也是自然数,∴A ={0,6,8} ②由①知,B ={1,3,9}.③∵y =-x 2+6≤6,而x ∈N ,y ∈N ,∴x =0,1,2时,y =6,5,2符合题意.∴C ={2,5,6}.④点(x ,y )满足条件y =-x 2+6,x ∈N ,y ∈N ,则有⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.2,2,5,1,6,0y x y x y x ∴D ={(0,6),(1,5),(2,2)}.⑤由p +q =5,p ∈N ,q ∈N *得⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.1,4,2,3,3,2,4,1,5,0q p q p q p q p q p 又∵q p x =,∴}4,23,32,41,0{=E 22.解:由已知,∆=4(p -1)2-4≥0,得P ≥2,或P ≤0, ∴A ={p |p ≥2,或p ≤0},∵x ∈A ,∴x ≥2,或x ≤0.∴2x -1≥3,或2x -1 ≤-1,∴B ={y |y ≤-1,或y ≥3}.。

集合的含义与表示(含答案)

集合的含义与表示(含答案)

集合的含义与表示习题一、选择题1. 下列各项中,不可以组成集合的是( )A .所有的有理数B .0232=+-x x 的根C .接近于2的数D .不等于0的偶数2. 由实数x ,-x ,|x |,x 2,-3x 3所组成的集合,最多含( )A .2个元素B .3个元素C .4个元素D .5个元素3. 已知集合A 是由0,m ,m 2-3m +2三个元素组成的集合,且2∈A ,则实数m 为(B )A .2B .3C .0或3D .0,2,3均可4.用描述法表示一元二次方程的全体,应是 ( )A .{x |ax 2+bx +c =0,a ,b ,c ∈R }B .{x |ax 2+bx +c =0,a ,b ,c ∈R ,且a ≠0}C .{ax 2+bx +c =0|a ,b ,c ∈R }D .{ax 2+bx +c =0|a ,b ,c ∈R ,且a ≠0} 5. 将集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧=-=+125),(y x y x y x 表示成列举法,正确的是( )A .{2,3}B .{(2,3)}C .{(3,2)}D .(2,3)6.已知集合⎭⎬⎫⎩⎨⎧∈∈-=+Z a N a aM 且,56,则M 等于( )A.{}3,2B.{}4,3,2,1C.{}6,3,2,1D.{}4,3,2,1-二、填空题:7.已知集合P ={0,1,2,3,4},Q ={x |x =ab ,a ,b ∈P ,a ≠b },用列举法表示集合Q =______.8.若集合{}R x x ax x M ∈=++=,0122只有一个元素,则实数a 的值为-----------9.已知集合A ={-2,-1,0,1},集合B ={x |x =|y |,y ∈A },则B =______.10.已知集合22{|,,}M a a x y x y Z ==-∈,那么5______.M 6______.M三、解答题:11.集合A ={有长度为1的边及40°的内角的等腰三角形}中有多少个元素?试画出这些元素来.12.求集合2{,2,}x x x -中的元素x 的取值范围.13.已知集合A ={x |ax 2-3x +2=0},其中a 为常数,且a ∈R①若A 是空集,求a 的范围;②若A 中只有一个元素,求a 的值;③若A 中至多只有一个元素,求a 的范围.14.实数集A 满足条件:1∉A ,若a ∈A ,则A a∈-11. (1)若2∈A ,求A ;(2)集合A 能否为单元素集?若能,求出A ;若不能,说明理由; (3)求证:A a∈-11.15.已知集合2{|12x aA a x +==-有惟一的实数解},试用列举法表示集合.A参考答案一、选择题: CABDBD 二、填空题:7.Q ={0,2,3,4,6,8,12}. 8.10或 9.B ={0,1,2} 10.∈,∉ 三、填空题:11.解:有4个元素,它们分别是:(1)底边为1,顶角为40°的等腰三角形;(2)底边为1,底角为40°的等腰三角形; (3)腰长为1,顶角为40°的等腰三角形;(4)腰长为1,底角为40°的等腰三角形.12解:由元素的互异性可知,x 必须满足2222x x x x x x ⎧-≠⎪≠⎨⎪-≠⎩,解得1x ≠-,2x ≠且0.x ≠故x 的取值范围是{|1,2,0}.x R x ∈≠-13解:①∵A 是空集∴方程ax 2-3x +2=0无实数根∴⎩⎨⎧<-=∆=/,089,0a a 解得⋅>89a②∵A 中只有一个元素,∴方程ax 2-3x +2=0只有一个实数根.当a =0时,方程化为-3x +2=0,只有一个实数根32=x ; 当a ≠0时,令∆=9-8a =0,得89=a ,这时一元二次方程ax 2-3x +2=0有两个相等的实数根,即A 中只有一个元素.由以上可知a =0,或89=a 时,A 中只有一个元素. ③若A 中至多只有一个元素,则包括两种情形,A 中有且仅有一个元素,A 是空集,由①、②的结果可得a =0,或89≥a . 14.证明:(1)若2∈A ,由于2≠1,则A ∈-211,即-1∈A . ∵-1∈A ,-1≠1∴A ∈--)1(11,即A ∈21.∵,121,21=/∈A ∴A ∈-2111,即2∈A . 由以上可知,若2∈A ,则A 中还有另外两个数-1和21∴}2,21,1{-=A . (2)不妨设A 是单元素的实数集.则有,11aa -=即a 2-a +1=0. ∵ 03114)1(2<-=⨯⨯--=∆,∴方程a 2-a +1=0没有实数根. ∴A 不是单元素的实数集.(3)∵若a ∈A ,则A a∈-11∴A a∈--1111,即A a ∈-11.15.解:化方程212x ax +=-为2(2)0x x a --+=,应分为以下三种情况: (1)方程有相等的实数根且不是2±:由0∆=,解得94a =,此时方程的解为12x =,符合题意;(2)方程有一个解为2,而另一个解不是2-,将2x =代入得2a =-,此时另一解为21x =+,符合题意;(3)方程有一解为2-,而另一解不是2,将2x =-代入得2a =,此时方程的另一解为12x =-,符合题意. 综上可知,9{,2,2}.4A =--。

集合的含义与表示》同步练习题

集合的含义与表示》同步练习题

集合的含义与表示》同步练习题1.1.1 集合的含义与表示同步练题1.设集合 $A$ 只含有一个元素 $a$,则下列各式正确的是()A。

$a\in A$XXXXXXD。

$a=A$答案:A2.设 $x\in \mathbb{N}$,且 $1\in \mathbb{N}$,则 $x$ 的值可能是()A。

$0$B。

$1$C。

$-1$D。

$2$答案:B3.下面四个关系式:$\pi \in \{x|x\text{是正实数}\}$,$0.3\in \mathbb{Q}$,$\sqrt{2}\notin \{0\}$,$1\in\mathbb{N}$,其中正确的个数是()A。

$4$B。

$3$XXXD。

$1$答案:B4.集合 $\{x\in \mathbb{N}|-1<x<2\}$ 的另一种表示方法是()A。

$\{0,1\}$B。

$\{1\}$C。

$\{0,1,2\}$D。

$\{1,2\}$答案:D5.已知集合 $A=\{x\in \mathbb{N}^*|-5\leq x\leq 5\}$,则必有()A。

$-1\in A$B。

$0\in A$C。

$\sqrt{3}\in A$D。

$1\in A$答案:D6.集合$M=\{(x,y)|xy<0,x\in\mathbb{R},y\in\mathbb{R}\}$ 是() A。

第一象限内的点集B。

第三象限内的点集C。

第四象限内的点集D。

第二、四象限内的点集答案:D7.已知集合 $M=\{a,b,c\}$ 中的三个元素可构成某一三角形的三边长,那么此三角形一定不是()A。

直角三角形B。

锐角三角形C。

钝角三角形D。

等腰三角形答案:A8.已知 $A=\{x|3-3x>0\}$,则有()A。

$3\in A$B。

$1\in A$C。

$0\in A$D。

$-1\notin A$答案:B9.集合 $A=\{x|x\in \mathbb{N},4-x\in \mathbb{Z}\}$,用列举法可表示为 $A=$ _________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A .第一象限内的点集
B .第三象限内的点集
C .第四象限内的点集
D .第二、四象限内的点集
7.已知集合M ={a ,b ,c }中的三个元素可构成某一三角形的三边长,那么此三角形一定不是( )
A .直角三角形
B .锐角三角形
C .钝角三角形
D .等腰三角形
8.已知A ={x |3-3x >0},则有( )
A .3∈A
B .1∈A
C .0∈A
D .-1∉A
9.集合A ={x |x ∈N ,且x
-24∈Z },用列举法可表示为A =___________. 10.一边长为6,一边长为3的等腰三角形所组成的集合中有________个元素.
11.点P (1,3)和集合A ={(x ,y )|y =x +2}之间的关系是____________.
12.用列举法表示集合A ={(x ,y )|x +y =3,x ∈N ,y ∈N *}为____________.
13.若A ={-2,2,3,4},B ={x |x =t 2,t ∈A },用列举法表示集合B =____________.
14.下列集合中:A ={x =2,y =1},B ={2,1},C ={(x ,y )|⎩

⎧=-=+13y x y x },D ={(x ,y )|x =2且y =1},与集合{(2,1)}相等的共有________个.
15.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.
16.设A 是满足x <6的所有自然数组成的集合,若a ∈A ,且3a ∈A ,求a 的值.
17.已知集合A含有两个元素a和a2,若1∈A,求实数a的值.
18.已知集合A={0,2,5,10},集合B中的元素x满足x=ab,a∈A,b∈A且a≠b,写出集合B.
参考答案
1.C 2.B 3.A 4.C 5.D 6.D 7.D 8.C
9.{0,1,3,4,6}
10.1
11.P ∈A 12.{(0,3),(1,2),(2,1)} 13.{4,9,16}
14.2
15.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.
解:三女相会的日数,即为5,4,3的公倍数,它们的最小公倍数为60,因此三女前三次相会的天数用集合表示为{60,120,180}.
16.设A 是满足x <6的所有自然数组成的集合,若a ∈A ,且3a ∈A ,求a 的值.
解:∵a ∈A 且3a ∈A ,∴a <6且3a <6,∴a <2.又∵a 是自然数,∴a =0或1.
17.已知集合A 含有两个元素a 和a 2
,若1∈A ,求实数a 的值.
解:本题中已知集合A 中有两个元素且1∈A ,据集合中元素的特点需分a =1和a 2=1两种情况,另外还要注意集合中元素的互异性.若1∈A ,则a =1或a 2=1,即a =±1.
当a =1时,集合A 有重复元素,∴a ≠1;
当a =-1时,集合A 含有两个元素1,-1,符合互异性.
∴a =-1.
18.已知集合A ={0,2,5,10},集合B 中的元素x 满足x =ab ,a ∈A ,b ∈A 且a ≠b ,写出集合B . 解:当⎩⎨⎧≠=00b a 或⎩
⎨⎧=≠00b a 时,x =0; 当⎩⎨⎧==52b a 或⎩⎨⎧==2
5b a 时,x =10;
当⎩⎨⎧==102b a 或⎩⎨⎧==2
10b a 时,x =20;
当⎩⎨⎧==105b a 或⎩⎨⎧==5
10b a 时,x =50.
故同学甲正确.。

相关文档
最新文档