3.1用树状图或表格求概率第2课时PPT课件

合集下载

《用树状图或表格求概率》概率的进一步认识PPT课件2

《用树状图或表格求概率》概率的进一步认识PPT课件2
2
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
3
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
4
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
5
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
6
(1,6)
(2,6)
(3,6)
(4,6)
(5,5)
解:
(1,4)
(1,5)
(1,6)
(1,7)
(2,4)
(2,5)
(2,6)
(2,7)
(3,4)
(3,5)
(3,6)
(3,7)
共有12种不同结果,每种结果出现的可能性相同,其中数字和为偶数的有 6 种
探究
3
1
甲转盘
乙转盘
4
共 12 种可能的结果
与“列表”法对比,结果怎么样?
甲转盘指针所指的数字可能是 1、2、3, 乙转盘指针所指的数字可能是 4、5、6、7。
(6,6)


此题用列树图的方法好吗?
P(点数相同)=
P(点数和是9)=
P(至少有个骰子的点数是2 )=
2.一个均匀的小正方体,各面分别标有1~6六个数字,求下列事件的概率:随机掷这个小正方体,落地后朝上面数字是6的概率是 ;随机掷这个小正方体两次,两次落地后朝上面数字之和为6的概率是 .
“同时掷两个质地相同的骰子”与 “把一个骰子掷两次”,所得到的结果有变化吗?
“同时掷两个质地相同的骰子”

北师大版九年级数学上册课件 3-1-2 利用概率判断游戏的公平性

北师大版九年级数学上册课件 3-1-2 利用概率判断游戏的公平性

1
2
3
4
5
6
7
2
3
4
5
6
7
8
3
4
5
6
7
8
9
4
5
6
7
8
9
10
5
6
7
8
9
10
11
6
7
8
9
10
11
12
总共有36种可能的结果,每种结果出现的可能性相同.其中,和为7的
6 1
结果最多,有6种,其概率为
= ,所以如果我是游戏者,我会选择
36 6
数字7.
例3 同时抛掷2枚均匀的骰子一次,骰子各面上的点数分别
是1,2,···,6.试分别计算如下各随机事件的概率.
36
(2)抛出点数之和等于12的结果仅有(6,6)这1种,所以抛出的点
1
数之和等于12的这个事件发生的概率为 .
36
归纳总结
当一次试验要涉及两个因素(例如
掷两个骰子)并且可能出现的结果数目
较多时,为不重不漏地列出所有可能结
果,通常采用列表法.
例4 一只不透明的袋子中装有1个白球和2个红球,这些球
红2
(红2,白) (红2,红1)
(红1,红2)
归纳总结
什么时候用“列表法”方便,什么时候用“树形图”方便?
➢当一次试验涉及两个因素时,且可能出现的结果较多时
,为不重复不遗漏地列出所有可能的结果,通常用列表法.
➢当一次试验涉及3个因素或3个以上的因素时,列表法就
不方便了,为不重复不遗漏地列出所有可能的结果,通常
用树形图.
随堂练习
1.一个不透明的布袋中装有分别标有数字1,2,3,4

《用树状图或表格求概率》概率的进一步认识PPT(第2课时)教学课件

《用树状图或表格求概率》概率的进一步认识PPT(第2课时)教学课件

思考: 一位同学画出如图所示的树状图.
第1次摸出球 第2次摸出球


红 白红 白
知1-导
从而得到,“摸出两个红球”和“摸出两个白球”的 概 率相等,“摸出一红一白”的概率最大.
他的分析有道理吗?为什么?
分析:把两个白球分别记作白1,和白2.如图, 用画树 状图的 方法看看有哪些等可能的结果:
知1-导
并且它们发生的可能性都相等,事件A包含其
中的m种结果,那么事件A发生的概率P(A)
=

知识点 1 两步试验的树状图
知1-导
问题
口袋中装有1个红球和2个白球,搅匀后从中摸出 1个球, 放回搅匀,再摸出第2个球,两次摸球就可能出现3种结 果:
(1)都是红球; (2)都是白球; (3)一红一白. 这三个事件发生的概率相等吗?
知1-练
2 质地均匀的骰子六个面分别刻有1到6的点数,掷
两次骰子,得到向上一面的两个点数,则下列事
件中,发生可能性最大的是( )
A.点数都是偶数
B.点数的和为奇数
C.点数的和小于13 D.点数的和小于2
(来自《典中点》)
知1-练
3 如图,一个小球从A点入口往下落,在每个交叉口 都有向左或向右两种可能,且两种可能性相等.则
同步练习
如图,袋中装有两个完全相同的球,分别标有数字“1”和“2”.小明设计了一 个游戏:游戏者每次从袋中随机摸出一个球,并自由转动图中的转盘(转盘被分成 相等的三个扇形).
12
12 3
如果所摸球上的数字与转盘转出的数字之和为2,那么游戏者获胜.求游戏 者获胜的概率.
解:每次游戏时,所有可能出现的结果如下:
关注的结果数,既不能遗漏任何一种

3.1用树状图或表格求概率第2课时PPT优质课件

3.1用树状图或表格求概率第2课时PPT优质课件

2020/12/9
3
解:因为小明和小颖每次出这三种手势的可能性相
同,所以可以利用树状图列出所有可能出现的结
果: 小明
小颖 所有可能出现的结果
石头
(石头,石头)
石头
开始 剪刀
剪刀
布 石头
剪刀
(石头,剪刀) (石头,布)
(剪刀,石头) (剪刀,剪刀)
布 石头
(剪刀,布)
(布,石头)

剪刀
(布,剪刀)

5
6 7 8 9 10 11
6
7 8 9 10 11 12
2020/12/9
7
随堂练习
有三张大小一样而画面不同的画片,先将每一张 从中间剪开,分成上下两部分;然后把三张画片 的上半部分都放在第一个盒子中,把下半部分都 放在第二个盒子中.分别摇匀后,从每个盒子中 各随机地摸出一张,求这两张恰好能拼成原来的 一幅画的概率
2020/12/9
8
解:可利用列表法列举出所有可能出现的结果:
第二个盒子
1下
2下
3下
第一个盒子
1上 (1上,1下) (1上,2下) (1上,3下)
2上 (2上,1下) (2上,2下) (2上,3下)
3上 (3上,1下)来的一幅画
的概率 3 1 93
第三章 概率的进一步认识
3.1 用树状图或表格求概率(二)
2020/12/9
1
温故知新
上节课,你学会了用什么方法求某个事件发生 的概率 树状图和列表法
2020/12/9
2
问题提出
小明、小颖和小凡做“石头、剪刀、布”的游戏 ,游戏规则如下:
由小明和小颖玩“石头、剪刀、布”游戏,如果 两人的手势相同,那么小凡获胜;如果两人手 势不同,那么按照“石头胜剪刀,剪刀胜布, 布胜石头”的规则决定小明和小颖中的获胜者. 假设小明和小颖每次出这三种手势的可能性相 同,你认为这个游戏对三人公平吗?

北师版九上数学3.1 用树状图或表格求概率(第二课时) 课件

北师版九上数学3.1 用树状图或表格求概率(第二课时) 课件

的概率是( D )
A.
3 8
B.
5 8
C.
2 3
D.
1 2
2. 小明、小颖、小华参加演讲比赛.原定出场顺序是小明第一个
出场,小颖第二个出场,小华第三个出场,为了比赛的公平
性,要求这三名选手用抽签的方式重新确定出场顺序,则抽签
1
后每名选手的出场顺序都发生变化的概率是 3 . ⁠
返回目录
数学 九年级上册 BS版
如图,小明和小红正在做一个游戏:每人轮流掷一枚骰子,骰 子朝上的数字是几,就将棋子前进几格,并获得格子中相应物 品.现在轮到小明掷骰子,棋子在标有数字“2”的那一格. (1)小明能一次就获得“汽车”吗?请说明理由.
返回目录
数学 九年级上册 BS版
(2)小红下一次掷骰子可能得到“汽车”吗?她下一次得到 “汽车”的概率是多少? 【思路导航】(1)确定棋子到“汽车”的位置需要几格, 即可判断;(2)只要小明和小红两人掷的骰子点数和为7, 小红即可得到“汽车”;通过列表可得所有等可能的结果 数,根据骰子点数和为7的结果数即可求出小红下一次得到 “汽车”的概率.
返回目录
数学 九年级上册 BS版
如图,有两个可以自由转动的转盘A , B ,每个转盘都被分成了 3等份,并在每份内标有数字.现进行如下操作:①分别转动转 盘 A , B ;②两个转盘都停止后,将两个指针所指份内的数字相 乘(若指针停在等分线上,那么重转一次,直到指针指向某一 份为止).
返回目录
数学 九年级上册 BS版
1个球是最好的放法.
返回目录
数学 九年级上册 BS版
演示完毕 谢谢观看
(4, 3)
4
(3, 4)
(4, 4)
5

3.1 用树状图或表格求概率 教学课件(共22张PPT)(公开课)

3.1 用树状图或表格求概率 教学课件(共22张PPT)(公开课)

用心领“悟”
解: 用树状图表示如下:
1 开始
2
1
(1,1)
2
(1,2)
3
(1,3)
1
(2,1)
2
(2,2)
3
(2,3)
你做对了吗?
现在我们改变例题的游戏情景,为: 甲乙两个人参与的游戏,修改游戏规则, 并且使游戏对双方都公平。
该怎么修改游戏规则呢?
学以致用
1.一个均匀的小正方体,各面分别标有 1~6六个数字,求下列事件的概率: (1)随机掷这个小正方体,落地后朝上面 数字是6的概率是 1/6 ; (2)随机掷这个小正方体两次,两次落地 后朝上面数字之和为6的概率是 5/36 .
蓝 红2
1200 红1
即游戏不公平。
注意这是”可能性不同” 与”可能性相同(等可能性)”问
蓝红
蓝红
题.
用树状图和列表法求概率时应注意什么
用树状图和列表的方法求概率时应 注意各种结果出现的可能性务必相同.
例:一个不透明的袋子中装有两个完全相同
的球,分别标有数字“1”和“2”。小明设计了 一个游戏:游戏者每次从袋中随机摸出一球, 并且自由转动图中的转盘(转盘被分成面积 相等的三个扇形)。 如果所摸球上的数字与 转盘转出的数字之和为2,那么游戏者获胜。 求游戏者获胜的概率。
23
4
56
1
(1,1) (1,2)(1,3)(1,4) (1,5)(1,6)
2
(2,1)(2,2)(2,3) (2,4)(2,5) (2,6)
3
(3,1)(3,2) (3,3)(3,4)(3,5)(3,6)
4
(4,1)(4,2) (4,3)(4,4)(4,5) (4,6)

初中数学北师大版九年级上册《3.1 用树状图或表格求概率(2)》课件

初中数学北师大版九年级上册《3.1 用树状图或表格求概率(2)》课件

4
(4,1) (4,2) (4,3) (4,4)
由表格可知(x,y)所有可能出现的结果共有16种; (2)这个游戏对双方公平,理由如下:由列表法可知,在16种可能出
现的结果中,它们出现的可能性相等. ∵x+y为奇数的有8种情况,∴P(甲获胜)=
8 16
1, 2
∵x+y为偶数的有8种情况,∴P(乙获胜)= 8 1 ,
红赢;若点数之和是其他数,则两人不分胜负,那么( B )
A.小晶赢的机会大
B.小红赢的机会大
C.小晶、小红赢的机会一样大 D.不能确定
拓展提高
有三张不透明的卡片,除正面写有不同的数字外,其他 均相同,将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张, 并把这张卡片标有的数字记作一次函数表达式y=kx+b中的k,第二次从 中随机抽取一张,上面标有的数字记作一次函数表达式中的b.
布),所以小颖获胜的概率为 3 1 93
因此,这个游戏对三人是公平的.
新知讲解
做一做:小明和小军两人一起做游戏,游戏规则如下: 每人从1、2、…、12中任意选择 一个数,然后两人各掷一次质地均匀 的骰子,谁事先选择的数等于两人掷 得的点数之和谁就获胜;如果两人选 择的数都不等于掷得的点数之和,就 再做一次上述游戏,直至决出胜负。 如果你是游戏者,你会选择哪个数?
(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x, y)所有可能出现的结果总数;
(2)你认为这个游戏对双方公平吗?请说明理由.
中考链接
1
2
3
4
1 解:(1)列表如下: 2
(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4)
3

新北师大版初中数学九年级上册第3章 概率的进一步认识《3.1用树状图或表格求概率》优质课件

新北师大版初中数学九年级上册第3章 概率的进一步认识《3.1用树状图或表格求概率》优质课件

回顾与思考
必然事件
不可能事件
不确定事件
可能性 人们通常用1(或100%)来表示必然事件发生
的可能性,用0表示不可能事件发生的可能性.
1
0
2 (50%)
1(100%)
不可能 发生
可能 发生
必然 发生
回顾与思考
概率
概率 事件发生的可能性,也称为事件发生的概率 (probability).
第二枚硬币 正


第一枚硬币


(正,正) (正,反)

(反,正) (反,反)
由表可知:总共有 4 种等可能结果.
小明获胜的结果有 1 种:(正,正),P(小明获胜)=
1
;
4
小颖获胜的结果有 1 种:(反,反),P(小颖获胜)=
1; 4
小凡获胜的结果有
2
种:(正,反)(反,正),P(小凡获胜)=
1 2
C、1 D、1
6
4
如何画树状图或列表,需注意什么?
注意:拿第2个球时第1个球并没有放回,两次拿的球不可 能是同一个球,列表时要注意“对角线”上的表格就划去。 类似这种“不放回”求概率的尽量画树状图
数学理解
3.小明从一定高度随机掷一枚质地均匀的硬币,他已经 掷了两次硬币,结果都是“正面朝上”.那么,你认为 小明第三次掷硬币时,“正面朝上”与“反面朝上”的 可能性相同吗?如果不同,哪种可能性大?说说你的理 由,并与同伴交流.
93
小明胜小颖的结果有三种:(石头,剪刀)(剪刀,)(布, 石头),所以小明获胜的概率为 3 1
93
小颖胜小明的结果也有三种:(剪刀,石头)(布,剪
刀)(石头,布),所以小颖获胜的概率为 3 1

《用树状图或表格求概率》概率的进一步认识PPT赏析(第2课时)教学课件

《用树状图或表格求概率》概率的进一步认识PPT赏析(第2课时)教学课件

戏时:
(1)故甲甲获13获胜. 胜的的结概果率有是(A1,93 =B132).,同(A理2, ,B3乙),获(A胜3,的B1概)这率3也1种, ,

3
(2) 由(1)可知,这种游戏中,两人获胜的概率都是
机会均等,故游戏对于两人来说是公平的.
总结
知1-讲
判断游戏的公平性是通过概率来判断的,如果对 于参加游戏的每一个人获胜的概率相等,则游戏公平, 否则不公平.
知1-讲
例1 一个袋中有4个珠子,其中2个红色,2个蓝色, 除颜色外其余特征均相同,若从这个袋中任
取2个珠子,求都是蓝色珠子的概率. 解:袋中4个珠子可以分别标记为H1,H2,L1,L2.
用“一一列举法”法求概率.
从袋中任取2个珠子的所有等可能的结果为(H1,H2),(H1, L1),(H1,L2),(H2,L1),(H2,L2),(L1,L2),共六种,其 中都是蓝色珠子的结果只
我们用表25. 2.6来列 举所有可能得到的点数
知2-导
这一问题的 树状图不如 列表的结果 简明
列表法:
知2-讲
1. 定义:用表格的形式反映事件发生的各种情况出现的
次数和方式,以及某一事件发生的次数和方式,并求
出概率的方法.
2. 适用条件:如果事件中各种结果出现的可能性均等,
含有两次操作(如掷骰子两次)或两个条件(如两个转盘)
若不公平,请你设计一种公平的游戏规则.
导引:(1) 本题涉及两次抽牌,可通过列表求和找出所有等 可能的结果和关注的结果,再计算符合要求的概率; (2) 判断游戏是否公平,主要看双方获胜的概率是否 相同,若获胜的概率相同,则游戏公平,否则不公平.
知2-讲
解:(1)列表如下:

北师大版九年级数学上册同步教学课件:第三章教学课件3.1.1用树状图或表格求概率 (共12张PPT)精品

北师大版九年级数学上册同步教学课件:第三章教学课件3.1.1用树状图或表格求概率 (共12张PPT)精品

想一想
“配紫色”游戏
表格可以是:


绿

(红,黄)
(红,蓝)

(白,黄)
(白,蓝)
游戏者获胜的概率是1/6.
(红,绿) (白,绿)
想一想
“配紫色”游戏的变异
用如图所示的转盘进行“配紫色”游戏. 蓝 小颖制作了下图,并据此求出游戏者获胜的 1200红 概率是1/2.

(红,红)

蓝红

(红,蓝)
开始
1 3
2
游戏规则是: 如果所摸球上的数字与转盘转出的数字之和为 2,那么游戏者获胜.求游戏者获胜的概率.
例题解析
学以致用
解:每次游戏时,所有可能出现的结果如下:
1
2
3
1
(1,1)
(1,2)
(1,3)
2
(2,1)
(2,2)
(2,3)
总共有6种结果,每种结果出现的可能性相同,而所 摸球上的数字与转盘转出的数字之和为2的结果只 有一种:(1,1),因此游戏者获胜的概率为1/6.
用树状图怎么解答例2?请用行动来证明“我能行”.
本课小结
由“配紫色”游戏得到了什 么用树状图和列表的方法求概率时应
注意各种结果出现的可能性务必相同. “配紫色”游戏体现了概率模型的思 想,它启示我们:概率是对随机现象的 一种数学描述,它可以帮助我们更好 地认识随机现象,并对生活中的一些 不确定情况作出自己的决策.
了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色
在一起配成了紫色.
(1)利用树状图或列 表的方法表示游戏者


蓝 黄
绿
所有可能出现的结果.

用树状图或表格求概率课件

用树状图或表格求概率课件
九年级数学(上)第三章 概率的进一步认识
3.1 用树状图或表格求概率
1
回顾与思考
频率与概率的关系
当试验次数很多时,一个事件 发生频率稳定在相应的概率附 近.因此,我们可以通过多次试验 ,用一个事件发生的频率来估计 这一事件发生的概率.
2
回顾与思考
概率
概率 事件发生的可能性,也称为事件发生的概率 (probability).
19
问题探究 2.用树状图来研究上述问题
开始
第一次


第二次
红 白红 白
所有可能出 (红, 红) (红, 白) (白, 红) (白, 白) 现的结果
答: (1)两次都摸到红球的概率是1/4; (2)两次摸到不同颜色的球的概率是2/4或者1/2。
20
用树状图或表格求概率 P62
小明、小颖和小凡做“石头、剪子、布”的游 戏。游戏规则如下: 有小明和小颖做“石头、剪 子、布”的游戏如果两人的手势相同,那么小凡 获胜;如果两人手势不同,那么按照“石头胜剪 子,剪子胜布,布胜石头”的规则决定小明和小 颖中的获胜者。
在上面投掷硬币的实验中。
(3),在第一枚硬币正面朝上的情况下, 第二枚硬币可能出现哪些结果? 他们发 生的可能性是否一样? 如果第一枚硬币 反面朝上呢?
答: 一正一反 一样
答: 一正一反 一样
利用树状图或表格,可以比较方便地 求出某些事件发生的概率.
10
例题欣赏
例1 随机掷一枚均匀的硬币两次,至少有 一次正面朝上的概率是多少?
必然事件发生的概率为1(或100%),记作P(必然事件)=1;
不可能事件发生的概率为0,记作P(不可能事件)=0;
不确定事件发生的概率介于0~1之间,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年10月2日
8
解:可利用列表法列举出所有可能出现的结果:
第二个盒子
1下
2下
3下
第一个盒子
1上 (1上,1下) (1上,2下) (1上,3下)
2上 (2上,1下) (2上,2下) (2上,3下)
3上 (3上,1下) (3上,2下) (3上,3下)
从中发现,这两张恰好能拼成原来的一幅画
的概率 3 1 93
5
6 7 8 9 10 11
6
7 8 9 10 11 12
2020年10月2日
7
随堂练习
有三张大小一样而画面不同的画片,先将每一张 从中间剪开,分成上下两部分;然后把三张画片 的上半部分都放在第一个盒子中,把下半部分都 放在第二个盒子中.分别摇匀后,从每个盒子中 各随机地摸出一张,求这两张恰好能拼成原来的 一幅画的概率
2020年10月2日
9
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
汇报人:XXX 汇报日期:20XX年10月10日
2020年10月2日
10
2020年10月2日
6
解:经分析可得,掷得的点数之和是哪个数的概率 从最表大格,中选,择能这看个出数和后为获7胜出的现概的率次就数大最.多利,用所列以表 选法择列7出,所概有率可最能大出!现的结果:
1 第二次
第一次
2
34
5
6
1
2 3 45 6 7
2
3 4 56 7 8
3
4 5 67 8 9
4
5 6 7 8 9 10
2020年10月2日
3
解:因为小明和小颖每次出这三种手势的可能性相
同,所以可以利用树状图列出所有可能出现的结
果: 小明
小颖 所有可能出现的结果
石头
(石头,石头)
石头
开始 剪刀
剪刀
布 石头
剪刀
(石头,剪刀) (石头,布)
(剪刀,石头) (剪刀,剪刀)
布 石头
(剪刀,布)
(布,石头)

剪刀
(布,剪刀)
第三章 概率的进一步认识
3.1 用树状图或表格求概率(二)
2020年10月2日
1
温故知新
上节课,你学会了用什么方法求某个事件发生 的概率 树状图和列表法
2020年10月2日
2
问题提出
小明、小颖和小凡做“石头、剪刀、布”的游戏 ,游戏规则如下:
由小明和小颖玩“石头、剪刀、布”游戏,如果 两人的手势相同,那么小凡获胜;如果两人手 势不同,那么按照“石头胜剪刀,剪刀胜布, 布胜石头”的规则决定小明和小颖中的获胜者. 假设小明和小颖每次出这三种手势的可能性相 同,你认为这个游戏对三人公平吗?
31 93
所以,这个游戏对三人是公平的.
2020年10月2日
5
做一做
小明和小军两人一起做游戏.游戏规则如下: 每人从1,2,…,12中任意选择一个数,然后 两人各掷一次均匀的骰子,谁事先选择的数 等于两人掷得的点数之和谁就获胜;如果两 人选择的数都不等于掷得的点数之和,就再 做一次上述游戏,直至决出胜负.如果你是游 戏者,你会选择哪个数?

(布,布)
2020年10月2日
4
Байду номын сангаас
总共有9种可能的结果,每种结果出现的可能 性相同,而两人手势相同的结果有三种:(石头 ,石头)(剪刀,剪刀)(布,布),所以小凡获胜 的概率为 3 1
93
小明胜小颖的结果有三种:(石头,剪刀)(剪刀, 布)(布,石头),所以小明获胜的概率为 3 1
93
小颖胜小明的结果也有三种:(剪刀,石头)(布, 剪刀)(石头,布),所以小颖获胜的概率为
相关文档
最新文档