晶体宏观对称
晶体的宏观对称性
2 n
表1 描述晶体宏观对称性与分子对称性时常用 对称元素及与其相应的对称操作对照表
除了对称元素和对称操作的符号和名称的不完全相同外,晶 体的宏观对称性与有限分子的对称性最本质的区别是:晶体的点 阵结构使晶体的宏观对称性受到了限制,这种限制主要表现在两 方面: 在晶体的空间点阵结构中,任何对称轴(包括旋转轴、反轴 以及以后介绍的螺旋轴)都必与一组直线点阵平行,与一组 平面点阵垂直(除一重轴外);任何对称面(包括镜面及微观对 称元素中的滑移面)都必与一组平面点阵平行,而与一组直 线点阵垂直。 晶体中的对称轴(包括旋转轴,反轴和螺旋轴)的轴次n并不是 可以有任意多重,n仅为1,2,3,4,6,即在晶体结构中,任何 对称轴或轴性对称元素的轴次只有一重、二重、三重、四 重和六重这五种,不可能有五重和七重及更高的其它轴次, 这一原理称为“晶体的对称性定律”。 所以,综合前面的讨论,由于点阵结构的限制,晶体中实际 存在的独立的宏观对称元素总共只有八种,见表2:
点
群 对称元素
称元素
无
序 熊夫里 国际记号 号 斯记号 1 2 3 4 5
abc
90
abc
斜
90
abc
cs c2 h
D2
D 2v
c1 ci c2
1
m
1 2 m 2
2
i
m 2, m, i
32 2, 2
低
正 两个互相垂 直的m或三 交 个互相垂的
组合程序: 组合时先进行对称轴与对称轴的组合,再在此基础上进行 对称轴与对称面的组合,最后为对称轴、对称面与对称中心 的组合。 按照以上程序及限制进行组合,我们可以得到的对称元 素系共32种,即32个点群:
第三章 晶体的宏观对称
第三章晶体的宏观对称第一节:对称性概述教材上关于对称的形象化描述非常好:对称,顾名思义就是不同的物体或同一物体的不同部分相对又相称,因此将这不同的物体或同一物体的不同部分的空间位置以某种方式对换一下好像没动过一样(复原)。
晶体的宏观对称就是指晶体表面几何要素(但并非只是几何要素)的有规律重复。
一、几个相关术语1.等同图形(同形等大的图形);2.对称操作;3.对称元素;4.关于左右型图形的问题;5.对称图形的阶次和对称要素的阶次。
二、宏观对称元素1.反映对称面(符号用P);描述:面不动,阶次为2。
2.对称中心(符号用C):描述:点不动。
对称中心可以产生左右型、阶次为2。
3.旋转对称轴(用L n表示):描述:线不动,阶次为n.;基转角、对称定律(画图并作几何推导)。
对称定律:对应的对称轴只可能是L1、L6、L4、L3、L2。
4.旋转反伸对称轴(用L-n表示):描述:点不动。
基转角、旋转反伸对称轴次、先旋转后反伸与先反伸后旋转、旋转反伸轴是一个复合对称操作,阶次为n。
反伸轴的等价对称操作:一次反伸轴等于对称中心(L-1=C)(证明)二次反伸轴等于对称面(L-2=P)(证明)三次反伸轴等于三次对称轴加对称中心(L-3=L3C)(证明)四次反伸轴无等价对称操作(独立)(证明)六次反伸轴为三次反伸轴加反映对称面(L-6=L3P,优选L-6)(证明)所以真正存在的旋转反伸轴只有四次反伸轴L-4和六次反伸轴L-6两种。
三、宏观对称要素和点阵的几何配置1.对称中心对应于点阵点2.旋转轴对应于点阵行列并垂直于点阵面网(包含平行)3.对称面对应于点阵面(包含平行)四、宏观对称要素与宏观晶体几何配置对称中心总是位于晶体中心。
对称轴的出露点总是位于晶面中心、晶棱中心或角顶对称面的出露位置可以平分晶面、平分或包含晶棱第二节、对称要素的组合规律对于一个宏观几何多面体,可以存在的对称要素一般不止一个(当然可以只存在一个),当有两个对称元素存在时,由于对称要素本身的相互作用就可能产生第三个对称要素,第三个对称要素单独作用的结果等于前两者连续作用的结果。
晶体的宏观对称性
对称性:若一个物体(或晶体图形)当对其施行某
种规律的动作以后,它仍然能够恢复原状(即其中
点、线、面都与原始的点、线、面完全重合)时,
就把该物体(图形)所具有的这种特性称之为“对 称性”。
目录
上页
下页
退出
目录
上页
下页
退出
对称条件
a〕物体或图形必须包含若干个彼此相同部分或本身可以被 划分若干个彼此相同部分。 b〕相同部分必须借助某种特定动作而发生有规律重复。 对称操作:能使对称物体或图形中各个相同部分作有规律
目录
上页
下页
退出
表1.3 晶体的32种点群
晶系 三斜 单斜
m 2 2/m
正交
2 2 2 2/m 2/m 2/m
四方
4
菱方
3
3
六方
6
立方
2 3 2/m 3
4
2 m m 表1.3 1 晶体的32种点群
1
对 称 要 素
4 4/m
4 2m
6 6/m
6
1
3m 32
3 2/m
2 m
3 m 432
4 m m 4 2 2
对称中心 对称面 点
回转-反演轴 3次 4次 6次
直线
绕直线旋转
360 1 180 2 120 3 90 4 60 6
平面
直线和直线上的定点 绕线旋转+对点反演
对称操作
基转角α 国际符号
对点反演 对面反映
120 i
1
90
4
60
6
m
2
3
3+i
3+m
晶体的宏观对称性
5
2017/2/23
推论一:如果在偶次旋转轴上有对称中心,则必有一反映面 与旋转轴垂直相交于对称中心。
对称元素的组合:对称图形中具有两个(以上)对 称元素,通常用加号表示。如四次轴和对称中心的组 合表示为:4 i。
显然,如果对称图形具有两个(以上)对称元素, 它们的连续操作必定为复合对称操作。
镜转轴(象转轴):图形绕一直线旋转一定角度后, 再以垂直于该直线的平面进行反映,相应的对称动 作为旋转和反映的复合操作。
反映面的惯用符号:P;国际符号:m;圣佛里斯符号:Cs
1
反映面的极射赤面投影
2017/2/23
立方体中的反映面
反映操作联系起来的两部分互为对映体。如晶体自身 存在反映面,该晶体不存在对映体。
九个反映面
六个反映面
三个反映面
对称中心的极射赤面投影
对称中心(centre of symmetry/inversion centre):对称物体或 图形中,存在一定点,作通过该点的任意直线,在直线上 距该点等距离两端,可以找到对应点,则该定点即为对称 中心。相应的对称操作为反演。
第二章 晶体的宏观对称性
第一节 对称性基本概念 第二节 晶体的宏观对称元素 第三节 宏观对称元素组合原理 第四节 晶体的三十二点群
2017/2/23
点阵格子
晶胞
(等效)晶向指数
(等效)晶面指数
第一节 对称性基本概念
对称– 物体或图形的相同(equivalent)部分有规律的 重复。
对称动作(操作)– 使物体或图形相同部分重复出现 的动作。
C i(Ci)
1
P
L3i L4i L6i
晶体的宏观对称性
某些晶体在几何外形上体现出明显旳对称, 如立方等构造,这种对称性不但表目前几何外形 上,而且反应在晶体旳宏观物理性质上,对于研 究晶体旳性质有极主要旳意义。
、对称性
(a)
(b)
(c)
(d)
1 图 对称性不同旳几种图形
以上分析所用旳措施,就是考察在一定几何 变换之下物体旳不变性。我们把旋转及反射统称 为正交变换。概括宏观对称性旳系统措施正是考 察物体在正交变换下旳不变性,在三维情况下, 正交变换能够写成:
(2)存在单位元素E,使得全部元素满足:AE=A
(3)对于任意元素A,存在逆元素A-1,有:AA-1=E
(4)元素间旳“乘法运算”满足结合律:A(BC)=A (BC)
一种物体全部对称操作旳集合,也满足上述群旳定义 ,这时运算法则就是“连续操作”,不动操作作为单 位元素,绕轴转θ角旳逆为绕该轴转-θ角;中心反演 旳逆还是中心反演。
、对称操作群:一种物体全部对称操作旳集合,构成 对称操作群。
最终,作为一种例子,我们应用对称操作旳概念,证 明具有立方对称旳晶体旳介电性能够归结为一种标量 介电常数。
按照一般表达(D为电位移矢量,E为电场强度, 为介
电常数):
D E
, —— X,Y,Z轴分量
—— X,Y,Z轴为立方体旳三个立方轴方向
假设电场沿Y轴方向 Ey E, Ex Ez 0
x ' a11 a12 a13 x
y
'
a12
a22
a23
y
z ' a13 a13 a33 z
{aij}, i, j 1, 2, 3,为正交矩阵
绕z轴转角旳正交矩阵是:
cos sin 0
sin cos 0
晶体的宏观对称
Li63L23P
Li33L23P 定理4:Lin P// =Lin L2 Li42L22P Li63L23P
Li42L22P
附加:Ln与垂直对称面及包含对称面的组合
垂直P与包含的P,二者互相垂直,交线必为垂直Ln的L2, 即Ln P⊥ P∥=LnnL2(n + 1)PC (只考虑n为偶数):
mm2, 6/mmm, 321, 4mm
mmm, 312, 4, 6,
-31m,
-1,
4/mmm, -42m,
-4
4. 高级晶族(立方晶系、等轴晶系) 的对称型及 国际符号
国际符号方位:c,a+b,a+b+c
四面体类
(28) 3L24L3 (29) 3L24L33PC (30) 3Li44L36P 23
(16)
3
321 312
L3 L33L2 Li3 L33P
(17) 32
(18) -3
(19) 3m
-3m1
(20) -3m
-31m
Li33L23P
国际符号第一位为3或-3
6)六方晶系 a=b≠c; α=β=90° γ=120°
方位:c、a、2a+b
(21)
6
L6 L66L2 L3PC L36P
(22) 622
立方体和八面体类 (31) 3L44L36L2 (32) 3L44L36L29PC 432
4/m -3 2/m m3m 或m-3m
四面体类
(28) 3L24L3 (29) 3L24L33PC (30) 3Li44L36P 23 m3 -43m
立方体和八面体类 (31) 3L44L36L2 432 (32) 3L44L36L29Pm3m, -43m, 432, m3, 23
晶体的宏观对称性
晶体的宏观对称性一宏观对称性晶体的点阵结构使晶体的对称性跟分子的对称性有一定的差别。
晶体的宏观对称性仍然具有分子对称性的4种类型,但受到点阵的制约:旋转轴和反轴的轴次只能为1、2、3、4、6等几种。
因此,宏观对称元素只有:n=1,2,3,4,6;i,m,二宏观对称元素组合和32个点群对于宏观对称元素而言,进行组合是必须严格遵从两个条件的限制:第一,晶体的多面体外形是一种有限图形,因而各对称元素组合必须通过一个公共点,否则将会产生出无限多个对称元素来,这是与有限外形相互矛盾的;第二,晶体具有周期性的点阵结构,任何对称元素组合的结果,都不允许产生与点阵结构不相容的对称元素(如5、7、…等),可产生32个点群。
三晶系根据晶体的对称性,按有无某种特征对称元素为标准,将晶体分成7个晶系:立方晶系:在立方晶胞4个方向对角线上均有三重旋转轴(a=b=c, α=β=γ=90)六方晶系:有1个六重对称轴(a=b, α=β=90;, γ=120;)四方晶系:有1个四重对称轴(a=b, α=β=γ=90;)三方晶系:有1个三重对称轴(a=b, α=β=90;, γ=120;)正交晶系:有3个互相垂直的二重对称轴或2个互相垂直的对称面(α=β=γ=90;)单斜晶系:有1个二重对称轴或对称面(α=γ=90;)三斜晶系:没有特征对称元素十四种空间点阵由于这些型式是由布拉维(A.Bravais)在1885年推引得出的,故也称为"布拉维空间格子"。
⑴简单三斜(ap)⑵简单单斜(mP)⑶C心单斜(mC,mA,mI⑷简单正交(oP)⑸C心正交(oC,oA,oB)⑹体心正交(oI)⑺面心正交(oF)⑽简单四方(tP)⑾体心四方(tI)⑻简单六方(hP)⑼R心六方(hR)⑿简单立方(cP)⒀体心立方(cI)⒁面心立方(cF)。
ssp-05-晶体的宏观对称性-2014
中心反演矩阵的行列式等于-1
—— 空间转动加中心反演,矩阵行列式等于-1
不动也是一个操作
1 0 0 0 1 0 0 0 1
对称操作 —— 一个物体在某一个正交变换下保持不变
—— 物体的对称操作越多,其对称性越高
第5讲_晶体的宏观对称性 —— 晶体结构
——
0 0 0 0 0 0 0 0 0
D 0E
—— 正四面体晶体上述结论亦然成立 —— 介电常数的论证和推导也适合于一切具有二阶张量形 式的宏观性质:如导电率、热导率……等
第5讲_晶体的宏观对称性 —— 晶体结构
—— 六角对称晶体,将坐标轴取在 六角轴和垂直于六角轴的平面 内介电常数具有如下形式
在三维情况下,正交变换可以写成
x x ' a11 y y ' a 12 z z ' a 13
{aij }, i, j 1, 2, 3
a12 a22 a13
a13 x a23 y a33 z
B点转到B’点 —— B’点必有一个格点
A和B两点等价——以通过B点 的轴顺时针转过
A点转到A’点 —— A’点必有一个格点 且有 B ' A ' nAB — n为整数
第5讲_晶体的宏观对称性 —— 晶体结构
B ' A ' nAB
B ' A ' AB(1 2cos )
1 2cos n
第五讲: 晶体的宏观对称性
1. 2. 3. 4. 晶体中的基本宏观对称操作 晶体中的32个点群 晶体中的空间群(73点空间群,157复杂空间群) 晶体表面的几何结构
晶体的宏观对称性
☆对称中心—C 操作为反伸,是位于晶体中心的 一个假想的点。 。只可能在晶体中心,只可能一 个。
对称中心(C)
总结:凡是有对称中心的晶体,晶面总是成对出现且两 两反向平行、同形等大。
L22P
L33P L44P L66P
Li2 L2P=L22P
Li3 3L2 3P= L3 3L2 3PC Li4 2L22P
3L2 3PC
L3 3L2 3PC L44L2 5PC
Li6 3L2 3P= L3 3L2 L66L2 7PC 4P
六、晶体的对称分类
1、晶族、晶系、晶类的划分,见表3-1。 这个表非常重要,一定要熟记。
四、对称要素的组合
在结晶多面体中,可以有一个对称要素单独存在, 也可以有若干各对称要素组合在一起共同存在。
◆ 对称要素组合不是任意的,必须符合对
称要素的组合定律; ◆ 当对称要素共存时,也可导出新的对称 要素。
定理1:如果有(能找到)一个对称面P包含Ln,则必有(必能 找到)n个对称面包含此Ln(Ln即为这n个对称面的交线), 且任意二相邻P之间的交角δ等于 360 2n 。 简式为:Ln P// LnnP//; 逆定理:两个对称面P以δ相交,其交线必为一Ln,n 360 2
6)旋转反伸轴单独存在。可能的对称型为: Li1=C; Li2=P;Li3=L3C;;Li6=L3P。 7)旋转反伸轴Lin与垂直它的L2(或包含它的P)的 组合。根据组合规律,当n为奇数时LinnL2nP,可能 的对称型为:(Li1L2P=L2PC);Li33L23P=L33L23PC; 当n为偶数时 Lin(n /2)L2(n /2)P,可能的对称型为: (Li2L2P=L22P);Li42L22P;Li63L23P=L33L24P。
材料物理课件12晶体的宏观对称性
对称性与物理性质的关系
对称性与物理性质密切相关, 不同对称性的晶体表现出不同 的物理性质。
点对称性决定了晶体的光学、 电磁学等性质,镜面对称性则 影响晶体的热学、力学等性质 。
对称性越高,晶体的物理性质 越稳定,对称性破缺可能导致 某些物理性质的变化或异常。
02
晶体宏观对称性的表现形式
晶体宏观对称操作的种类
02
在晶体中,对称性表现为晶体在 不同方向上具有相同的晶格结构 和物理性质。
对称性的分类
晶体宏观对称性分为点对称性和 镜面对称性两类。
点对称性是指晶体在三维空间中 具有旋转、反演、倒转等对称元 素,如立方晶系的旋转轴、四方
晶系的四重轴等。
镜面对称性是指晶体在某一方向 上具有对称的平面,如单斜晶系
的b轴和c轴构成的平面。
理论计算方法
密度泛函理论
通过计算电子密度分布,推导出晶体的电子结构 和对称性。
分子力学计算
基于分子力学的原理,模拟晶体分子在平衡状态 下的构型和对称性。
群论分析方法
利用群论的原理,对晶体对称性进行分类和描述 。
计算机模拟方法
分子动力学模拟
通过模拟大量原子或分子的运动,预测晶体的结构和对称性。
蒙特卡洛模拟
材料物理课件12晶体的宏观对称 性
contents
目录
• 晶体宏观对称性的基本概念 • 晶体宏观对称性的表现形式 • 晶体宏观对称性的应用 • 晶体宏观对称性的研究方法 • 晶体宏观对称性的未来发展
01
晶体宏观对称性的基本概念
对称性的定义
01
对称性是指一个物体或系统在不 同方向上保持相同或相似形态的 性质。
对称性破缺会导致晶体物理性质的变 化,例如光学、电学、热学等方面的 性质改变。
晶体的宏观对称性
推论一:两个二次轴相交,交角为α/2,则垂直于这两个 二次轴所定平面,必有一基转角为α的n次轴。 推论二:一个二次轴和一个n次轴垂直相交,,则有n个二 次轴同时与n次轴相交,且相邻两二次轴的交角为n次轴基 转角的一半。
二次轴和四次 轴的组合 L44L2
第四节 晶体的三十二点群
晶体点群的推导 晶体的分类 晶体的定向 点群的符号 晶体的晶型
L6
L33L2
3L24L3、旋转轴型与反映面的组合 1、旋转轴与反映面垂直 L1 + P⊥ = P (Cs) L3 + P⊥ = L3 P (C3h) L6 + P⊥ = L6 PC (C6h) L33L2 + P⊥ = L33L24P (D3h) L66L2 + P⊥ = L66L27PC (D6h) 3L24L3 + P⊥ = 3L24L33PC (Th) 4L33L46L2 + P⊥ = 4L33L46L29PC (Oh) 组合原理:定理三及推论(偶次轴);定理四或定理二 L2 + P⊥= L2 PC (C2h) L4 + P⊥ = L4 PC (C4h) 3L2 + P⊥ = 3L23PC (D2h) L44L2 + P⊥ = L44L25PC (D4h)
第二节 晶体的宏观对称元素
宏观对称元素(Symmetry element)和对称动作 (symmetry operation)
对称动作类型 对称元素 反映面 对称中心 旋转轴 反轴 对称动作 反映 倒反(反演) 旋转 旋转倒反
简单 复合
反映面:对称物体或图形中,存在一平面,作垂直于该平面 的任意直线,在直线上距该平面等距离两端上必定可以找到 对应的点。这一平面即为反映面。相应的对称操作为反映。
1.5 晶体的宏观对称性
1.5 晶体的宏观对称性 —— 晶体结构
进一步考查图形按一条直线作左右反射后发生的变化
圆形对任意的直径做反射都不改变; 正方形只有对于对边中心的连线以及对角线作反射才
保持不变; 等腰梯形只有对两底中心连线反射不变; 不规则四边形则不存在任何左右对称的线
3) 对于任意元素A, 存在逆元素A-1, 有:AA-1=E
4) 元素间的“乘法运算”满足结合律:A(BC)=(AB)C
1.5 晶体的宏观对称性 —— 晶体结构
正实数群 —— 所有正实数(0 除外)的集合,以普通乘法为 运算法则
整数群 —— 所有整数的集合,以加法为运算法则 —— 一个物体全部对称操作的集合满足上述群的定义 运算法则 —— 连续操作
1.5 晶体的宏观对称性 —— 晶体结构
在正立方体的24个纯转动对称操作中, 正四面体保留了其中12个
中心反演不再是正四面体 的对称操作
去掉的12个转动操作, 即绕 立方轴转π/2, 3π/2; 绕面对角 线转π,加上中心反演后是
正四面体的对称操作
正四面体共有24个对称操作
1.5 晶体的宏观对称性 —— 晶体结构
③ 正六角柱
1) 绕中心轴线转动
—— 5个
2) 绕对棱中点连线转动 —— 3个
3) 绕相对面中心连线转动
—— 3个
4) 正交变换
—— 1个
5) 以上12个对称操作加中心 反演仍是对称操作
—— 正六面柱的对称操作有24个
1.5 晶体的宏观对称性 —— 晶体结构
4 对称素 “对称素”——简洁明了地概括一个物体的对称性 对称素 —— 一个物体的旋转轴、旋转-反演轴
晶体宏观对称性
a=b=c
四
a = =
方
3
120 90
菱面体晶胞
a=bc
中
三 方
a = = 90 = 120
六方晶胞
点
序 熊夫里 号 斯记号
c4v
D2d
D4h
c3
13
c 14
3i
15 D3
c 16
3v
17
D3d
18
群
4mm
国4际2记m号 422 mmm
3 3 32 3m
3m2
对称元素
4,4m 4,22,2m 4,42,5m, i
a==180° cos(/2)=-cos cos(/2)=cos(180+) =2 cosu=cos=0 u= =90 ° OC垂直两二次反轴,即OC垂直两对称 面旳法线OC平行于两对称面,OC是两对称面旳交线
定理四:经过二次旋转轴与对称面之交点并垂直 于该二次旋转轴旳对称面上旳直线恒为一倒转轴, 后者之基转角等于该二次旋转轴与对称面交角之 余角旳两倍。
总体来说,对称操作(涉及宏观和微观在 内),经研究得知,总共只有七种独立旳形式。
一、宏观对称元素
1)反演中心或对称中心(国际符号i):为一假想 旳几何点,相应旳对称变换是对于这个点旳反演 (倒反,反伸)。
F1 1
C
2
F2
2)反应面或对称面(国际符号m):为一假想旳 平面,相应旳对称操作为对此平面旳反应。
对称轴旳种类
名称
国际 符号
一次对称 1
二次对称 2
三次对称 3
四次对称 4
六次对称 6
基 转 角() 轴 次(n)作图符号
360 °
1
180 °
晶体的宏观对称性
α = β = 90 γ = 120
a=b≠c
α = β = γ = 90
注: 四方也不可能有底心,假如有,则破坏了“点阵点最少” 的条件,还可画出只有一个点阵点的格子。
单斜(P)
单斜(C)
三斜(P)
晶胞类型:
a ≠ b ≠ c
晶胞类型:
a ≠b≠c
α = γ = 90 β ≠ 90
α ≠ β ≠ γ ≠ 90
i
m
32 2, 2 m 3 2 , 3 m, i
2
α = β = γ = 90
a=b≠c
D 2h
中
四 方
4
10 11 12
α = β = γ = 90
c4 s4
c4h
D4
222 mm 2 22 2 mmm 4 4 4 m 422
4
4 4 , m, i 4, 4 2
续表:
对称 晶 性的 高低 系 四 方 特征对 晶胞类型 称元素 序 号 13 14 15 菱面体晶胞 点 熊夫里 斯记号 群 国际记号 对称元素
特征对称元素与7 特征对称元素与7个晶系
由于晶胞或空间点阵的小平行六面体都是不可能直接观察到的 内部微观结构,而特征对称元素却是它们在整个晶体外形上的反 映,是能够直接观察到的,所以特征对称结构可以作为实际划分 晶体的依据。 由表3我们已经知道,根据晶胞类型的不同,即与其相对应 的平行六面体形状的差异,可将32点群分为7类,即7个晶系。 七个晶系按照对称性的高低又可并归为三个晶族,即: 晶 族 包含的晶系 立方晶系 对称性强弱 对称性最高 高级晶族 中级晶族 低级晶族
六方、四方、三方晶系 对称性较弱 正交、单斜、三斜晶系 对称性最弱
明确了晶体对称性与规则性的关系,可以根据其宏观外形的 特征对称元素来判定晶体的晶系。
晶体的宏观对称 点群 对称型
晶体学
由于1=Li1=C,2=Li2=P=m,习惯用1代表对称中心。m代表2。 • 所谓的相同对称要素,并不仅仅指同种对称要素,而且必须是 能够借助于对称型中其他对称要素的变换作用而相互重复的同 种对称要素。 • 例如:3m(L33P)对称型中的三个P全部是相同对称要素;但 在4/mmm(L44L25PC)对称型中,垂直于L4的P与其它4P都 不相同,而且剩下的4个P之中,只有相互垂直的两个P才构成 一组相同对称要素,而以45°交角相邻的任二P都不是相同的 对称要素。
晶族
晶系 三 斜 单 斜 正 交 斜 方 三
对 无
称
特
点
无 L2 和 P L2 和 P 均 高 不多于一 个 次 2 L 和P的 轴 总数不少 于三个 所有的对称要素 必定相互垂直或 平行
低
级
对 称 型 对称要素总和 L1 **C L2 P **L2PC 3L2 L22P **3L23PC L3 *L3C *L33L2 L33P **L33L23PC L4 L4i *L4PC L44L2 L44P L4i2L22P **L44L25PC L6 +L6I *L6PC L66L2 L66P L6i3L23P **L66L27PC 3L24L3 *3L24L33PC 3L44L36L2 *3L44L36P **3L44L36L29PC
国际符号 1 1 2 m 2/m 222 mm2 mmm 3 3 32 3m 3m 4 4 4/m 422 4mm 42m 4/mmm 6 6 6/m 622 6mm 6m2 6/mmm 23 m3 432 43m m3m
晶体实例 高岭石 钙长石 镁铅矾 斜晶石 石膏 泻利盐 异极矿 重晶石 细硫砷铅矿 白云石 а -石英 电气石 方解石 彩钼铅矿 砷硼钙石 白镥矿 镍矾 羟铜铅矿 黄铜矿 锆石 霞石 磷酸氢二银 磷灰石 β -石英 红锌矿 蓝锥矿 绿柱石 香花石 黄铁矿 赤铜矿(?) 黝铜矿 方铅矿
晶体的宏观对称操作(3篇)
第1篇一、引言晶体是自然界中普遍存在的物质形态,它们在微观结构上具有高度的有序性。
晶体的这种有序性可以通过宏观对称操作来描述,这些操作能够保持晶体的几何形态和物理性质。
宏观对称操作是晶体学中一个重要的概念,它有助于我们理解晶体的结构特征和性质。
本文将详细探讨晶体的宏观对称操作,包括其定义、分类、性质以及在实际中的应用。
二、定义宏观对称操作是指对晶体进行一系列的几何变换,这些变换能够保持晶体的几何形态和物理性质不变。
这些操作包括旋转、反射、平移和螺旋等。
在晶体学中,这些操作被统称为点群对称操作。
三、分类1. 旋转操作旋转操作是指将晶体绕某一轴线旋转一定角度,使晶体的几何形态和物理性质保持不变。
旋转操作的轴线称为旋转轴,旋转角度称为旋转角。
根据旋转角的不同,旋转操作可以分为以下几种:(1)一级旋转:旋转角为360°,即整个晶体绕旋转轴旋转一周。
(2)二级旋转:旋转角为180°,即晶体绕旋转轴旋转半周。
(3)三级旋转:旋转角为120°,即晶体绕旋转轴旋转1/3周。
(4)n级旋转:旋转角为360°/n,即晶体绕旋转轴旋转1/n周。
2. 反射操作反射操作是指将晶体相对于某一平面进行镜像变换,使晶体的几何形态和物理性质保持不变。
这个平面称为反射面。
根据反射面的不同,反射操作可以分为以下几种:(1)镜面反射:反射面为晶体的一个平面。
(2)轴面反射:反射面为晶体的一个轴面。
(3)体对角面反射:反射面为晶体的一个体对角面。
3. 平移操作平移操作是指将晶体沿某一方向进行平行移动,使晶体的几何形态和物理性质保持不变。
平移操作可以看作是无限多个平移操作叠加的结果。
4. 螺旋操作螺旋操作是指将晶体绕某一轴线旋转一定角度,同时沿轴线方向进行平行移动,使晶体的几何形态和物理性质保持不变。
螺旋操作的轴线称为螺旋轴,旋转角称为螺旋角。
四、性质1. 对称性晶体的宏观对称操作具有以下性质:(1)自反性:晶体经过对称操作后,其几何形态和物理性质与原始状态相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
第二步
Element
6
13
结晶学与矿物学
对称轴(Ln)之对称操作
• 对称轴
二次(two-fold rotation) A Symmetrical Pattern
– 变换矩阵
cosa sin a 0
sin a cosa 0
• Motif: the fundamental part of a symmetric design that, when repeated, creates the whole pattern
6
结晶学与矿物学
对称元素
• 对称元素(symmetry element):在进行对称操 作时所凭借的几何要素——点、线、面等。 • 对称元素种类
对称变换矩阵
a11 a 21 a 31
a12 a 22 a 32
a13 a 23 a 33
10
结晶学与矿物学
对称轴(Ln)之对称操作
• 对称轴
二次(two-fold rotation) A Symmetrical Pattern
– = 360o/2 rotation – to reproduce a motif in a symmetrical pattern
= the symbol for a twofold rotation
6
Element
6
12
结晶学与矿物学
对称轴(Ln)之对称操作
• 对称轴
二次(two-fold rotation) A Symmetrical Pattern Motif
第一步
– = 360o/2 rotation – to reproduce a motif in a symmetrical pattern
– – – – – 对称中心(center of symmetry) 对称面(symmetry plane) 对称轴(symmetry axis) 倒转轴(rotoinversion axis) 映转轴(rotoreflection axis)
• 对称元素的符号
– 国际、习惯、图示符号:教材之表3-1、表7-1
9
结晶学与矿物学
对称元素之对称操作
对称操作 = 对应点的坐标变换
(x, y, z)
X a11 x a12 y a13 z Y a 21 x a 22 y a 23 z Z a x a y a z 31 32 33
(X, Y, Z) or
X x Y y Z z
6
6
11
结晶学与矿物学
对称轴(Ln)之对称操作
• 对称轴
Operation
A Symmetrical Pattern Motif 二次(two-fold rotation)
– = 360o/2 rotation – to reproduce a motif in a symmetrical pattern
3
结晶学与矿物学
对称的概念
物体(或图形)中相同部分 之间有规律重复
4
结晶学与矿物学
晶体的对称
• • • • • 晶体都是对称的 晶体外形上对称 晶体宏观性质上对称 是晶体的基本性质之一 是晶体科学分类的依据
5
结晶学与矿物学
对称操作(symmetry operation)
• 能够使对称物体(或图形)中的各个相同部分 作有规律重复的动作(对称操作) • some acts that reproduce the motif to create the pattern
0 0 1
6
第二步
第一步
6
14
结晶学与矿物学
对称轴(Ln)之对称操作
• 对称轴
二次(two-fold rotation) – 等效的例子
15
结晶学与矿物学
对称轴(Ln)之对称操作
• 对称轴
二次(two-fold rotation) – 等效的例子
16
结晶学与矿物学
对称轴(Ln)之对称操作
C Li °或 C
1 1
P m L2I 双线或粗线
8
结晶学与矿物学
晶体对称定律
• 只能出现轴次(n)为一次、二次、三次、四次和六次 的对称轴,而不可能存在五次及高于六次的对称轴 轴次 n 的确定: n = 360/a • a + 2a cosa = ma • cosa = (m-1)/2 1 m = 3, 2, 1, 0, -1 a = 0, 60, 90, 120, 180 n = 1, 6, 4, 3, 2
结晶学与矿物学
下面是第三章: 晶体的宏观对称 Next section: crystal symmetry
1
结晶学与矿物学
晶体的宏观对称
• • • • • 对称的概念 晶体的对称要素 对称要素的组合规律 对称型(点群)及其符号 晶体的对称分类
2
结晶学与矿物学
对称的概念
Symmetry
• 是宇宙间的普遍现象 • 是自然科学最普遍和最 基本的概念 • 是建造大自然的密码 • 是永恒的审美要素
• 对称轴
二次(two-fo
对称轴(Ln)之对称操作
• 对称轴
二次(two-fold rotation) – 等效的例子
18
结晶学与矿物学
对称轴(Ln)之对称操作
• 对称轴
二次(two-fold rotation) – 等效的例子
19
结晶学与矿物学
7
结晶学与矿物学
对称元素符号
宏观晶体的对称要素
对称要素 辅助几何要素 对称变换 基转角 习惯符号 国际符号 等效对称要素 图示记号 对称轴 一次 二次 三次 四次 直线 围绕直线的旋转 360° L1 1 180° L2 2 120° L3 3 90° L4 4 对称中心 六次 点 对于点的倒反 60° L6 6 平面 对于平面的反映 对称面 倒转轴 三次 四次 六次 直线和直线上的定点 绕直线旋转及点的倒 反 120° 90° 60° L3I L4i L6i 3 4 6 L3+C L3+P
对称轴(Ln)之对称操作
• 对称轴
二次(two-fold rotation) – 等效的例子
20
结晶学与矿物学
对称轴(Ln)之对称操作
• 对称轴