机械优化设计作业-48-圆柱齿轮减速器的优化设计

合集下载

圆柱齿轮减速器的优化设计

圆柱齿轮减速器的优化设计

& 前言
柱齿轮减速器是将齿轮封 闭 在 刚 性 的 箱 体 内 $ 其 润 滑 及维护等条件较好 $ 在重要的齿 轮 传 动 中 应 用 广 泛 % 在 设 计这类减速器时 $ 齿轮的齿数 # 模 数 的 选 择 以 及 齿 数 比 的 分配 $ 是设计中的重要问题 % 齿 数 # 模 数 选 择 合 理 $ 双 级 或多级减速器的齿数比分配恰当 $ 可 使 齿 轮 传 动 的 外 廓 尺 寸较小 $ 结构紧凑及成本降低 %
’& ( 软齿面单级减速器的优化设计 由齿面接触疲劳强度的设计公式
:!;
!
"&"-"
#
$
! +& $( % :%. ;
!
收稿日期 ! !""# " "$ " "!
!"
机电工程技术 !""# 年第 $$ 卷第 % 期
研究与开 发
$’ 齿宽应满足 !!"#$!!%!!!"!& 即 "(!!!%!&)! 得 ! *# +&’ ,")!-&$!" ’. +&/ ,&$-&)!!" #’ 齿轮的接触应力和弯曲应力不大于许用值 " 得 ! (0 +&’ ,")- 1")2 !" (% +&3 ,"*- 1"*2 !"
6-7 6!7 6$7 6#7 6 37
刘 和 平 等 1 E8A$!"FG!#"H @A> 结 构 ’ 原 理 及 应 用 北京 ! 北京航空航天大学出版社 " !""!1$ 张

一级圆柱齿轮减速器的优化设计

一级圆柱齿轮减速器的优化设计

一级圆柱齿轮减速器的优化设计
一级圆柱齿轮减速器是使用于机械设备中的一种齿轮机构,用于减速电机的转速或改变转矩大小,从而实现传动装置运行的高精度驱动。

随着社会的发展,人们对设备的要求越来越高,一级圆柱齿轮减速器的优化设计变得尤为重要。

一方面,一级圆柱齿轮减速器应当具有较高的传动精度,确保机械设备的运行精度。

通常,为了提高传动精度,机械设计应在减速器的全部轴线上安装参数调节滑动轴承,并在轴承外壳上安装调节螺栓,以便将轴承松接夹具推向轴线,获得更好的精度。

其次,一级圆柱齿轮减速器应当具有良好的耐久性。

为此,齿轮机构的耐磨性和耐腐蚀性可以采用优质的优质合金整体热处理工艺,以获得良好的高强度硬度和特定的硬度值。

此外,可以采用分段调节双积分膜片结构,采用转速和扭矩的双重优化方法,使用更短的尺寸设计,来实现减速器的高效传动。

最后,应严格控制减速器的加工投入,以确保减速器的寿命。

此外,优化设计中还应结合现有技术进行改进。

首先,应根据设备的工作原理和使用状况,采用适当的模型作为参数来检测减速器的工作状态,以确保减速器的精度和可靠性;其次,应采用现代计算机辅助设计技术,将设计过程中的参数及各细节考虑在内,实现合理的减速器结构;最后,应实施新材料和新零件的采用,使减速器更加经济和可靠。

综上所述,优化一级圆柱齿轮减速器设计,应包括调节精度,耐
久性,传动效率,以及设计过程中的模型检验,计算机辅助设计,新材料新零件的考虑,以便更加有效的满足机械设备的要求。

单级圆柱齿轮减速器的优化设计

单级圆柱齿轮减速器的优化设计

单级圆柱齿轮减速器的优化设计单级圆柱齿轮减速器的优化设计齿轮减速器是一种常用的机械传动装置,广泛应用于各种机械设备中。

其中,单级圆柱齿轮减速器是一种常见的减速器类型,具有结构简单、传动效率高等优点。

本文将围绕单级圆柱齿轮减速器的优化设计展开讨论。

首先,我们需要明确单级圆柱齿轮减速器的工作原理。

单级圆柱齿轮减速器是通过两个相互啮合的圆柱齿轮进行传动的。

其中,一个齿轮称为主动齿轮,另一个齿轮称为从动齿轮。

主动齿轮通过电机等动力源驱动,从而带动从动齿轮旋转。

通过不同大小的齿轮组合,可以实现不同的减速比。

在进行优化设计时,我们可以从以下几个方面考虑:1. 齿轮材料的选择:齿轮材料的选择直接影响到减速器的使用寿命和传动效率。

一般来说,常用的齿轮材料有钢、铸铁、铜合金等。

在选择材料时,需要综合考虑其强度、硬度、耐磨性等因素,并根据具体应用场景进行选择。

2. 齿轮参数的优化:齿轮参数包括模数、压力角、齿数等。

通过优化这些参数,可以提高减速器的传动效率和承载能力。

例如,增大模数可以增加齿轮的强度和承载能力;选择合适的压力角可以减小齿轮啮合时的摩擦损失。

3. 齿轮啮合传动的优化:齿轮啮合传动是减速器最关键的部分,也是能量损失最大的部分。

通过优化齿轮啮合传动的设计,可以减小能量损失,提高传动效率。

例如,采用精密加工工艺可以提高齿轮的啮合精度;采用润滑油膜技术可以减小摩擦损失。

4. 减速器结构的优化:减速器的结构设计也会影响其性能。

通过优化结构设计,可以降低噪声、提高刚度、减小体积等。

例如,采用斜齿圆柱减速器可以减小噪声;采用刚性箱体结构可以提高刚度。

5. 传动效率的测试与改进:在优化设计完成后,需要对减速器的传动效率进行测试,并根据测试结果进行改进。

通过不断地测试与改进,可以逐步提高减速器的传动效率。

综上所述,单级圆柱齿轮减速器的优化设计涉及到多个方面,包括材料选择、齿轮参数优化、齿轮啮合传动优化、结构优化以及传动效率测试与改进等。

单级直齿圆柱齿轮减速器的优化设计[五篇]

单级直齿圆柱齿轮减速器的优化设计[五篇]

单级直齿圆柱齿轮减速器的优化设计[五篇]第一篇:单级直齿圆柱齿轮减速器的优化设计单级直齿圆柱齿轮减速器的优化设计一、问题描述设计如图所示的单级圆柱齿轮减速器。

减速器的传动比u=5,输入功率P=75+5⨯44=295kW,输入轴转速n=980r/min。

要求在保证齿轮承载能力的条件下,使减速器的质量最小。

xbxz1xmX=[x1 x2 x3 x4 x5 x6]T =xl1X5d1X6d2二、分析减速器的体积主要决定于箱体内齿轮和轴的尺寸三、数学建模积v可近似的表示为根据齿轮几何尺寸及结构尺寸的计算公式,单极圆柱齿轮减速器箱体内齿轮和轴的总体v=π(d42s221-db1+2s1)π⎛π2⎫+d(l1+l2)-D-D(b2-c)-4 d0c⎪44⎝4⎭'22'21ππ((d422-d2s2)b2+π4ds2 1(l1+l3))由上式克制,单极标准直齿圆柱齿轮减速器优化设计的设计变量可取为这里近似取b1=b2=b0根据有关结构设计的经验公式将这些经验公式有δ=5m、D2=d2-2δ、、c=0.2b,并取l2=32mm、l3=28mm将这些经验公式及数据代入式d0=0.25(D2-D1)(2-1)且用设计变量来表示,整理得目标函数的表达式为222222f(x)=0.785398154.75x1x2x3+85x1x2x3-85x1x3+0.92x1x6-x1x52222+0.8x1x2x3x6-1.6x1x3x6+x4x5+x4x6+28x5+32x6() 1)为避免发生根切,应有Z1≥Zmin=17应有于是得约束函数(2-1)g1(x)=17-x2≤0(2-2)2)根据工艺装备条件,跟制大齿轮直径d2不超过1500mm故小齿轮直径d1不应超过300mm即mz1≤30cm于是有约束函数(2-3)g2(x)=x2x3-30≤0(2-4)足16≤b≤35,由此得m-1g(x)=xx-35≤0(2-5)3133)为保证齿轮承载能力同时又避免载荷沿齿宽分布严重不均,要求齿宽系数Φm=-1g4(x)=16-x1x3≤0(2-6)b满m4)对传递动力的齿轮,模数不能过小,一般m≥2mm,且取标准系列值,故有() g5x=0.2-x3≤0(2-7)5)按经验,主、从动轴直径的取值范围为10cm≤d≤15cm,故有() g6x=10-x5≤0(2-8)() g7x=x5-15≤0(2-9)() g8x=13-x6≤0(2-10)() g9x=x6-20≤0(2-11)6)按结构关系,轴的支承跨距满足:l1≥b+2∆+0.5ds2,其中∆为箱体内壁到轴承中心线的距离,现取∆=2cm,则有约束函数g10(x)=x1+0.5x6+4-x4≤0(2-12)7)按齿轮的接触疲劳强度和弯曲疲劳强度条件,应有:336KT1(u+1)σH=≤[σH]abu(2-13)3σF=12KT1≤σF1bd1mYF111[](2-14)σF=1σFYFYF2≤σF2[](2-15)式中,a为齿轮传动的标准中心距,单位为cm,a=0.5mz1(u+1);K为载荷系数,这里取K=1.3;T1为小齿轮传递扭矩,单位为N•cm,T1=955000P/n1=95500⨯295/980N•cm≈287474N•cm;为齿轮的许用接触应力,单位为MPa,这里取;σF1、σF2分别为小齿轮与大齿轮的许用弯曲应力,单位为MPa,这里取σF1=261MPa、σF2=213MPa;YF1、YF2分别为小齿轮、大齿轮的齿形系数,对标准齿轮:[][][][]YF1=0.169+0.006666z1-0.000854z12(2-16)(2-17)2YF2=0.2824+0.003539z1-0.000001576z2对以上公式进行代入、运算及整理,得到满足齿轮接触强度与弯曲强度条件的约束函数:(2-18)2(0.169+0.6666⨯10-2x2-0.854⨯10-4x22)-261≤0(2-19)g12(x)=7474/x1x2x32(0.2824+0.177⨯10-2x2-0.394⨯10-4x22)-21 3≤0(2-20)g13(x)=7474/x1x2x3[][]根据主动轴(本例即小齿轮轴)刚度条件,轴的最大弯曲挠度ymax应小于许用值[y],即xxx g11(x)=45002(2-21)1--1-12231-855≤0ymax-[y]≤0其中取[y]=0.003l1;ymax则由下式计算:3y=Fl/(48EJ)(2-22)maxn式中,Fn为作用在小齿轮齿面上的法相载荷,单位为N,Fn=2T1/(mz1cosα),α为齿轮压力角,α=20︒;E为轴的材料的弹性模数,E=2⨯105MPa;J为轴的惯性矩,单位为cm,对圆形截面,J=πds41/64。

圆柱齿轮减速器优化设计实验

圆柱齿轮减速器优化设计实验

圆柱齿轮减速器优化设计实验1 实验目的(1)熟悉 Matlab 主界面,学会常用的窗口的操作 (2)熟悉Matlab 的数据结构(3)学会Matlab 基本语句和基本运算的使用来进行简单的问题求解 (4)掌握脚本及函数文件的编辑方法2 实验设备及内容(1)实验设备:matlab 软件(2)实验内容:二级圆柱齿轮减速器,要求在保证承载能力的条件下按照总中心距最小进行优化设计。

在设计中,我们已知的数据条件有:高速轴输入功率R=4Kw ,高速轴转速n=960r /min ,总传动比i=35.3,齿轮的齿宽系数Φ=0.4;大齿轮45号钢,正火处理,小齿轮45号钢,调质处理,总工作时间不少于5年3 实验步骤3.1数学模型的建立:选取设计变量 减速器的中心距式为:a=(a1+a2)/2=[(1+i1)z1m1+(1+i2)z3m2]/(2cos β) (1) 式中:m1,m2为高速级与低速级齿轮的法面模数,i1,i2高速级与低速级传动比,z1,z3为高速级与低速级的小齿轮的齿数;β为小齿轮齿数齿轮的螺旋角。

计算中心距的独立参数有: m1,m2、i1 ,z1,z3,β3.2将问题装换为Matlab 标准型 优化设计变量取:X=[m1,m2,z1,z3,i1,β]T =[x1,x2,x3,x4,x5,x6]T建立目标函数:将中心距公式用设计变量表示,确定目标函数为:f(x)=[x1*x3*(1+x5)+x2*x4(1+35.3/x5)]/(2*cos(x6)) (2)3.3确定约束根据传递功率与转速分析,综合考虑传动平稳、轴向力不可太大,能满足短期过载,高速级与低速级的大齿轮浸油深度大致相近,齿轮的分度圆尺寸不能太小等因素,各变量的上下限取如下边界:2=<m1=<5,2=<x2=<5,14=<z1=<22,16=<z3=<22,5.8=<i1=<7 , 8=<β=<15 非线性不等式约束(1)由齿面接触强度公式确定的约束条件是:925[]HHaσσ=≤ (3)(2)由齿轮弯曲强度公式确定的约束条件:11111121.5[]F F n K T bd m Y σσ=≤ (4)12122[]F F F Y Y σσσ=≤ (5)(3)由高速级大齿轮和低速轴不发生干涉的约束条件:22/20e a E D --≥ (6)2321111(1)2cos ()0n n n m z i E m m z i β+-+-≥ (7)3.4编写相应的MATLAB 程序如下 建立M 文件 目标函数: function f = myfun(x)f = (x(1)*x(3)*(1+x(5))+x(2)*x(4)*(1+35.3/x(5)))/(2*cos(x(6))); 约束函数:function [c, ceq] =mycon(x) c=[ 2-x(1);x(1)-5; 2-x(2); x(2)-5; 14-x(3); x(3)-22; 16-x(4); x(4)-22; 5.8-x(5); x(5)-7;8-x(6); x(6)-15;cos(x(6))^3-2.079*10^(-5)*x(1)^3*x(3)^3*x(5); x(5)^3*cos(x(6)^3-1.101*10^(-4)*x(2)^3*x(4)^2); cos(x(6))^2-9.939*10^(-5)*(1+x(5))*x(1)^2*x(3)^2;x(5)^2*cos(x(6))^2-1.706*10^(-4)*(35.3+x(5))*x(2)^2*x(4)^2;x(5)^2*(2*(x(1)+100)*cos((x(6))^2+x(1)^2*x(2)^2*x(5)))-x(2)*x(4)*(35.3+x(5))]; ceq =[];输入:x0=[3,5,19,17,6.3,11];lb=[2,2,14,16,5.8,8];ub=[5,6,22,22,7,15]; options = optimset('LargeScale','off');[x, fval]=fmincon(@myfun,x0,[],[],[],[],lb,ub,@mycon,options)建立的m 文件如图1和图2所示:图1. 目标函数M文件图2. 约束函数m文件4 实验运行结果在Matlab的Command Window中输入上述语句后运行,得到如下图所示的运行结果。

单级圆柱齿轮减速器优化设计与分析

单级圆柱齿轮减速器优化设计与分析

单级圆柱齿轮减速器优化设计与分析减速器是工程实践中常见的机械传动装置,用于降低传动装置的转速并增加转矩。

圆柱齿轮减速器是一种常用的传动方式,其设计优化可以提高传动效率、减小噪音和振动,本文对单级圆柱齿轮减速器的优化设计与分析进行探讨。

1. 齿轮减速器的基本原理单级圆柱齿轮减速器由两个或多个相互啮合的齿轮组成,通过不同齿轮的大小和齿数来实现转速和转矩的变换。

具体来说,主动轮驱动从动轮,从而实现输出转矩。

2. 减速器的设计要素减速器的设计要素包括齿轮的模数、齿轮的齿数、齿轮的齿形、齿轮的间隙、齿轮的啮合角等。

在优化设计时,需要综合考虑这些要素,以提高减速器的性能。

3. 优化设计方法在单级圆柱齿轮减速器的优化设计中,可以采用多种方法。

一种常见的方法是基于理论计算,根据设计要求和理论公式计算齿轮参数,以满足传动比和输出转矩的要求。

另一种方法是基于仿真模拟,利用专业软件模拟齿轮传动的工作状态,通过调整齿轮参数,不断优化减速器的性能。

4. 优化设计指标在单级圆柱齿轮减速器的优化设计中,常用的指标包括传动效率、噪音和振动。

传动效率是指减速器输入功率与输出功率之比,可以通过优化齿轮参数和润滑条件来提高。

噪音和振动是影响减速器工作环境的重要因素,可以通过调整齿轮的齿形和间隙,以及采用减振措施来降低。

5. 优化设计案例以某公司生产的圆柱齿轮减速器为例,通过优化设计,取得了显著的效果。

首先,进行了齿轮的模数优化,选择了合适的模数以提高传动效率。

其次,通过改进齿轮的齿形和间隙,大大降低了噪音和振动。

最后,加入了减振设备,进一步提升了减速器的使用效果。

6. 分析优化效果通过优化设计,单级圆柱齿轮减速器的传动效率得到了明显提高,噪音和振动也得到了有效降低。

同时,减振设备的应用进一步增强了减速器的使用稳定性和可靠性。

因此,优化设计对于提升齿轮减速器的性能具有重要意义。

7. 总结与展望单级圆柱齿轮减速器的优化设计是提高传动效率、减小噪音和振动的重要手段。

单级圆柱齿轮减速器的优化设计

单级圆柱齿轮减速器的优化设计

单级圆柱齿轮减速器的优化设计单级圆柱齿轮减速器是一种常见的机械传动装置,广泛应用于各种工业领域。

然而,随着科技的不断进步和实际应用需求的提高,对减速器的性能和效率也提出了更高的要求。

因此,对单级圆柱齿轮减速器进行优化设计具有重要的现实意义。

在传统的单级圆柱齿轮减速器设计中,主要传动比、扭矩和效率等指标。

然而,随着工业领域的不断发展,对减速器的要求也越来越高,包括更小的体积、更轻的重量、更高的强度和更低的噪音等。

为了满足这些要求,必须对减速器进行优化设计。

单级圆柱齿轮减速器的基本原理是利用齿轮的啮合传递动力,实现减速的目的。

在优化设计中,我们可以从以下几个方面进行分析和改进:齿轮强度:提高齿轮的强度是优化设计的关键之一。

可以采用更优质的材质、精确的齿形设计和适当的热处理工艺来提高齿轮的强度和寿命。

传动效率:通过优化齿轮的几何尺寸、降低齿轮副的摩擦系数和提高齿轮的制造精度,可以降低功率损失,提高传动效率。

噪音控制:采用低噪音齿轮、优化齿轮副的动态特性、避免共振等方法,可以有效降低减速器的噪音。

根据上述原理分析,可以采用以下优化设计方案:采用高强度材料,如渗碳或淬火钢,以提高齿轮强度和寿命。

通过计算机辅助设计软件,精确设计齿轮几何形状和尺寸,以降低啮合冲击和振动。

采用润滑性能良好的材料和精确的加工工艺,以减小摩擦损失。

通过改变齿轮宽度、改变齿轮副的动态特性和优化减震装置等措施,以降低减速器噪音。

为了验证优化设计方案的有效性,可进行实验验证。

实验中,可以测量减速器的传动效率、扭矩、噪音等指标,并将其与原设计进行对比分析。

实验结果表明,优化后的减速器在各方面均有所改善,具体数据如下:传动效率提高:优化后的减速器传动效率较原设计提高了10%以上。

扭矩增加:在相同的输入功率下,优化后的减速器输出扭矩增加了20%以上。

噪音降低:优化后的减速器噪音降低了20分贝以上。

通过对单级圆柱齿轮减速器的优化设计,可以显著提高其传动效率、增加输出扭矩并降低噪音。

一级圆柱齿轮减速器的优化设计

一级圆柱齿轮减速器的优化设计

一级圆柱齿轮减速器的优化设计
一级圆柱齿轮减速器作为传动装置的一种,广泛应用于各种机械设备的传动中,其结
构简单、传动效率高、承载能力强等特点使其在工业应用中备受青睐。

为了进一步提高其
性能和可靠性,需要对其进行优化设计。

首先,从齿轮结构入手,优化传动比。

传动比是齿轮减速器的重要性能指标之一,直
接影响其扭矩输出、速度输出等性能参数。

可通过改变齿轮的外径、模数、齿数等来实现
传动比的优化,尽可能地利用设计空间,提高传动效率。

在齿轮的选择上,应选用优质材料,确保制造精度和耐久性。

其次,考虑润滑系统的优化。

合理的润滑系统是保证齿轮减速器正常运转的重要保障,可有效降低齿轮损耗和磨损,延长使用寿命。

优化设计润滑系统包括选用适合的油品、优
化油路布局、改进润滑方式等。

此外,应加强润滑系统的监测与维护,及时发现问题并采
取相应处理措施,确保润滑系统的正常运转。

再次,考虑减振与降噪的优化。

在齿轮减速器的实际应用中,常常会遇到噪音大、振
动强的问题,影响使用效果。

优化设计减振与降噪方案,既可以提高设备的工作质量,又
可以改善工作环境。

具体方法包括选用低噪音齿轮、加入减振机构等。

同时,应加强对齿
轮减速器的测试与评估,多方位检测齿轮减速器各项指标,确保其质量可靠。

综上所述,一级圆柱齿轮减速器的优化设计离不开对齿轮结构、润滑系统、减振降噪
等方面的考虑,为此应加强对齿轮减速器工作原理和应用场合的研究,以便更好地满足实
际应用需求,提高其工作效率和可靠性,同时还要加强技术标准的制定与执行,增强产品
的质量和市场竞争力。

【精品】二级圆柱齿轮减速器的优化设计——最终版

【精品】二级圆柱齿轮减速器的优化设计——最终版

二级圆柱齿轮减速器的优化设计——最终版学士学位论文二级圆柱齿轮减速器的优化设计摘要本文主要阐述了二级圆柱齿轮减速器的一般设计和优化设计过程,通过对比可知优化设计的优点,在现代机械化大生产过程中所显现的优越性、经济性,对于解放设计人员的劳动重复性,给予设计人员的新的设计思路和设计理念,使之在设计过程中以更多的创造性劳动,减少其重复性劳动。

二级圆柱齿轮减速器的优化设计主要是在满足其各零件的强度和刚度的条件下对其体积进行优化设计,这主要是因为,二级圆柱齿轮减速器的效率和其它的设计要素一般是比较高的,没有必要在对其进行优化,影响它性能、质量、成本的主要方面主要体现在强度要求和质量体积要求。

本文主要介绍了二级圆柱齿轮减速器的优化过程,建立其数学模型,目标函数,约束条件,并编写其通用的优化设计程序。

优化设计程序的建立使得减速器的设计计算更为简单,只要设计人员根据程序的提示要求,输入各个设计参数就可以得到满足要求的各种减速器的性能、结构尺寸。

这对于二级圆柱齿轮减速器的系列化设计生产具有重大意义。

关键词:圆柱齿轮减速器,数学建模,优化设计目录摘要 (1)目录 (1)第一章概述 (2)1.1机械优化设计与减速器设计现状 (2)1.2课题的主要任务 (2)1.3课题的任务分析 (3)第二章二级圆柱齿轮减速器的一般设计过程 (4)2.1传动装置运动和参数的确定 (4)2.1.1 设计参数 (4)2.1.2 基本运动参数的确定 (4)2.2齿轮设计部分 (5)2.2.1 第一级齿轮 (5)2.2.2 第二级齿轮 (9)2.3轴设计部分 (12)2.3.1 轴1 (12)2.3.2 轴2 (15)2.3.3 轴3 (21)第三章二级圆柱齿轮减速器的优化设计 (24)3.1减速器的数学模型 (24)3.2计算传动装置的运动和动力参数 (29)3.3减速器常规参数的设定 (30)3.4约束条件的确定 (30)第四章减速器优化设计中的几个重要问题 (40)4.1数学模型的尺度变换 (40)4.2数据表和线图的处理 (41)4.3最优化方法的选择 (41)4.4编写和调试程序的一些注意点 (44)结论 (45)参考文献 (46)致谢 (47)附录:程序源代码 (48)第一章概述1.1 机械优化设计与减速器设计现状机械优化设计是在电子计算机广泛应用的基础上发展起来的一门先进技术。

圆柱齿轮减速器的优化设计

圆柱齿轮减速器的优化设计

圆柱齿轮减速器的优化设计摘要:机械传动系统中的重要零件就是齿轮减速器,它在各类机械设备上具有极为广泛的应用。

不断地试凑、校核是传统减速器的设计方法,即使设计方案达到了预期效果,但是通常其效果并不能达到最优。

通过选取设计变量,确定目标函数及约束条件,圆柱齿轮减速器的优化设计的数学模型才方可建立。

关键词:优化设计;圆柱齿轮;减速器1减速器优化设计方案优化设计通常分为三大类:结构外观上避免体积过大,使用方面追求减速器承载能力达到最大,经济方面在设计减速器时花费更少的资金。

要达到第三类目标的要求,会有很多因素参杂其中,除了合理地设计出减速器的设计方案,单位的劳动能力、管理能力、设备结构和材料价格等因素都会被涉及。

最终,第一类或第二类优化类型,即追求小体积成为了设计人员所采纳的优化方案。

其中,在追求小体积和追求最大承载能力方面也起到了冲突。

如果减速器的大小一定,那么受到限制的就是减速器的承载力;如果所受到的承载力是一定的,那么受到限制的就是减速器的大小。

因此,两种类型的实质是一样的。

优化减速器时,体积则是由中心距离体现出来的。

所以,优化减速器大体可以分为两种类型,第一类优化:根据给出的承载范围,中心距离作为减速器的优化重点;第二类优化:根据减速器的中心距离,减速器的承载范围作为优化重点。

2传动比的分配1)每级传动比应在推荐值范围内,且各级传动比应使传动装置尺寸协调、结构匀称、不发生干涉现象,使减速器获得尽量小的外形尺寸和重量;2)使各级传动的承载能力(一般指齿面接触强度)接近相等;3)使各级传动的大齿轮浸入油中的深度大致相等,以避免低速级大齿轮浸油过深而增加搅油损失。

在设计展开式双级圆柱齿轮减速器时,考虑到各级齿轮传动的润滑合理性,应使两大齿轮直径相近,推荐值取i1=(1.3~1.4)i2或i1= ,其中:i1、i2分别为高速级和低速级齿轮的传动比,i为减速器的总传动比。

对于同轴式双级圆柱齿轮减速器,一般取i1=i2= 。

圆柱齿轮减速器的优化设计

圆柱齿轮减速器的优化设计

圆柱齿轮减速器的优化设计发表时间:2018-11-21T08:33:44.293Z 来源:《防护工程》2018年第21期作者:曹翔翔[导读] 采用优化设计方法后,在满足强度要求的前提下,减速器的尺寸大大地降低,减少了用材及成本,提高了设计效率和质量。

北京北齿有限公司技术管理部河北沧州 061100 摘要:齿轮减速器作为一种闭式传动装置在原动机和工作机之间不停歇地工作,其目的是使转速降低,转矩增大,在各个领域上起到了不可小觑的作用。

长久以来,我们设计圆柱齿轮减速器通常都是根据传统,古板的方式进行的。

设计者简单的制定出一套方案,不断的对此套方案进行验算分析,方案如果验算成功,就说明此套方案可行。

很明显,这套方案是可以被用来进行设计的,但是这套方案所设计出来的圆柱齿轮减速器会变得笨重。

因此对圆柱齿轮减速器进行优化是非常关键的。

关键词:优化设计;圆柱齿轮减速器引言:齿轮减速器是原动机和工作机之间独立的闭式机械传动装置,能够降低原动机转速或增大扭矩,是一种被广泛应用在工矿企业及运输、建筑等部门中的机械部件。

长期以来,圆柱齿轮减速器的设计是按传统方法进行的。

设计人员按照各种资料、文献提供的数据,结合自己的设计经验,并对已有减速器作一番类比,初步订出一个设计方案,然后对这个方案进行一些验算,如果验算通过了,方案便被肯定了。

显然,这个方案是可采用的,但这往往使设计出的减速器有很大的尺寸富余量,造成财力、物力和人力的极大浪费。

因此,优化设计圆柱齿轮减速器势在必行。

一、圆柱齿轮减速器相关内容简析(一)概念圆柱齿轮减速机,是一种动力传达机构,其利用齿轮的速度转换器,将电机的回转数减速到所要的回转数,并得到较大转矩的装置。

圆柱齿轮减速机是一种相对精密的机械,使用它的目的是降低转速,增加转矩。

(二)种类分析首先,ZQD型圆柱齿轮减速机。

ZQD型减速机是在尽量不改变ZQ型减速机的输入输出轴的位置和安装尺寸的前提下,增加一高速级称为三级传动,增加的高速级在上方。

齿轮减速器的优化设计

齿轮减速器的优化设计

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载齿轮减速器的优化设计地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容齿轮减速器的优化设计南昌航空大学机械工程专业苑晓帅齿轮传动是现代机械中应用最广的一种传动形式。

它的主要优点是:① 瞬时传动比恒定、工作平稳、传动准确可靠可传递空间任意两轴之间的运动和动力;② 适用的功率和速度范围广;③ 传动效率高,η=0.92-0.98;④ 工作可靠、使用寿命长;⑤ 外轮廓尺寸小、结构紧凑。

由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。

国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。

另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。

国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。

但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。

当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。

减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。

近十几年来,由于近代计算机技术与数控技术的发展,使得机械加工精度,加工效率大大提高,从而推动了机械传动产品的多样化,整机配套的模块化,标准化,以及造型设计艺术化,使产品更加精致,美观化。

针对减速器存在的问题,本课题采用优化设计的方法,力求使减速器的体积达到最小,建立数学模型,并通过matlab语言编辑后,得到一组优化数据,到达预期目标,使减速器的体积比传统的经验设计结果减小20%--30%。

单机圆柱齿轮减速器优化设计

单机圆柱齿轮减速器优化设计

1 绪论1.1 课题的目的及意义齿轮减速器是原动机和工作机之间独立的闭式机械传动装置,能够降低原动机转速或增大扭矩,具有传递功率大,冲击小,维修方便,使用寿命长等许多优点。

是一种广泛应用在工矿企业及运输,建筑等部门的机械部件。

圆柱齿轮减速器传统的设计方法使:设计人员根据各种资料,文献提供的资料,结合自己得设计经验,初步订出一个设计方案,然后进行验算。

但用这种方法设计出的减速器往往尺寸偏大,可能并不是最优的设计方案。

因此,应用离散变量的组合型优化设计理论能将设计中的模糊因素和模糊主观信息定量化,通过合理给定约束函数,目标数的地容许值,期望值及其模糊分布来求得合适的优化方案,减少用料,降低了生产成本,具有可观的经济效益。

近年来,国内外齿轮传动的优化设计已有很大的发展。

各类文献研究了齿轮传动系统的以传递转矩最大为目标的优化设计,研究了机床变速箱齿轮的优化设计等国内在这方面也有很多研究。

尽管这些研究成果不仅可以提高设计效率、设计精度、减轻设计者的工作量,而且可设计出用传统设计方法所无法得到的好方案但是人们在进行这些研究工作时,均忽略了这样一个问题,即各设计参数的随机性,他们仅仅从设计的角度出发,把设计参数看成是单值的,没有考虑材料性能和载荷随机性等的影响。

因此这种设计的结果只能反映在假定条件下的最优设计方案,而实际应用中由于各参数的随机性,使之成为非最优设计,至是不可行的设计方案。

在设计中即要考虑设计参数的随机性,又要能进行多参数的优化设计,并能在设计后预测可靠度,是当今机械设计领域中的一个重要研究内容。

为了弥补前述的不足,本文考虑各设计参数的随机性,建立r具有随机约束的单级圆柱齿轮减速器的优化数学模型。

并对实例进行了优化设计所得结果符合实际,验证了该模型的正确性和可行性。

1.2 国内外研究概况及发展趋势最优化方法在机构设计和零件设计中应用广泛,效果显著。

近十年来,国内外对整台机器或某一机械系统的设计,采用最优化方法代替原来传统的设计方法也越来越多。

减速器优化设计

减速器优化设计
圆柱齿轮减速器的优化设计
• 圆柱齿轮减速器是一种使用非常广泛的机械传动装置。我 国目前生产的各种类型的减速器还存在着体积大、重量重、 承载能力低、成本高和使用寿命短等问题,与国外先进产 品相比还有相当大的差距。对减速器进行优化设计,选择 其最佳参数是提高承载能力、减轻重量和降低成本等各项 指标的一种重要途径。 • 减速器的优化设计一般是在给定功率P、齿数比u,输人转 速n以及其他技术条件和要求下,找出一组使减速器的某 项经济技术指标达到最优的设计参数。下面介绍建立减速 器优化设计数学模型时,如何选择设计变量、目标函数和齿轮减速器的优化设计

最小体积圆柱齿轮减速器的优化设计

最小体积圆柱齿轮减速器的优化设计

最小体积圆柱齿轮减速器的优化设计淮南职业技术学院(安徽!"!##$)郭益友【摘要】将多目标优化方法应用于单级斜齿圆柱齿轮减速器的设计,可得到整体优化的结构设计方案,使齿轮传动在满足承载能力、强度、使用寿命的条件下,结构最紧凑,重量最轻。

【关键词】减速器优化设计中心距一、前言我国通用圆柱齿轮减速器虽已有标准系列,但并不是最优的。

而用机械优化设计的方法,将工程实际问题转化为优化设计的数字模型,然后根据数学模型的特性,选择适当的优化设计计算方法及其程序,通过计算机求得最优解,从而在短时间得到最佳设计结果。

二、建立目标函数球磨机单级斜齿圆柱齿轮减速器传动的原始数据及设计要求:小齿轮传递额定功能!!"#$%&,转速"’!()*+/,-.,传动比#!)#’’,单向运转满载)$***/。

传动误差不超过0$1。

小齿轮用2*3+钢调质,硬度42’!456789;大齿轮用2$钢正火,硬度’64!4’(789。

要求在满足刚度、强度和寿命等条件下,使体积最小。

减速器优化的目标很多,但最小的体积可以节约材料,降低成本,满足许多特殊场合要求。

因此,将齿轮减速器的体积最小作为优化目标函数,要求结构最紧凑,重量最轻,也就是说减速器中总中心距最小,因此以中心距$为目标函数,有%(:)!$!&.’(’’;’4)4<=>!!’4<=>!&.’’’(’;#)(’)三、确定设计变量计算中心距的独立参数有:&.’、’’、#、!,故取设计变量为(![&.’、)’、#、!]*[(’、(4、()、(2]*(4)四、确定约束条件!"确定设计变量的上下限’#4!&.’!)#2;’2!)’!6*4!#!$;5?!!!’$?(换算成弧度)由此建立不等式约束条件+’(()!(’@’#4"*;+4(()!)#2@(’"*。

+)(()!(4@’2"*;+2(()!6*@(4"*。

一级斜齿圆柱齿轮减速器的优化设计doc资料

一级斜齿圆柱齿轮减速器的优化设计doc资料

机械优化设计课程作业作业题目:一级斜齿圆柱齿轮减速器的优化设计学院:机械工程学院专业:机械制造及其自动化班级:机研1001班学号:2009020799学生姓名:李莹指导教师:黄勤教授2010年7 月15 日一级斜齿圆柱齿轮减速器的优化设计一、引言一随着现代计算技术的发展和应用,在机械设计领域,已经可以用现代化的设计方法和手段,从众多的设计方案中寻找出最佳的设计方案,从而大大提高设计效率和质量。

在进行机械设计时,都希望得到一个最优方案,这个方案既能满足强度、刚度、稳定性及工艺性能等方面的要求,又使机械重量最轻、成本最低和传动性能最好。

然而,由于传统的常规设计方案是凭借设计人员的经验直观判断,靠人工 进行有限次计算做出的,往往很难得到最优结果。

应用最优化设计方法,使优化设计成为可能。

斜齿圆柱齿轮减速器是一种使用非常广泛的机械传动装置,它具有结构紧凑、传动平稳和在不变位的情况下可凑配中心距等优点。

我国目前生产的减速器还存在着体积大,重量重、承载能力低、成本高和使用寿命短等问题,对减速器 进行优化设计,选择最佳参数,是提高承载能力、减轻重量和降低成本等完善各项指标的一种重要途径。

二、优化模型本设计是要在满足零件的强度和刚度的条件下,求出使减速器的体积最小的各项参数。

1 、设计变量如图1 所示,选取齿轮宽度b 、小齿轮齿数1z 、齿轮模数n m 、两轴轴承之间的支撑跨距l 、两齿轮的内孔直径1z d 、2z d 为设计变量。

设计变量:=x [654321x x x x x x ]T =[b 1z n m l 1z d 2z d ]T2、建立目标函数由于齿轮和轴的体积是决定减速器体积的依据,因此可按它们的体积最小的原则来建立目标函数。

根据齿轮几何尺寸及齿轮结构尺寸的计算公式,壳体内的齿轮和轴的体积可近似地表示为:))((25.0)(25.0)(25.0222222222121g g z z d D c b d d b d d b v ----+-=ππ 221222122087)(25.0z z z z d d d d l c d ππππ++-+-式中,11z m d n =;22z m d n =;m z um D n g 1012-=;226.1z g d d =;)6.110(25.0210z n d m z um d --=;b c 2.0=。

浅谈圆柱齿轮减速器的优化设计

浅谈圆柱齿轮减速器的优化设计

浅谈圆柱齿轮减速器的优化设计摘要:减速器的主要作用降低发动机和工作机之间的转速并提升转矩,被广泛应用在工业生产中,根据结构形式的不同,减速器可分为齿轮减速器、蜗杆减速器、电梯专用减速器等。

其中圆柱齿轮减速器具有工作效率高、可靠性强、使用寿命长、保养维护便捷等特性,被广泛应用。

本文以二级圆柱齿轮减速器为例,对圆柱齿轮减速器的优化设计进行分析。

关键词:圆柱齿轮;减速器;设计1圆柱齿轮减速器工作原理二级圆柱齿轮减速器的工作原理是通过分布在3根轴上的两对齿轮来达到减速的效果,其中第一级输入轴的带轮比输出轴带轮大,而第二级输入轴的齿轮大、输出轴的齿轮比较小。

无论是大齿轮还是小齿轮都是直齿圆柱式齿轮。

假设第一级传动比为I1;第二级两个齿轮在啮合时,输入轴齿轮转动一圈,输出轴则要中转动几圈,二者之间的比例可以通过齿数进行计算,假设为I2,则该减速器的中传动比为I=I1+I2。

根据能量守恒的原理可知,减速器在运行过程中,输出和输入的总功率可保持不变,在达到减速效果的同时,又能增加扭矩,进而提供更大的动力。

二级减速相互作用就实现了电机输出轴到后车轮轴传动的减速。

总而言之,就是输入轴带动小齿轮转动,小齿轮通过中间轴带动大齿轮转动,最后由输出轴输出,由于大齿轮齿数比小齿轮齿数多,所以传动速度较慢,最后由输出轴输出时恰好起到减速的作用。

2圆柱齿轮减速器优化设计2.1齿轮设计计算齿轮计算是圆柱齿轮减速器设计的重中之重,其计算结果是否精确,直接决定了设计效果。

在齿轮计算时,可分两步进行。

第一步,对选择齿轮材料的性能进行分析,确定齿轮的许用应力,如果圆柱齿轮减速器对传递的要求比较高,并且尺寸比较紧凑,可采用经过表面淬火处理的合精钢或者金铸钢作为齿轮材料,硬度控制在55~60HRC之间。

第二步,需要对齿面齿轮失效的弯曲疲劳折断强度进行分析,根据轮齿弯曲强度计算结构进行设计。

先计算齿轮的模数,再对齿面的接触强度进行计算。

如果圆柱齿轮减速器的工作条件为一般要求,则第一步可采用经过正火热处理后的碳钢,硬度可达250HBS以上,通过软齿面齿轮组成。

机械设计课程设计圆柱齿轮减速器设计

机械设计课程设计圆柱齿轮减速器设计

机械设计课程设计圆柱齿轮减速器设计机械设计课程设计圆柱齿轮减速器设计摘要:减速器是用来将输入转速降低至输出转速的装置,用来实现动力传动系统中的速度变换.这次课程设计设计的是圆柱齿轮减速器,主要材料是45#钢,轴的轴径为45mm,齿轮的齿宽为15mm,齿数分别为主轴齿轮30齿,从动轴齿轮15齿,输入转速是1400rpm,输出转速为300rpm,最后设计出减速器的主要尺寸参数为:齿轮齿宽为15mm,齿轮轴径为45mm,主轴齿轮齿数为30,从动轴齿轮齿数为45,球锥角为1°。

关键词:减速器;圆柱齿轮;齿宽;转速;尺寸1. 引言1.1. 减速器简介减速器是用来将输入转速降低至输出转速的装置,用来实现动力传动系统中的速度变换,它是大规模机械传动系统的一部分,也是机械传动系统中重要的组成部分。

它可以将较高的输入转速出送给受力部件,并可以减少输出转速,可以降低噪音、减少振动、提高功率传递效率、减少热量损耗等等。

随着技术的发展,减速器的种类越来越多,它们的结构也越来越复杂,满足了各种不同的需求。

1.2. 圆柱齿轮减速器简介圆柱齿轮减速器是由两个圆柱齿轮组成,两个齿轮的齿面要精密啮合,齿面的表面积是固定的,但齿数和齿宽可以不同,两个齿轮的轴心距恒定,轴心距直径要小于齿轮外径,减速比是由两齿轮的齿数比来决定的,它的特点是减速比固定,圆柱齿轮减速器的优点是体积小、质量轻、功率低,结构简单、制造成本低,缺点是减速比只能通过改变齿数来改变。

2. 设计要求2.1. 材料主要材料为45#钢。

2.2. 轴径轴径为45mm。

2.3. 齿宽齿宽为15mm。

2.4. 齿数主轴齿轮为30齿,从动轴齿轮为15齿。

2.5. 转速输入转速为1400rpm,输出转速为300rpm。

3. 减速器参数计算3.1. 球锥角计算球锥角α = tan-1(m/z)其中:m 为齿数,z 为齿形的模数。

计算出的球锥角α为1°。

3.2. 齿宽计算b=m·zo / (2·tanα )其中:m 为齿数,z 为齿形的模数,α为球锥角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《机械优化设计》课程作业(2014至2015学年度第2学期)随着现代工业的不断发展和扩大,对工业机械的需求量也再迅速的增加,同时对机械设备的可靠性,维修性,安全性,经济性也提出而来更高的要求。

作为主要的传动装置,圆柱齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传动装置。

而当前减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问题。

因此我们可以借助计算机辅助软件对其参数进行优化设计。

1.圆柱齿轮减速器的主要优缺点1)效率高在常用的机械传动装置中,以圆柱齿轮传动的效率最高。

如一级圆柱齿轮传动的效率可达99%。

这对大功率传动十分重要,因为即使效率只提高1%,也有很大经济意义。

2)结构紧凑在同样的使用条件下,圆柱齿轮减速器所需的尺寸一般较小。

3)工作可靠、寿命长设计制造正确合理、使用维护良好的圆柱齿轮减速器,工作十分可靠,寿命可长达一、二十年,这也是其他机械传动所不能比拟的。

这对车辆及在矿井内工作的机器尤为重要。

4)传动比稳定传动比稳定往往是对传动性能的基本要求。

圆柱齿轮传动获得广泛应用,也就是由于有这一特点。

但是圆柱齿轮减速器的制造及安装精度要求高,价格较贵,且不宜用于传动距离过大的场合。

圆柱齿轮减速器在各行各业中十分广泛地使用着,是一种不可缺少的机械传动装置。

当前国内的减速器普遍存在着体积大、重量大,或者传动比大而机械效率过低的问题。

国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。

但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。

二级齿轮减速器在工程机械中应用非常广泛,其性能好坏直接影响机械产品的技术性能。

传统的减速器设计通常是先根据经验选取适当的参数,通过手工计算进行反复的试凑,确定参数后,再进行强度校核,设计中大多比较保守,设计出的减速器较为笨重。

随着科学技术和国民经济的发展,对齿轮减速器的需求量越来越大,且对质量提出了更高的要求,若仍采用传统的单一产品设计方法是远不能满足市场多样化的需求,不能适应激烈的市场竞争,也很难提高产品的综合技术经济效益及保证产品质量。

优化设计则是通过设计变量的选取,以及目标函数和约束条件的确定,建立数学模型,通过计算机运算求得满足条件的最优解。

随着技术的进步,硬齿面减速器发展迅速,由于硬齿面减速器的设计计算、材料选用、加工工艺和热处理等要求都非常高,因此减速器的优化设计就显得非常重要。

在齿轮减速器中应用优化设计方法,对于进一步提高齿轮的承载能力、延长齿轮的使用寿命,以及减小传动部件的体积和重量,具有显著的效果2.研究意义及未来前景本课题的研究意义在于改变传统的齿轮减速器设计方式,提高企业的经济效益及其在市场上的竞争力。

齿轮减速器以其效率高,工作耐久,维护方便,而得到广泛应用。

但传统的齿轮减速器设计是面向某一具体产品,从零件设计入手,逐步完成整机设计,除少量标准件外,几乎是全新的,生产上及技术上的继承性很差,且新产品设计周期长,工艺装备及生产准备工作量大,生产线也需作较大的调整。

随着科学技术和国民经济的发展,对齿轮减速器的需求量越来越大,且对质量提出了更高的要求,若仍采用传统的单一产品设计方法是远不能满足市场多样化的需求,不能适应激烈的市场竞争,也很难提高产品的综合技术经济效益及保证产品质量。

机械优化设计给机械工程界带来了巨大经济效益,随着技术更新和产品竞争的加剧,优化设计的发展前景非常的广阔。

当今的优化正逐步的发展到多学科优化设计,充分利用了先进计算机技术和科学的最新成果。

虚拟设计技术是发展的必然,仿真技术也将更加趋于协同化和系统化。

尚处于理论探索阶段的结构拓扑优化四、智能算法优化设计、结构动态性能优化设计、绿色优化、可靠性稳健设计、基于仿生学、遗传学算法的优化设计、机械人性化设计和持续性创新优化等都是未来机械优化设计的发展方向。

但我们仍需关注的是,在优化技术水平得到了提高的同时,国内机械加工或工艺水平、加工手段和制造技术也应配套提升才行,否则整体机械水平将仍然停滞不前。

这不仅要加工技术的引进,更重要的是加工设备的性能提升,尤其是数控机床的加工水平。

加强与国际技术发达国。

西南大学本科生毕业论文(设计)3.1优化设计概述优化设计是20世纪60年代初发展起来的一门新科学,它将最优化原理和计算机技术应用于设计领域,为工程设计提供一种重要的科学设计方法。

采用这种新的设计方法,人们可以从众多的设计方案中寻找出最佳的设计方案,从而大大提高设计的效率和质量。

优化设计是在电子计算机技术广泛应用的基础上而发展起来的一种现代计方法。

它是以电子计算机为计算工具,利用最优化原理和方法寻求最优设计参数的一门先进设计技术。

优化设计能为工程及产品设计提供一种重要的科学设计方法,使得在解决复杂设计问题时,能从众多的设计方案中寻得尽可能完善的或最适宜的设计方案,因而采用这种设计方法能大大提高其设计质量和设计效率。

所谓优化设计,就是借助最优化数值计算方法和电子计算机技术,求取工程问题的最优设计方案。

进行优化设计时,首先必须将实际工程问题进行数学描述,形成一组数学表达式组成的优化设计数学模型;然后选择一种最优化数值计算方法和计算机程序,在计算机上运算求解,得到一组最佳的设计参数。

这组设计参数就是优化设计等的最优解。

优化设计是现代工程设计理论和方法的发展。

优化设计的目的是将数学规划理论和计算机技术应用于工程及产品设计中,从大量的可行设计方案中寻找最佳方案,进而获得显著的技术和经济效益。

传统的机械设计方法只是被动的重复分析产品的性能,而不是主动地设计产品的参数。

作为一项设计,不仅要求方案可行、合理,而且应该是某些指标达到最优的的理想方案。

由于传统的方法设计效率低,而且齿轮减速器不是最优的设计方案,往往存在着体积大、质量大、承载能力低、成本高和使用寿命短等问题。

为了降低减速器的成本,提高设计和工作效率,需要对圆柱齿轮减速器进行优化设计,选择其最佳参数提高承载能力,减轻重量和降低成本等各项指标。

产品设计是影响产品性能、质量、成本和企业经济效益的一项重要工作,产品能否满足用户要求,很大程度上取决于产品设计工作。

一项机械产品的设计,一般需要经过调查分析、方案拟定、技术设计、零件工作图绘制等环节。

传统的设计方法通常在调查分析的基础上,参照同类产品通过估计、经验类比或试验分析来确定初始设计方案。

然后根据初始设计及方案的设计参数进行强度、刚度、稳定性等性能分析计算,检查各性能是否满足设计求整个传统设计过程就是人工试定性分析比较的过程,主要的工作就是性能的重复分析,至于每次参数的修改,仅凭借经验或直观判断,并不是根据某种理论精确计算出来的。

实践证明,按照传统设计方法做出的设计方案,大部分都有改进提高的余地,而不是最佳设计方案。

3.2 优化设计的过程(1)设计课题分析。

首先确定设计目标,它可以是单项指标,也可以是多项设计指标的组合。

从技术经济观点出发,就机械设计而言,机器的运动学和动力学性能、体积与质量、效率、成本、可靠性等,都可以作为设计所追求的目标。

然后分析设计应满足的要求,主要包括:某些参数的取值范围,某种设计性能或指标按设计规范推导出的技术性能,还有工艺条件对设计参数的限制等。

(2)建立数学模型。

将实际设计问题用数学方程的形式予以全面、准确地描述,其中包括:确定设计变量,即哪些设计参数参与优化;构造目标函数,即评价设计方案优劣的设计指标;选择约束函数,即把设计应满足的各类条件以等式或不等式的形式表达。

建立数学模型要做到准确、齐全这两点,即必须严格地按照各种规范作相应的数学描述,必须把设计中应考虑的各种因素全部包括进去,这对于整个优化设计的效果是至关重要的。

(3)选择优化方法。

根据优化数学模型的函数形态、设计精度要求等选择适用的优化方法,并编制出相应的计算机程序。

(4)上机电算择优。

将所编程序及有关数据输入计算机进行运算,自动解得最优值,然后对所算结果作分析判断,得到设计问题的最优设计方案。

上述优化设计过程的四步,其核心是进行如下两项工作:①分析设计任务,将工程实际问题转化为一个最优化问题,即建立优化问题的数学模型;②②选用适用的优化方法在电子计算机上求解数学模型,自动寻求最优设计方案3.3优化设计的应用现代设计都是面向市场、实现功能及产品优势的设计。

创新设计、绿色设计、优化设计、可靠性设计等现代设计方法备受国内外机械设计领域的关注。

而机械的优化设计与机构设计、机械传动设计和机械强度评价共同组成了机械优化设计是建立在近代应用数学、物理学、应用化学、应用力学和材料学和计算机程序设计之上的,是解决复杂设计问题的一种有效工具。

机械优化设计是把机械设计与优化理论及方法密切结合起来去处理机械设计问题,工程实用价值大。

特别是从2002 开始,机械优化设计的研究和应用工作更为活跃,应用领域更加的广泛,涉及到航空航天、工程机械、通用机械与机床、水利、桥梁、船舶、汽车、铁路运输行业、通讯行业、轻工纺织、能源工业、军事工业、建筑、机械、石油及石化行业、食品机械等诸多方面,主要处理那些具有复杂结构系统的设计,如飞机机身、飞机结构整体、火箭发动机壳体、航空发动机轮盘、潜艇结构、潜艇外部液压舱、机器人等,或大规模的工程建设,如建筑、桥梁、石油钻井井架、大型水轮机结构等,或产量大的汽车车架、悬挂、车身、箱形梁结构、起重机、装载机、平面或空间析架结构、各类减速器、制动器、圆锥、圆柱齿轮、连杆机构、凸轮机构、各类弹簧、轴承等。

解决问题从减轻结构重量扩展到降低应力水平、改进结构静态、动态性能、提高全寿命周期和绿色创新元素添加等更多的方面。

4.1MATLAB软件概述MATLAB 是美国Math works 公司推出的集科学计算和图形处理为一体的科学计算语言。

通过MATLAB超强的运算能力与别的编程环境的数据交互,极大的提高了工程生产效率、缩短了开发周期。

MATLAB在学术界和工程界广受欢迎,其主要特点有如下几方面①友好的工作平台和编程环境MATLAB由一系列工具组成,其中许多工具组成,其中多工具采用的是图形用户界面,包括MATLAB桌面和命令窗口、历史命令窗口、编辑器和调试器、路径搜索等。

MATLAB 简单的编程环境提供了比较完备的调试系统,程序不必经过编译就可以直接运行,而且能够及时地报告出现的错误并进行错原分析。

②简单易用的编程语言MATLAB语言是一种高级矩阵语言,它包含控制语句、函数、据结构、输入和输出和面向对象编程特点。

用户可以在命令窗口中输入语句与执行命令同步,也可以先编写好一个较大的复杂应用程序(M文件)后再一起运行。

③强大的科学计算机数据处理能力MATLAB是一个包含大量计算算法的集合,其拥有600多个工程中要用到的数学运算函数,可以方便的实现用户所需的各种计算能力。

相关文档
最新文档