第3章 集成逻辑门电路
集成逻辑门电路及应用与门非门与非门
集成逻辑门电路及应用(与门,非门,与非门) 集成逻辑门电路的种类繁多,有反相器、与门和与非门、或门和或非门、异或门等,以下简单介绍几种常用的门电路及应用电路。
1.集成逻辑门电路:(1)常用逻辑门电路图形符号常用逻辑门电路图形符号见表1。
表1 常用逻辑门电路图形符号(2)反相器与缓冲器反相器是非门电路,74LS04是通用型六反相器,与该器件的逻辑功能且引脚排列兼容的器件有74HC04,CD4069等。
74LS05也是六反相器,该器件的逻辑功能和引脚排列与74LS04相同,不同的是74LS05是集电极开路输出(0C门),在实际使用时,必须在输出端至电源正端接上拉电阻。
缓冲器的输出与输人信号同相位,它用于改变输人输出电平及提高电路的驱动能力,74LS07是集电极开路输出同相输出驱动器,该器件的输出高电压达30V,灌电流达40mA,与之兼容的器件有74HC07,74HCT07 等。
74LS04,CD4069引脚排列图如图1所示。
图1 74LS04,CD4069引脚排列图(3)与门和门与非与门和与非门种类繁多,常见的与门有2输入、3输入、4输入与门等;与非门有2输入、3输入、4输入、8输入等,常见的74LS系列(74HC系列)与门和与非门引脚排列图如图2所示。
图2 常见的74LS系列(74HC系列)与门和与非门引脚排列图74LS08是四2输人与门,74LS00和CD4011是四2输入与非门,74LS20是双4输人与非门。
2.集成门电路的应用(1)定时灯光提醒器电路如图3所示,由六非门CD4069(仅用到其中两个非门,分别用IC-1和IC-2表示)和电阻、电容、电源等组成,此电路可以在1~25分钟内预定提醒时间,使用时,利用时间标尺预定时间,打开电源开关,定时器绿灯亮,表示开始计时,到了预定的时间,绿灯灭,红灯亮。
电路的工作原理:当开关在开的位置时,C上的电压由0V逐渐上升,上升的速度由R1,RP和C决定,第一个反相器的输人端的电位由电容C上的电压决定,在C上的电压比较低时,对第一个非门IC-1的输人来说为低电平,IC-1的输出为高电平,绿灯亮,第二个非门IC-2的输出为低电平,红灯开不亮。
数字电路第三章习题与答案
第三章集成逻辑门电路一、选择题1. 三态门输出高阻状态时,()是正确的说法。
A.用电压表测量指针不动B.相当于悬空C.电压不高不低D.测量电阻指针不动2. 以下电路中可以实现“线与”功能的有()。
A.与非门B.三态输出门C.集电极开路门D.漏极开路门3.以下电路中常用于总线应用的有()。
A.TSL门B.OC门C. 漏极开路门D.CMOS与非门4.逻辑表达式Y=AB可以用()实现。
A.正或门B.正非门C.正与门D.负或门5.TTL电路在正逻辑系统中,以下各种输入中()相当于输入逻辑“1”。
A.悬空B.通过电阻2.7kΩ接电源C.通过电阻2.7kΩ接地D.通过电阻510Ω接地6.对于TTL与非门闲置输入端的处理,可以()。
A.接电源B.通过电阻3kΩ接电源C.接地D.与有用输入端并联7.要使TTL与非门工作在转折区,可使输入端对地外接电阻RI()。
A.>RONB.<ROFFC.ROFF<RI<ROND.>ROFF8.三极管作为开关使用时,要提高开关速度,可( )。
A.降低饱和深度B.增加饱和深度C.采用有源泄放回路D.采用抗饱和三极管9.CMOS数字集成电路与TTL数字集成电路相比突出的优点是()。
A.微功耗B.高速度C.高抗干扰能力D.电源范围宽10.与CT4000系列相对应的国际通用标准型号为()。
A.CT74S肖特基系列B. CT74LS低功耗肖特基系列C.CT74L低功耗系列D. CT74H高速系列11.电路如图(a),(b)所示,设开关闭合为1、断开为0;灯亮为1、灯灭为0。
F 对开关A、B、C的逻辑函数表达式()。
F1F 2(a)(b)A.C AB F =1 )(2B A C F += B.C AB F =1 )(2B A C F +=C. C B A F =2 )(2B A C F += 12.某TTL 反相器的主要参数为IIH =20μA ;IIL =1.4mA ;IOH =400μA ;水IOL =14mA ,带同样的门数( )。
集成逻辑门电路基本知识
集成逻辑门电路基本知识1. 引言集成逻辑门电路是现代数字电路的基础,广泛应用于计算机、通信、控制等领域。
了解集成逻辑门电路的基本知识对于理解数字电路的原理和设计至关重要。
本文将介绍集成逻辑门电路的基础概念、分类和应用。
2. 集成逻辑门电路的概述集成逻辑门电路是由多个逻辑门组成的电路,逻辑门通过控制输入端的电信号,产生特定的输出信号。
逻辑门的种类包括与门、或门、非门、与非门、或非门、异或门等。
3. 集成逻辑门电路的分类3.1 与门与门是最基本的逻辑门之一,其输入端都要为高电平时,输出端才会为高电平。
与门的符号为“&”或“∩”,常用的与门有AND、NAND等类型。
3.2 或门或门是另一种基本的逻辑门,只要输入端中有一个为高电平,则输出端为高电平。
或门的符号为“|”或“∪”,常用的或门有OR、NOR等类型。
3.3 非门非门是最简单的逻辑门之一,若输入端为高电平,则输出端为低电平;若输入端为低电平,则输出端为高电平。
非门的符号为“!”或“¬”。
3.4 异或门异或门是比较特殊的逻辑门,当输入端中只有一个为高电平时,输出端为高电平;否则,输出端为低电平。
异或门的符号为“⊕”或“≠”。
4. 集成逻辑门电路的应用集成逻辑门电路可以用于各种数字电路的设计和实现,以下是集成逻辑门电路的一些常见应用场景:4.1 逻辑运算集成逻辑门电路可以实现各种逻辑运算,例如用与门组成加法器、用异或门实现比较器等。
逻辑运算是计算机和数字电路的基础。
4.2 存储器设计存储器是计算机系统中重要的组成部分,集成逻辑门电路可以用于存储器的设计和实现。
常见的存储器包括静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)。
4.3 时序电路设计时序电路是处理与时间有关的数字信号的电路,集成逻辑门电路可以用于时序电路的设计和实现。
时序电路广泛应用于计时器、时钟、触发器等领域。
5. 总结集成逻辑门电路是数字电路中的基本组成单元,通过不同逻辑门的组合,可以实现各种逻辑运算和功能。
集成逻辑门电路
图 4 输出高电平带负载的情形 5、集电极开路门和三态门电路 1) 集电极开路门-OC 门(Open Collector) 在工程实践中,有时必须将几个门的输出端并联使用,已实现“与”逻辑, 称为“线与”。但是,普通 TTL 门电路的输出结构决定了它不能进行“线与”。 如图所示,如果将 G1、G2 两个 TTL“与非”门的输出端直接连接起来,当 G1 输 出为高电平,G2 输出为低电平时,从 G1 的电源 VCC 通过 G1 的 T4、D 到 G2 的 T3,形成一个低电阻通路,产生很大的电流。另外,由于此时“线与”输出结 果为低电平,负载门还将向 G2 的 T3 灌电流,所以 G2 很可能被烧毁。因此, 普通的 TTL 门电路是不能进行“线与”的。 为了满足实际应用中实现“线与”的要求,专门生产了一种可以进行“线与” 的门电路——集电极开路,即 OC 门(Open Collector) 。 “与非”OC 门如图所示,T3 集电极开路。T3 集电极开路以后,为保证“与非”功 能使用时必须外接上拉电阻 RL。
图 5“与非”OC 门结构图图 6 “与非”OC 门符号图 2) OC 门应用 a) 实现“线与”。 在使用 OC 门进行“线与”时, 外接上拉电阻 RL 的选择非常重 要,只有 RL 选择得当,才能保证 OC 门应有的逻辑功能,才能保证输出
满足要求的高电平和低电平。一般而言,上拉电阻 RL 应选在 1K 左右。 b) 电平转换。在数字系统的接口部分须有电平转换时,常用 OC 门来完成。 如图,把上拉电阻接到 10V 电源上,这样 OC 门输入普通的 TTL 电平时, 其输出高电平都可以时 10V. 3) 三态门输出 三态门是指逻辑门的输出除有高低电平两种状态外, 还有第三种状态—— 高阻状态门电路,高阻态相当于隔离状态。三态门都有一个控制使能端 EN 来 控制门电路的通断。具备这三种状态的器件称为三态门电路。
数字电路教案-阎石-第三章-逻辑门电路
第3章逻辑门电路3.1 概述逻辑门电路:用以实现基本和常用逻辑运算的电子电路。
简称门电路.用逻辑1和0 分别来表示电子电路中的高、低电平的逻辑赋值方式,称为正逻辑,目前在数字技术中,大都采用正逻辑工作;若用低、高电平来表示,则称为负逻辑。
本课程采用正逻辑。
获得高、低电平的基本方法:利用半导体开关元件的导通、截止(即开、关)两种工作状态.在数字集成电路的发展过程中,同时存在着两种类型器件的发展。
一种是由三极管组成的双极型集成电路,例如晶体管-晶体管逻辑电路(简称TTL电路)及射极耦合逻辑电路(简称ECL电路).另一种是由MOS管组成的单极型集成电路,例如N-MOS逻辑电路和互补MOS(简称COMS)逻辑电路。
3。
2 分立元件门电路3。
3.1二极管的开关特性3.2.2三极管的开关特性NPN型三极管截止、放大、饱和3种工作状态的特点工作状态截止放大饱和条件i B=0 0<i B<I BS i B>I BS工作特点偏置情况发射结反偏集电结反偏u BE〈0,u BC〈0发射结正偏集电结反偏u BE>0,u BC〈0发射结正偏集电结正偏u BE〉0,u BC〉集电极电流i C=0 i C=βi B i C=I CSce间电压u CE=V CC u CE=V CC-i C R cu CE=U CES=0.3Vce间等效电阻很大,相当开关断开可变很小,相当开关闭合3.2。
3二极管门电路1、二极管与门2、二极管或门u A u B u Y D1D20V 0V 0V 5V 5V 0V 5V 5V0V4。
3V4。
3V4.3V截止截止截止导通导通截止导通导通3。
2.4三极管非门3。
2。
5组合逻辑门电路1、与非门电路2、或非门电路3.3 集成逻辑门电路一、TTL与非门1、电路结构(1)抗饱和三极管作用:使三极管工作在浅饱和状态。
因为三极管饱和越深,其工作速度越慢,为了提高工作速度,需要采用抗饱和三极管。
构成:在普通三极管的基极B和集电极C之间并接了一个肖特基二极管(简称SBD)。
数字模拟电路---第三章 逻辑门电路(1)
路。
简称门电路。
5V一、TTL 与非门图3-1 典型TTL 与非门电路3.2 TTL 集成门电路•数字集成电路中应用最广的为TTL 电路(Transister-Transister-Logic 的缩写)•由若干晶体三极管、二极管和电阻组成,TTL 集成电路有54/74系列 ①输出高电平UOH 和输出低电平UOL 。
•输出高电平U OH:至少有一个输入端接低电平时的输出电平。
•输出低电平U OL:输入全为高电平时的输出电平。
• 电压传输特性的截止区的输出电压UOH=3.6V,饱和区的输出电压UOL=0.3V。
一般产品规定U OH≥2.4V、U OL<0.4V时即为合格。
二、TTL与非门的特性参数③开门电平U ON 和关门电平U OFF 。
开门电平U ON 是保证输出电平达到额定低电平(0.3V )时,所允许输入高电平的最低值,表示使与非门开通的最小输入电平。
通常U ON =1.4V ,一般产品规定U ON ≤1.8V 。
关门电平U OFF 是保证输出电平为额定高电平(2.7V 左右)时,允许输入低电平的最大值,表示与非门关断所允许的最大输入电平。
通常U OFF ≈1V ,一般产品要求U OFF ≥0.8V 。
5). 扇入系数Ni和扇出系数N O 是指与非门的输入端数目。
扇入系数Ni是指与非门输出端连接同类门的个数。
反扇出系数NO映了与非门的带负载能力。
6)输入短路电流I IS 。
当与非门的一个输入端接地而其余输入端悬空时,流过接地输入端的电流称为输入短路电流。
7)8)平均功耗P 指在空载条件下工作时所消耗的电功率。
三、TTL门电路的改进 74LS系列 性能比较好的门电路应该是工作速度既快,功耗又小的门电路。
因此,通常用功耗和传输延迟时间的乘积(简称功耗—延迟积或pd积)来评价门电路性能的优劣。
74LS系列又称低功耗肖特基系列。
74LS系列是功耗延迟积较小的系列(一般t pd<5 ns,功耗仅有2 mW) 并得到广泛应用。
三集成逻辑门电路
平VIH= 3.6V时, VO= VOL =VCES5=0.3V。 即:有0为1;全1为0 真值表为:
真值表 ABF 001 011 101 110
3.逻辑关系:Y= AB
二、TTL与非门的电压传输特性
(1)测试电路
vI
&
vO
+ V -
+ V -
(a)电压传输特性测 试电路
A& B
F
门电路即可实现“与”运算
这种连接方式称为“线与”,可以 节省门电路。
C& D
§3.2 特殊门电路 —— 三态门 TSL
普通逻辑门电路有两个输出:0 和 1
三态门的输出除了 0 和 1 之外,还有一个“高阻态”;其输入端 也多了一个控制端,称为“使能端”。
“高阻态” 相当于将输出端与其他端断开 D1 &
BC段:线性区:0.6V<vI<1.3V这时T2管导通处 于放大状态, VC2、 VO随vI的增大而线性降低, 故该段称为线性区。由于T5管的基极电位还低 于0.7V,故T5管仍截止。T3、T4管还是处于导 通状态
CD段:过渡区1.3V<VI<1.4V,T5、T2、T3、T4 导通, T2、T5管趋于饱和,T4趋于截止,输出电压 VO随VI增加急剧下降到低电平VO=0.3V。CD段中 点 对 应 的 输 入 电 压 称 阈 值 电 压 VT ( 门 槛 电 压 ) , VT=1.4V。
VNH
R3
D
E
图2-6 TTL与非门
O 0.5 1 1.5 2 2.5 3 3.5 vI(V) VOFF VON
(b)电压传输特 性
返回
D2
EN
控制 输 入 输出
第 3 章 逻辑门电路总结
EXIT
逻辑门电路
一、三极管的开关作用及其条件
iC 临界饱和线 M T IC(sat) S
放大区
IB(sat)
uI=UIL
三极管为什么能用作开关? 饱 Q + 怎样控制它的开和关? uBE 和 区
O UCE(sat) B uBE < Uth
负载线
A N C
截止区
uCE
三极管关断的条件和等效电路
当输入 uI 为低电平,使 uBE < Uth时,三极管截止。
逻辑门电路
第3章
逻辑门电路
概 述 三极管的开关特性
TTL 集成逻辑门 CMOS 集成逻辑门 集成逻辑门的应用
本章小结
EXIT
逻辑门电路
3.1
主要要求:
概 述
了解逻辑门电路的作用和常用类型。 理解高电平信号和低电平信号的含义。
EXIT
逻辑门电路
一、门电路的作用和常用类型
按逻辑功能不同分 指用以实现基本逻辑关系和 门电路 (Gate Circuit) 常用复合逻辑关系的电子电路。 与门 或门 非门 异或门 与非门 或非门 与或非门 按电路结构不同分
上例中三极管反相 器的工作波形是理想波 形,实际波形为 :
t
UCE(sat) O
EXIT
逻辑门电路
二、三极管的动态开关特性
uI
UIH
UIL O iC 0.9IC(sat) IC(sat) 0.1IC(sat) O uO VCC ton toff t
uI 正跳变到 iC 上升到 0.9IC(sat) 所需的时间 ton 称 为三极管开通时间。
逻辑门电路
(2) 对应输入波形画出输出波形 三极管截止时, iC 0,uO +5 V 三极管饱和时, uO UCE(sat) 0.3 V
数字电子技术基础第三章逻辑门电路
数字电子技术基础第三章逻辑门电路
第一节 常见元器件的开关特性
3.MOS管的开关特性
A、MOS管静态开关特性
在数字电路中,MOS管也是作为 开关元件使用,一般采用增强型的 MOS管组成开关电路,并由栅源电压 uGS控制MOS管的导通和截止。
时间。
toff = ts +tf 关断时间toff:从输入信号负跃变的瞬间,到iC 下降到 0.1ICmax所经历的时间。
数字电子技术基础第三章逻辑门电路
第一节 常见元器件的开关特性
2.三极管的开关特性
B、晶体三极管动态开关特性
ton和toff一般约在几十纳秒(ns=10-9 s)范围。通常都
有toff > ton,而且ts > tf 。
0 .3V 3 .6V 3 .6V
1V 5V
3 .6V
数字电子技术基础第三章逻辑门电路
第三节 TTL和CMOS集成逻辑门电路
1.TTL集成逻辑门电路
3 .6V 3 .6V 3 .6V
2.1V
0 .3V
数字电子技术基础第三章逻辑门电路
第三节 TTL和CMOS集成逻辑门电路
1.TTL集成逻辑门电路
数字电子技术基础第三章逻辑门电路
❖ 2.教学重点:不同元器件的静态开关特性,分立元件门电路 和组合门电路,TTL和CMOS集成逻辑门电路基本功能和电气特 性。
❖ 3.教学难点:组合逻辑门电路、TTL和CMOS集成逻辑门4.课时 安排: 第一节 常见元器件的开关特性 第二节 基本逻辑门电路 第三节 TTL和CMOS集成逻辑门电路
(完整版)数电1-10章自测题及答案(2)
第一章绪论一、填空题1、根据集成度的不同,数字集成电路分位以下四类:小规模集成电路、中规模集成电路、大规模集成电路、超大规模集成电路。
2、二进制数是以2为基数的计数体制,十六体制数是以16为基数的计数体制。
3、二进制数只有0和1两个数码,其计数的基数是2,加法运算的进位规则为逢二进一。
4、十进制数转换为二进制数的方法是:整数部分用除2取余法,小数部分用乘2取整法,十进制数23.75对应的二进制数为10111.11。
5、二进制数转换为十进制数的方法是各位加权系数之和,二进制数10110011对应的十进制数为179。
6、用8421BCD码表示十进制时,则每位十进制数可用四位二进制代码表示,其位权值从高位到低位依次为8、4、2、1。
7、十进制数25的二进制数是11001,其对应的8421BCD码是00100101。
8、负数补码和反码的关系式是:补码=反码+1。
9、二进制数+1100101的原码为01100101,反码为01100101,补码为01100101。
-1100101的原码为11100101,反码为10011010,补码为10011011。
10、负数-35的二进制数是-100011,反码是1011100,补码是1011101。
二、判断题1、二进制数有0~9是个数码,进位关系为逢十进一。
()2、格雷码为无权码,8421BCD码为有权码。
(√)3、一个n位的二进制数,最高位的权值是2^n+1。
(√)4、十进制数证书转换为二进制数的方法是采用“除2取余法”。
(√)5、二进制数转换为十进制数的方法是各位加权系之和。
(√)6、对于二进制数负数,补码和反码相同。
()7、有时也将模拟电路称为逻辑电路。
()8、对于二进制数正数,原码、反码和补码都相同。
(√)9、十进制数45的8421BCD码是101101。
()10、余3BCD码是用3位二进制数表示一位十进制数。
()三、选择题1、在二进制技术系统中,每个变量的取值为(A)A、0和1B、0~7C、0~10D、0~F2、二进制权值为(B )A、10的幂B、2的幂C、8的幂D、16的幂3、连续变化的量称为(B )A、数字量B、模拟量C、二进制量D、16进制量4、十进制数386的8421BCD码为(B)A、0011 0111 0110B、0011 1000 0110C、1000 1000 0110D、0100 1000 01105、在下列数中,不是余3BCD码的是(C )A、1011B、0111C、0010D、10016、十进制数的权值为(D )A、2的幂B、8的幂C、16的幂D、10的幂7、负二进制数的补码等于(D )A、原码B、反码C、原码加1D、反码加18、算术运算的基础是 ( A )A 、加法运算B 、减法运算C 、乘法运算D 、除法运算9、二进制数-1011的补码是 ( D )A 、00100B 、00101C 、10100D 、1010110、二进制数最高有效位(MSB )的含义是 ( A )A 、最大权值B 、最小权值C 、主要有效位D 、中间权值第二章 逻辑代数基础一、填空题1、逻辑代数中三种最基本的逻辑运算是与运算、或运算、非运算。
数字电路第三章习题与答案
第三章集成逻辑门电路一、选择题1、三态门输出高阻状态时,( )就是正确的说法。
A、用电压表测量指针不动B、相当于悬空C、电压不高不低D、测量电阻指针不动2、以下电路中可以实现“线与”功能的有( )。
A、与非门B、三态输出门C、集电极开路门D、漏极开路门3.以下电路中常用于总线应用的有( )。
A、TSL门B、OC门C、漏极开路门D、CMOS与非门4.逻辑表达式Y=AB可以用( )实现。
A、正或门B、正非门C、正与门D、负或门5.TTL电路在正逻辑系统中,以下各种输入中( )相当于输入逻辑“1”。
A、悬空B、通过电阻2、7kΩ接电源C、通过电阻2、7kΩ接地D、通过电阻510Ω接地6.对于TTL与非门闲置输入端的处理,可以( )。
A、接电源B、通过电阻3kΩ接电源C、接地D、与有用输入端并联7.要使TTL与非门工作在转折区,可使输入端对地外接电阻RI( )。
A、>RONB、<ROFFC、ROFF<RI<ROND、>ROFF8.三极管作为开关使用时,要提高开关速度,可( )。
A、降低饱与深度B、增加饱与深度C、采用有源泄放回路D、采用抗饱与三极管9.CMOS数字集成电路与TTL数字集成电路相比突出的优点就是( )。
A、微功耗B、高速度C、高抗干扰能力D、电源范围宽10.与CT4000系列相对应的国际通用标准型号为( )。
A、CT74S肖特基系列B、 CT74LS低功耗肖特基系列C、CT74L低功耗系列D、 CT74H高速系列11.电路如图(a),(b)所示,设开关闭合为1、断开为0;灯亮为1、灯灭为0。
F 对开关A、B、C的逻辑函数表达式( )。
F1F 2(a)(b)A.C AB F =1 )(2B A C F +=B.C AB F =1 )(2B A C F +=C. C B A F =2 )(2B A C F +=12.某TTL 反相器的主要参数为IIH =20μA;IIL =1、4mA;IOH =400μA;水IOL =14mA,带同样的门数( )。
实验三集成逻辑门电路的功能和参数测试ppt课件
VsL
VOFF VON
VsH
Vi
集成逻辑门电路的功能及参数测试
2020/5/3
13
• 噪音容限是指加到正常输入值上、且不会在电路的输出产 生不可预料变化的最大外部噪音电压。
基本开关电路
2020/5/3
8
• 输出高电平VoH是指当输出端为高电平时的电压,一般大 于2.4V,它可衡量输出端高电平负载特性
• 74LS00的VoH是指在输入端接地或低电平时,输出端为高 电平并输出400μA电流时测量的输出电平
集成逻辑门电路的功能及参数测试
2020/5/3
9
• 输出低电平VoL是指当输出端为低电平时的输出电压,一 般小于0.4V,可衡量输出端低电平负载特性
≥ 3.2 ≤ 0.1 ≥ 2.0V
≥ 2.0 ≤ 0.1 ≥ 1.7
VIL / V
≤ 0.8 ≤ 0.8 ≤ 0.7
说明
输入脚悬 空时默认 为高电平
≤ 1.5
≤ 0.7 输入阻抗
非常之大
≤ 0.7
本R课S2程32使用±的12芯~15片电−3平~ −主15要是3 ~T1T5L和−3C~O−M15S 3 ~ 15 负逻辑
• 74LS00与非门输入电路
R1
• 输入A和B为高电平时, T1 T1截止,驱动电流很小 A
B
• 输入A或B为低电平时, 输入
T1导通,驱动电流较大
R2 与非 T3
与 T2 R4
R3
VCC R5
T4 F 输出
T5
GND
集成逻辑门电路的功能及参数测试
2020/5/3
6
• TTL的扇出驱动只要测量输出端为额定低电平时,输出端能吸
数字电子技术基础-第3章课后习题答案
第3章集成逻辑门电路3-1 如图3-1a)~d)所示4个TTL门电路,A、B端输入的波形如图e)所示,试分别画出F1、F2、F3和F4的波形图。
A1A234a)b)c)d)F1F2F3F4BAe)图3-1 题3-1图解:从图3-1a)~d)可知,11F=,2F A B=+,3F A B=⊕,4F A B= ,输出波形图如图3-2所示。
F1F2F3F4AB图3-2题3-1输出波形图3-2 电路如图3-3a )所示,输入A 、B 的电压波形如图3-3b )所示,试画出各个门电路输出端的电压波形。
1A 23b)a)AB图3-3 题3-2图解:从图3-3a )可知,1F AB =,2F A B =+,3F A B =⊕,输出波形如图3-4所示。
F 1F 2F 3AB图3-4 题3-2输出波形3-3在图3-5a )所示的正逻辑与门和图b )所示的正逻辑或门电路中,若改用负逻辑,试列出它们的逻辑真值表,并说明F 和A 、B 之间是什么逻辑关系。
b)a)图3-5 题3-3图解:(1)图3-5a )负逻辑真值表如表3-1所示。
表3-1 与门负逻辑真值表F 与A 、B 之间相当于正逻辑的“或”操作。
(2)图3-5b )负逻辑真值表如表3-2所示。
表3-2 或门负逻辑真值表F 与A 、B 之间相当于正逻辑的“与”操作。
3-4试说明能否将与非门、或非门和异或门当做反相器使用?如果可以,各输入端应如何连接?解:与非门、或非门和异或门经过处理以后均可以实现反相器功能。
1)与非门:将多余输入端接至高电平或与另一端并联; 2)或非门:将多余输入端接至低电平或与另一端并联;3) 异或门:将另一个输入端接高电平。
3-5为了实现图3-6所示的各TTL 门电路输出端所示的逻辑关系,请合理地将多余的输入端进行处理。
b)a)AB=A B=+A BC DABC D图3-6 题3-5图解:a )多余输入端可以悬空,但建议接高电平或与另两个输入端的一端相连;b )多余输入端接低电平或与另两个输入端的一端相连;c) 未用与门的两个输入端至少一端接低电平,另一端可以悬空、接高电平或接低电平;d )未用或门的两个输入端悬空或都接高电平。
门电路习题课讲解
0.4mA
iBS
VCC
VCE ( sat )
RC
5 0.1 50 2
0.05mA
iB iBS T饱和,vO=VCE(sat)=0.1V。
+5V iB
vO RB β=50 VB
11
(3)输入端悬空时
+5V
基极回路等效电路如图示 其戴维宁等效电路如图示
3k
2k
vI
4.7k b
Y1 ABCDE
(b)二极管构成或门,C、 D、E只要有一个为高 电平,则vI2为高电平
Y2 A B C D E
题知识点2:二极管与门、或门的应用
在CMOS电路中有时采用下图(c)(d)所示的扩展
功能用法,试分析各图的逻辑功能,写出Y3 Y4的
逻辑式。已知电源电压VDD=10V,二极管的正向导
vO
4.7k b
3k 18k
5V
8V
e
β=50
18k
b
e
RB RB=(4.7+3)//18=5.4k -8V
VB e
VB
18
3
58 4.7
18
8
1.1V
此时发射结正偏
iB
VB 0.7 5.4
1.1 0.7 5.4
0.1mA
iB iBS T饱和,vO=VCE(sat)=0.1V。
RC
10 0.1 0.16mA 30 2
1.9V
iB iBS T饱和,vO=VCE(sat)=0.1V
8
(3)输入端悬空时 基极回路等效电路如图
《数字电子技术基础》第3章 门电路
导通
TP vI vO
TN
vo=―1” 截止
vI=1
VDD
截止
T1 vI
vO T2
vo=―0” 导通
静态下,无论vI是高电平还是低电平,T1、T2总有 一个截止,因此CMOS反相器的静态功耗极小。
二、电压传输特性和电流传输特性
T1导通T2截止
电 压 传 输 特 性
T1T2同时导通
T2导通T1截止
噪声电压作用时间越短、电源电压越高,交流噪声容 限越大。
三、动态功耗
反相器从一种稳定状态突然变到另一种稳定状态的过
程中,将产生附加的功耗,即为动态功耗。
动态功耗包括:负载电容充放电所消耗的功率PC和 PMOS、NMOS同时导通所消耗的瞬时导通功耗PT。 在工作频率较高的情况下,CMOS反相器的动态功耗 要比静态功耗大得多,静态功耗可忽略不计。
VNL VIL (max) VOL (max)
测试表明:CMOS电路噪声容限 VNH=VNL=30%VDD,且随VDD的增加而加大。
噪声容限--衡量门电路的抗干扰能力。 噪声容限越大,表明电路抗干扰能力越强。
§3.3.3 CMOS反相器的静态输入输出特性
一、输入特性 因为MOS管的栅极和衬底之间存在着以SiO2 为介质的输入电容,而绝缘介质非常薄,极易被
S1
输 入v I 信 号 输 vo 出 信 号
S2
图3.1.3 互补开关电路
互补开关电路由于两个开关总有一个是断开的, 流过的电流为零,故电路的功耗非常低,因此在数字 电路中得到广泛的应用
3.1 概述
4. 数字电路的概述 (1)优点: 在数字电路中由于采 用高低电平,并且高低电 平都有一个允许的范围, 如图3.1.1所示,故对元器 件的精度和电源的稳定性 的要求都比模拟电路要低, 抗干扰能力也强。
集成逻辑门电路
中小规模集成电路芯片的型号以54或74开始,后加不同 系列缩写字母及数字表示,如54/74HC00。中间字母 表示不同系列,如HC系列。最后的数字表示不同逻辑功 能芯片的编号。型号开头的“74”或“54”是TI公司产 品的标志。54和74系列的区别是54系列适用的温度范 围更宽,测试和筛选标准更严格。其他方面(逻辑功能、 主要的电气参数、外形封装、引脚排列等)完全相同。
数字电子技术及应用
集成逻辑门电路
逻辑门电路:用来实现逻辑运算的电子电路统 称为逻辑门电路。 基本和常用门电路有与门、或门、非门(反相 器)、与非门、或非门、与或非门和异或门等。
逻辑门是构成所有数字电路的基本单元电路。
1.1 各种集成逻辑门电路系列简介
按照制造门电路所用晶体管(制造工艺)的不同,门 电路主要有MOS型、双极型和混合型三种类型。 MOS型主要有CMOS、NMOS和PMOS三种,双极 型主要有TTL和ECL,混合型主要有BiCMOS。
1.2 常用逻辑门
基本和常用门电路有与门、或门、非门(反相器)、与非门、或非 门、与或非门和异或门等。
图2.2.2 四2输入与非门74LS00
图2.2.1 四2输入与门74LS08
图2.2.3 四2输入或门74LS32
图2.2.4 四2输入或非门74LS02 图2.2.5 六反相器(非门)74LS04
1.3 其它形式的逻辑门 1. 集电极开路门(OC门)/漏极开路门(OD门)
TTL工艺:OC门(Open Collector Gate) CMOS工艺:OD门(Open Drain Gate)
Y A·B
(1) 输出并联使用,实现线与运算 (2) 需要在输出端与电源之间外接上拉电阻RL
Y Y1Y2 AB CD
第三章集成逻辑门电路例题补充
第2章 逻辑门电路2.1解题指导【例2-1】 试用74LS 系列逻辑门,驱动一只V D =1.5V ,I D =6mA 的发光二极管。
解:74LS 系列与之对应的是T4000系列。
与非门74LS00的I OL 为4mA ,不能驱动I D =6mA 的发光二极管。
集电极开路与非门74LS01的I OL 为6mA ,故可选用74LS01来驱动发光二极管,其电路如图所示。
限流电阻R 为Ω=--=--=k V V V R OL D CC 5.065.05.156【例2-2】 试分析图2-2所示电路的逻辑功能。
解:由模拟开关的功能知:当A =1时,开关接通。
传输门导通时,其导通电阻小于1k Ω,1k Ω与200k Ω电阻分压,输出电平近似为0V 。
而A =0时,开关断开,呈高阻态。
109Ω以上的电阻与200k Ω电阻分压,输出电平近似为V DD 。
故电路实现了非逻辑功能。
【例2-3】 试写出由TTL 门构成的逻辑图如图2-3所示的输出F 。
&≥1F≥1A B图2-3 例2-3门电路解:由TTL 门输入端悬空逻辑上认为是1可写出【例2-4】 试分别写出由TTL 门和CMOS 门构成的如图2-4所示逻辑图的表达式或逻辑值。
B F图2-4 例2-4门电路解:由TTL 门组成上面逻辑门由于10k Ω大于开门电阻R ON ,所以,无论 A 、B 为何值 。
由CMOS 门组成上面逻辑门由于CMOS 无开门电阻和关门电阻之说,所以, 。
2.2 例题补充2-1 一个电路如图2-5所示,其三极管为硅管,β=20,试求:ν1小于何值时,三极管T 截止,ν1大于何值时,三极管T 饱和。
解:设v BE =0V 时,三极管T 截止。
T 截止时,I B =0。
此时10)10(020I --=-v v I =2VT 临界饱和时,v CE =0.7V 。
此时V CC v Iv O+10V VV V 020011DD F ≈+=DDDD 44DD 599F 210101021010V V V V ≈+≈⨯+=A B A F =++⋅=110≡F AB F =mAI 0465.010207.010BS =⨯-=mAv I I 0465.010)10(7.027.0I BS B =----== v I =4.2V上述计算说明v I <2V 时,T 截止;v I >4.2V 时,T 饱和。
模电课件第三章集成逻辑门电路
R1
R2
4k 1.6k
A
uI
T1
T2
D1
R3 1k
输入级 中间级
+VCC(5V) R4
130 T4
DY T5 uo
输出级
26
2. 工作原理
(1)输入为低电平(0.0V)时: uI UIL 0 V
不足以让 T2、T5导通
0.7V
三个PN结
导通需2.1V
T2、T5截止
27
(1) uI UIL 0 V
RC+(1+)Re
17
[例2]下图电路中 = 50,UBE(on) = 0.7 V,UIH = 3.6 V,UIL = 0.3 V,为
使三极管开关工作,试选择 RB 值,并对应输入波形画出输出波形。
+5 V
uI
1 k
UIH
UIL O
t
解:(1)根据开关工作条件确定 RB 取值
uI = UIL = 0.3 V 时,三极管满足截止条件
按电路结构不同分 是构成数字电路的基本单元之一
TTL 集成门电路
输入端和输出端都用 三极管的逻辑门电路。
CMOS 集成门电路
用互补对称 MT特rCa点nomsi不sptlo同erm-分TernatnasriystMoreLtaolg-Oicxide-Semiconductor
Ucc =5V
1k uo
T
β =30
iB
I BS
Ucc Uces RC
Ucc RC
, Uces 0.7V
8
三极管的开关特性
3V
0V RB ui
+UCC
RC
3V
uO T
截饱止和 0V
3.TTL集成逻辑门电路
4. 传输延迟时间
输入信号 0.5UIm UIm
输出信号 0.5UOm
UOm
由于三极管存在开关时间,元、器件及 tPHL tPLH 连线存在一定的寄生电容,因此输入矩形脉 输入电压波形上升沿 0.5UIm到输出电压下降沿0.5UOm间 冲时,输出脉冲将延迟一定时间。 的时间称导通延迟时间 t
PHL。
1V
截止
使能端的两种控制方式 使能端低电平有效
使能端高电平有效
EN
功能表 EN Y 0 AB 1 Z
EN即Enable
功能表 EN Y 1 AB 0 Z
2.
应用 总线 任何时刻EN1、EN2、 EN3中只能有一个为有效电 平,使相应三态门工作, 而其它三态输出门处于高 阻状态,从而实现了总线 的复用。
UOH
t
t
3. 负载能力
通常按照负 载电流的流向将 与非门负载分为
灌电流负载 拉电流负载 输出为低电平
负载电流流入与非门 的输出端。 负载电流从与非门的输 出端流向外负载。 灌电流负载
输入均为 高电平
IOL 负载电流流入驱动门 输出为高电平 IOH 负载电流流出驱动门
拉电流负载
输入有 低电平
不管是灌电流负载还是拉电流负载,负载 实用中常用扇出系数 NOL表示电路负载能力。 电流都不能超过其最大允许电流,否则将导致 门电路输出低电平时允许带同类门电路的个数。 电路不能正常工作,甚至烧坏门电路。
CMOS
OC门的 UOL≈0.3V, UOH≈VDD,正好符合 CMOS电路UIH≈VDD,UIL≈0的要求。
(二)三态输出门
1. 电路、逻辑符号和工作原理 即 Three-State Logic 门,简称 TSL 门。其输出 有高电平态、低电平态和高阻态三种状态。 三态输出 与非门 EN称使能信号或控制信号, A、B称数据信号。 当EN=0时,Y=AB, 三态门处于工作态; 当EN=1时,三态门 输出呈现高阻态, 又称禁止态。 只有当使能信号EN=0时才允许三态与非门工作,故 称EN低电平有效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
�
�
7. 二极管-三极管门电路 (1)与非门电路
�
将二极管与门的输出与三极管非门的输入连接,便 构成了二极管-三极管与非门电路。
21
(2)或非门电路
�
将二极管或门的输出与三极管非门的输入连接,便 构成了二极管-三极管或非门电路。
22
3.3.2 TTL与非门的电路结构和工作原理
1.电路结构
(CT54/74通用系列)
F= 1(高电平)
25
vB1=2.1V vC2=1V
2)两输入端同时输 入高电平,
A=B=vI=3.6V,
V2 ,V5导通,三个 PN结的钳位作用 使vB1=2.1V,V1发 射结反偏。
vo=0.3V
vC2=vCE2+vBE5=0.3+0.7=1V,不足以使V4 、VD3同时导通
V5导通, V4 、VD3截止, vo=0.3V, F=0 低电平
输出一高一低,输出高电平的V4管 将烧毁。)
• 输出高电平固定. • 不能驱动大电流、高电压 负载.
45
(2) OC门的结构
�
为将输出端连接使 用,以增加门电路的 驱动能力,可以将 TTL与非门的有源负 载去掉,使驱动管V5 改为集电极开路输 出,称其为集电极开 路门,简称OC门。
46
�
实际使用时,OC门的输出端应 外接上拉电阻RL至电源VCC。
IIS : 输入短路电流( vI =0) IIL=-1mA 输入低电平电流 mA输入高电平电流 IIH =40µA=0.04 0.04mA
31
(2)输出特性(说明了电路带负载的能力) 1)输出高电平时的输出特性
拉电流负载 mA (查手册) IOH =0. 4 4mA
32
2)输出低电平时的输出特性
11
箭头表示PN结 的正偏 方向 集电结
发射结
图3.9 双极型三极管的两种类型
12
2.双极型三极管的输入特性和输出特性 1) 输入特性曲线
�
以NPN管为例,若以发射极(e)作为输入回路和输 出回路的公共电极,则称该电路为共发射极电路。 可以测出表示输入电压vBE和输入电流iB 之间的特性 曲线。此曲线称为输入特性曲线。
N O = min( I OH / mI IH , I OL / mI IL )
36
� �
例题:某2输入与非门能驱动多少个同样的与非门? 已知与非门: IIL ≤ -1.6mA, IIH≤40 µA, (max)=16mA,IOH(max)=-0.4mA, 输出电阻可忽略。 解:已知与非门有2个输入端,因此m=2。 1) 当驱动门输出高电平时,其扇出系数为:
IOL
N O = I OH / mI IH = 0.4mA /(2 × 40 µ A) = 5
2) 当驱动门输出低电平时,其扇出系数为:
N O = I OL / mI IL = 16mA /(2 × 1.6mA) = 5
该或非门能驱动5个同样的或非门。
38
4. 输入负载特性
�
当用TTL与非门来组成一些较复杂的逻辑电路时, 有时需要在信号与输入端或输入端与地之间接一电 阻。
8
3.2.3 二极管与门电路
与门真值表
二极管与门电路及逻辑符号
F=AB
9
3.2.4二极管或门电路
或门真值表
二极管或门电路及逻辑符号Biblioteka F=A+B10
3.3 TTL集成门电路
3.3.1 双极型三极管的开关特性
1.双极型三极管的结构
�
一个双极型三极管含有三个电极,分别为发射 极(e)、基极(b)和集电极(c),分为NPN 型和PNP型两种。由于它们在工作时有电子和 空穴两种极性不同的载流子参与导电,故称为 双极型三极管。
VA, VB全高,V2, V5饱和导通, VO=VOL=VCES VA, VB至少一低,则V2, V5截止,VO=VOH=VCC
42
TTL门电路多余输入端的处理(作业 多种画法)
3-6 改错题
43
3.3.4 TTL与非门的动态特性
1.传输延迟时间 2. 电源的动态尖峰电流
延迟时间
三极管内部存储电荷 元器件的寄生电容
在电源与地之间加接 高频滤波电路
44
3.3.5 集电极开路门和三态门 1.集电极开路门(OC门)
(1) 问题的提出 普通的TTL门 • 输出端不能并联使用.(如果
第 3 章 集成逻辑门电路
� � � � �
3.1 概述 3.2 半导体二极管门电路 3.3 TTL集成门电路 3.4 CMOS门电路 3.5 各逻辑门的性能比较
作业(B):3-5 3-6 3-8 3-11 3-14 3-15 3-16
(6/10课时)
1
作业(A)
�
自测题:5,11,16 作业:6 ,8,13(VOHmin=3.2V), 15,20
IOL
N O = I OH / mI IH = 0.4mA /(2 × 40 µ A) = 5
2) 当驱动门输出低电平时,其扇出系数为:
NO = I OL / I IL = 16mA /1.6mA = 10
该与非门能驱动5个同样的与非门。
37
� �
例题:某2输入或非门能驱动多少个同样的或非门? 已知或非门: IIL ≤ -1.6mA, IIH≤40 µA, (max)=16mA,IOH(max)=-0.4mA, 输出电阻可忽略。 解:已知或非门有2个输入端,因此m=2。 1) 当驱动门输出高电平时,其扇出系数为:
输入级V1、R1 倒相级V2、R2 、R3 输出级V4、V5 、 VD3 、R4 保护二极管:VD1 、 VD2
图3-18
p43
23
�
图中,输入端接有用于保护的二极管VD1和VD2。当 输入端加正向电压时,相应二极管处于反向偏置, 具有很高的阻抗,相当于开路;如果一旦在输入端 出现负极性的干扰脉冲,VD1和VD2便会导通,使A、 B两端的电位被钳制在-0.7V左右,以保护多发射极 晶体管V1不致被损坏。
39
�
CT74系列与非门的输入负载特性如图所示。
1.4V
开门电阻R0N =2kΩ (TTL特有)
V5未导通时,
RI VR 1 = (VCC -VBE1 ) RI + R1
当RI>>RON时 认为输入为高电平, 当RI<<RON时 认为输入为低电平。
40
�
TTL与非门的输入端悬空,相当于在其输入端接 一个阻值为无穷大的电阻,也就是相当于接高电 平。
�
2
3.1 概述
�
用来实现基本逻辑运算和复合逻辑运算的单元电路 称为门电路。 常用的门电路有与门、或门、非门、与非门、或非 门、与或非门、异或门、同或门等。 从制造工艺方面来分类,数字集成电路可分为双极 型、单极型和混合型三类。
3
�
�
3.2 半导体二极管门电路 3.2.1正逻辑与负逻辑
�
在数字电路中,用高、低电平来表 示二值逻辑的1和0两种逻辑状态。 获得高、低电平的基本原理电路如 图表示。开关S为半导体二极管或 三极管,通过输入信号控制二极管 或三极管工作在截止和导通两个状 态,以输出高低电平。
6
�
3.2.3 半导体二极管的开关特性
�
因为半导体二极管具有单向导电性,即外加正向电 压时导通,外加反向电压时截止,所以它相当于一 个受外加电压极性控制的开关。
7
VCC=5V 当vI为高电平(取VCC)时, VD截止,vO为高电平。 当vI为低电平(取0V)时, VD导通,vO=0.7V,为低电平。
0
截止区
uCE/V
三极管输出特性上的三个工作区
15
3. 双极型三极管的开关电路
�
用NPN型三极管取代下图中的开关S,就得到了三极 管开关电路。
16
3.双极型三极管的开关电路
� �
当vI为低电平时, 三极管工作在截止状态(截止 区),输出高电平vO ≈VCC 。
� �
当vI为高电平时, 三极管工作在饱和导通状态 (饱和区),输出低电平vO ≈0V(VCES )。
灌电流负载
V时) IOL =16mA(VOL =0. 4 4V
33
3. 门电路的扇出系数
�
扇出系数NO的定义是:“一个门 电路能驱动与其同类门的个数”。 它标志着一个门电路的带负载能 力。 计算扇出系数 分为输出高电平时的扇出系数及 输出低电平时的扇出系数,并取 两者较小的作为电路的扇出系数。
p49
27
3.3.3 TTL与非门的静态特征 1.电压传输特性
�
如果将图3-18所示与非门的输入A(或B)接高电 平3.6V,则输出电压随输入端B(A)所加电压的 变化而变化的特征曲线,叫做TTL与非门的电压 传输特性。
28
AB段(截止区) vI<0.6V BC段 (放大区)0.6V< vI <1.3V CD段 (转折区) VTH=1.4V 阈值电压 DE段 (饱和区) vI >1.4V
24
2.工作原理
vB1=1V
设PN结导通电压为0.7V, 三极管饱和压降为0.3V 1) 任意一个输入端加 入低电平,例如
A=vI=0.3V,则 vB1= 0.3+0.7= 1V
较小
V2 、V5 截 止 V4 、VD3导 通
vo= VCC– VR2 – Vbe4 – VVD3
≈ 5– 0.7 – 0.7 0.7– = 3.6V
�
TTL门电路的实际产品在使用时,如果有多余的 输入端不用,一般不应悬空,以防干扰信号的串 入,引入错误逻辑。
41
5. 门电路多余输入端的处理
(1)TTL与门、与非门 1)将其经2kΩ以上的电阻接地 2)接至电源正端VCC或 接输入高电平VIH 3)与其它信号输入端并接使用 4)悬空(相当于接高电平) (2)TTL或门、或非门 1)接低电平VIL 2)与其他输入端并接使用 (3) TTL与或非门 1)多余的与门,其输入端必须接低电平 2)某个与门有多个输入端不用,其处理方法同与门