异步电机矢量控制可以转子磁链定向

合集下载

异步电机矢量控制.

异步电机矢量控制.

下步工作
学习在矢量控制中加入电流闭环控制的相 关原理 制作IRMCF341电源供电部分,保证电源部 分输出正确的电压。 在IRMCF341微控制器8051中增加故障处理 程序,保证故障类型的完整。
将电压方程
改写为
笼型转子 内部短路
σ=1-L2M/LS/LR σ电机漏磁系数
整理可得状态方程
其中Tr—转子电磁时间常数,Tr=Lr/Rr。
二、异步电机的矢量控制
αβ坐标系下转子磁链旋转矢量 ψr空间角度φ, d轴改成m轴,q轴改成t轴 m轴与转子磁链旋转矢量重合
代入上式
状态方程
可得mt坐标系的旋转角速度
转子绕组2r/2s变换
2r/2s
电压方程
பைடு நூலகம்
磁链方程
转矩方程 4、旋转正交坐标系下的动态数学模型
定子旋转变换阵为
转子旋转变换阵为
旋转坐标系下的电压方程
转矩方程
(3)正交坐标系下的状态方程 异步电机有四阶电压方程和一阶运动方程,需选取 五个状态变量1.转速ω;2.定子电流isd和isq;3.转子电流 ird和irq;4.定子磁链ψsd和ψsq;5.转子磁链ψrd和ψrq 以ω-is-ψr为状态变量 dq下的磁链方程
异步电机的矢量控制
2014年10月9日
一、异步电动机的数学模型 二、异步电动机的矢量控制 三、总结
一、异步电动机的数学模型
(1)三相动态模型
1、磁链方程
Lms - 定子交链的最大互感值; Lls - 漏磁通
定子三相各绕组之间与转子三相各绕组之间位置是固定的,互感 为常值
定、转子之间位置是变化的,与θ有关
电磁转矩表达式
按转子磁链定向,将定子电流分解为励磁分量ism和转矩 分量ist,转子磁链ψr仅由励磁分量ism产生,而电磁转矩 Te正比于转子磁链和定子电流转矩分量的乘积istψr ,实现 了定子电流两个分量的解耦。

基于矢量控制的电动汽车用异步电动机弱磁控制方法

基于矢量控制的电动汽车用异步电动机弱磁控制方法

基于矢量控制的电动汽车用异步电动机弱磁控制方法窦汝振,辛明华,杜智明(中国汽车技术研究中心,天津300162)摘要:对需要异步电动机恒功率运行的应用领域,特别是电动汽车这种需要大范围扩速运行的情形,弱磁控制是一个非常重要的方法。

基于矢量控制提出一种恒交轴电压弱磁控制方法,该方法与电机参数无关,稳定性强,实现简单,试验结果验证了该方法的正确性和有效性。

关键词:矢量控制;弱磁控制;异步电动机中图分类号:TM301.2B TM343文献标识码:A文章编号:1673-6540(2009)05-0025-03F iel dW eakening Control of A synchronousM otors Based on V ector ControlDOU Ru-zhen,X I N M i n g-hua,DU Zhi-m ing(Ch i n a A uto m otive Technology&Research C enter,T i a nji n300162,Ch i n a)Abstract:The field w eaken i ng contro l is i m portan t for the i nducti on mo tor.s constant pow er ope ration that i s re-qu ired by t he e l ec tric veh icle.Based on the detail ed theo retical analysis,usi ng t he vector contro,l a constant q-ax i s sta t o r vo ltage fi e l d weaken i ng controlm e t hod t hat is stab l e,i ndependent o fm otor para m ete rs is presented.Its vali d it y is prov ed by experi m ental resu lts.K ey word s:vector con tro;l field weaken i ng con tro;l asynchronou sm otors0引言异步电动机结实耐用,在矿山机械、航空航天、轨道交通、电动汽车等领域有着广泛应用。

异步电机矢量控制可以转子磁链定向

异步电机矢量控制可以转子磁链定向
逆时针旋转90º,称之为T轴。这样就得到了按 转子磁链定向的两相同步旋转M、T坐标系。
在M-T坐标系上,磁链方程为
Ψms=Lsims+Lmimr Ψts=Lsits+Lmitr Ψmr=Lmims+Lrimr=Ψr Ψtr=Lmits+Lritr=0
(3) (4)
对于笼型转子异步电动机,其转子短路,端
对于矢量控制来说,i*ds类似于直流电动机的励磁 电流If,i*qs类似于直流电动机的电枢电流Ia。相 应地,我们希望类似地写出异步电动机的转矩表
达式为
Te CT r iqs
(1)
Te CT' idsiqs
(2)
式中 Ψr:正弦分布转子磁链空间矢量的峰值。
Ia
解耦
If
Ψa
Ia
Te CT f a CT' I f Ia If
正比关系,如果Ψr保持不变的话。
2.2 转子磁链模型
为了实现转子磁链定向矢量控制,关键是获
得实际转子磁链Ψr的幅值和相位角,坐标变换 需要磁链相位角(φ),转矩计算、转差计算等
需要磁链的幅值。但是转子磁链是电机内部的物 理量,直接测量在技术上困难很多。
在磁链计算模型中,根据所用实测信号的不 同,可以分为电压模型和电流模型两种。
2) 计算转子磁链的电流模型 根据磁链与电流的关系,由电流推算磁链,
称其为电流模型。
电流模型需要实测的电流与转速信号,优 点是:无论转速高低都能适用;但缺点是 都受电动机参数变化的影响。除了转子电 阻受温度和频率的影响有较大的变化外,
磁路的饱和程度也将影响电感Lm、Lr和Ls,
这些影响最终将导致计算出的转子磁链的 幅值和相位角偏离正确值,使磁场定向不 准,使磁链闭环控制性能降低。

按照转子磁链定向的矢量控制系统仿真

按照转子磁链定向的矢量控制系统仿真

按照转子磁链定向旳矢量控制系统仿真1.矢量控制技术概述异步电机旳动态数学模型是一种高阶、非线性、强耦合旳多变量系统,其控制十分复杂。

矢量控制实现旳基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对机旳励磁电流和转矩电流进行控制,从而到达控制异步电动机转矩旳目旳。

将异步电动机旳异步电动定子电流矢量分解为产生磁场旳电流分量(励磁电流) 和产生转矩旳电流分量(转矩电流) 分别加以控制,并同步控制两分量间旳幅值和相位,即控制定子电流矢量,因此称这种控制方式称为矢量控制方式。

ω图1 带转矩内环节磁链闭环旳矢量控制系统构造图2.几种关键问题:●转子磁链函数发生器根据电机旳调速范围和给定旳转速信号,在恒转矩范围内恒磁通调速、转子磁通保持额定磁通;在恒功率范围内弱磁调速,转子磁通随转速指令旳增大而减小。

转子磁链函数发生器用来产生磁链大小信号。

这里采用下面旳曲线。

转子磁链旳幅值一般为1。

●转子磁链旳观测与定向转子磁链旳观测模型重要有二种:(1) 在两相静止坐标系上旳转子磁链模型电机旳定子电压和电流由传感器测得后,通过3S/2S 变换,再根据异步电机在两项静止坐标系下旳数学模型,计算转子磁链旳大小。

()r αm s αr r βr 11L i T T p ψωψ=-+ ()r βm s βr r αr 11L i T T p ψωψ=++ (2) 按磁场定向两相旋转坐标系上旳转子磁链模型三相定子电流 iA 、 iB 、iC 经3/2变换变成两相静止坐标系电流 is α 、 is β ,再经同步旋转变换并按转子磁链定向,得到M ,T 坐标系上旳电流 ism 、ist ,运用矢量控制方程式m st1s r rL i T ωωωψ-==mr smr 1L i T p ψ=+可以获得 ψr 和 ωs 信号,由ωs 与实测转速 ω 相加得到定子频率信号ω1,再经积分即为转子磁链旳相位角ϕ ,它也就是同步旋转变换旳旋转相位角。

【精品】第七章异步电动机动态数学模型的调速系统

【精品】第七章异步电动机动态数学模型的调速系统

第七章异步电动机动态模型调速系统内容提要:异步电动机具有非线性、强耦合、多变量的性质,要获得良好的调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。

矢量控制和直接转矩控制是两种基于动态模型的高性能的交流电动机调速系统,矢量控制系统通过矢量变换和按转子磁链定向,得到等效直流电动机模型,然后按照直流电动机模型设计控制系统;直接转矩控制系统利用转矩偏差和定子磁链幅值偏差的符号,根据当前定子磁链矢量所在的位置,直接选取合适的定子电压矢量,实施电磁转矩和定子磁链的控制。

两种交流电动机调速系统都能实现优良的静、动态性能,各有所长,也各有不足之处。

本章第8.1节首先导出异步电动机三相动态数学模型,并讨论其非线性、强耦合、多变量性质,然后利用坐标变换加以简化,得到两相旋转坐标系和两相静止坐标系上的数学模型。

第8.2节讨论按转子磁链定向的基本原理,定子电流励磁分量和转矩分量的解耦作用,讨论矢量控制系统的多种实现方案。

第8.3节介绍无速度传感器矢量控制系统及基于磁通观测的矢量控制系统。

第8.4节讨论定子电压矢量对转矩和定子磁链的控制作用,介绍基于定子磁链控制的直接转矩控制系统。

第8.5节对上述两类高性能的异步电动机调速系统进行比较,分析了各自的优、缺点。

第8.6节介绍直接转矩控制系统的应用实例。

8.1交流异步电动机动态数学模型和坐标变换基于稳态数学模型的异步电动机调速系统虽然能够在一定范围内实现平滑调速,但对于轧钢机、数控机床、机器人、载客电梯等动态性能高的对象,就不能完全适用了。

要实现高动态性能的调速系统和伺服系统,必须依据异步电动机的动态数学模型来设计系统。

8.1.1三相异步电动机数学模型在研究异步电动机数学模型时,常作如下的假设:(1)忽略空间谐波,设三相绕组对称,在空间中互差120°电角度,所产生的磁动势沿气隙按正弦规律分布;(2)忽略磁路饱和,各绕组的自感和互感都是恒定的;(3)忽略铁心损耗;(4)不考虑频率变化和温度变化对绕组电阻的影响。

异步电动机的矢量控制系统

异步电动机的矢量控制系统
电机MT
isT 轴模型
cosφ sinφ
cosφ sinφ
注意:如果忽略变频器可能产生的滞后,并认为控制器中反 旋转变换器与电机内部的旋转变换环节相抵消,2/3变换器 与电机内部的3/2变换环节相抵消,则虚框内的部分可以删 去,剩下的就是直流调速系统。
第28页/共68页
28
控制Βιβλιοθήκη i*sM M Ti*sT
(7 21)
小结:矢量控制基本方程☆
r
Lm 1 Tr
p
isM
或 : isM
1
Tr Lm
p
r
(7 12)
Te
np
Lm Lr
isT r
(7 15)
sl
Lm
Tr r
isT
(7 -17)
24
第25页/共68页
25
二、矢量控制方法
既然异步电动机经过坐标变换可以等效成直流电动机,那 么,模仿直流电动机的控制方法,给出直流电动机的控制量, 再经过相应的反变换就能控制异步电动机。
第29页/共68页
cosφ sinφ
根据单位矢量获取方法的不同,矢量控制方法可分为两种: ✓直接矢量控制(由Blaschke发明) ✓间接矢量控制(由Hasse发明) 。
当矢量控制所用单位矢量和磁链是直接检测到的或由检 测到的电机的端子量及转速计算得到时,被称为直接矢量 控制,也可称为磁通反馈矢量控制(Feedback Vector Control)。
MT坐标系: 规定d轴沿转子磁链Ψr方向,并称之为M (Magnetization)轴, q轴则逆时针转90º,即垂直于转子磁链Ψr,称之为T (Torque)轴。这样的两相同步旋转坐标系就规定为MT坐标系, 或称按转子磁场定向(Field Orientation)的坐标系。

20 按转子磁链定向的矢量控制2

20 按转子磁链定向的矢量控制2
33转差频率矢量控制仿真省略电流调节器电流与电压的关系通过下式计算34ststst简化后的系统原理图35仿真模型36定转子电流37转速转矩38定转子磁链3940因为省略了磁链调节器起动初期磁链波动较大因为省略了电流调节器定子电流存在较大波动667矢量控制系统的特点1按转子磁链定向实现了定子电流励磁分量和转矩分量的解耦需要电流闭环控2转子磁链系统的控制对象是稳定的惯性环节可以闭环控制也可以开环控制
用除法环节消去对象中固有的乘法环节,实
现了转矩与转子磁链的动态解耦。
18
转矩闭环控制
图6-28 带除法环节的矢量控制系统原理框图
19
带转矩内环的矢量控制仿真

带转矩内环的矢量控制结构
20
Simulink实现
21
转矩控制器
22
磁链观察-电流模型
23
坐标变换
24
电流跟随
25

定子电流

(6-44)
Hale Waihona Puke 9计算转子磁链的电压模型
图6-31 计算转子磁链的电压模型
10
计算转子磁链的电压模型
电压模型包含纯积分项,积分的初始值和
累积误差都影响计算结果,在低速时,定子 电阻压降变化的影响也较大。
电压模型更适合于中、高速范围,而电流
模型能适应低速。有时为了提高准确度,把 两种模型结合起来。

3. 省略电流调节器,电流与电压的关系通 过下式计算 usm =Rsism 1 Lsist dist ust 1Lsism Rsist Ls dt
34

简化后的系统原理图
35
仿真模型
36
定、转子电流
37
转速、转矩

异步电机矢量控制

异步电机矢量控制

摘要因为异步电动机的物理模型是一个高阶、非线性、强耦合的多变量系统,需要用一组非线性方程组来描述,所以控制起来极为不便。

异步电机的物理模型之所以复杂,关键在于各个磁通间的耦合。

如果把异步电动机模型解耦成有磁链和转速分别控制的简单模型,就可以模拟直流电动机的控制模型来控制交流电动机。

直接矢量控制就是一种优越的交流电机控制方式,它模拟直流电机的控制方式使得交流电机也能取得与直流电机相媲美的控制效果。

本文研究了矢量控制系统中磁链调节器的设计方法。

并用MATLAB最终得到了仿真结果。

关键词:矢量控制非线性 MATLAB仿真目录摘要 (I)1 异步电动机矢量控制原理及基本方程式 (1)1.1矢量控制基本原理 (1)1.2按转子磁链定向的基本方程 (2)2 dp坐标系的异步电动机模型 (4)2.1坐标变换原理 (4)2.2建立dq坐标系下电机模型 (6)3 矢量控制系统设计 (7)3.1 矢量控制系统的电流闭环控制方式思想 (7)3.2 MATLAB系统仿真系统设计 (8)3.3 PI调节器设计 (10)4 仿真结果 (11)4.1 电机定子侧的电流仿真结果 (11)4.2 电机输出转矩仿真结果 (12)4.3 电机的转子转速仿真结果 (13)4.4 转子转子磁链仿真结果 (13)心得体会 (16)参考文献 (17)异步电机矢量控制Matlab 仿真实验1 异步电动机矢量控制原理及基本方程式1.1矢量控制基本原理矢量控制系统的基本思路是以产生相同的旋转磁动势为准则,将异步电动机在静止三相坐标系上的定子交流电流通过坐标变换等效成同步旋转坐标系上的直流电流,并分别加以控制,从而实现磁通和转矩的解耦控制,以达到直流电机的控制效果。

所谓矢量控制,就是通过矢量变换和按转子磁链定向,得到等效直流电动机模型,在按转子磁链定向坐标系中,用直流电动机的方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量经变换得到三相坐标系的对应量,以实施控制。

按转子磁链定向的矢量控制系统仿真研究

按转子磁链定向的矢量控制系统仿真研究

科技 论坛 j
郭 璃 壬庆 贤
按转子磁链 定 向的矢量控制系统仿真研究
( 兰州交通 大学 自动化与电气工程 学院, 甘肃 兰州 7 o 7 ) 3 oo
摘 要: 详细分析矢量 控幸 系统对异步电机 电磁转矩 实时控幸的原理, I l 构建蒂转矩 内环磁链闭环按 熙转子磁 链定向 矢量控制结构 , 系统的各 对 部分进行 了详细的阐述。科 用仿真工具建立 了 仿真模 型。 结果表明谈方法实现 电磁转矩控幸 , I达捌 良 的调速性侥。 好


角。
ts
图 5 转 速 波 形 矩 指 令 R
图 l 带 转矩 内环磁 链 闭环 的 矢量 控 制 结 构 图 转子磁链反馈信号包含 了转子磁链的大小
和位置 , 转子磁链的观测模型主要有二种目: () 1在两相静止坐标 系的模型。 定子电压和 电流由传感 器测得后 , 经过 3/s变换 , s 2 根据 异
得 到的 、 以及零轴 电流 i= o变换到定子三 相坐标系上 , 得到定子电流给定信号 、 。 、 C r n e a0 模块利用 自定义封装 , ur tR 1 e r 实 现滞环调节 , 内部结构如 图 4 使用 时只需 指 其 , 定滞环环宽 ,滞 环宽度 的大小影响开关 器件 的 开关频率 , 环宽越小 , 开关频率 越高 , 电流控 且 制精度越高 , 反之亦然 。 、 4仿真结果 与分析 仿真采用固定步长的 oe 仿 真算法 , d3 为保 证精度 , 限制最 大步长取 l -。 e 5 . 电机 空载启 动,启动过程充 分利用 电机 的 过载能力 ,以最大加速度加速 , 启动时 间只需 0 s快速性好 , 图 5 其 中虚线为转 速给定 , ., 1 如 , 实线为实际转速 。 启动进入稳态后 , 1 s 在 . 时刻 加 7 %额定 5 5 图 3 调 节 器 的 内部 结 构 负载 , 转速稍微有 降落 , 但是能跟随 给定值 , 系 T a so ma i n q t ac模 块 将 上 一级 统呈现良好 的抗扰性。在 2 时刻进行减速 r n f r to d 0 o b _ s

电机矢量控制介绍

电机矢量控制介绍
4自适应状态观测器需要选择合适的自适应率2021122322ss1ppippffffftimipiti矢量矢量控制控制pimi转矩控制转矩控制速度控制速度控制位置控制位置控制越内环响应越快带宽越宽要求也越高越外环控制越复杂计算量大越内环响应越快带宽越宽要求也越高越外环控制越复杂计算量大内环的性能对于外环性能有较大的影响做好外环的前提是把内环做好内环的性能对于外环性能有较大的影响做好外环的前提是把内环做好位置控制需要加编码器速度控制和转矩控制可以采用无速度矢量控制位置控制需要加编码器速度控制和转矩控制可以采用无速度矢量控
电机控制基本原理
电机数学模型及坐标变换
矢量控制基本模块介绍 编程中的注意事项
1 2019/4/5
异步电机静态等效电路
f0:同步频率(输出频率) fs=f0×S fs:滑差频率
1、忽略铁芯损耗 2、忽略磁路饱和,电感为常数
f0=fs+fr fr:转子频率(转速)
Te Pe
Pe=I22×R2/S Pe: 电磁功率
20 2019/4/5
15 2019/4/5
V/F控制的一些概念
5、限流控制 矢量控制检测电机转速,可以直接控制滑差防止过流。 V/F控制不知道电机的转速,直接对定子施加设定的频 率,尤其动态及负载突变时,实际滑差过大,容易造 成过流,需要用电流环来限制输出电流,改变输出频 率。 V/F控制的优点: 1、可以引入简单的矢量模型,提高稳态性能 2、不需要参数辨识,可以驱动多台电机 缺点: 1、动态响应不好 2、低速力矩不足
ic1 uc1 c
C
uc 2
多变量非线性方程求解复杂,简化的方法 是坐标变化,经过三相到两相的坐标变换, 变量减少,电感为常数,数学模型简化
3 2019/4/5

磁链计算模型分析详解

磁链计算模型分析详解

磁链计算模型分析详解1引言异步电机按转子磁场定向的矢量控制系统中,转子磁链的准确估计至关重要。

如果转子磁链的估计不准确,转子磁场定向控制系统应有的优点,即实现转矩和磁通的解耦控制将无法实现。

由于直接检测转子磁链的方法受到工艺和技术方面的限制,在实际的控制系统中,多采用间接计算转子磁链的方法,即利用直接测得的电压、电流或转速等信号,借助于转子磁链计算模型,实时计算磁链的幅值和相位。

转子磁链模型可以从电动机数学模型中推导出来,也可以利用状态观测器或状态估计理论得到闭环的观测模型。

闭环方式的观测模型,因计算比较复杂,理论研究尚不十分成熟,实际使用较少,多用比较简单的计算模型。

在计算模型中,由于主要实测信号的不同,又分为电流模型和电压模型两种[1]。

采用电压模型法,由于存在电压积分问题,结果在低速运行时,模型运算困难。

采用电流模型法时,由于存在一阶滞后环节,在动态过程中难以保证控制精度。

通常的组合模型法是考虑在不同的速度范围采用不同的计算模型,主要是解决好过渡问题[2]。

该方法用到两个计算模型,计算复杂,且过渡处理造成成本增加。

而本文却是直接通过对两个模型的计算方程进行组合处理,消除了电压模型中的积分环节和电流模型法中的一阶延时环节,得到一个新的磁链计算模型,并将其结合矢量控制系统进行仿真研究,结果表明该模型具有较好的动态性能。

2 常用转子磁链计算模型2.1 两相静止坐标系下转子磁链的电压模型根据定子电流和定子电压的检测值来估算转子磁链,所得出的模型叫做电压模型。

在两相静止αβ坐标系下由定子电压方程可以得出[3][4]:(1)转子磁链方程为:(2)由上式得到转子电流αβ分量:(3)用式(3)把式(1)中的i rα和i rβ置换掉,整理后得:(4)将漏磁系数代入其中,并对等式两侧取积分,即得转子磁链的电压模型为:(5)由以上分析易知,电压模型法实际上是一个纯积分器,而纯积分器的累积误差和漂移问题都会导致系统失稳。

转子磁链定向间接矢量控制系统的解析与展望

转子磁链定向间接矢量控制系统的解析与展望

l 囊缀转子磁链定向间接矢量控制系统的解析与展望田建文李国芳(兰州交通大学甘肃兰州730070)应用摹毒拳[摘要]建立三相异步电机的数学模型并化简。

应用现代控制理论中的状态观测器的构建方法对转子磁链定向问解矢量控制进行解析。

应用现代控制理论解决实际问题,并从理论的角度为三相异步电机的矢量控制作了一下诠释。

为理解异步电机矢量控制理论提供了有益的启示并对矢量控制进行展望。

[关键词】三相异步电动机数学模型现代控制理论状态观铡器矢量控制中图分类号:T Pl 3文献标识码:^文章编号:1671—7597(2D 08)0720099一02本文主要介绍了间接矢量控制技术,在旋转坐标dq 轴系下化简电动机数学模型,建立磁通状态观测器,推导出算法公式;并对矢量控制的发展方向作了展望。

一、异步电动机的教掌模噩由电机学知识,我们建立异步电动机的坐标模型:A B c 轴为三相交流静止坐标,dq 轴是以同步角速度_“旋转的二相直流旋转坐标。

图1异步电动机的坐标模趔:、在d q 轴下化简电机的数掌模受由交流电机坐标变换理论,我们可以得到在同步旋转的d q 轴下的电机模型。

在dq 轴下的磁链方程:£JOO厶kOOkkOO k£.0L(1)其中k=主k 。

为dq 坐标系同轴等效定子与转子绕组间的互感;1t3厶,+号k-为dq 坐标系等效二相定子绕组的自感:L ,=厶:+兰k 。

为dq 坐标系等效二相转子绕组的自感。

在dq 轴下电压方程:c ,m%U .2U t 2焉oooT i 。

o 焉ooKIo o 如oI ‘ooo 露:上k唯一y .1P 只妒-l ,岛一y 。

2p 吼虬2pB(2)其中PB 为dq 旋转坐标系相对于定子的角速度。

P 幺为dq 坐标系相对于转子的角速度M 。

在dq 轴下的转矩方程为:t=~驯“:一t 岛)去(3)由此可得异步动机在dq 轴上的数学模型的基本方程式(1)、(2)、(3).兰、应用状夺空同分析d q 轴下的数学模型选取状态量x=k 。

矢量控制与直接转矩控制的区别及优略

矢量控制与直接转矩控制的区别及优略

矢量控制与直接转矩控制的区别及优略矢量控制与直接转矩控制技术矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。

具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。

基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。

基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。

早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。

无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。

实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。

它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

采用矢量控制方式的通用变频器不仅可在调速范围上与直流电动机相匹配,而且可以控制异步电动机产生的转矩。

由于矢量控制方式所依据的是准确的被控异步电动机的参数,有的通用变频器在使用时需要准确地输入异步电动机的参数,有的通用变频器需要使用速度传感器和编码器,并需使用厂商指定的变频器专用电动机进行控制,否则难以达到理想的控制效果。

矢量控制与直接转矩控制的区别

矢量控制与直接转矩控制的区别

矢量控制与直接转矩控制技术令狐采学矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。

具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流) 和产生转矩的电流分量 (转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。

这样就可以将一台三相异步电机(同步电机是指转子定子同时通电,异步机就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。

基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。

基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。

早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。

无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。

实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。

它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

矢量控制与V-F控制详解

矢量控制与V-F控制详解

矢量控制与V/F控制详解
一、矢量控制
1、矢量控制简介
矢量控制是一种电机的磁场定向控制方法:以异步电动机的矢量控制为例:它首先通过电机的等效电路来得出一些磁链方程,包括定子磁链,气隙磁链,转子磁链,其中气息磁链是连接定子和转子的.一般的感应电机转子电流不易测量,所以通过气息来中转,把它变成定子电流.然后,有一些坐标变换,首先通过3/2变换,变成静止的d-q坐标,然后通过前面的磁链方程产生的单位矢量来得到旋转坐标下的类似于直流机的转矩电流分量和磁场电流分量,这样就实现了解耦控制,加快了系统的响应速度.最后再经过2/3变换,产生三相交流电去控制电机,这样就获得了良好的性能。

综合以上:矢量控制无非就四个知识:等效电路、磁链方程、转矩方程、坐标变换(包括静止和旋转)。

矢量控制可以根据客户的需要微调电机,可以做伺服电机用。

不是以电机效率为最高追求,而是以工程要求,时刻跟踪反馈控制。

2、矢量控制详解
矢量控制概念:矢量控制目的是设法将交流电机等效为直流电机,从而获得较高的调速性能。

矢量控制方法就是将交流三相异步电机定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,这样即可等效于直流电机。

矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。

矢量控制特点:变频器矢量控制,按照是否需要转速反馈环节,一般分为无反馈矢量控制和有反馈矢量控制。

1)无反馈矢量控制。

无反馈矢量控制方式优点是:
a)、使用方便,用户不需要增加任何附加器件。

矢量控制

矢量控制

转子磁链定向矢量控制策略转子磁场定向的矢量控制方式目前应用较普遍。

将转子磁链的方向定义为m 轴的方向,垂直于m 轴的方向定义为t 轴方向。

这时,将以转子磁场进行定向时的m 轴也称为d 轴,t 轴称为q 轴。

在异步电机运行过程中假如保持励磁电流恒定,则输出的转矩仅与转矩电流成正比。

它的优点是解耦了磁链与转矩,使得控制上较为接近于直流电机的控制,实现了人们最初的设想。

矢量控制的磁链取得方法有间接或直接,也称间接磁场定向和直接磁场定向,它们的区别在于:①间接磁场定向间接磁场定向的矢量控制是根据异步电机的数学模型,及各个坐标系下的电机方程,通过计算得到其固有关系式,引入电机参数进行计算,估计磁链的幅值与相角,其缺点是受电机参数的准确性影响较大,且在电机运行过程中,电机参数发生变化需要进行相应的调整,其优点是不需要受到特殊硬件检测设备的制约,节约成本,提高应用性。

②直接磁场定向直接磁场定向的矢量控制是运用直接方式,获取磁链的位置、幅值,需安装磁链传感器,而在一些场合,安装磁链传感器很难做到。

随着DSP 不断更新升级,使在较短时间内完成运算估算磁链已越来越可行,因此直接磁链观测器越来越多地受到人们重视。

其缺点是对仪器的精度要求很高,优点是基本不受转子时间常数影响。

如果观测的精度足够高,那么进行矢量控制的准确度就会极为简便。

1.三相异步电动机动态数学模型在以转子磁场定向的同步旋转坐标系dq 轴下,异步电动机的动态数学模型为 (1) 电压方程为sd sd s s e sm e m sq sq e s s s e m m rd rd m s m r r s rq rq s m m s r r r u i R L p L L p L u i L R L p L L p u i L p L R L p L u i L L p L R ωωωωωωωω+--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-+-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(1-1) 式中,u sd 、u sq 、u rd 、u rq 、i sd 、i sq 、i rd 、i rq 分别为定子电压、转子电压、定子电流、转子电流、在dq 轴上的分量;ωs 为转差角速度,即ωs =ωe -ωr ;ωe 为同步角速度;ωr 为转子角速度。

矢量控制与直接转矩控制的区别

矢量控制与直接转矩控制的区别

矢量控制与直接转矩控制技术矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。

具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流) 和产生转矩的电流分量(转矩电流) 分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。

矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。

这样就可以将一台三相异步电机(同步电机是指转子定子同时通电,异步机就是电机的转子转动速度与定子所产生的旋转磁场的旋转速度不一样,有转差值,顾名思义,同步机则不存在转差)等效为直流电机来控制,因而获得与直流调速系统同样的静、动态性能。

基于转差频率控制的矢量控制方式同样是在进行U / f =恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。

基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。

早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。

无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。

实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。

它的基本控制思想是根据输入的电动机的铭牌参数,按照转矩计算公式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

第六章 异步电动机矢量控制与直接转矩控制

第六章 异步电动机矢量控制与直接转矩控制

Lr Lm Lr Lm
[∫ (u
αs
− Rdqs iαs )dt − σLs iαs − Rdqs i βs )dt − σLs i βs
] ]
(6-13)
[∫ (u
βs
根据式(6-13),可以画出计算转子磁链的电压模型, 如图6-4所示。
σL s
iαs uαs Rdqs
+

+
--
Lr Lm
Ψαr
6.1 矢量控制(VC:vector control)的基本思路 6.1.1 模仿直流电动机 粗略地讲,矢量控制是模仿他励直流电动 机的控制。忽略磁饱和及电枢反应的影响,直 流电动机的转矩方程为 Te=CT´IaIf
这里 If—励磁电流,产生Ψf ; Ia—电枢电流,产生Ψa。
如果把它们看作是空间矢量,它们互相垂 直、解耦。这意味着,当我们用Ia去控制转矩的 时候,磁链Ψf不受影响,如果磁链是额定磁链, 将得到快速的动态响应和最大的转矩安培比。 反过来,用If去控制磁链Ψf时,Ψa也不受影响。
一起构成矢量控制基本方程。
6.2.2 转子磁链模型 为了实现转子磁链定向矢量控制,关键是获 得实际转子磁链Ψr的幅值和相位角,坐标变换需 要磁链相位角(φ),转矩计算、转差计算等需 要磁链的幅值。但是转子磁链是电机内部的物理 量,直接测量在技术上困难很多。因此在实际应 用系统中,多采用间接计算(或观测)的方法。 通过容易检测得到的电动机运行时的物理量,如 电压、电流、转速等,根据电机的动态数学模型, 实时推算出转子磁链的瞬时值,包括幅值和相位 角。 在磁链计算模型中,根据所用实测信号的不 同,可以分为电压模型和电流模型两种。
励磁分量 转矩分量 图6-1 (a)他励直流电动机 (b)矢量控制异步电动机
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

iα 3/2 iβ
i 2s/2r m (VR) i t
等 效 直 流 电 动 机模型
ω
图2异步电动机坐标变换 φ—M轴与α轴的夹角
把上述等效关系用结构图的形式画出 来,示于图2中。从整体上看,输入为iA、 iB、iC三相电流,输出为转速ω,是一台交 流电机。从内部看,经过3/2变换和同步旋 转变换,变成了一台以im、it为输入,ω为 输出的直流电动机。
在同步旋转d-q坐标系上控制异步电动机,所有 的交流量都变成了直流量,应该也能达到类似直 流电动机那样的性能水平。 图1(b)示出了这个构想,其中i*ds和i*qs分别是同 步旋转坐标系上定子电流的直轴分量和交轴分量 , 对于矢量控制来说,i*ds类似于直流电动机的励磁 电流If,i*qs类似于直流电动机的电枢电流Ia。相 应地,我们希望类似地写出异步电动机的转矩表 达式为 (1) Te CT r iqs
励磁分量 转矩分量 图1 (a)他励直流电动机 (b)矢量控制异步电动机
但是,能够这样写转矩表达式应该满足一 个条件,那就是d轴应该按Ψr定向,如图1(b)右 边所示。选择d轴与转子磁链Ψr同方向。这就 叫“按转子磁链定向”。
按转子磁链定向后,异步电动机在同步旋转 d-q坐标系上的数学模型和直流电动机相比,如 果说还有什么不一样的话,那就是异步电动机的 空间矢量在以同步转速旋转,直流电动机的空间 矢量静止不动,但是从相对运动的观点看,这没 有什么本质不同。
第六章
笼型异步电动机变压变频调速系 统-转差功率不变型系统
异步电动机矢量控制
1. 概论
标量控制简单、容易实现,但是异步电动机固有 的耦合效应使系统响应缓慢,数学模型的高阶效应 使系统稳定性差。对于需要高动态性能的调速系统 或伺服系统,如轧钢机、数控机床、机器人、载客 电梯等,就不能完全适应了。 70年代初发明的磁场定向矢量控制可以很好地解 决上述问题,能够把异步电动机控制得像直流电动 机一样的好。直流电动机的励磁电流和转矩电流 (电枢电流)是解耦的,因此矢量控制也称为“解 耦控制”.矢量控制既适用于异步电动机,也适用于 同步电动机。
2 按转子磁链定向异步电动机矢量控制系统 2.1 按转子磁链定向的矢量控制方程 1)异步电动机在M-T坐标系上的数学模型 为了与一般的同步旋转d-q坐标系区别, 取d轴沿转子磁链Ψr的方向,称之为M轴;q轴 逆时针旋转90º ,称之为T轴。这样就得到了按 转子磁链定向的两相同步旋转M、T坐标系。 在M-T坐标系上,磁链方程为 Ψms=Lsims+Lmimr Ψts=Lsits+Lmitr Ψmr=Lmims+Lrimr=Ψr ( 3) Ψtr=Lmits+Lritr=0 ( 4)
1.2 矢量控制原理 以产生同样的旋转磁动势为准则,在三相坐 标系上的定子电流iA、iB、iC通过3/2变换可以等 效为二相静止坐标系上的交流电流iα和iβ,再 通过2s/2r变换,可以等效成同步旋转坐标系上的 直流电流id和iq。如果观察者站在铁心上与同步 旋转坐标系一起旋转,他所看到的便是一台直流 电动机。
2 矢量控制(VC:vector control)的基本思路 2.1 模仿直流电动机 矢量控制是模仿他励直流电动机的控制。忽 略磁饱和及电枢反应的影响,直流电动机的转矩 方程为 Te=CT´IaIf 这里 If—励磁电流,产生Ψf ; Ia—电枢电流,产生Ψa。 它们互相垂直、解耦。这意味着,当我们用Ia 去控制转矩的时候,磁链Ψf不受影响,如果磁链是 额定磁链,将得到快速的动态响应和最大的转矩安 培比。反过来,用If去控制磁链Ψf时,Ψa也不受影 响。
2.矢量控制基本方程 矢量控制所依据的基本方程,有以下三个 (1)转子磁链方程 由电压方程矩阵(5)的第三行展开,得
Te C i i
式中
' T ds qs
(2)
Ψr:正弦分布转子磁链空间矢量的峰值。
Ia
解耦
If
Ψa
Ia
If Ψf (a) iqs
' Te CT f a CT I f Ia
励磁分量
i*ds
转矩分量 M
i*qs
矢量 控制
i*a i*b i*c
逆 变 器
ω1
ids Ψr
(b)
' Te CT r iqs CT ids iqs
通过控制,可以使交流电动机的转子总磁通 Φr等于直流电动机的励磁磁通,如果再把d轴定 位在Φr的方向上,称作M轴,把q轴称作T轴,则M绕 组就相当于直流电机的励磁绕组,im就相当于励 磁电流,T绕组就相当于伪静止的电枢绕组,it就相 当于与转矩成正比的电枢电流。φA Fra bibliotek CiA
iB iC
异步电动机
图3 矢量控制系统原理 图中给定和反馈信号经过控制器,产生励磁电流给 定信号im*和电枢电流给定信号it*,经过反旋转变换得 到iα*和iβ*,再经过2/3变换得到iA*、iB*、iC*。把这 三个电流给定信号和由控制器得到的频率给定信号ω1 一起施加到电流控制变频器上,变频器即可为异步电动 机输出所期望的具有适当电压、频率、相位的驱动电 流。
(5)
矩阵中出现了0元素,其中第三行中的2个0和第 四行中的1个0是由于 Ψtr=Lmits+Lritr=0 所致。
写出转矩方程
3 Lm Te n p r its 2 Lr
运动方程为
J d Te TL n p dt
(6) (7)
磁链方程、电压方程、转矩方程、运动方 程一起构成了异步电动机在M-T坐标系上的数 学模型。
对于笼型转子异步电动机,其转子短路,端 电压umr=utr=0,于是两相同步旋转坐标系上 的电压方程变为M-T坐标系上的电压方程
1 Ls Lm p 1 Lm ims u ms Rdqs Ls p u L R L p L L p 1 s dqs s 1 m m its ts 0 Rdqr Lr p 0 imr 0 Lm p 0 s Lr Rdqr 0 s Lm itr
相关文档
最新文档