初中数学二次函数复习求函数解析式优质课教案优质课教案教学设计
求二次函数的解析式优秀教案
§26.2.3求二次函数解析式(一)一、教学目标知识与技能目标:1.通过对用待定系数法求二次函数表达式的探究,理解二次函数的三种表达式.2. 能根据不同的条件正确选择表达式,利用待定系数法求二次函数的表达式.方法与过程目标:让学生经历观察、比较、归纳、应用以及猜想、验证的学习过程,使学生掌握类比、转化等学习数学的方法.情感、态度与价值观:通过学习,让学生养成既能自主探索,又能合作探究的良好学习习惯。
从学习过程中体会学习数学知识的价值,从而提高学习数学知识的兴趣.二、教学重难点重点:求二次函数的函数关系式.难点:根据不同的条件正确选择表达式三、教学过程(一)问题引入1.问题:如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶.它的拱宽AB为4 m,拱高CO为0.8 m.施工前要先制造建筑模板,怎样画出模板的轮廓线呢?2.揭示课题(二)温故而知新1.二次函数常见的几种表达方式①一般式②顶点式转化顶点坐标③交点式2.求函数表达式的常见方法是什么?用待定系数法求函数表达式的基本步骤有哪些?(三)探究新知例1.已知二次函数的图象过A(0,1),B(2,4),C(3,10)三点,求这个二次函数解析式.变式练习:已知某抛物线是由抛物线y=x2-x-2平移得到的,且该抛物线经过点A(1,1), B(2,4),求其函数关系式.例2.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的表达式.变式练习:已知某抛物线经过点(2, -1)和( - 1,5)两点,且关于直线x= 1对称,求此二次函数的表达式.例 3.已知二次函数的图象与x轴交于(2,0) 、(-1,0)两点,且过点(0,-2),求此二次函数的表达式.(四)能力提升抛物线的图像经过(0,0)与(12,0)两点,且顶点的纵坐标是3,求它的函数表达式.(五)课堂小结在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.(1)特殊的一般式:y=ax2,已知顶点经过原点.(2)一般式: y=ax2+bx+c ,已知三点坐标或三组值.(3)顶点式: y=a(x-h)2+k ,已知顶点坐标或对称轴或最值.(4)交点式:y=a(x-x1)(x-x2),已知抛物线与x轴的两个交点坐标,并经过另外一个点.(六)解决问题如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶.它的拱宽AB为4 m,拱高CO为0.8 m.施工前要先制造建筑模板,怎样画出模板的轮廓线呢?(七)巩固练习1.根据下列条件,分别求出对应的二次函数的表达式.①已知抛物线的顶点在原点,且过点(2,8);②已知抛物线的顶点是(-1, -2),且过点(1,10);③已知抛物线过三点:(0, -2), (1,0),(2,3).2.已知抛物线y=ax2+bx+c过三点:(-1,-1)、(0,-2)、(1,1).①求这条抛物线所对应的二次函数表达式;②写出它的开口方向、对称轴和顶点坐标;这个函数有最大值还是最小值?这个值是多少?3.将抛物线向下平移1个单位,再向右平移4个单位,求所得抛物线开口方向、对称轴和顶点坐标.4.如图,某隧道口的横截面是抛物线形,已知路宽AB为6米,最高点离地面的距离OC为5米.以最高点O为坐标原点,抛物线的对称轴为y轴,1米为数轴的单位长度,建立平面直角坐标系.求(1)以这一部分抛物线为图象的函数解析式,并写出x的取值范围;(2)有一辆宽2.8米,高3米的农用货车(货物最高处与地面AB的距离)能否通过此隧道?(八)布置作业1. 巩固练习2.书第16页4.5题(九)教学反思3212+--=xxy。
优质课教学设计第二十二《二次函数》公开课教案
本节课是本单元中,对知识的理解和贯彻最重要的一堂课。
在高效课堂模式中,一堂课的紧凑性和教师活动的多少,决定着课堂容量的高低。
但在实际教学中,教师应尽可能少地利用讲授法进行教学,多与学生进行交流,增加学生的实际操练和练习时间,对于一堂课来讲,是至关重要的。
对于课堂环节的布置,应该力求简练,语言应用尽量通俗易懂。
对于一名教师而言,教学质量的高低,与备课的充足与否有很大关系。
而教案作为这一行为的载体,巨大作用是不言而喻的。
本节课的准备环节,就充分地说明了这个道理。
第二十二章 二次函数1.(安徽) 若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为………………( ) (A )0.5 (B )0.1 (C )—4.5 (D )—4.1 【答案】C2.(甘肃兰州) 二次函数2365y x x =--+的图象的顶点坐标是 ( ) A .(-1,8)B .(1,8)C .(-1,2)D .(1,-4)【答案】A3.(甘肃兰州) 抛物线c bx x y ++=2图象向右平移2个单位再向下平移3个单位,所得图象的解析式为322--=x x y ,则b 、c 的值为 ( )A . b=2, c=2 B. b=2,c=0 C . b= -2,c=-1 D. b= -3, c=2【答案】B4.(甘肃兰州) 抛物线c bx ax y ++=2图象如图所示,则一次函数24b ac bx y +--=与反比例函数 a b c y x++=在同一坐标系内的图象大致为 ( )第15题图 【答案】D5.(江苏盐城)给出下列四个函数:①x y -=;②x y =;③xy 1=;④2x y =(0<x )时,y 随x 的增大而减小的函数有 ( ) A .1个 B .2个 C .3个 D .4个【答案】C6.(浙江金华) 已知抛物线c bx ax y ++=2的开口向下,顶点坐标为(2,-3) ,那么该抛物线有 ( ) A. 最小值 -3 B. 最大值-3 C. 最小值2 D. 最大值2【答案】B7.(山东济南)在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A .3 B .2 C .1 D .0 【答案】B 8.( 浙江衢州)下列四个函数图象中,当x >0时,y 随x 的增大而增大的是( )x x xxx【答案】C9.(福建三明)抛物线772--=x kx y 的图象和x 轴有交点,则k 的取值范围是 ( )A .47-≥k B .47-≥k 且0≠k C .47->k D .47->k 且0≠k 【答案】B10.(河北)如图5,已知抛物线c bx x y ++=2的对称轴为2=x ,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为 ( )A .(2,3)B .(3,2)C .(3,3)D .(4,3) 【答案】D11.(山东莱芜)二次函数c bx ax y ++=2的图象如图所示,则一次函数a bx y +=的 图象不经过 ( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D12.(贵州)函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )xyO OxyA图5x = 2BOy x11 Oyx11 C . O y x11 Oyx11【答案】C.13.(贵州)把抛物线y =x 2+bx +c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式为y =x 2-3x +5,则( )A .b =3,c =7B .b =6,c =3C .b =-9,c =-5D .b =-9,c =21 【答案】A.14.(湖北荆州)若把函数y=x 的图象用E (x ,x )记,函数y=2x+1的图象用E (x ,2x+1)记,……则E (x ,122+-x x )可以由E (x ,2x )怎样平移得到?A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位 【答案】D15.(北京) 将二次函数y =x 2-2x +3,化为y =(x -h )2+k 的形式,结果为( )A .y =(x +1)2+4B .y =(x -1)2+4C .y =(x +1)2+2D . y =(x -1)2+2 【答案】D16.(山东泰安)下列函数:①3y x =-;②21y x =-;③()10y x x=-<;④223y x x =-++,其中y 的值随x 值增大而增大的函数有( )A 、4个B 、3个C 、2个D 、1个 【答案】C 17.(江苏徐州)平面直角坐标系中,若平移二次函数y=(x -2009)(x -2010)+4的图象,使其与x 轴交于两点,且此两点的距离为1个单位,则平移方式为A .向上平移4个单位B .向下平移4个单位C .向左平移4个单位D .向右平移4个单位 【答案】B18.(甘肃)向空中发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度的关系为y=ax 2+bx+c (a ≠0).若此炮弹在第7秒与第14秒时的高度相等,则在下列时间中炮弹所在高度最高的是( ) A .第8秒 B .第10秒 C .第12秒 D .第15秒 【答案】B 二、填空题1.(湖南株洲)已知二次函数()()221y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.下图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是y = .【答案】112x - 2.(浙江宁波) 如图,已知⊙P 的半径为2,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切时,圆心P 的坐标为 .【答案】)2,6(或)2,6(-(对一个得2分) 三、解答题1.(湖北省咸宁)已知二次函数2y x bx c =+-的图象与x 轴两交点的坐标分别为(m ,0),(3m -,0)(0m ≠). (1)证明243c b =;(2)若该函数图象的对称轴为直线1x =,试求二次函数的最小值.【答案】(1)证明:依题意,m ,3m -是一元二次方程20x bx c +-=的两根. 根据一元二次方程根与系数的关系,得(3)m m b +-=-,(3)m m c ⨯-=-. ∴2b m =,23c m =. ∴224312c b m ==.(2)解:依题意,12b-=,∴2b =-. 由(1)得2233(2)344c b ==⨯-=.∴2223(1)4y x x x =--=--. ∴二次函数的最小值为4-.2.(云南楚雄)已知:如图,抛物线2y ax bx c =++与x 轴相交于两点A (1,0),B (3,0).与y 轴相交于点C (0,3).(1)求抛物线的函数关系式; (2)若点D (7,2m )是抛物线2y ax bx c =++上一点,请求出m 的值,并求出此时△ABD 的面积.143a b c =⎧⎪=-⎨⎪=⎩,所【答案】解:(1)由题意可知09303a b c a b c c ++=⎧⎪++=⎨⎪=⎩ 解得31241234O1-2-1-2-xy以抛物线的函数关系式为243y x x =-+. (2)把D (7,2m )代人函数解析式243y x x =-+中,得2775()43224m =-⨯+=. 所以155(31)244ABDS ∆=⨯-⨯=. 3.(黑龙江哈尔滨)体育课上,老师用绳子围成一个周长为30米的游戏场地,围成的场地是如图所示的矩形ABCD 。
二次函数复习教案-【通用,经典教学资料】
二次函数复习教案一、教材分析二次函数时描述现实世界变量之间的重要数学模型,也是某些单变量最优化问题的数学模型,还是一种非常基本的初等函数,对二次函数的研究学习和复习,将为学生进一步学习函数,利用函数性质解决实际应用问题奠定基础积累经验。
在前面学习中,学生已经通过大量丰富有趣的现实背景,运用由简入繁从特殊到一般的研究方法从多方面探索研究了二次函数的概念、性质以及实际应用。
因为二次函数考查的知识点比较多,因此,在复习中,应注重学生对基本概念性质的掌握情况,通过大量不同实际问题,促使学生分析问题、解决问题意识和能力的的提高以及函数模型的进一步加深巩固。
二、学生情况分析初三的学生,已经具备一定的生活经验和有效学习方法,思维比较开阔,能独立思考和探索中形成自己的观点,他们能迅速利用周围的小组合作,共同探讨解决学习中的问题。
在复习课中,学生需要掌握二次函数的基本概念、性质以及有条理的思考和语言表达能力。
三、教学目标1、能根据具体问题,选取表格、表达式、图像这三种方式中适当的方法表示变量之间的二次函数关系2、会作二次函数的图象,并能根据图像对二次函数的基本性质进行分析表达。
3、能根据二次函数的表达式确定二次函数的开口方向、对称轴和定点坐标。
4、能利用二次函数解决实际问题,并能对变量的变化趋势进行预测。
四、教学理念和方式创设一种师生交往的互动、互惠的教学关系,师生之间彼此平等、互教互学,形成一个真正的“学习共同体”。
在这个过程中,教师与学生分享彼此的思考、经验和知识,交流彼此的情感、体验与观念,丰富教学内容,求的新的发展,从而达到共识、共享、共进实现教学相长和共同发展。
教师在教学中是组织者、引导者、合作者;建立和谐的、民主的、平等的的师生关系。
整个过程学生是学习的主人,他们在教师的指导下进行主动的、富有个性的学习;教师应充分利用现实情景与先进教学技术,增加教学过程的趣味性,充分调动学生的积极性。
五、教学媒体选用为使教学活动有序高效进行,本节课通过多媒体辅助教学,将一些重难点进行分化演示,加深学生的理解掌握。
(二次函数复习)教学设计
课题摘要
学科
数学
学段
初中
年级
初三
单元
教材版本
浙教版
课程名称
二次函数复习
一、学习内容分析
1.教材分析
二次函数是中考的重点内容之一,二次函数的应用是培养学生数学建模和数学思想的重要素材,是每年必考的压轴题。本部分包括了初中代数的所有数学思想和方法,复习时必须高度重视。二次函数在学习函数内容上起着承上启下的作用,与前面学习的二次三项式、一元二次方程有着密切联系,为今后学习高中的函数和不等式打下基础,积累经验,提供可以借鉴的方法。通过对二次函数的复习,加深学生对函数知识的理解和应用。
3.教学目标(含重难点)
1、理解二次函数的意义,会画二次函数的图象,会求二次函数的解析式。
2、会用配方法把二次函数的表达式化为顶点式,并能利用性质解决简单的实际问题,体会模型思想。
3、会利用二次函数的图象求一元二次方程的近似解。
复习重点:
二次函数的图象、性质和应用。
复习难点:
二次函数的应用和图象法解一元二次方程。
规律总结:__________________________________________
3、2015年上半年,某种农产品受不良炒作的影响,价格一路上扬.8月初国家实施调控措施后,该农产品的价格开始回落.其中,1月份至7月份,该农产品的月平均价格y元/千克与月份x呈一次函数关系;7月份至12月份,月平均价袼y元/千克与月份x呈二次函数关系.已知1月、7月、9月和12月这四个月的月平均价格分别为8元/千克、26元/千克、14元/千克、11元/千克.
PPT
活动3:课堂回眸,归纳巩固
小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进,方法以学具
《二次函数复习》教案
《二次函数复习》教案教学目的:通过复习,使学生能熟悉二次函数的几种差不多表达式,会选用合适的表达式解题;学会数形结合的数学思想;学会知识的迁移能力,会理论联系实际,解决实际问题。
六、教学过程:二次函数是初中代数的重要内容之一,也是历年中考的重点。
这部分知识命题形式比较灵活,既有填空题、选择题,又有解答题,而且常与方程、几何、三角等综合在一起,显现在压轴题之中。
因此,熟练把握二次函数的相关知识,会灵活运用一样式、顶点式、交点式求二次函数的解析式是解决综合应用题的基础和关键。
一、二次函数常用的几种解析式的确定一样式:顶点式:交点式:平移式:二、求二次函数解析式的思想方法1、求二次函数解析式的常用方法:待定系数法、配方法、数形结合等。
2、求二次函数解析式的常用思想:转化思想: 解方程或方程组3、二次函数解析式的最终形式:不管采纳哪一种解析式求解,最后结果最好化为一样式。
三、应用举例例1、已知二次函数的图像如图所示,求其解析式。
针对练习:1、已知二次函数的图像过原点,当x=1时,y有最小值为-1,求其解析式。
2、已知二次函数与x 轴的交点坐标为(-1,0),(1,0),点(0,1)在图像上,求其解析式。
例2、将抛物线向左平移4个单位,再向下平移3个单位,求平移后所得抛物线的解析式。
针对练习:3、将二次函数的图像向右平移1个单位,再向上平移4个单位,求其解析式。
例3、已知:如图,是某一抛物线形拱形桥,拱桥底面宽度OB是12米,当水位是2米时,测得水面宽度AC是8米。
(1)求拱桥所在抛物线的解析式;(2)当水位是2.5米时,高1.4米的船能否通过拱桥?请说明理由(不考虑船的宽度。
船的高度指船在水面上的高度)。
针对练习:4、如图;有一个抛物线形的隧道桥拱,那个桥拱的最大高度为3.6m,跨度为7.2m.一辆卡车车高3米,宽1.6米,它能否通过隧道?5. 刘炜在距离篮下4米处跳起投篮,篮球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最高度3.5米,然后准确落入蓝筐.已知蓝筐中心到地面距离为3.05米.假如刘炜的身高为1.9米,在这次跳投中,球在头顶上方0.15米处出手,问求出手时,他跳离地面的高度是多少?七、课堂小结1、二次函数常用解析式2、求二次函数解析式的一样方法:已知图象上三点坐标,通常选择一样式。
教案范例丨初中数学《二次函数解析式》
教案范例丨初中数学《二次函数解析式》参考范例《二次函数解析式》1. 题目:《二次函数解析式》2. 内容:3. 基本要求:(1)根据教学内容有合理的板书;(2)学生能够理解二次函数解析式,并表示简单变量之间的二次函数关系;(3)试讲时间不超过十分钟;(4)条理清晰,重点突出,体现师生互动,要适当的提问。
一、教学目标【知识与技能目标】结合具体情境了解二次函数的一般表达式,并能表示简单变量之间的二次函数关系。
【过程与方法目标】通过具体问题情境,学生经历探索分析和建立两个变量之间二次函数关系的过程,提高发现问题、分析问题和解决问题的能力。
【情感态度与价值观目标】养成自主探索,合作探究的良好学习习惯。
体会学习数学知识的价值,提高学习数学知识的兴趣。
二、教学重难点【教学重点】二次函数概念及解析式。
【教学难点】能表示简单变量之间的二次函数关系。
三、教学方法讲授法、提问法、讨论法、练习法。
四、教学过程(一)激趣导入出示一正方体,提出问题:设正方体的棱长为x,表面积为y,y 是x的函数吗?学生思考作答,给出具体关系式为y=6x2。
引导学生思考这类函数,导入新课。
(二)讲授新课环节一:讨论交流问题1、2出示书中问题1、2,提出问题:你发现了什么?由此你能得到什么结论?提问学生分享答案,教师加以总结,准确概括出两个数学问题中揭示的变量之间的关系。
环节二:概括得出二次函数解析式及定义教师继续提出问题:观察导入中的问题及书中问题1、2得出的三个式子,有什么共同点呢?引导学生们小组讨论,学生思考后回答,教师或学生相互评价,最后总结二次函数解析式及定义。
(三)运用新知教师引导学生做一做多媒体上出示的题目。
学生思考作答,针对结果给予评价并总结。
(四)归纳总结教师引导学生对本节课知识进行小结,学生畅谈本节课的收获,教师给予点评和补充。
(五)布置作业完成书中剩余习题。
布置思考题。
五、板书设计二次函数解析式1. 二次函数解析式的基本表示形式为y=ax²+bx+c(a≠0)2. 注意事项:①二次函数最高次必须为二次,a为二次项系数,a≠0;②b为一次项系数,c常数项。
二次函数的复习教案
二次函数的复习教案教案标题:二次函数的复习教案教案目标:1. 复习学生对二次函数的基本概念和性质的理解。
2. 强化学生对二次函数图像、顶点、轴对称性和零点的掌握。
3. 提高学生解决与二次函数相关的实际问题的能力。
教学时长:2个课时教学步骤:第一课时:1. 导入(5分钟)- 通过提问引起学生对二次函数的兴趣,例如:你知道什么是二次函数吗?它有哪些特点?2. 复习基本概念(15分钟)- 提醒学生二次函数的一般形式为f(x) = ax^2 + bx + c,并解释a、b、c的含义。
- 回顾二次函数的图像特点,如开口方向、顶点位置等。
- 强调二次函数的轴对称性和零点的概念。
3. 图像练习(20分钟)- 展示几个不同形态的二次函数图像,要求学生根据图像特点判断函数的开口方向、顶点和轴对称性。
- 给学生一些简单的二次函数,要求他们画出对应的图像,并标出顶点和轴对称线。
4. 零点练习(15分钟)- 提供一些二次函数的方程,要求学生解方程求出零点。
- 引导学生思考零点与图像的关系,例如:零点在图像上对应什么位置?第二课时:1. 复习顶点和轴对称线(10分钟)- 提醒学生顶点是二次函数图像的最高点或最低点,轴对称线通过顶点并将图像分为两部分。
2. 实际问题解决(20分钟)- 提供一些与实际问题相关的二次函数,要求学生解决问题。
- 引导学生将问题转化为二次函数的方程,并解方程求出答案。
3. 总结(10分钟)- 回顾本节课所学内容,强调二次函数的重要性和应用。
- 鼓励学生通过做更多的练习来巩固所学知识。
教学方法和教学资源:1. 教学方法:- 提问法:通过提问引导学生思考和回忆所学知识。
- 演示法:展示二次函数图像和实际问题,帮助学生理解和解决问题。
2. 教学资源:- PowerPoint幻灯片或白板,用于展示图像和问题。
- 二次函数练习题,包括图像练习和实际问题练习。
评估方法:1. 课堂表现评估:- 观察学生在课堂上的参与度和回答问题的准确性。
《二次函数》的复习教学设计
《二次函数》的复习教学设计数学《二次函数》优秀教案篇一一、教材分析本节课在讨论了二次函数y=a(x-h)2+k(a≠0)的图像的基础上对二次函数y=ax2+bx+c(a≠0)的图像和性质进行研究。
主要的研究方法是通过配方将y=ax2+bx+c(a≠0)向y=a(x-h)2+k(a≠0)转化,体会知识之间在内的联系。
在具体探究过程中,从特殊的例子出发,分别研究a0和a0的情况,再从特殊到一般得出y=ax2+bx+c(a≠0)的图像和性质。
二、学情分析本节课前,学生已经探究过二次函数y=a(x-h)2+k(a≠0)的图像和性质,面对一般式向顶点式的转化,让学上体会化归思想,分析这两个式子的区别。
三、教学目标(一)知识与能力目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程;2、能通过配方把二次函数y=ax2+bx+c(a≠0)化成y=a(x-h)2+k(a≠0)的形式,从而确定开口方向、顶点坐标和对称轴。
(二)过程与方法目标通过思考、探究、化归、尝试等过程,让学生从中体会探索新知的方式和方法。
(三)情感态度与价值观目标1、经历求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标的过程,渗透配方和化归的思想方法;2、在运用二次函数的知识解决问题的过程中,亲自体会到学习数学知识的价值,从而提高学生学习数学知识的兴趣并获得成功的体验。
四、教学重难点1、重点通过配方求二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标。
2、难点二次函数y=ax2+bx+c(a≠0)的图像的性质。
五、教学策略与设计说明本节课主要渗透类比、化归数学思想。
对比一般式和顶点式的区别和联系;体会式子的恒等变形的重要意义。
六、教学过程教学环节(注明每个环节预设的时间)(一)提出问题(约1分钟)教师活动:形如y=a(x-h)2+k(a≠0)的抛物线的对称轴、顶点坐标分别是什么?那么对于一般式y=ax2+bx+c(a≠0)顶点坐标和对称轴又怎样呢?图像又如何?学生活动:学生快速回答出第一个问题,第二个问题引起学生的思考。
初中数学_二次函数复习教学设计学情分析教材分析课后反思
《二次函数》复习课堂教学设计一、课前准备上课前一天下发《二次函数》复习学案,让学生根据学案要求,先自主复习《二次函数》的相应知识点,然后以小组为单位,通过合作交流,讨论解决学案中的练习题,提前为第二天上课做好充分准备。
上课以小组展示预习成果为主要形式,进行知识点的复习和训练巩固。
二、课堂教学设计:提高:1、二次函数y=ax2+bx+c(a ≠0)的图象如上图所示,那么下列判断正确的有(填序号) .① abc>0, ② 4a -2b+c<0, ③4a+2b+c<0 , ④ a+b+c<0, ⑤ a -b+c>0, ⑥ 2a+b>0知识点6:方程ax²+bx+c=0的根与函数y=ax²+bx+c 的图象之间的关系:大显身手:1、方程2450x x -+=的根是 ;则函数245y x x =-+的图象与x 轴的交点有 个,其坐标是2、方程210250x x -+-=的根是 ;则函数21025y x x =-+-的图象与x 轴的交点有 个,其坐标是 .3、下列函数的图象中,与x 轴没有公共点的是( ) A 、22y x =- B 、2y x x =- C 、269y x x =-+- D 、22y x x =-+4、函数 263y kx x =-+的图像与x 轴有交点,则k 的范围是( )A 、k<3B 、k<3且k ≠024b ac -24b ac ->0 24b ac -=024b ac -<0ax 2+bx+c=0y=ax 2+bx+c (a>0)提高题在难度的设计上注意了梯度的递进,考查学生从图象中提炼信息的能力,是对知识的综合运用。
这5道题目是本部分知识的应用,要注意第2题的理解,及时纠正学生错误。
第4、5题是一小组讨论后,有一名小组代表上前讲解,师生共同讲评。
教师引导学生共同完成此表格,给学生一分钟时间讨论后面习题,然后各请一名小组代表回答,师生共同点评。
九年级数学上册《用待定系数法求二次函数的解析式》教案、教学设计
九年级的学生已经在之前的学习中掌握了二次函数的基本概念、图像及其性质,具备了一定的数学基础。在此基础上,学生对于用待定系数法求二次函数解析式这一内容,虽然在理论上有一定的认知,但在实际操作中,可能仍存在以下问题:对于待定系数法的理解不够深入,难以灵活运用;在求解过程中,对于参数的选择和方程组的建立可能存在困难。此外,学生对于将实际问题抽象为二次函数模型的能力有待提高。因此,在教学过程中,应注重引导学生理解待定系数法的原理,通过实例分析,培养学生的建模能力和解决问题的策略。同时,关注学生的个体差异,给予不同层次的学生有针对性的指导,激发学生的学习兴趣,提高学生的数学素养。
4.分层教学,关注个体差异
针对不同层次的学生,设置不同难度的练习题,使每个学生都能在原有基础上得到提高。同时,加强对学困生的辅导,帮助他们克服困难,提高自信心。
5.及时反馈,巩固提高
在教学过程中,及时了解学生的学习情况,对学生的疑问进行解答,巩固所学知识。通过课堂练习、课后作业等形式,检验学生的学习效果,促使学生主动复习,提高知识掌握程度。
(二)讲授新知,500字
1.教师讲解待定系数法的原理,通过具体实例解释如何将实际问题抽象为二次函数模型,并引导学生理解待定系数法的基本步骤。
2.分步骤讲解待定系数法的求解过程,强调参数的选择和方程组的建立,让学生掌握求解二次函数解析式的方法。
3.结合课本例题,教师示范解题过程,强调注意事项,提醒学生关注细节。
6.拓展延伸,激发创新
在学生掌握基础知识的基础上,适当拓展延伸,引导学生探索二次函数在其他领域的应用,如物理、几何等,培养学生的创新意识和综合运用能力。
7.总结反思,提升素养
在教学结束时,组织学生进行总结反思,回顾学习过程,总结用待定系数法求二次函数解析式的关键步骤,提升学生的数学素养。
二次函数综合复习课教案
二次函数综合复习课一、教学目标:(1)使学生进一步理解二次函数解析式的求法,通过例题讲解,使学生了解二次函数与已学过有关知识之间的联系(2)全面回顾平行四边形,相似形的判定,一元二次方程的解法。
二、重点、难点:几何图形在二次函数中综合运用。
三、教学过程:1、复习(1)、二次函数解析式的三种求法;(2)、平行四边形的判定、矩形的判定;(3)、一元二次方程的解法。
2、例题分析与讲解:﹣,点P,对称轴为直线x=),B(是抛物,)A如图,已知二次函数的图象过点(0,﹣3PC=MPPMON上分别截取,⊥y轴于点N,在四边形PM线上的一动点,过点P分别作⊥x轴于点M,PN NF=NP.,OE=ON,MD=OM(1)求此二次函数的解析式;(2)求证:以C、D、E、F为顶点的四边形CDEF是平行四边形;(3)在抛物线上是否存在这样的点P,使四边形CDEF为矩形?若存在,请求出所有符合条件的P点坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)利用顶点式和待定系数法求出抛物线的解析式;(2)证明△PCF≌△OED,得CF=DE;证明△CDM≌△FEN,得CD=EF.这样四边形CDEF 两1CDEF是平行四边形;组对边分别对应相等,所以四边PMO是正方形.这样∽MD,可以证明矩)根据已知条件,利用相似三角PC分别求的交点联立解析式解方程组与坐标象限角平分y=y就是抛物y=+的坐标.符合题意的有四个,在四个坐标象限内各一个P解答:2 +ky=a(x+),(1)解:设抛物线的解析式为:)在抛物线上,B(,∵点A(0,﹣3),,∴k=.解得:a=1,22 3.+xx+)=x﹣∴抛物线的解析式为:y=(FC.DE、EF、)证明:如右图,连接(2CD、,y轴于点N,∵PM⊥x轴于点MPN⊥∴四边形PMON为矩形,,PN=OM.∴PM=ON∵PC=MP,OE=ON,;∴PC=OE OMMD=,NF=NP,∵∴MD=NF,.∴PF=OD 中,PCF在△与△OED),SASOEDPCF∴△≌△(.∴CF=DE FEN≌△,CDM同理可证:△CD=EF∴.,CF=DE ∵CD=EF,∴四边形是平行四边形.CDEF2为矩形.,使四边形)解:假设存在这样的点PCDEF(3n,PF=n.,PMON的边长PM=ON=m,PN=OM=n,则PC=m,MC=mMD=设矩形△PCF,∽△MDC若四边形CDEF为矩形,则∠DCF=90°,易证22∴,即,化简得:m=n,为正方形.PMON ∴m=n,即矩形2 3与坐标象限角平分线y=x或y=﹣x的交点.﹣∴点P为抛物线y=x+x联立,,解得,(﹣;),﹣P∴(,P),21,联立,解得,1).,P,P∴(﹣33),(﹣143为矩形.这样的点有四个,在四个坐标象限内各一个,其坐,使四边形CDEF∴抛物线上存在点P).11(﹣,33(﹣,,﹣(﹣,,(标分别为:P)P)P,)P,4213相似三角形、全等三角形、待定系数法、考查了二次函数的图象与性质、点评:本题是二次函数综合题型,)问的要2解方程、矩形、正方形等知识点,所涉及的考点较多,但难度均匀,是一道好题.第((第点是全等三角形的证明,PMON问的要点是判定四边形)3然后列方程组求解.必须是正方形,3:练习:课后作业:22+bx﹣,2),抛物线y=x,BAC=90°A(1,0),B(0如图,在坐标系xOy 中,△ABC是等腰直角三角形,∠C点.的图象过1)求抛物线的解析式;(的面积分为相等的两部分?.当ll移动到何处时,恰好将△ABC(2)平移该抛物线的对称轴所在直线点坐标;若不存P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出(3)点P 在,说明理由.二次函数综合题.如解答图所示:的坐标求出抛物线的解析,求出点C的坐标;然后利用点C△(1)首先构造全等三角形AOB≌△CDA 式;的表达式;根F,则可求出EF与BC、AC交于点E、AC(2)首先求出直线BC与的解析式,设直线l的解析式;=据SS,列出方程求出直线l ABC△△CEF P)首先作出?PACB,然后证明点在抛物线上即可.(3 .ACD=90°DC作CD⊥x轴于点,则∠CAD+∠1解:(1)如答图所示,过点,CAD=90∠OAB=90°,∠OAB+∠°∵∠OBA+ ,∠ACDOBA=∠CAD.∴∠OAB=∠中,△CDAAOB∵在△与≌△CDA(.ASA)AOB∴△,,∴CD=OA=1AD=OB=2 ,∴OD=OA+AD=34).(3,1∴C2﹣2上,3(,1)在抛物线y=x+bx∵点C.×9+3b﹣2,解得:b=﹣∴1=2.x﹣2∴抛物线的解析式为:y=x﹣,由勾股定理得:AB=.(2)在Rt△AOB中,OA=1,OB=22 =.=∴SAB ABC△)(3,1,2BC设直线的解析式为y=kx+b,∵B(0,),C,∴k=﹣,b=2,解得.﹣x+2∴y=的解析式为:同理求得直线ACy=x﹣.如答图1所示,.)=﹣x)﹣(,则分别交于点与设直线lBC、ACE、FEF=(﹣x+2x﹣.x=3CE△CEF中,边上的高h=OD﹣﹣x=SS,由题意得:ABC△△CEF S,h=EF即:?ABC△()﹣∴(x?3×)﹣x=,2)x=3,﹣3(整理得:x=3+﹣x=3解得或(不合题意,舍去),5 的面积分为相等的两部分.时,恰好将x=3﹣△ABC∴当直线l解析式为)存在.(3 如答图2所示,﹣OG=1.G,则CG=OD=3,OG=1,BG=OB⊥过点C作CGy轴于点PACB为平行四边形.BC,且AP=BC,连接BP,则四边形作过点AAP∥,,则易证△PAH≌△BCG⊥过点P作PHx轴于点H ,∴PH=BG=1,AH=CG=3 OH=AH﹣OA=2,∴1).P∴(﹣2,2 P在抛物线上.y=1x=x 抛物线解析式为:y=x﹣﹣2,当﹣2时,,即点P,点的坐标为(﹣2,).1P∴存在符合条件的点点评:是二次函数综合题型,考查了二次函数的图象与性质、一次函数的图象与性质、待定系数法、全等三角形、四边形、等腰直角三角形等知识点.试题难度不大,但需要仔细分析,认真计算.6。
九年级数学: 第22章二次函数复习课教案
第22章二次函数复习课教案教材分析:函数是初中数学中最基本的概念之一,从八级首次接触到函数的概念,就学习了正比例函数、一次函数,然后九年级上册学习了反比例函数,九年级下册学习了二次函数,函数贯穿于整个初中数学体系之中,也是生活实际中构建数学模型的重要工具之一。
二次函数在初中数学教学中占有极其重要的地位,它不仅中初中代数内容的引申,更为高中学习一元二次不等式等内容打下基础。
在历届中考试题中,二次函数都是压轴题中不可缺少的内容。
二次函的图象和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起到了很好的推动作用。
并且二次函数与一元二次方程、不等式等知识的联系,使学生能更好地对自己所学的知识融会贯通。
学情分析:九年级的学生在新课的学习中已经掌握了二次函数的定义、会作二次函数的图象并能根据图象对二次函数的性质进行简单地分析。
并且经过一段时间的练习,学生的分析能力和理解能力都较学习新课时有所提高,学生的学习热情较高,有了一定的自主探究和合作学习能力。
不过,学生学习能力差异较大,两级分化过于明显。
复习目标:知识与技能目标:1.回忆所学二次函数的基础知识,进一步理解掌握2.灵活运用基础知识解决相关问题,提高学生解决问题的能力过程与方法目标:1.学生自查遗忘的知识点,回答问题,提出问题。
2.经历例题习题的解答,提高技能。
3.讨论、交流,教师答疑、解惑、指导。
情感、态度与价值观目标:渗透二次函数在实践中的运用,使学生知道学为所用,树立服务社会的思想。
复习重点、难点:二次函数的基础知识回忆及灵活运用。
复习方法:自主探究、分组合作交流复习过程:一、知识梳理(学生以小组为单位,课前已独立完成)学生分组汇报本章相关知识点,各组互相补充:1、二次函数的概念:若两个变量x 、y 之间的对应关系可以表示成c bx ax y ++=2(a 、b 、c 是常数,0≠a )的形式,则称y 是x 的二次函数。
一组选派代表出示相关练习,由一组指定某一组完成练习,汇报结果,评价打分。
用待定系数法求二次函数的解析式。优秀教学设计(教案)
用待定系数法求二次函数的解析式。
优秀教学设计(教案)本节课的主要内容是用待定系数法求解二次函数的解析式。
虽然学生的数学基础比较薄弱,但是他们已经对此方法有所认识,并且具备一定的分析问题、解决问题能力和创新意识。
在教学中,我们将重点培养学生的观察、比较、归纳、应用以及猜想、验证的研究过程,使他们掌握类比、转化等研究方法,养成既能自主探索,又能合作探究的良好研究惯。
本节课的研究目标包括:1、能根据已知条件选择合适的二次函数解析式;2、会用待定系数法求二次函数的解析式;3、培养学生的探究能力和合作交流的意识,让他们体会实际生活与数学的密切联系,感受数学带给人们的作用,激发研究热情,培养研究兴趣。
在课程中,我们将使用班班通等媒体进行教学,让学生更加直观地了解待定系数法求解二次函数的过程。
课程将以一个例题为引入,让学生通过观察、推理、计算等方式,掌握求解二次函数解析式的方法。
同时,我们将重点讲解如何选用适当的函数表达式求解二次函数解析式,帮助学生克服难点。
已知抛物线的顶点是(1,2),且经过点(2,3)。
求对应的二次函数解析式y=a(x-1)2+2.根据题意,代入点(2,3)可得a(2-1)2+2=3,解得a=1.因此,所求的二次函数为y=(x-1)2+2.又已知该二次函数的图像经过点(4,-3),当x=3时有最大值4.求出对应的二次函数解析式。
解题思路:根据已知条件,可以列出方程组,解出a、b、c的值,从而得到二次函数解析式。
具体步骤如下:1.代入点A(-1,-1)和点B(3,9),可得两个方程:a(-1)2-4(-1)+c=-1a(3)2-4(3)+c=9化简可得:a-c=39a+c=30解得a=2,c=-1,b=0.2.根据二次函数的顶点公式,可得对称轴的方程为x=1,顶点坐标为(1,1)。
3.综上所述,该二次函数的解析式为y=2x2-1.在教学中,我们应该让学生自己思考、自己探索,让他们发现规律,从而更好地掌握求函数解析式的方法。
最新人教版九年级数学上册《用待定系数法求二次函数的解析式》优质教案
第二十二章二次函数22.1.4 二次函数y=ax2+bx+c的图象和性质第2课时用待定系数法求二次函数的解析式学习目标:1.会用待定系数法求二次函数的表达式.2.会根据待定系数法解决关于二次函数的相关问题.重点:会根据待定系数法解决关于二次函数的相关问题.难点:会用待定系数法求二次函数的表达式.一、知识链接1.一次函数y=kx+b(k≠0)有几个待定系数?通常需要已知几个点的坐标求出它的表达式?2.求一次函数表达式的方法是什么?它的一般步骤是什么?二、要点探究探究点1:用一般式法求二次函数的表达式问题1 (1)由几个点的坐标可以确定二次函数?这几个点应满足什么条件?(2)如果一个二次函数的图象经过(-1,10 ),(1,4),(2,7)三点,能求出这个二次函数的解析式吗?如果能,求出这个二次函数的解析式.例1 一个二次函数的图象经过 (0,1)、(2,4)、(3,10)三点,求这个二次函数的表达式. 要点归纳:用一般式法求二次函数表达式的方法已知三点求二次函数表达式的方法叫做一般式法.其步骤是:①设函数表达式为y=ax2+bx+c;②代入后得到一个三元一次方程组;③解方程组得到a,b,c的值;④把待定系数用数字换掉,写出函数表达式.练一练下面是我们用描点法画二次函数的图象所列表格的一部分,试求出这个二次函数的表达式.试一试已知二次函数y=a(x-1)2+4的图象经过点(-1,0).求这个二次函数的解析式;例2 一个二次函数的图象经点(0,1),它的顶点坐标为(8,9),求这个二次函数的表达式. 要点归纳:用顶点法求二次函数的方法已知抛物线的顶点坐标,求表达式的方法叫做顶点法.其步骤是:①设函数表达式是y=a(x-h)2+k;②先代入顶点坐标,得到关于a的一元一次方程;③将另一点的坐标代入原方程求出a值;④a用数值换掉,写出函数表达式.练一练已知一个二次函数有最大值4.且x>5时,y随x的增大而减小,当x<5时,y随x的增大而增大,且该函数图象经过点(2,1),求该函数的解析式.探究点3:用交点法求二次函数的表达式问题选取(-3,0),(-1,0),(0,-3),试出这个二次函数的表达式.要点归纳:用交点法求二次函数表达式的方法已知抛物线与x轴的交点,求表达式的方法叫做交点法.其步骤是:①设函数表达式是y=a(x-x1)(x-x2);②先把两交点的横坐标x1,x2代入到表达式中,得到关于a的一元一次方程;③将方程的解代入原方程求出a值;④a用数值换掉,写出函数表达式.例3 分别求出满足下列条件的二次函数的解析式.(1)图象经过点A(1,0),B(0,-3),对称轴是直线x=2;(2)图象顶点坐标是(-2,3),且过点(1,-3);(3)如图,图象经过A,B,C三点.三、课堂小结.2.过点(2,4),且当x=1时,y 有最值为6,则其表达式是 .3.已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1).求这个二次函数的表达式.4.已知抛物线与x 轴相交于点A(-1,0),B(1,0),且过点M(0,1),求此函数的表达式.5.如图,抛物线y =x 2+bx +c 过点A(-4,-3),与y 轴交于点B ,对称轴是x =-3,请解答下列问题:(1)求抛物线的表达式;(2)若和x 轴平行的直线与抛物线交于C ,D 两点,点C 在对称轴左侧,且CD =8,求△BCD 的面积. 参考答案 自主学习 知识链接 1.2个 2个2.(1)设:(表达式) (2)代:(坐标代入) (3)解:方程(组)(4)还原:(写表达式) 课堂探究 二、要点探究探究点1:用一般式法求二次函数的表达式问题 (1)3个 由两点(两点的连线不与坐标轴平行)的坐标,可以确定一次函数的解析式,类似地,由不共线(三点不在同一直线上)的坐标,可以确定二次函数的解析式. (2)解:设所求二次函数的解析式为y=ax 2+bx+c.由已知,图象经过(-1,10 ),(1,4),(2,7)三点,得关于a ,b ,c 的三元一次方程组10,4,427,a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩解得2,3,5.a b c =⎧⎪=-⎨⎪=⎩所求二次函数解析式为y=2x 2-3x+5. 例1 解: 设这个二次函数的表达式是y=ax 2+bx+c ,由于这个函数经过点(0,1),可得c=1.又由于其图象经过(2,4)、(3,10)两点,可得4214,93110,a b a b ++=⎧⎨++=⎩解得3,23.2a b ⎧=⎪⎪⎨⎪=-⎪⎩∴所求的二次函数的表达式是2331.22y x x =-+ 练一练 解: 设这个二次函数的表达式是y=ax 2+bx+c ,把(-3,0),(-1,0),(0,-3)代入y=ax 2+bx+c 得930,0,3,a b c a b c c -+=⎧⎪-+=⎨⎪=-⎩解得1,4,3.a b c =-⎧⎪=-⎨⎪=-⎩∴所求的二次函数的表达式是y=-x 2-4x-3.探究点2:用顶点法求二次函数的表达式试一试 解:把(-1,0)代入二次函数解析式得4a+4=0,即a=-1,则函数解析式为y=-(x-1)2+4. 例2 解: 因为这个二次函数的图象的顶点坐标为(8,9),因此,可以设函数表达式为y=a(x-8)2+9.又由于它的图象经过点(0,1),可得1=a(0-8)2+9.解得a=1.8-∴所求的二次函数的解析式是y=()28189.x --+ 练一练 解:由题意得,二次函数的顶点坐标为(5,4),设关系式为y=a(x-5)2+4,把(2,1)代入得,1=9a+4,解得a=1.3-∴二次函数的关系式为y=()25134.x --+探究点3:用交点法求二次函数的表达式问题:解:∵(-3,0)、(-1,0)是抛物线y=ax 2+bx+c 与x 轴的交点.所以可设这个二次函数的表达式是y=a(x-x 1)(x-x 2).其中x 1、x 2为交点的横坐标.因此得y=a(x+3)(x+1).再把点(0,-3)代入上式得a(0+3)(0+1)=-3,解得a=-1,∴所求的二次函数的表达式是y=-(x+3)(x+1),即y=-x 2-4x-3.例3 解:(1)∵图象经过点A(1,0),对称轴是直线x=2,∴图象经过另一点(3,0).∴设该二次函数的解析式为y=a(x-1)(x-3).将点(0,-3)代入,得-3=a ·(-1)(-3).解得a=-1.∴该二次函数的解析式为y=-(x-1)(x-3)=-x 2+4x-3.(2)解:∵图象的顶点为(-2,3),且经过点(1,-3),设抛物线的解析式为y=a(x+2)2+3,把(1,-3)代入,得a(1+2)2+3=-3,解得a=2.3-∴抛物线的解析式为y=()2223 3.x +-+(3)根据图象可知抛物线y=ax 2+bx+c 经过A (-1,0),B (0,-3),C (4,5)三点,代入可得0,3,1645,a b c c a b c -+=⎧⎪=-⎨⎪++=⎩解得1,2,3.a b c =⎧⎪=-⎨⎪=-⎩∴所求的二次函数的表达式是y=x 2-2x-3.当堂检测 1.234y x =2.y=-2(x-1)2+6 3.解:设这个二次函数的表达式为y =ax 2+bx +c .依题意得5,4,1,a b c c a b c -+=-⎧⎪=-⎨⎪++=⎩解得2,3,4.a b c =⎧⎪=⎨⎪=-⎩∴这个二次函数的表达式为y =2x 2+3x -4.4.解:因为点A(-1,0),B(1,0)是图象与x 轴的交点,所以设二次函数的表达式为y =a(x +1)(x -1).又因为抛物线过点M(0,1),所以1=a(0+1)(0-1),解得a =-1,所以所求抛物线的表达式为y =-(x +1)(x -1),即y =-x 2+1.5.解:(1)把点A(-4,-3)代入y =x 2+bx +c 得16-4b +c =-3,c -4b =-19.∵对称轴是x =-3,∴ 2b- =-3,∴b =6,∴c =5,∴抛物线的表达式是y =x 2+6x +5.(2)∵CD ∥x 轴,∴点C 与点D 关于x =-3对称.∵点C 在对称轴左侧,且CD =8,∴点C 的横坐标为-7,∴点C 的纵坐标为(-7)2+6×(-7)+5=12.∵点B 的坐标为(0,5),∴△BCD 中CD 边上的高为12-5=7,∴S △BCD =12×8×7=28.教师寄语同学们,生活让人快乐,学习让人更快乐。
二次函数的复习课教案
二次函数复习课(1)复习目标:1、通过复习使学生对二次函数知识的理解系统化;2、通过复习进一步强化对二次函数概念的理解;2、熟练运用二次函数的图像、性质,借助数形结合解决有关问题;4、灵活掌握二次函数解析式的求法。
复习重点:1、二次函数的图像与性质。
2、二次函数解析式的确定。
复习难点:如何正确利用图像信息解决二次函数的相关问题。
复习方法:讲练结合教学用具:多媒体辅助教学复习过程小结:①知识点考察:二次函数的概念②出题的两种题型③再次强调次数与系数三、二次函数的图像与性质1.(1)已知二次函数图象如图,你能直观从图中得到哪些信息?答:a<0,b>0,c>0,△>0小结:复习a、b、c、△的作用:a——开口方向a、b——对称轴c——与y轴交点△——与x轴交点个数1.已知二次函数图象如图,函数图象与x轴的两个交点(-1,0)和(3,0),你还能从此函数图像中得到哪些信息?答:对称轴:x=1增减性:当x<1时,y随x的增大而增大当x≥1时,y随x的增大而减小当-1<x<3时,y>0当x<-1或x>3时,y<02.刚才通过图像得到了a、b、c、△的范围,下面如果给出a、b、c能否得到函数的图像?学生独立完成,然后回答问题,教师小结学生看图回答问题复习a、b、c、△的作用回答问题两道题分别是考题中经常出现的类型,再次总结关键在于二次项的次数与系数,时间关系不再展开。
通过二次函数的大致图像得到a、b、c、△的范围,这是第一层次的要求通过具体的题来复习a、b、c、△的作用通过增加条件来复习二次函数的性质-1 3练习:二次函数y=x 2+2x-1图象的大致位置是( )A B C D 小结:由a 、b 、c 的符号确定图像 四、解析式的确定刚才我们由函数图像得到了开口方向、对称轴,增减性等,那么如果我们再增加一个条件,能否得到它的解析式。
1.(3)你能否根据此函数图像求出函数的解析式? 答案:复习:解析式的三种形式:一般式、顶点式、两根式 此题分组分别采取三种方法解答。
二次函数复习课教案
二次函数复习课(一)
一、教学目标:
1.梳理二次函数知识,加深对二次函数概念和二次函数图像及其性质的理解;
2.能从二次函数图像上获取正确、有用的信息,并能用合理的方法求函数解析式,提高观察、分析、归纳和概括的能力.
3.在综合运用二次函数知识的过程中领会图形运动、数形结合以及分类、化归等数学思想方法.
二、教学重点与难点:
重点:二次函数概念和从二次函数图像上获取正确有用的信息.
难点:二次函数知识综合运用中的分类讨论.
-43
2
问:从图像上得到什么信息?你如何求?。
二次函数复习课教案
《二次函数复习课》教案教学目标:知识技能:1、复习二次函数的基本图像性质2、能够在基本知识的复习上更进一步地体会数形结合思想 数学思考:体会一道压轴题是由基本数学知识和数学模型的融合生成的 解决问题:1、能通过抛物线图像得出二次函数的基本信息2、熟练求出二次函数解析式3、能在解决一般的对称性问题基础上解决更加复杂的数形结合问题 情感态度:1、体会数学是一门具有很强融合性的自然科学2、让学生在总结中提升对数学的思维水平教学重点:二次函数知识点复习教学难点:二次函数与数形结合思想的知识融合应用教学过程一、引言师:前面我们学习了二次函数的图像性质以及利用二次函数的模型解决实际问题,本节课将对前面的知识做一个梳理,希望通过本节课的梳理可以让同学们对二次函数有一个更深刻的理解;二、启发问答,激活思维出示一个二次函数 的图像,由学生观察图像说出从图像中获得的信息并将学生得出的信息板书;1、开口向上2、与x 轴有两个交点,3、与y 轴交点在x 轴上方,4、对称轴在y 轴右侧5、与x 轴两个交点的位置都在x 轴的右侧;6、抛物线的顶点在第四象限那么从图像中观察到的这些信息与这个二次函数2y ax bx c =++的系数之间有什么关系呢?图像是否就隐含了这些关系呢?生答,师板书1、开口向上⇔a>02、与x 轴有两个交点 ⇔240b ac ->3、与y 轴交点在x 轴上方⇔c>04、对称轴在y 轴右侧⇔02b x a =->,则0020b b a a ⎫->⎪⇒<⎬⎪>⎭5、与x 轴两个交点的位置都在x 轴的右侧⇔121200x x x x +>⎧⎨>⎩⇔00b a c a⎧->⎪⎪⎨⎪>⎪⎩ 6、顶点在第四象限⇔顶点坐标240,024b ac b a a ⎛⎫-->< ⎪⎝⎭2y ax bxc =++总结:二次函数的图像完全由二次函数的系数决定,这一点每位同学一定要清楚三、深入拓展,切入主旨师:为了更精确的探究这个二次函数的性质,我们需要求出这个二次函数的解析式,请在不改变这个图形的基础上,设计出正确的条件,何为正确条件,由学生作出解释生:正确的条件就是指由所设计出的条件求出的解析式要满足图像师:一般情况下,求抛物线解析式会需要用到几个条件?三个条件学生可能设计出的条件:一、已知二次函数经过的三个点的坐标,二、已知抛物线的顶点以及另一个点的坐标,设计这种条件的需说出为什么只需要两个条件即可,三、已知抛物线的三个系数a,b,c ;补充,通过一个已知函数进行向右,向下平移后得到的;已知抛物线对称轴以及不对称的两个点坐标四、解决问题例:如图,已知抛物线2y ax bx c =++的对称轴为直线x =2,与x 轴两个交点A 、C 之间的距离为2,且过点B (0,4),求这条抛物线的解析式,并写出这条抛物线的顶点坐标.启发学生利用抛物线的对称性解决问题,然后给出时间,让学生完成后一位学生板书:教师点评并写出正确的解析式与顶点坐标:2416433y x x =-+与42,3⎛⎫- ⎪⎝⎭; 五、步步拓展,渗透思想师:得到了解析式,我们就可以更加准确讨论抛物线图像与方程,不等式之间的关系,逐步展示每个问题,以期在教学中渗透数形结合思想;1、求出一元二次方程24164033x x -+=的解 启发学生:这个问题的本质就是二次函数函数值为0时求出自变量的值,由图像观察可知:121,3x x ==2、求出一元二次不等式24164033x x -+<的解集 问题的本质就是二次函数函数值小于0时的自变量取值范围3、求出一元二次不等式241644333x x -+≥-的解集 问题的本质就是二次函数的函数值大于或等于43-时的自变量取值范围,由于该二次函数的最小值就是43-,所以x 取任意实数时,函数值都是大于或等于43- 4、若一元二次方程2416433x x k -+=有两个实数解,求k 的取值范围 问题的本质就是二次函数与直线y k =的交点个数的讨论5、当4x ≥时,求证代数式2416433x x -+恒大于0 问题的本质是利用二次函数的增减性,当开口向上时,当x>h 时,y 随x 的增大而增大六、小结作业师总结:数形结合思想是解决函数问题的重要方法并布置作业《顶尖课课练:归纳整合》七、教学反思本节课的教学计划是利用一道2012年5月份的福州质检的压轴题的改编逐步有梯度的复习二次函数的基本图像性质,求解析式以及渗透数形结合思想,在教学过程中,预留给学生的时间较为充分,绝大多数学生通过训练和问答巩固了对二次函数知识的应用,但是本节课在教学过程中,还是过分按照自己的预设进行,限制了学生的思维,另外尽管在之前教学中介绍过诸如“一元二次不等式”的概念,但是这种超出课标的概念还是应该在之后的教学中尽可能的规避;八、板书设计1、开口向上⇔a>02、与x 轴有两个交点 ⇔240b ac ->3、与y 轴交点在x 轴上方⇔c>04、对称轴在y 轴右侧⇔02b x a =->,则0020b b a a ⎫->⎪⇒<⎬⎪>⎭5、与x 轴两个交点的位置都在x 轴的右侧⇔121200x x x x +>⎧⎨>⎩⇔00b a c a⎧->⎪⎪⎨⎪>⎪⎩ 6、顶点在第四象限⇔顶点坐标240,024b ac b a a ⎛⎫-->< ⎪⎝⎭ 二次函数2y ax bx c =++的对称轴为直线x=2,AC =2∴2y axbx c =++过A(3,0),C(1,0),B(0,4) ∴40930c a b c a b c =⎧⎪++=⎨⎪++=⎩ ∴431634a b c ⎧=⎪⎪⎪=-⎨⎪=⎪⎪⎩∴抛物线解析式为2416433y x x =-+,配方得,()244233y x =--,顶点坐标为42,3⎛⎫- ⎪⎝⎭ x=2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数专题(一)——求二次函数表达式教学目标
会通过待定系数法求二次函数的关系式;
教学过程
二次函数是初中数学的一个重要内容,也是高中数学的一个重要基础。
熟练地求出二次函数的解析式是解决二次函数问题的重要保证。
二次函数的解析式有三种基本形式:
1、一般式:y=ax2
+bx+c (a≠0)。
2、顶点式:y=a(x-m)2
+k (a≠0),其中点(h,k)为顶点,对称轴为x=h。
3、交点式:y=a(x-x
1)(x-x
2) (a≠0),其中x
1,x
2是抛物线与x轴的交点的横坐标。
求二次函数的解析式一般用待定系数法,但要根据不同条件,设出恰当的解析式:1、若给出抛物线上任意三点,通常可设一般式。
2、若给出抛物线的顶点坐标或对称轴或最值,通常可设顶点式。
3、若给出抛物线与x轴的交点或对称轴或与x轴的交点距离,通常可设交点式。
探究问题,典例指津:
例1、已知二次函数的图象经过(0,1),(2,4),(3,10)三点,请你用待定系数法求这个函数的解析式。
例2、已知二次函数的图象经过(0,1),它的顶点坐标是(8,9),求这个函数的解析式。
练习、已知抛物线的顶点在原点,且过(2,8),求这个函数的解析式。
例3、已知抛物线与x轴交于A(-1,0)、B(1,0),并经过M(0,1),求抛物线的解析式.
练习1:根据下列已知条件,求二次函数的解析式:
(1)抛物线过点(0,2),(1,1),(3,5)
(2)抛物线顶点为M(-1,2)且过点N(2,1)
(3)抛物线过原点,且过点(3,-27),(-1,1)
(4)已知二次函数的图象经过点(1,0),(3,0),(0,6)求二次函数的解析式。
例4、已知抛物线y=ax2+bx+c与x轴相交于点A(-3,0),对称轴为x=-1,顶点M到x轴的距离为2,求此抛物线的解析式.
练习2:根据下列已知条件,求二次函数的解析式:
(1)抛物线y=ax2+bx+c经过(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。
(2)已知当x=2是,函数有最小值为3,且过点(1,5)
(3)二次函数的图像经过点(3,-8)对称轴为直线x=2,抛物线与X轴两个交点之间的距离为6课堂小结
本节课是用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式
2
(1)当已知抛物线上任意三点时,通常设为一般式y=ax+bx+c形式。
2
(2)当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-m)+k形式。
(3)当已知抛物线与x轴的交点或交点横坐标时,通常设为交点式y=a(x -x
1)(x-x
2)。
作业布置:
求二次函数解析式专项练习一张。