转化与化归的思想方法在立体几何中的应用
转化与化归思想在高中数学解题教学中的应用研究
转化与化归思想在高中数学解题教学中的应用研究【摘要】:随着科技、经济的迅速发展,数学在不同领域的应用日益广泛,数学教育成为世界各国关注的重点。
数学思想方法是数学学科的精髓,是分析与解决问题的理论基础,而转化与化归思想是数学中最重要的思想之一。
数学解题过程中处处渗透着转化与化归思想,学生解题能力的高低很大程度上也取决于其转化与化归能力的强弱。
笔者身处高中一线教学,结合教育教学实践经验以及调查分析,发现目前高中生数学解题中的转化与化归能力相对欠缺,影响学生解题能力的提升。
笔者希望本文的研究能够给一线教师提供一定的借鉴作用,对于提高学生的解题能力提供一定的帮助。
首先,笔者通过文献参考,了解转化与化归思想在国内外的研究现状,分析转化与化归思想的本质和内涵、转化与化归的原则、以及高中数学解题中转化与化归的常用方法。
简单来说,转化与化归思想就是通过观察、分析、类比、联想等思维过程把数学中需要解决的问题,遵循熟悉化、简单化、直观化等原则,选择合适的方法进行转化,然后归结到某些已经解决或比较容易解决的问题的一种思想方法。
其次,通过访谈和调查问卷,以我校部分教师和学生为研究对象,分别从教师和学生的角度研究转化与化归思想在高中数学中的应用现状。
研究表明,目前高中教师能够认识到转化和化归思想在高中数学解题中的重要作用。
但是,不少教师本身对于转化与化归思想缺乏系统深入的研究,教学过程渗透有限。
大部分学生的转化与化归能力仍然有待提高。
然后,结合教学实践经验,从高中数学中的数列、立体几何、函数、解析几何以及不等式几个方面,分析转化与化归思想的渗透策略。
这里重点选取近几年高考试题中一些具有代表性的问题,结合学生解题过程中存在的问题,具体分析老师在教学过程中的处理方式以及实践效果。
并提供《常见的递推数列通项公式的求法》解题教学案例,对课堂实践情况进行了详细分析。
最后,结合调查研究,笔者提出几点教学建议。
一要相信学生,给他们更多实践的机会;二要深入挖掘教材,感悟化归思想;三要注重概念、定理、公式等基础知识的教学,并注重知识之间的联系;四是通过变式训练引导学生应用化归思想;五是加强一题多解和多解归一的训练;六是引导学生及时归纳总结。
转化与化归思想
转化与化归思想数学问题的解答离不开转化与化归,它既是一种数学思想,又是一种数学能力,是高考重点考查的最重要的思想方法.在高中数学的学习中,它无个不在,比如:处理立体几何问题时,将空间问题转化到一个平面上解决;在解析几何中,通过建立坐标系将几何问题化归为代数问题;复数问题化归为实数问题等.1.转化与化归的原则(1)目标简单化原则:将复杂的问题向简单的问题转化.(2)和谐统一性原则:即化归应朝着使待解决问题在表现形式上趋于和谐,在量、形关系上趋于统一的方向进行,使问题的条件和结论更均匀和恰当.(3)具体化原则:即化归言论自由应由抽象到具体.(4)低层次原则:即将高维空间问题化归成低维空间问题.(5)正难则反原则:即当问题正面讨论遇到困难时,可考虑问题的反面,设法从问题的反面去探求,使问题获解.2.转化与化归常用到的方法(1)直接转化法:把问题直接转化为基本定理、基本公式或基本图形问题.(2)换元法:运用“换元”把超越式转化为有理式或使整式降幂等,把较复杂的函数、方程、不等式问题转化为易于解决的基本问题.(3)数形结合法:研究原问题中数量关系(解析式)与空间形式(图形)关系,通过互相变换获得转化途径.(4)构造法:“构造”一个合适的数学模型,把问题变为易于解决的问题.(5)坐标法:以坐标系为工具,用计算方法解决几何问题,是转化方法的一个重要途径.(6)类比法:运用类比推理,猜测问题的结论,易于确定转化途径.(7)特殊化方法:把原问题的形式向特殊化形式转化,并证明特殊化后的结论适合原问题.(8)等价问题法:把原问题转化为一个易于解决的等价命题,达到转化目的.(9)加强命题法:在证明不等式时,原命题难以得证,往往把命题的结论加强,即命题的结论加强为原命题的充分条件,反而能将原命题转化为一个较易证明的命题,比如在证明不等式时:原命题往往难以得证,这时常把结论加强,使之成为原命题的充分条件,从而易证.(10)补集法:如果下面解决原问题有困难,可把原问题结果看作集合A ,而包含该问题的整体问题的结果类比为全集U ,通过解决全集U 及补集使原问题得以解决.角度一 函数、方程、不等式之间的转化例1 设函数f (x )=c bx ax ++232,若a+b+c=0,f (0)f (1)>0,求证: (Ⅰ)方程f (x )=0有实数根; (Ⅱ)-2<ab <-1; (Ⅲ)设x 1,x 2是方程f (x )=0的两个实根,则33≤|x 1-x 2|<32.角度二 正面与反面的转化例2 在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有____个。
化归思想在立体几何教学中应用
浅谈化归思想在立体几何教学中的应用摘要:培养学生空间想象能力和解决问题的能力,化归思想和方法对立体几何知识与平面几何知识的同化过程起着重要作用。
下位学习所学知识具有足够的稳定性,有利于牢固地固定新学习的意义。
以渗透性原则为主线,结合落实反复性、系统性和明确性的原则。
关键词:立体几何;空间想象能力;化归思想;转化一、现状与目的立体几何是高职数学一个重要章节,通过立体几何教学培养学生空间想象能力和解决问题的能力。
但对立体几何图形画法的认识、如何用平面图形来表示立体几何,以及如何解决立体几何中点、线、面的位置关系?都是现今高职学生学习中的重难点。
学生如何把立体几何学习内容纳入自身原有的知识结构中?数学中的化归思想和方法就是实施新旧知识的同化,化归思想和方法对立体几何知识与平面几何知识的同化过程起着重要作用。
二、化归思想的含义及原理在对问题仔细观察的基础上,展开丰富的联想以唤起对有关知识的回忆,开启思维的大门,顺利地借助旧知识、旧经验来处理面临的新问题,这种思想我们称之为“化归思想”。
心理学认为,“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种关系又称为下位关系,这种学习便称为下位学习”。
当学生掌握了一些数学思想和方法,再去学习相关的数学知识,就属于下位学习了。
下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义”。
即可使新知识顺利地纳入学生已有的认知结构中去,学生学习了数学思想、方法就能够更好地理解和掌握教学内容。
三、化归思想在立体几何教学中的应用把立体几何知识化归为平面几何知识来学习及解决问题,首先在教学目标设计中把化归思想方法作为教学内容考虑,以立体几何知识为载体,达到化归思想方法教学的目的。
把立体几何知识化归为平面几何知识来学习要遵循:以渗透性原则为主线,结合落实反复性、系统性和明确性的原则。
如:教学中一般不直接点明把立体几何知识化归为平面几何知识来学习,而是通过精心设计的教学过程,有意潜移默化地引导学生领会其中蕴含的化归思想和方法。
化归思想在立体几何教学中的渗透
另一方面 , 充分运用实物 模型感知 , 加强 图与形 的对照 , 实现 内平面 向空间转化 , 逐步让学生对空间观念 由感性 认识上升 到理性认识 , 而形 成正确的空闯观念 。 从
维普资讯
‘
1 2・ 1 2 正面与反面的转化
安丧师范学院学报( 自然科学版)
3 空间问题向平面问题转化
( 确定方 向) 。再例如将平面角定义 中的“ . 点’ 换成“ ,两射线” 线” “ 换戚 两个 半平面 ” 便形成了二面角 的定义 : 从一 条直 线
引 出的两个半平面所组成 的图形叫二面角。 但 受思维 定势的影 响 , 学生在学 习过程中可能会 出现 向旧学 习情 景 化归 ” 和任意扩大平 面几何知识和经 验应用范 围的情形 , 思维局限在平面上 , 同时类 比推理亦 有它的 局限性 , 因而教学 中, 一方面要沟通新 旧知识 问的联系 , 加以 比较 ;
化 归思想在立体几何教学 中的渗透
朱 良 进
( 范学校 , 安徽 太瑚 2 6 0 ) 太湖 4 4 0
一
般地说 , 在解决问题的过程 中, 有意识地对 问题进行“ 想—— 转化 ” 联 的思维活动 , 有意识地将一个生疏 、 复杂 的问
题转化为熟悉 的、 简单的问题来处理 的思维方式就是 化归思想。化 归思想在数学 中的渗透是培养学生 能力 、 提高综合紊 质 的需要 。 因为教学是一十有机整体 , 它的各个 部分 知识之 间的相互 联系、 相互渗透 , 问腰 的转 化提供 了条 件 。 为 渗透在
为三棱柱的体积的割补过程教师从演示中分析讲解并附以特显镜头从棱柱a?b?c?abc分割出来的两个锥体ca?abca?b?b让它们的顶点和面积相等的两个底面加以色彩随着分开复原再分开的移动和闪烁过程不难得突破解题教学的难点数学教学离不开解题特别是对于问题的抽象是解题的主要障碍如何化繁为简化虚为实
第四讲: 化归思想在解题中的应用
(1)若输入x0= ,则由数列发生器产生数列{xn},请写出{xn}的所有项;
(2)若要数列发生器产生一个无穷的常数列,试求输入的初始数据x0的值;
(3)若输入x0时,产生的无穷数列{xn},满足对任意正整数n均有xn<xn+1;求x0的取值范围
(A)ab≤1(B)ab<1(C)ab>1(D)a>1且b>1
3.正方形ABCD与正方形ABEF成90°的二面角,则AC与BF所成的角为( )
(A)45°(B)60°(C)30°(D)90°
4.(理科)(a+b+c) 展开式的项数是( )
(A)11(B)66(C)132(D)3
5.(理科)某房间有4个人,那么至少有2人生日是同一个月的概率是.(列式表示即可)
P是BC1上一动点,则CP+PA1的最小值是____.
分析:把立几问题转化为平几问题:连A1B,沿BC1将△CBC1展开与△A1BC1在同一个平面内,如图所示,
连A1C,则A1C的长度就是所求的最小值.
通过计算可得A1C1C=90又BC1C=45
A1C1C=135由余弦定理可求得A1C=
例 9已知下列三个方程: , , 中,至少有一个方程有实根,求实数 的取值范围。
分析:“ 和 有且仅有一个正确”等价于“ 正确且 不正确”或“ 不正确且 正确”,所以应先求出 和 分别正确时的解集,再用集合间的关系来运算。
解: 函数 在 上单调递减
不等式 的解集为
函数 在 上恒大于1。
函数 在 上的最小值为 。
不等式 的解集为 。
如果 正确且 不正确,则
“转化与化归”的思想方法在数学教学中应用
“转化与化归”的思想方法在数学教学中应用作者:章传科来源:《文理导航·教育研究与实践》 2014年第8期浙江省苍南县桥墩高级中学章传科转化与化归思想是高中数学最重要的思想之一,它的实质是揭示联系,实现转化。
除极简单的数学问题外,数学问题的解决基本上是通过转化为已知或已解决问题实现的。
从这个意义上讲,一个数学问题的解答过程就是一个从未知向已知转化的过程。
数学思想的作用是无声的,蕴涵于一个个具体的数学问题的解答过程中,要寻找它的踪迹,也必须先深入到数学问题中。
现在让我们在一些具体的问题中去体会“转化化归”的思想方法。
一、在函数与不等式问题中的应用。
函数与不等式的内容在每年的高考中几乎占去了三分之二,函数与不等式问题的内容丰富多变,解法灵活多样,是高考考查的重点也是难点。
函数的三要素中定义域和值域都与不等式紧密相连,很多函数问题与不等式问题是相互交错的,一些特定的函数问题和不等式问题直接求解相对比较困难,可运用转化的方式进行等价求解。
如解分段函数的“最值”问题或求方程解的个数问题。
例如:“证明不等式,其中x≥1”这种问题,如果按照常规的思维用不等式的证明方法如比较法﹑分析法等很难下手,但是转换一个角度,将它视作要证明函数:的值恒大于0,只需要利用导数考查函数的单调性,求最小值,问题就很解决了。
证明一个数学命题,实际上是由假设经过推理以得出结论,当直接处理不容易时,往往我们会先考虑它的等价命题或者辅助命题,去寻求解题的思路。
原命题的等价命题或辅助命题的证明必须是我们所熟悉的知识和方法。
这种运用等价问题法和构造函数法在解答一些直接处理很难下手的函数或不等式问题时非常有用,体现了“转化与化归”思想的熟悉化原则和简单化原则。
从新课改的课程内容设计来看,作为数学的基础性内容,函数、不等式和方程仍然是比重最大的一块,这三者的关系密不可分,三者之间问题的相互转化也是其问题设计的一个重要指导思想,“转化与化归”的思想方法有着大量的运用和体现。
化归思想在解三角形问题中的应用
化归思想在解三角形问题中的应用摘要:解三角形是高中数学的一个重要内容,它涉及到三角形的边、角以及面积的计算,并且与三角函数问题有着千丝万缕的关系,在实际生活中它也有着广泛的应用。
经验告诉我们,在解三角形问题中,如果能善用化归思想,掌握化归策略,便可以顺利找到解题突破口,为成功解题奠定基础。
关键词:化归思想;解三角形;应用化归思想(即转化与化归思想)是数学学科里面的一种重要思想方法,它不仅能拓宽解题思路,提高解题效率,而且对发展学生的思维能力和培养他们的学科素养,都有着非常重要的作用。
化归思想,其实也是一种解题策略,其目的就是将要待解决的问题转化为一类已经解决或相对比较容易解决的问题,即把未知化已知,陌生化熟悉,抽象化具体,繁琐化简单,从而使我们找到解决问题的方法和途径。
那么,在解三角形问题中有哪些化归策略呢?一、两种元素转化为一种元素在解三角形问题中,很多时候题目中给出的条件既有边元素又有角元素,那么我们可以根据正弦定理或者余弦定理,把其中一种元素化为另一种元素,即将边元素转化为角元素,或将角元素转化为边元素,从而求出答案。
例1:三角形的内角的对应边分别为,,求的大小.解析:由题意可知,点评:异名三角函数值之间的转化,方法有很多,最常用的就是利用同角三角函数的基本关系式,它可以实现正、余弦的相互转化,也可以实现正、余弦与正切之间的相互转化。
此外,还可以利用诱导公式或者其他等价变形来进行转化。
`三、高次幂转化为低次幂在很多数学问题里面,经常采用从高维到低维的转化化归。
例如,代数问题中的多个未知数转化一个未知数,高次方程或不等式转化为一次方程或不等式,立体几何中空间问题转化为平面问题,都体现了这种转化化归。
点评:上面问题中,根据给出的测量数据,我们构造了三角形,从而将求山的高度转化为了求三角形的边长,最终实现了问题的化归,利用解三角形知识,便使问题迎刃而解了。
结语:解三角形是一个重要知识点,而化归方法在解三角形中有着重要的应用。
转化与化归思想的理解及运用
转化与化归思想的理解及运用作者:丛卫红来源:《理科考试研究·初中》2013年第04期摘要:数学思想是数学学习中的重要一方面,掌握数学思想不但是学好数学的一个重要体现,也是学好数学的必要方法。
数学思想有很多种,如常见的如转化和化归思想就是其中的一种。
高考除了考查学生对知识点的掌握程度外,还考查学生们的理解和运用的能力,就是理解数学思想并利用数学方法进行解题的能力。
关键词:数学思想数学方法转化思想方法应用转化和化归思想是解答数学问题中常用的思想方法。
它不仅仅是一种常用的数学思想和数学方法,还体现了一种数学的能力。
在数学学习的过程中处处都体现着转化和化归思想。
比如一道立体几何的题目可以转化成平面几何来解决,或者在解决几何问题中,也可以通过化归将几何问题变为代数问题。
下面我将结合教学实践,谈谈有关转化和化归思想的理解及运用。
一、如何理解转化和化归思想转化,简单的理解就是把一个问题变成了另一个问题。
转化是数学中最常用的思想,转化的本质在于使问题简单化,明朗化。
常见的转化有一般与特殊的转化、等价转化、复杂与简单的转化、数与形的转化、构造转化、联想转化、类比转化等。
转化和化归思想是解决数学问题的基本方法,因为在解决问题中常用到的其他方法如分类讨论的思想,或者是数形结合的思想,其实都可以把它们归结为转化与化归思想。
比如分类讨论可以理解为一般与特殊的转化,数形结合可以理解为数与形的转化。
因此,转化和化归思想成了数学思想方法的一条主轴,从这方面可以有效促进学生理解数学思想方法,理解转化、化归的思想方法。
数学题目的解答过程也可以理解为是一步步转化的过程,化归也一样,实质就是不断对条件或者命题进行变更的过程。
二、转化和化归的目的运用每一种数学思想,都必须先要有一个目的,根据目的去选择适当的数学方法,是解决问题的一般步骤。
转化与化归的目的主要有这么几个:(1)将较为复杂的问题转变为简单的问题。
(2)使问题在表现形式上更加和谐统一,让问题中所涉及的量和形以及条件和结论的关系更加恰当和匀称,利于问题的解决。
高考大题专项(四) 立体几何
| || |
所以异面直线 PC 与 BQ
=
2
,
3
2
所成角的余弦值为 3 .
解题心得用向量法求异面直线所成角的一般步骤
(1)选择三条两两垂直的直线建立空间直角坐标系.
(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量.
(3)利用向量的夹角公式求出向量夹角的余弦值.
(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.
高考大题专项(四) 立体几何
【考情分析】
从近五年的高考试题来看,立体几何是历年高考的重点,约占整个试卷的
15%,通常以一大两小的模式命题,以中、低档难度为主.简单几何体的表面
积与体积、点、线、面位置关系的判定与证明以及空间角的计算是考查
的重点内容,前者多以客观题的形式命题,后者主要以解答题的形式命题考
【例题】 (2020安徽高三三模)如图,边长为2的等边三角形ABC所在平面与
菱形A1ACC1所在平面互相垂直,且BC∥B1C1,BC=2B1C1,A1C=
(1)求证:A1B1∥平面ABC;
(2)求多面体ABC-A1B1C1的体积.
3 1.
AC
(1)证明∵四边形A1ACC1是菱形,
∴AC∥A1C1.
对点训练2(2020辽宁高三三模)如图,在直棱柱ABCDA1B1C1D1中,底面ABCD为菱形,AB=BD=2,BB1=2,BD
与AC相交于点E,A1D与AD1相交于点O.
(1)求证:AC⊥平面BB1D1D;
(2)求直线OB与平面OB1D1所成的角的正弦值.
(1)证明∵底面ABCD为菱形,∴AC⊥BD.
查.着重考查推理论证能力和空间想象能力,而且对数学运算的要求有加强
转化与化归的思想方法(2)---高考题选讲
转化与化归的思想方法(2)---高考题选讲化归与转化的思想是指在解决问题时,采用某种手段使之转化,进而使问题得到解决的一种解题策略,是数学学科与其它学科相比,一个特有的数学思想方法,化归与转化思想的核心是把生题转化为熟题.事实上,解题的过程就是一个缩小已知与求解的差异的过程,是求解系统趋近于目标系统的过程,是未知向熟知转化的过程,因此每解一道题无论是难题还是易题,都离不开化归.例如,对于立体几何问题通常要转化为平面几何问题,对于多元问题,要转换为少元问题,对于高次函数,高次方程问题,转化为低次问题,特别是熟悉的一次,二次问题,对于复杂的式子,通过换元转化为简单的式子问题等等.在高考中,对化归思想的考查,总是结合对演绎证明,运算推理,模式构建等理性思维能力的考查进行,因此可以说高考中的每一道试题,都在考查化归意识和转化能力.【例1】已知球O的半径为1,A,B,C三点都在球面上,且每两点间的球面距离均为,则球心O到平面ABC的距离为().分析与求解:由已知条件,分析所给出的几何体的特征,可作如下转化:球心O到平面ABC的距离?圳正三棱锥的高?圳正方体的对角线,可立即得出球心O到平面ABC的距离=棱长为1的正方体对角线的.故B正确.【例2】设x、y∈R且3x2+2y2=6x,求x2+y2的X围.分析1:设k=x2+y2,再代入消去y,转化为关于x的方程有实数解时求参数k的X围的问题.其中要注意隐含条件,即x的X围.解法1:由6x-3x2=2y2≥0得0≤x≤2.设k=x2+y2,则y2=k-x2,代入已知等式得:x2-6x+2k=0,即k=-x2+3x,其对称轴为x=3.由0≤x≤2得k∈[0,4].所以x2+y2的X围是:0≤x2+y2≤4.分析2:三角换元法,对已知式和待求式都可以进行三角换元(转化为三角问题)解法2:由所以x2+y2的X围是:0≤x2+y2≤4.【点评】本题运用多种方法进行解答,实现了多种角度的转化,联系了多个知识点,有助于提高发散思维能力.此题还可以利用均值换元法进行解答.各种方法的运用,分别将代数问题转化为了其它问题,属于问题转换题型.【例3】求值:cot10°-4cos10°分析:要求该式的值,估计有两条途径:一是将函数名化为相同,二是将非特殊角化为特殊角.解法:cot10°-4cos10°【点评】无条件三角求值问题,是高考中常见题型,其变换过程是等价转化思想的体现.此种题型属于三角变换型.一般对于三角恒等变换,需要灵活运用的是同角三角函数的关系式、诱导公式、和差角公式、倍半角公式、和积互化公式以及万能公式,常用的手段是:切割化弦、拆角、降次与升次、和积互化、异名化同名、异角化同角、化特殊角等等.对此,我们要掌握变换的通法,活用公式,攻克三角恒等变形的每一道难关.【例4】球面上有3个点,其中任意两点的球面距离都相等于大圆周长的,经过3个点的小圆周长为4π,那么这个球的半径为().分析:将空间的问题转化为平面的问题来处理,这是解题的通法.由任意两点球面距离相等,则这三点构成过这三点截面上的等边三角形,又球面距离等于大圆周长的,则任意两点与球心构成的圆心角为,即,且任意两点与球心构成过这两点大圆截面上的等边三角形,则球半径等于球面上这三点任意二点的平面距离.运用转化的思想方法,把求球半径的问题转化为已知过球面三点的小圆周长,求这小圆上内接正三角形的边长.解:设A、B、C为球面上三点,过其中A、B两点的大圆,如图,O为球心,则∠AOB==,且OA=OB=R.则AB=OA=OB=R.同理OC=OA=OB=R,OB=OC=BC=R,∴△ABC为等边三角形.设过A、B、C三点的小圆为⊙O′,如图2,半径为r,则由2πr=4π,得r=2,∴AB=AC=BC=R=2rsin=4=2. ∴应选B.【点评】这里用了降维转化的思想方法,转化的对象为求球的半径,转化的方向为求△ABC的边长,转化的条件是“任意两点的球面距离都等于大圆周长的”.【例5】(某某卷)设函数f(x)=3ax2+2bx+c,若a+b+c=0,f(0)f(1)>0,求证:(Ⅰ)方程f(x)=0有实数根;(Ⅱ)-2<<-1;(Ⅲ)设x1,x2是方程f(x)=0的两个实根,则≤<.思路分析:对于(Ⅰ),应首先看系数3a是否为0.若a=0,则b=-c,f(0)f(1)=c(3a+2b+c)=-c2≤0,与已知矛盾,所以a≠0.从而有对于(Ⅱ),结论等价于(+1)(+2)<0.故由条件中消去c,有(a+b)(2a+b)<0,除以a2即可.对于(Ⅲ),应将转化为关于的表达式,即,再利用(Ⅱ)的结论求解.【点评】本题有效地将二次函数,二次方程,二次不等式融于一题,三问层层递进.(Ⅱ)、(Ⅲ)两问的证明均需我们盯住解题目标在条件与结论之间进行有效地转化与化归以寻求沟通点.【例6】(某某卷)设a为实数,设函数f(x)=a+的最大值为g(a).(Ⅰ)设t=,求t的取值X围,并把f(x)表示为t的函数m(t);(Ⅱ)求g(a);(Ⅲ)求满足g(a)=g()的所有实数a.思路分析:(Ⅰ)1. ∵,∴要使t有意义,必须1+x≥0且1-x≥0,即-1≤x≤1.∴t的取值X围是[,2].由①得c osθ-sinθ+cosθ=2cosθ,由于所以,即t∈[,2],f(x)=acos2θ+t.又t=3. 令则t=m+n,m2+n2=2,由数形结合可得t∈[,2].从而求出m(t)的解析式.(Ⅱ)、(Ⅲ)略.【点评】本题表面看是与无理函数有关的一个综合性的分步设问的问题,主要考查函数、方程等基本知识,试题的设置事实上也给出了处理结构较复杂函数f(x)的基本思路,只要经过换元很容易转化为常规的二次函数问题,其中的分类讨论对学生思维的周密性考查得力,具有很大的区分度.本题(Ⅰ)中三种思路分别利用代数换元、三角换元以及数形结合将问题进行了转化与化归从而求得了t的取值X围以及m(t)的解析式.【例7】(某某卷)已知函数f(x)=sin2x+2sinxcosx+3cos2x,x∈R.求:(Ⅰ)函数f(x)的最大值及取得最大值的自变量x的集合;(Ⅱ)函数f(x)的单调增区间.解:(Ⅰ)解法1:∴当时,f(x)取得最大值2+.因此,f(x)取得最大值的自变量x的集合是{xx=kπ+,k∈Z}.解法2:∵f(x)=(sin2x+cos2x)+sin2x+2cos2x=1+sin2x+ 1+cos2x=2+sin (2x+).∴当取得最大值2+.因此,f(x)取得最大值的自变量x的集合是(Ⅱ)f(x)=2+sin(2x+).由题意得2kπ-≤因此,f(x)的单调增区间是【点评】本题两问的求解都需同学们将f(x)准确而合理地转化为的形式,即考查同学们对三角函数式的转化与化归的能力,这也是高考试题重点考查的能力之一.【例8】(某某卷)已知数列{a n}满足2a n(n∈N+).(Ⅰ)证明:数列{an+1-an}是等比数列;(Ⅱ)求数列{a n}的通项公式;(Ⅲ)若数列{b n}满足(n∈N+),证明{bn}是等差数列.解:(Ⅰ)证明:a1=2为首项,2为公比的等比数列.(Ⅱ)解:由(Ⅰ)得(Ⅲ)证明:∵,∴∴{b n}是等差数列.【点评】本小题主要考查数列、不等式等基本知识,考查化归与转化的数学思想方法,考查综合解题能力.【例9】如图,在五面体ABCDEF中,点O是矩形ABCD的对角线的交点,面CDE是等边三角形,棱EFBC.(1)证明FO∥平面CDE;(2)设BC=CD,证明EO⊥平面CDF.解:(1)证明:取CD中点M,连结OM,在矩形ABCD中,OMBC,又EFBC,则EFOM.连结EM,于是四边形EFOM为平行四边形. ∴FO∥EM.又∵FO平面CDE,且EM平面CDE,∴FO∥平面CDE.(2)证明:连结FM,由(1)和已知条件,在等边△CDE中,CM=DM,EM⊥CD且EM=CD=BC=EF.因此平行四边形EFOM为菱形,从而EO⊥FM,∵CD⊥OM,CD⊥EM∴CD⊥平面EOM,从而CD⊥EO,而FM∩CD=M,所以EO⊥平面CDF.【点评】立体几何是考查转化与化归的重要截体,如本题中的位置关系转化(第(Ⅰ)问中的线线平行与线面平行的转化,第(Ⅱ)问中的线线垂直与线面垂直的转化),空间向平面的转化、等积转化等等.【例10】. 已知f(x)=tgx,x∈(0,π2),若x1、x2∈(0,π2)且x1≠x2,求证:12[f(x1)+f(x2)]>f(x x122)【分析】从问题着手进行思考,运用分析法,一步步探求问题成立的充分条件。
化归与转化思想在高考数学解题中的运用
GUAN GDONG JIAO YU GAO ZHONG2021年第2化归与转化思想在高考数学解题中的运用■甘肃省秦安县第二中学罗文军yxo化归与转换的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图像、公式或已知条件将问题通过变换加以转化,进而达到解决问题的思想等价转化总是将抽象转化为具体,复杂转化为简单、未知转化为已知,通过变换迅速而合理的寻找和选择问题解决的途径和方法.1.化归与转化的思想方法:解决数学问题时,常遇到一些问题直接求解较为困难,通过观察、分析、类比、联想等思维过程,选择运用恰当的数学方法进行变换,将原问题转化为一个新问题(相对来说,对自己较熟悉的问题),通过新问题的求解,达到解决原问题的目的.2.化归与转化应遵循的基本原则:(1)熟悉化原则;(2)简单化原则;(3)和谐化原则;(4)直观化原则;(5)正难则反原则3.化归与转化的途径:(1)从问题的反面思考;(2)局部向整体的转化;(3)未知向已知转化;(4)固定向重组的转化;(5)抽象向具体转化;(6)个别向一般的转化;(7)数向形的转化;(8)定量向定性的转化;(9)主元向辅元的转化.以下结合一些经典试题,谈谈化归与转化思想在高三解题中的运用.题型一:化归与转化思想简单化原则的体现化归与转化思想简单化原则在解题中的体现主要有:(1)将比较代数式的大小的问题,运用同构法,通过构造函数,化归为利用函数的单调性根据自变量的大小比较函数值的大小或者根据函数值的大小比较自变量的大小;(2)将概率与统计问题化归为集合间的基本关系与基本运算问题.例1.若2a +log 2a =4b +2log 4b ,则()A.a >2b B.a <2b C.a >b 2 D.a <b 2【解析】由指数幂的运算性质和对数的运算性质可得,2a +log 2a =4b +2log 4b =22b +log 2b ,又因为22b +log 2b <22b +log 22b =22b +1+log 2b ,所以2a +log 2a <22b +log 22b .令f(x)=2x +log 2x,由指数函数和对数函数性质以及函数单调性的性质可得f(x)在(0,+∞)上单调递增,由f(a )<f(2a ),可得a <2b .【评析】本题考查了指数幂和对数的运算,函数的单调性的性质,构造函数后,把问题化归与转化为根据函数单调性,由函数值的大小比较自变量的大小,体现了化归与转化思想的简单化原则.例2.设命题p ∶4x-3≤1,命题q ∶x 2-(2a+1)x +a (a +1)≤0.若劭p 是劭q 的必要不充分条件,则实数a 的取值范围是__________.【解析】由4x-3≤1,得12≤x ≤1,记A ={x │12≤x ≤1};由x 2-(2a+1)x+a (a+1)≤0,可得a ≤x ≤a +1,记B ={x │a ≤x ≤a +1}.因为劭p 是劭q 的必要不充分条件,所以q 是p 的必要不充分条件,所以p 是q 的充分不必要条件,所以A 芴B ,所以a ≤12,a+1≥11,解得0≤a ≤12,所以实数a 的取值范围是[0,12].【评注】本题的解答中,先把两个命题中的不等式的解集分别用集合A 和集合B 表示,再由劭p 是劭q 是的必要不充分条件转化为p 是q 的充分不必要条件,再转化为集合A 为集合B 的真子集,解得a 的范围.题型二:化归与转化思想直观化原则的体现化归与转化思想直观化原则在解题中的体现主要有:(1)画出函数图像后,利用函数图像研究函数的性质,进而直观的解决与函数有关的问题;(2)立体几何问题中,将立体问题平面化,画出轴截面或者中截面,利用平面几何问题破解题目.例3.设a ,b ∈R ,则|“a >b ”是“a a >b b ”的()A.充要不必要条件B.必要不充分条件C.充要条件D.既不充要也不必要条件【解析】构造函数f(x)=x x =x2,x≥0-x 2,x<1函数图像如图1,由图像可知f(x)=x x 在R 上单调递增.当a >b 时,f(a )>f(b ),即a a >b b ,a >b 圯a a >b b .当f(a )>f(b ),即a a >b b 时,a >b ,a a >b b 圯a >b ,所以a >b 圳a a >b b ,“a >b ”是“a a >b b ”的充要条件,故选C.【评注】本题是一道比较复杂的充分必要条件问题,通过观察题目,通过类比和联想,运用化归与转化思想,构造函数f(x)=x x 后,画出这个函数的图像,运用图像法判断这个函数在其定义域R 上为单调递增函数,把a 和b 看成这个函数的两个自变量,a a 和b b 分别看成这个函数的函数值f(a )29数学有数和f(b),由增函数的性质可以得出,a>b圳a a>b b,所以a>b是a a>b b的充分必要条件,体现了化归与转化思想的简单化和直观化原则.例4.已知某个机械零件是由两个有公共底面的圆锥组成的,且这两个圆锥有公共点的母线互相垂直,把这个机械零件打磨成球形,该球的半径最大为1,设这两个圆锥的高分别为h1,h2,则h1+h2的最小值为________.【答案】22姨.【解析】由题意可知,打磨后所得半径最大的球是由这两个圆锥构成的组合体的内切球,内切球的半径R=1,如图为这个组合体的轴截面示意图,圆O为内切球的轴截面,E,F,G,H分别为切点,连接OA,OB,OC,OD,OE,OF,OG,OH,由题意可知AB⊥BC,AD⊥DC,AC=h1+h2,R=OE=OF=OG=OH=1,则S四边形ABCD=S△AOB+S△BOC+S△COD+S△AOD,即AB×BC=12R×AB+12R×BC+12R×CD+12R×AD=12R(2AB+2BC)=R(AB+BC),所以AB×BC=AB+BC.由基本不等式可得AB×BC=AB+BC≥2AB×BC姨,则AB×BC≥4,当且仅当AB=BC时等号成立.所以(h1+h2)2=AC2=AB2+BC2≥2AB×BC≥8,当且仅当AB=BC时等号成立,故h1+h2的最小值为22姨.【评注】本题的解答运用了化归与转化的思想,通过研究组合体和其内切球的轴截面,把空间立体几何问题化归为平面几何问题,做到了把问题直观化的原则.题型三:化归与转化思想熟悉化原则的体现化归与转化思想熟悉化原则在解题中的体现主要有:(1)不等式题目中,把含一个参数的不等式恒成立问题,通过分离变量,化归为求函数在给定区间上的最值问题;(2)立体几何题目中,利用长方体或者正方体模型,把一些三棱锥、四棱锥和三棱柱的外接球问题化归为熟悉的长方体或者正方体的外接球问题.例5.若对任意的x∈(0,+∞),ax-ln(2x)≥1恒成立,则实数a的最小值是_______【解析】由已知可得,对任意的x∈(0,+∞),a≥ln(2x)+1x恒成立,令g(x)=ln(2x)+1x,g′(x)=1x·x-ln(2x)x2=1-ln(2x)x2,令g′(x)=0,则1-ln(2x)=0,则x=e2,当0<x<e2时,g′(x)>0,g(x)单调递增;当x>e2时,g′(x)<0,g(x)单调递减,所以当x=e2时,g(x)取得最大值g(x)max=g(e2)=ln e+1e2=4e,所以a≥4e,所以a的最小值为4e.【评注】本题的解答运用了分离变量法,分离变量后,构造函数后,把a≥g(x)在(0,+∞)上恒成立等价转化为a≥[g(x)]max(x∈(0,+∞)),转化为求函数g(x)在(0,+∞)上的最大值问题,g(x)的最大值即为a的最小值,本题体现了化归与转化思想的熟悉化原则.例6.设数列{a n}的前n项为S n,a1=1,当n≥2时,a n=2a n S n-2S2n.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k2n+1姨对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.解:(1)因为当n≥2时,a n=2a n S n-2S2n,所以a n=2S2n2S n-1,n≥2,所以(S n-S n-1)(2S n-1)=2S2n,所以S n-S n-1=-2S n S n-1,所以1S n-1S n-1=2,n≥2,所以数列{1S n}是以1S1=1为首项,以2为公差的等差数列,所以1S n=1+2(n-1)=2n-1,所以S n=12n-1,所以,当n≥2时,a n=S n-S n-1=12n-1-12n-3=-2(2n-1)(2n-3),因为a1=S1=1,所以a n=1,n=1-2(2n-1)(2n-3).n≥≥2(2)设f(n)=(1+S1)(1+S2)…(1+S n)2n+1姨,则f(n+1)f(n)=2n+22n+1姨2n+3姨=4n2+8n+44n2+8n+3姨>1,所以f(n)在n∈N鄢上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,因为f(n)min=f(1)=23姨3,所以0<k≤23姨3.【评注】第(1)问运用了数列的前n项和S n与通项a n之间的关系a n=S n-S n-1(n≥2),把a n转化为S n-S n-1,再合并同类项后运用取倒数法,再根据等差数列的定义得出数列{1S n}的通项公式,再得出数列{a n}的通项公式;第(2)问分离变量后构造函数f(n),用作商法判断f(n)的单调性,把不等式f(n)≥k在n∈N鄢上恒成立等价转化为f(n)min≥k(n∈N鄢),两问都运用到了化归与转化思想.AEBFHDGOC302021年第2GUAN GDONG JIAO YU GAO ZHONG2021年第2题型四:化归与转化思想和谐化原则的体现化归与转化思想和谐化原则在解题中的体现主要有:(1)解三角形问题中利用正弦定理实现边角的互化;(2)在三角函数问题中,将形如y=a sin x+b cos x 的函数问题利用辅助角公式化归为形如y=A sin (棕x+渍)的函数问题;(3)解析几何中,将两直线垂直化归为斜率乘积为-1或者方向向量的数量积为0;(4)将形如滋=y -b x -a形式的最值问题,转化为动直线斜率的最值问题.例7.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b -c =a ·cos C -c ·cos A .(1)求角A ;(2)若a =3,求b +2c 的最大值.【解析】(1)因为b -c =a ·cos C -c ·cos A ,由正弦定理可得,sin B -sin C =sin A cos C -sin C cos A ,所以sin B -sin C =sin (A -C )所以sin (A +C )-sin C =sin (A -C ),所以sin A cos C +cos A sin C -sin C =sin A cos C -cos A sin C ,所以cos A =12,因为0<A <仔,所以A =仔3.(2)由(1)可得,C =2仔3-B ,由正弦定理得,a sin A =b sin B =c sin C=2R ,所以3sin 仔3=b sin B =c sin (2仔3-B ),所以b =23姨sin B ,c =23姨sin (2仔3-B ),所以b +2c =23姨sin B +43姨sin (2仔3-B )=23姨(2sin B +3姨cos B )=221姨sin (B +渍),其中tan 渍=3姨2,渍∈(0,仔2),由B ∈(0,2仔3),存在B 使得B +渍=仔2,所以sin (B +渍)的最大值为1,所以b+2c 的最大值为221姨.【评注】第(1)问运用正弦定理实现边转化为角,再逆用两角差的正弦公式,运用内角和定理以及诱导公式,再运用两角和的正弦公式和两角差的正弦公式,得出cos A 的值,得出角A 的值;第(2)问运用了正弦定理将关于边的最值问题化为角的最值问题,运用三角形内角和定理以及诱导公式,再运用辅助角公式,化为三角函数在给定范围上的最值问题;两问都运用了化归与转化思想,体现了和谐化原则.例8.已知函数f (x)=x2x-1,则f (12019)+f (22019)+f (32019)+…+f (20182019)的值为_____.【解析】由于直接计算有困难,先探求一般的规律,因为f (x)=x2x-1,所以f (1-x)=1-x2(1-x)-1=1-x1-2x=x-12x-1,所以f (x)+f (1-x)=1,倒叙相加可得f (12019)+f (22019)+f (32019)+…+f (20182019)=1009.【评注】本题的解答中体现了特殊问题转化为一般化,运用了化归与转化思想,先通过探究在宏观上把握问题的一般规律,再将特殊问题破解.题型五:化归与转化思想的正难则反原则在解题中的体现化归与转化思想的正难则反原则在高中数学解题中的体现主要有:(1)间接证明方法中的反证法在解题中的运用;(2)概率问题中对立事件和互斥事件的概率公式的运用.例9.等差数列{a n }的前n 项和为S n ,a 1=1+2姨,S 3=9+32姨.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S n n(n ∈N 鄢),求证:数列{b n }中任意不同的三项都不可能成为等比数列.【解析】(1)设公差为d ,由已知得a1=2姨+1,3a1+3d =9+32姨姨,所以d =2,故a n =2n -1+2姨,S n =n (n +2姨).(2)证明:由(1)得b n =S n n=n +2姨.假设数列{b n }中存在三项b p 、b q 、b r (p 、q 、r 互不相等)成等比数列,则b 2q =b p b r ,即(q +2姨)2=(p +2姨)(r +2姨),所以(q 2-pr )+(2q -p-r )2姨=0.因为p ,q ,r ∈N 鄢,所以q 2-pr =0,2q-p-r =0姨,所以(p+r 2)2=pr ,(p-r )2=0,所以p =r ,这与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成为等比数列.【评注】本题的解答的第(2)问中运用了反证法,先反设假定要证的结论不成立,而设出结论的反面成立,将这个反设作为条件,运用等比数列的定义和通项公式,通过推理,得出p =r 与已知条件相矛盾,所以反设错误,所以要证明的结论成立,反证法归属于间接证明方法,第(2)问运用了化归与转化的思想.例10.掷一个骰子的试验,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则一次试验中,事件A +B 发生的概率为____.【答案】23.【解析】掷一个骰子的试验有6种可能结果,依题意P (A )=26=13,P (B )=46=23,所以P (B )=1-P (B )=1-23=13,显然A 与B 互斥,从而P (A+B )=P (A )+P (B )=13+13=23.【评注】先由古典概型概率公式求出事件A 和事件B 的概率,再由对立事件概率公式求出事件B 的对立事件B 的概率,再由互斥事件概率公式,把事件A+B 的概率化归为求P (A )和P (B )的和,运用了化归与转化思想.责任编辑徐国坚31。
凸显数学思想在“立体几何”复习教学中的价值
2 0 1 3年 6月
教育 观察
S u r v e y o f Ed u c a t i o n
Vo l _ 2 No . 1 7
J u n . 2 0 1 3
凸 显数 学 思 想在 “ 立体 几何 ” 复 习教 学 中 的价值
邓 毛 旺 ( 柳 州市柳 东中心 学校 , 广西柳 州 , 5 4 5 0 0 0 )
何 的初步 知识 , 并 在 其 过 程 中形成 空 间观 念 , 对 以 后进 一步 学 习 图形 与 几何 及 其 他 学 科 知识 的影 响 都 是积极 的 、 重要的 , 甚 至 是 不 可替 代 的 。而转 化
认识、 把握 , 才能使抽象空间与现实空 间融为一体 ,
推动学 生 空 间观 念 的 生 成 。体会 体 、 面、 线 之 间 的
二、 沟通 中内化思 想 : 更能 把准 知识 的脉 络
复习课 时, 有些教师离开课本只重视习题训练
的教学 方法 , 忽 视 了知识 体 系 的梳理 和 数 学基 本 思 想 方法 的概括 , 很 多 学 生 上 课 似 乎 听得 懂 , 可课 后 遇 到稍 难 的题 目就 一筹 莫展 了。例 如 , 在整 理 圆锥
当这 点 移 动后 留 下 的轨 迹 是 怎 样 的 ?
不知如何把握方 向和难度。本文从复习课中三大
环 节 出发 , 可 从 回忆 整 理 体 验 思 想 、 沟 通 中 内化 思 想、 练 习 中提 升 思想 三 个 方 面 , 论 述 在 教 学 中渗 透
数 学思想 方法 的策 略 。
这线段 移 动后 留下 的轨 迹是 怎样 的?
[ 作者简介] 邓毛 旺( 1 9 8 2 一) , 男, 广西¥ 9 P  ̄ 1 人, 本科 , 广西柳州市柳东 中心学校教师 , 小学一级 。
微专题-立体几何中的共面问题 解析版
微专题-立体几何中的共面问题【考情分析】立体几何中的共面问题是近两年高考中的常考题型,在近期的模拟考试的填空选择和解答题中也多有出现,属于中等难度。
【核心素养】转化化归思想匈牙利著名数学家路沙·彼得曾提出这样一个问题:“假设在你面前有煤气灶、水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此,某人回答说:“在壶中灌上水,点燃煤气,再把壶放到煤气灶上。
”提问者肯定了这一回答;但是,他又追问道:“如果其它的条件都没有变化,只是水壶中已经有了足够多的水,那你又应当怎样去做?”这时被提问者往往会很有信心地说:“点燃煤气,再把水壶放到煤气灶上。
”但是,提问者指出,这一回答并不能使他感到满意。
因为,数学家的回答应是这样的:“只有物理学家才会这样做,而数学家们则会倒掉壶中的水,并声称我已把后一问题化归成原先的问题了。
”【前测训练】1.如图,已知正方体1111ABCD A BCD -1AM AN ==的棱长为3,,M N 分别是棱1AA 、AB 上的点,且1AM AN ==.(1)证明:1,,,M N C D 四点共面;(2)求几何体1AMN DD C -的体积.【思路引导】(Ⅰ)欲证M ,N ,C ,D 1四点共面,转证MN ∥A 1B 即可;(Ⅱ)先证明几何体1AMN DD C -是一个三棱台,再求几何体1AMN DD C -的体积.试题解析:(1)证明:∵11//A D AD ,11A D AD =,又//BC AD ,BC AD =,∴11//A D BC ,且11A D BC =,连接1A B ,则四边形11A BCD 是平行四边形,所以11//A B D C 在1ABA ∆中,1AM AN ==,13AA AB ==,所以1AM AN AA AB=,所以1//MN A B 所以1//MN D C ,所以1,,,M N C D 四点共面.(2)因为平面11//ABB A 平面11DCC D ,又1,,,M N C D 四点共面,所以平面//AMN 平面1DD C 延长CN 与DA 相交于点P ,因为//AN DC 所以AN PA DC PD =,即133PA PA =+,解得32PA =,同理可得32QA =,所以点P 与点Q 重合所以1,,D M DA CN 三线相交于一点,所以几何体1AMN DD C -是一个三棱台111199133322222AMN DD C V -⎛⎫∴=⨯+⨯+⨯= ⎪ ⎪⎝⎭. 2.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥底面ABCD ,1AB PA ==,3AD =, ,F F 分别为棱,PD PA 的中点.(1)求证:B 、C 、E 、F 四点共面;(2)求异面直线PB 与AE 所成的角余弦值.【思路引导】(1)因为在PAD ∆中,由E 、F 为PD 、PA 中点得:EF 为中位线,可得EF ∥AD ,结合底面为矩形,即可求得答案;(2)以A 为原点建立坐标系,其中AB 、AD 、AP 分别为x 、y 、z 轴,求得PB 和AE ,||cos ||||PB AE PB AE θ⋅=⋅,即可求得答案. 【详解】(1)在PAD ∆中,由E 、F 为PD 、PA 中点得:EF 为中位线,∴EF ∥AD 又底面为矩形,AD ∥BC ,∴EF ∥BC ∴由平行线确定唯一平面得E 、F 、B 、C 在同一平面上.(2)以A 为原点建立坐标系,其中AB 、AD 、AP 分别为x 、y 、z 轴,如图:可得(0,0,0)A ,(1,0,0)B ,(0,0,1)P ,312E ⎛⎫ ⎪ ⎪⎝⎭∴(1,0,1)=-PB ,312AE ⎛⎫= ⎪ ⎪⎝⎭,||2cos ||||2121PB AE PB AE θ⋅∴===⋅⋅【考题再现】1.(2020·全国Ⅲ卷)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.【详解】设AB =a ,AD =b ,AA 1=c .如图,以C 1为坐标原点,C 1D 1→的方向为x 轴正方向, 建立空间直角坐标系C 1-xyz .(1)证明:连接C 1F ,C 1(0,0,0),A (a ,b ,c ),2(,0,)3E a c ,1(0,,)3F b c ,EA →=1(0,,)3b c ,C 1F →=1(0,,)3b c ,得EA →=C 1F →,2(,0,)3E a c 因此EA ∥C 1F ,即A ,E ,F ,C 1四点共面,所以点C 1在平面AEF 内.【方法联想】点在面内转化划归为四点共面转化化归为线线平行本题也可以采用证明EC 1∥AF 来证明,无需建系,岂不快哉!(2)由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0),AE →=(0,-1,-1),AF →=(-2,0,-2),A 1E →=(0,-1,2),A 1F →=(-2,0,1).设n 1=(x ,y ,z )为平面AEF 的法向量,则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y -z =0,-2x -2z =0,可取n 1=(-1,-1,1). 设n 2为平面A 1EF 的法向量,则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 设二面角A -EF -A 1的平面角为α,所以cos α=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77, 则sin α=1-cos 2α=427,所以二面角A -EF -A 1的正弦值为427. 【方法总结】参考周国yi 的分析【微点突破】【典型例题1】(2019·北京卷)如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,P A =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且PF PC =13. (1)求证:CD ⊥平面P AD ; (2)求二面角F -AE -P 的余弦值;(3)设点G 在PB 上,且PG PB =23.判断直线AG 是否在平面AEF 内,说明理由.(1)证明 因为P A ⊥平面ABCD ,CD ⊂平面ABCD ,所以P A ⊥CD .又因为AD ⊥CD ,P A ∩AD =A ,P A ,AD ⊂平面P AD ,所以CD ⊥平面P AD .(2)解 过点A 作AD 的垂线交BC 于点M .因为P A ⊥平面ABCD ,AM ,AD ⊂平面ABCD ,所以P A ⊥AM ,P A ⊥AD .建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1).所以AE →=(0,1,1),PC →=(2,2,-2),AP →=(0,0,2).所以PF →=13PC →=222(,,)333-所以AF →=AP →+PF →=224(,,)333设平面AEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,即⎩⎪⎨⎪⎧y +z =0,23x +23y +43z =0.令z =1,则y =-1,x =-1. 于是n =(-1,-1,1).又因为平面P AD 的一个法向量为p =(1,0,0),所以cos 〈n ,p 〉=n ·p |n ||p |=-33. 由题知,二面角F -AE -P 为锐角,所以其余弦值为33. (3)解 直线AG 在平面AEF 内,理由如下:因为点G 在PB 上,且PG PB =23,PB →=(2,-1,-2), 所以PG →=23PB →=424(,,)333--,所以AG →=AP →+PG →=422(,,)333- 由(2)知,平面AEF 的一个法向量n =(-1,-1,1),所以AG →·n =-43+23+23=0.又点A ∈平面AEF ,所以直线AG 在平面AEF 内. 【方法联想】线与平面的位置关系转化划归为利用向量法证明线面平行即转化划归直线与平面法向量垂直问题【随堂训练】(2021苏锡常镇一模19)如图,在四棱锥P —ABCD 中,△PAD 是以AD 为斜边的等腰直角三角形,BC ∥AD ,AB ⊥AD ,AD =2AB =2BC =2,PC =2,E 为PD 的中点.(1)求直线PB 与平面PAC 所成角的正弦值;(2)设F 是BE 的中点,判断点F 是否在平面PAC 内,并请证明你的结论.【答案】(1)13;(2)F 在平面PAC 内.证明见解析. 【分析】(1)计算出2PA PD ==证明AC CD ⊥,然后取取AD 中点O ,连接,OC OP ,可证明OP ⊥平面ABCD ,这样可建立如图所示的空间直角坐标系,用向量法求线面角的正弦值;(2)F 在平面PAC 内.只要证明AF 与,AC AP 共面即可得.【解析】直角梯形ABCD 中,由已知可得2AC =,2CD =,∴222AC CD AB +=,即AC CD ⊥,又APD △是以AB 为斜边的等腰直角三角形,∴2PA PD == 取AD 中点O ,连接,OC OP ,则1OC OA OD ===,1OP =,则OAP OCP ODP ≅≅△△△,∴POA POC POD ∠=∠=∠,又180POA POD ∠+∠=︒,∴90POA POC POD ∠=∠=∠=︒,∴OP AD ⊥,OP OC ⊥,而OC AD O =,,OC AD ⊂平面ABCD ,∴OP ⊥平面ABCD ,因此可以,AB AD 为,x y 轴,过A 平行于OP 的直线为z 轴建立空间直角坐标系A xyz -,如图,则(0,0,0)A ,(1,0,0)B ,(1,1,0)C ,(0,2,0)D ,(0,1,1)P , (0,1,1)=AP ,(1,1,0)AC =,设平面PAC 的一个法向量为(,,)n x y z =,则00n AP y z n AC x y ⎧⋅=+=⎨⋅=+=⎩,取1y =-,则1x z ==,即(1,1,1)n =-,又(1,1,1)BP =-,1111cos ,333BP n BP n BP n ⋅--+===-⨯, 直线PB 与平面PAC 所成角为θ,则1sin cos ,3BP n θ==.备注:以上图,,OC OD OP 分别为,,x y z 建立直角坐标系更加容易计算。
转化与化归思想在立体几何中的应用
龙源期刊网 转化与化归思想在立体几何中的应用作者:赵成激来源:《新教育时代·学生版》2019年第47期摘要:立体几何教学中转化与化归思想是解决问题的重要方法,通过转化与化归思想的应用将问题转化为学生熟悉的方式,以此更好地对问题进行解答。
本文先阐述转化与化归思想概述以及作用,接着分析转化与化归思想在立体几何中的应用,最后提出轉化与化归思想在立体几何中应用中应该注意的问题,以便更好地提升立体几何的学习效果。
关键词:转化化归思想立体几何立体几何知识学习经常会遇到学生感觉有困难的知识内容,这就需要对问题进行观察、分析,以此对问题进行解决,通过一定方法对问题进行转化,将原来的问题转化为新的问题,变成对于学生来说相对熟悉的问题,通过这种方式对问题进行分析、解决,以此达到对问题解决的目的,这种思想方法也就是化归和转化。
[1]一、转化与化归思想概述化归与转化思想实质就是揭示问题之间的联系,也就是实现转化。
除了较为简单的问题,几乎每个数学问题都需要进行相应的转化。
从这个层面上来说,化归与转化思想就是对问题进行一步步地转化。
数学中问题的转化就是将未知的问题向已知的问题进行转化,将新的知识向旧的知识进行转化,命题的转化,数形、空间平面的转化等,这些都是转化思想的应用。
[2]转化可以分为等价转化和非等价转化两个部分,等价转化条件具有一定的等价性,在不得已的情况下,在进行不等价转化时,要设置一些附加条件,以此保持具有等价性。
立体几何教学中转化、化归思想贯穿始终,这也是对立体几何进行学习的重要方法,具体来说有以下几个方面:将立体几何的相关问题转化为平面几何的问题,也就是将立体转化为平面,这是对立体几何知识进行解决的原则。
例如线面角、二面角等,在对这些空间角进行解决时,一般都要将其转化为平面的形式进行处理,最终以解决三角形的方式对问题进行解决。
在学习平行与垂直。
转化与化归的思想方法
专题四:转化与化归的思想方法化归与转化的思想确是指在解决问题时,采用某种手段使之转化,进而使问题得到解决的一种解题策略,是数学学科与其它学科相比,一个特有的数学思想方法,化归与转化思想的核心是把生题转化为熟题,将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题。
事实上,解题的过程就是一个缩小已知与求解的差异的过程,是求解系统趋近于目标系统的过程,是未知向熟知转化的过程,因此每解一道题,无论是难题还是易题,都离不开化归。
例如,对于立体几何问题,通常要转化为平面几何问题,对于多元问题,要转换为少元问题,对于高次函数,高次方程问题,转化为低次问题,特别是熟悉的一次,二次问题,对于复杂的式子,通过换元转化为简单的式子问题等等。
化归灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法。
在高考中,对化归思想的考查,总是结合对演绎证明,运算推理,模式构建等理性思维能力的考查进行,因此可以说高考中的每一道试题,都在考查化归意识和转化能力。
高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化。
1. 转化运算.例1.已知函数()2x f x =,等差数列{}x a 的公差为2.若246810()4f a a a a a ++++=,则212310log [()()()()]f a f a f a f a ⋅⋅⋅= .分析:题目中的已知条件很容易求得246810a a a a a ++++,而所求的为212310l o g [()()()()]f a f a f a f a ⋅⋅⋅ 可以转化为等差数列{}x a 的前10项之和,根据公差,可以把前10项之和转化为用246810a a a a a ++++表示出来,从而求得。
解:由()2x f x =和246810()4f a a a a a ++++=知2468102a a a a a ++++=,2123102122210log [()()()()]log ()log ()log ()f a f a f a f a f a f a f a ⋅⋅⋅=+++ =()123102468102526a a a a a a a a a ++++=++++-⨯=-评注:仔细分析题目,把运算进行转化,可以大大地节省时间,提高做题的效率。
“转化与化归”思想在初中数学的应用
“转化与化归”思想在初中数学的应用摘要:初中数学的解题过程常常伴随着转化与化归的方法,这种方法既可以锻炼学生的思维方式,同时也代表着学生的数学能力,是初中数学的重要解题方法之一。
无论是在立体几何方面还是函数问题上,转化与化归思想都是帮助学生将复杂问题简单化的好方法。
如果学生能够恰当的运用这种解题方法观察分析问题,就可以将原问题转化为学生自身比较了解的问题,进而求解。
本篇文章将会分析转化与化归思想在初中数学中的实际运用,并结合实例进行探究。
关键词:转化与化归;解题;初中数学引言:从“转化与化归”思想的命名我们就可以分析出这一概念的实质,即将问题转化,并且归并到熟悉的知识点上,由繁化简,揭示知识点之间的联系。
其实初中学习的数学问题,大多数都是在我们已有的知识基础上一步步向未知探寻,而这个探寻的过程也要有已知知识点的参与,从复杂的问题中分析出主干,并解决问题。
下文将会通过数学学科的特点、转化方法的应用和学生的实际运用三个方面进行分析,旨在帮助学生更好的掌握这一解题方法。
一、结合数学知识的特点运用“转化与化归”思想数学的学习不仅需要了解知识点,还需要掌握数学的基本素养,转化与化归思想就数学素养建立的基本手法之一,所以掌握这一解题手法非常重要。
数学学科的内容在学生心中的印象一直都是比较抽象的,这也是学生认为数学难度较大的原因之一,但其实数学知识的抽象化中我们又可以分为逻辑推理、数学建模、想象等几个方面的类型,而这些内容都可以和转化与化归的思想挂钩。
那么教师在讲授的时候就需要有针对性的训练学生,并且在实际的教学中不断的渗透这一手法,因为掌握的过程并非是一朝一夕的,也并不是教师一次性就能够讲解透彻的,还是需要学生自身在练习的时候自主感悟,不断的调动思维、积累经验。
转化与划归思想在实际的数学解题上也并没有固定的手法和公式,他只是代表了一种解题的思路,如果仅仅依靠教师的讲授来让学生掌握这一解题手法基本上是不可能的,很可能还会导致学生养成眼高手低的解题习惯,认为自己会做,而在实际的解题过程中却找不到转化的正确方向。
转化与化归思想方法及应用举例
转化与化归思想方法及应用举例作者:杨云显来源:《基础教育论坛·上旬》2018年第12期摘要:在立体几何中,与体积、表面积等相关的很多问题也可以进行转化,达到化繁为简的目的。
对相关题目的分析和对比解答,展示了不同的思维方法和思维习惯下题目分析思维和解答过程步骤的繁简程度,解答的分析和对比旨在突出转化与化归思想方法的优越性。
关键词:几何体;体积;表面积;转化与化归;应用途径;转化方法数学思想和数学方法的理解掌握与熟练应用,既是解决数学问题的有力工具,又是体现数学素养和解题基本功的重要途径。
转化与化归思想方法是最常用的数学思想方法之一,渗透在数学教学中的方方面面。
在日常教学过程中,教师结合教学进程和教学内容,针对不同的问题和情境引导学生进行及时和恰当的转化,可以使问题转化为熟知和简单的数学问题,使问题得到快速、有效的解决。
学生可以从最初的机械模仿到理解掌握,进而走向熟练应用,形成良好的思维分析习惯,以提升解决问题的能力。
在立体几何中,与几何体的体积、表面积相关的问题是一类常见的重要问题,有些问题尽管可以用多种方法解决,但是针对不同空间几何体的形状特点和已知条件,有的问题可以进行一些特殊的思维转化处理,这样不仅可以有效减少学生的计算量,提高解题速度,而且还可以提高解题正确率。
学生通过教师的引导与示范,动脑、动手进行对比反思,在比较的基础上产生自己的思维倾向性并形成习惯。
下面,笔者通过举例分析一部分与空间几何体体积、表面积相关的问题,展示转化与化归思想方法在多面体中的应用途径和转化方法。
题型一:利用几何体体积(或面积)相等进行的转化例1 如图1,在长方体A BCD-A1B1C1D1中,AB=AD=4,AA,=2,求三棱锥ArABiDi 的体积V和点A1到平面AB1D1的距离d。
方法1:直接求解。
直接求解,求三棱锥A1-AB1D1的体积,需要分别求△AB1D1的面积和点A1到平面AB1D1的距离。
转化与化归思想在三棱锥外接球问题中的应用
转化与化归思想在三棱锥外接球问题中的应用
作者:李巧婵
来源:《中学课程辅导·教师教育(中)》2018年第05期
【摘要】“转化与化归思想”就是在研究与解决有关数学问题时采用某种手段将问题通过变换使之转化进而得到解决的一种思想.转化与化归的基本原则是:熟悉化原则、简单化原则、直观化原则、正难则反原则。
“转化与化归思想”是解决立体几何问题的重要思想;“空间问题平面化”是解决立体几何问题的基本方法。
在解决三棱锥的外接球问题时,根据几何体的结构特征,有的可以补形成长方体或正方体或三棱柱解决;有的可以通过轴截面寻找底面外接圆半径和球心到该底面的距离,利用勾股定理解决;有的可以通过截面挖出三角形解决;有的可以通过建立空间直角坐标系利用向量法解决。
【关键词】转化与化归三棱锥外接球方法研究
【中图分类号】 G633.6 【文献标识码】 A 【文章编号】 1992-7711(2018)05-006-02。
运用“转化思想”破解立体几何中的动点问题
运用“转化思想”破解立体几何中的动点问题
张力;史红静
【期刊名称】《理科考试研究》
【年(卷),期】2022(29)9
【摘要】立体几何中的动点问题是学生最难理解和掌握的类型之一,这类问题侧重考查学生的“转化”的数学思想,解决这类问题通常会有两种思路:一是利用几何直观,将“空间问题”转化为“平面问题”,将“双动点”的最值问题转化为“单动点”的最值问题或直接找到这个最值位置进行求解;二是借助空间直角坐标系,将“几何
问题”转化为“代数问题”,利用函数的观点求最小值.若能将二者结合使用,会起到事半功倍的效果.
【总页数】3页(P13-15)
【作者】张力;史红静
【作者单位】北京市通州区教师研修中心;北京市通州区潞河中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.转化思想在立体几何教学中的运用
2.立体几何中转化与化归思想的运用
3.例谈转化思想在立体几何教学中的运用
4.转化思想在立体几何中的运用
5.化归思想在解
高考题中的作用——在立体几何问题中运用化归思想提升课堂效率
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转化与化归的思想方法在立体几何中的应用
发表时间:2017-09-18T14:27:26.743Z 来源:《成长读本》2017年6月总第18期作者:曹静[导读] 化归与转化的思想是指在解决问题时,采用某种手段使之转化,进而使问题得到解决的一种解题策略。
昆明市官渡区第一中学
化归与转化的思想是指在解决问题时,采用某种手段使之转化,进而使问题得到解决的一种解题策略。
化归与转化思想的核心是把生题转化为熟题.解题的过程就是一个缩小已知与求解的差异的过程,是未知向熟知转化的过程,因此每解一道题无论是难题还是易题,都离不开化归.本文从以下几个方面来阐述。
(1)正与反的转化。
解数学问题,一般总是从正面入手思考,但有时遇到从正面入手不易解决的情况,这时作逆向思考颇能奏效,这就是我们常说的“正难则反”的转化思想。
例1.设A、B、C、D是空间四点,且﹤ABC=﹤BCD=﹤CDA=﹤DAB=90°,求证:A、B、C、D在同一个平面上。
反证法:假设A、B、C、D不在同一平面上,则直线AB与CD是异面直线,∵﹤ABC=﹤BCD=﹤CDA=﹤BAD=90°,∴BC与AD均为异面直线AB、CD的公垂线,这与两条异面直线公垂线的唯一性矛盾,故命题为真。
(2)位置关系的转化与化归。