第六章习题解-作业
第六章化学平衡习题与解答
第六章化学平衡习题与解答第六章习题及解答1.反应CO(g)+H 2O(g) CO 2(g)+H 2(g)的标准平衡常数与温度的关系为lgpK =2150K/T-2.216,当CO ,H 2O ,H 2,CO 2的起初组成的质量分数分别为0.30,0.30,0.20和0.20,总压为101.3kPa 时,问在什么温度以下(或以上)反应才能向⽣成产物的⽅向进⾏?解设反应体系的总量为1000g ,已知M(CO)=28g·mol -1, M(H 2O)=18g·mol -1,M(H 2)=2g·mol -1,M(CO 2)=44g·mol -1,则n(CO)=(300/28)mol=10.714moln(H 2O)=(300/18)mol=16.667mol n(H 2)=(200/2)mol=100mol n(CO 2)=(200/44)mol=4.545molΣn=(10.714+16.667+100+4.545)mol=131.926 mol x(CO)=10.714mol/131.926 mol=0.0812 x(H 2O)= 16.667mol/131.926 mol=0.1263 x(H 2)=100mol/131.926 mol=0.7580 x(CO 2)= 4.545mol/131.926 mol=0.0345222(CO )(H )0.03450.7850 2.6408(CO)(H O)0.08120.1263x x x Q x x ?===?因为本题ΣνB =0,所以p K =K x ,要使反应向⽣成产物⽅向进⾏,须 Q x < K x ,即2150K/T-2.216>lg2.6408,解得2150K815.1K 2.216lg 2.6408T <=+,即在815.1K 温度以下反应才能向⽣成产物⽅向进⾏。
2. PCl 5的分解作⽤为 PCl 5(g) PCl 3(g)+Cl 2(g)在523.2K 、101.325kPa 下反应达到平衡后,测得平衡混合物的密度为2.695kg·m -3,试计算(1) PCl 5(g)的离解度。
第六章 化学反应动力学习题解答
第六章 化学反应动力学思考题解答一、是非题(判断下列说法是否正确,并说明理由)1. 错2. 对3. 错4. 错5. 错6. 错7. 对8. 对9.错 10. 对 二、选择题1. B2. A.3. B.4. D. 5 .C 6.D. 7. A. 8. B 9. B. 10. C.习题解答1.请根据质量作用定律,写出下列各基元反应或复合反应中Ad d c t与各物质浓度的关系。
(1)2A + B 2P k−−→ (2)A + 2B P + 2S k−−→ (3)22A + M A M k−−→+ (4)2A B(5)2A 2B+D B+A 2D(6)解:(1)2A A B d 2d c kc c t -= (2)2A A B d d c kc c t -=(3)2A A M d 2d c kc c t -= (4)2A 2B 1A d 2+2d c k c k c t -=- (5)222A 1B D 1A 2A B 2D d 2+2+d c k c c k c k c c k c t ---=--(6)A 1A 2A 3C d d ck c k c k c t-=+-2.某人工放射性元素放出α粒子,半衰期为15min 。
试问多长时间后该试样能分解掉80%。
解:由题意得该反应为一级反应,符合一级反应的条件,则112ln 2t k =得 1k = ln 215=0.0462mol -1 由积分定义式 1lnak t a x=- 令0.8x y a ==得 11ln 1k t y=- 则 t=34.84mink 1 k-1 k 1 k- k k3.反应25222N O (g)4NO (g)O (g)−−→+,在318K 下测得N 2O 5的浓度如下: t /min 0 20 40 60 80 100 120 140 160 c /mol·m -317.69.735.462.951.670.940.500.280.16求该反应的级数和速率常数及半衰期。
课后习题解析-第六章酸碱平衡与酸碱滴定法
第六章 酸碱平衡和酸碱滴定法6-1根据下列反应,标出共轭酸碱对。
(1) H 2O + H 2O == H 3O + + OH -(2) HAc + H 2O == H 3O + + Ac -(3) H 3PO 4 + OH - == H 2PO 4- + H 2O(4) CN - + H 2O == HCN + OH -共轭酸碱对为:(1)H 3O +—H 2OH 2O—OH - (2)HAc—Ac -H 3O +—H 2O (3)H 3PO 4—H 2PO 4-H 2O—OH - (4)HCN—CN -H 2O—OH -6-2 指出下列物质中的共轭酸、共轭碱,并按照强弱顺序排列起来:HAc ,Ac -;NH 4+,NH 3;HF ,F -;H 3PO 4,H 2PO 4-;H 2S ,HS -。
共轭酸为:HAc 、NH 4+、HF 、H 3PO 4、H 2S共轭碱为:Ac - 、NH 3、 F -、H 2PO 4-、HS-共轭酸强弱顺序为:H 3PO 4、HF 、HAc 、H 2S 、NH 4+共轭碱强弱顺序为:NH 3、HS -、Ac -、F -、H 2PO 4-6-3已知下列各弱酸的pK a θ和弱碱的pK b θ值,求它们的共轭碱和共轭酸的pK b θ和pK a θ。
(1) pK b θ = 4.69(2) pK b θ = 4.75 (3) pK b θ = 10.25 (4) pK a θ = 4.666-4 计算0.10mol • L -1甲酸(HCOOH)溶液的pH 及其离解度。
解:c /K a θ>500134a L mol 102.41077.11.0)H (---+⋅⨯=⨯⨯==cK c pH =2.38 %2.4%10010.0102.4%100)H (3=⨯⨯=⨯=α-+c c6-5 计算下列溶液的pH 。
(1) 0.05 mol • L -1 HCl (2) 0.10 mol • L -1 CH 2ClCOOH (3) 0.10 mol • L -1 NH 3• H 2O(4) 0.10 mol • L -1 CH 3COOH (5) 0.10 mol • L -1CH 2ClCOOH (6) 0.50 mol • L -1Na 2CO 3(7) 0.10 mol • L -1 NH 4Ac (8) 0.20 mol • L -1 Na 2HPO 4(1)解:c (H +) = 0.050 mol.L -1pH =1.30 (2)解:K a θ = 1.4×10-3 c /K a θ=0.1/1.4×10-3<500123a L mol 1018.1104.11.0)H (---θ+⋅⨯=⨯⨯==cK c pH =1.93(3)解:K b θ = 1.77×10-5c /K b θ=0.1/1.77×10-5>500135b L mol 1033.11077.11.0)OH (---θ-⋅⨯=⨯⨯==cK c pOH =2.88 pH =11.12(4)解:K a θ = 1.76×10-5c /K a θ=0.1/1.76×10-5>500135a L mol 1033.11076.11.0)H (---θ+⋅⨯=⨯⨯==cK c pH =2.88(5)解: 41114a2w b11078.11061.5100.1---θθθ⨯=⨯⨯==K K Kc /K b1θ=0.20/1.78×10-4>500134b1L mol 1097.51078.12.0)OH (---θ-⋅⨯=⨯⨯==cK c pOH =2.22 pH =11.78(6)解:191172a 1a L mol 1091.41061.51030.4)H (----θθ+⋅⨯=⨯⨯⨯=⋅=K K cpH =8.31 (7)解:17510a 4a L mol 100.11076.11064.5)HAc ()NH ()H (----θ+θ+⋅⨯=⨯⨯⨯=⋅=K K c pH =7.00(8)解:1101383a 2a L mol 102.1102.21023.6)H (----θθ+⋅⨯=⨯⨯⨯=⋅=K K cpH=9.926-6 计算室温下饱和CO 2水溶液(即0.04 mol • L -1 HCl )中c (H +), c (HCO 3-), c (CO 32-)。
液压6章习题解答
第六章作业习题解答1.图示系统中溢流阀的调整压力分别为p A=3MPa,p B=1.4MPa,p C=2MPa。
试求当系统外负载为无穷大时,液压泵的出口压力为多少?溢流阀B的遥控口堵住,液压泵的出口压力又为多少?解因系统外负载为无穷大,泵起动后,其出口压力p P逐渐升高,p P=1.4MPa 时溢流阀B打开,但溢流阀C没打开,溢流的油液通不到油箱,p P便继续升高;当p P=2MPa时溢流阀C开启,泵出口压力保持2MPa。
若将溢流阀B的遥控口堵住,则阀B必须在压力为3.4MPa时才能打开;而当p P达到3MPa时,滥流阀A已开启,所以这种情况下泵出口压力维持在3MPa。
2.图示两系统中溢流阀的调整压力分别为P A=4MPa,P B=3MPa,P C=2MPa,当系统外负载为无穷大时,液压泵的出口压力各为多少,对图a的系统,请说明溢流量是如何分配的?解图a所示系统泵的出口压力为2MPa。
因p P=2MPa时溢流阀C开启,一小股压力为2MPa的液流从阀A遥控口经阀D遥控口和阀C回油箱。
所以,阀A和阀B也均打开。
但大量溢流从阀A主阀口流回油箱,而从阀B和阀C流走的仅为很小图b所示系统,当负载为无穷大时泵的出口压力为6MPa。
因该系统中阀B遥控口接油箱,阀口全开,相当于一个通道,泵的工作压力由阀A和阀C决定,即p P=p A+p C=(4+2)=6MPa。
(注:B接油箱,B处的压力为0)3.图示系统溢流阀的调定压力为5MPa,减压阀的调定压力为2.5MPa。
试分析下列各工况,并说明减压阀阀口处于什么状态?1)当液压泵出口压力等于溢流阀调定压力时,夹紧缸使工件夹紧后,A、C点压力各为多少?2)当液压泵出口压力由于工作缸快进,压力降到1.5MPa时(工件原处于夹紧状态),A、C点压力各为多少?3)夹紧缸在夹紧工件前作空载运动时,A、B、C点压力各为多少?解1)工件夹紧时,夹紧缸压力即为减压阀调整压力,p A=p C=2.5MPa。
高等代数第6章习题解
第六章习题解答习题6.11、设2V R =,判断下面V 到V 的映射哪些是V 的线性变换,哪些不是? (1),()x x y V f y y αα+⎛⎫⎛⎫=∈=⎪ ⎪⎝⎭⎝⎭;(2),()x x y V f y y αα-⎛⎫⎛⎫=∈= ⎪ ⎪⎝⎭⎝⎭;(3)2,()x y V f y x y αα+⎛⎫⎛⎫=∈=⎪ ⎪+⎝⎭⎝⎭; (4)0,()x V f y αααα⎛⎫=∈=+⎪⎝⎭,0V α∈是一个固定的非零向量。
(5)0,()x V f y ααα⎛⎫=∈= ⎪⎝⎭,0V α∈是一个固定的非零向量。
解:(1)是。
因为1122(,),(,),x y x y k F αβ''∀==∀∈,有1212121122121212()()()x x x x y y x y x y f f f f y y y y y y αβαβ++++++⎛⎫⎛⎫⎛⎫⎛⎫+===+=+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭11111111()()kx kx ky x y f k f k kf ky ky y αα++⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)是。
因为1122(,),(,),x y x y k F αβ''∀==∀∈,有1212121122121212()()()()x x x x y y x y x y f f f f y y y y y y αβαβ++-+--⎛⎫⎛⎫⎛⎫⎛⎫+===+=+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭11111111()()kx kx ky x y f k f k kf ky ky y αα--⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)不是。
因为12121212122()x x y y f f y y x x y y αβ+++⎛⎫⎛⎫+== ⎪ ⎪++++⎝⎭⎝⎭而 121211*********()()y y y y f f x y x y x x y y αβ++++⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭所以()()()f f f αβαβ+≠+(4)不是。
第六章习题参考答案()
2
)
d
3
3
6
1 4
sin
2
3 0
9
12
1 4
sin
2
2
3
3
3 6
3 8
9
12
3 8
5 4
.
6.5 求正弦曲线 y sin x (0 x )绕 x 轴旋转所得旋转体的体积.
解 所求旋转体的体积为
Vx
sin2 x dx 2
0
2 sin2
x dx 2
1
,
3
,
由于图形关于极轴的对称性,如习题 6.4 图,则所围图形的面积为
3
A 2[
3
1
(1
cos
)2
d
02
2 3
1 2
(3 cos
)2
d
]
3 (1 2 cos
0
cos2 )d
9
2
cos
2
d
3
2sin 3
3
0
3
(1
cos
2
)
d
9
0
2
2 3
(1
cos 2
的直线为 x 轴,过圆心 o 且垂直于 x 轴的直线为 y 轴,建立直角坐标系,如习题 6.11
图. 则底圆方程 x2 y2 R2 . 立体中过 x 轴上的点 x 作垂直于 x 轴的平面,截正劈
锥体得等腰三角形。该等腰三角形的底和高分别为 2 R2 x2 和 h. 因此截面面积 为 A(x) 1 2 R2 x2 h h R2 x2 .
图形的面积.
解 如习题 6.3 图,所求面积为
A
2
常微分方程-习题作业-第六章第四节作业及详细解答
dv dt
=
√ − 2u − v,
由此不难画出变换后的系统在 uv 平面上的相图. 由此可画出原系统在 xy 平面上的相图. (4) 容易求得平衡点为 (−1, −1). 引进平移变换 u = x + 1, v = y + 1 可将系统化为
du dt
=
5u + 3v,
dv dt
=
−3u − 5v.
其系数矩阵的特征值为λ1 = 4, λ2 = −4, 是一对相异实根, 符号相反, 因此平衡点 (−1, −1) 为原系统的鞍点, 不稳定. 它有两个特殊方向, 容易求得对应于 λ1 的特征向量 ξ1 = (3, −1)T , 对应于 λ2 的特征向量 ξ2 = (1, −3)T , 相应于 ξ1 的直线上面的轨道都是继续沿着 它背离平衡点, 相应于 ξ2 的直线上面的轨道都是继续沿着它趋向平衡点, 由此可画出原系 统在 xy 平面上的相图.
5. 引入极坐标并画出下面系统的相图:
dx dt
=
x(x2
+
y2
−
1),
dy dt
=
y(x2
+ y2 − 1).
解: 令 x = r cos θ, y = r sin θ, 原系统化成:
dr dt=r来自r2− 1),dθ dt
=
0.
易知它有特解 (r(t), θ(t)) ≡ (0, t0) 及 (r(t), θ(t)) ≡ (1, t0), 其中 t0 为任意常数. 它们都对应 着原系统的奇点. 因此原系统有奇点 (0, 0) 及奇线 x2 + y2 = 1. 容易由极坐标方程看出除奇 点及奇线外该方程组的轨线族为相平面上的一族射线 θ(t) = t0, 在奇线 x2 + y2 = 1 内部, 它趋于奇点, 在奇线 x2 + y2 = 1 外部, 它远离奇线 x2 + y2 = 1. 故原点是稳定的星形结点.
第六章元素法习题详解 - 高数
第六章习题答案复习题A1. 求由下列曲线围成的平面图形的面积: (1)2235y x x =+-及21y x =-;(2)1y x=及直线,2y x x ==;(3)e ,e x x y y -==与直线1x =;(4)ln ,y x y =轴与直线ln ,ln (0)y a y b b a ==>>. 解:(1)两曲线交点为(2,3)--和(1,0),所求面积为1222123122[(1)(235)]d 3[633]d (6)13.52S x x x xx x x x x x ---=--+-=--=--=⎰⎰(2)如图,解方程组⎪⎩⎪⎨⎧==xy x y 1,得交点)1,1(,所求面积为2ln 23]ln 2[d )1(21221-=-=-=⎰x x x x x A .(3) 11ln d (ln 1)1eeS x x x x ==-=⎰(4) 选为y 积分变量,如图,所求面积为a b e y e A b a y ba y -===⎰ln ln ln ln ][d2. 求二曲线sin r θ=与r θ=所围公共部分的面积. 解:当θ等于0和3π时,两曲线相交, 所围公共部分的面积为ππ2232π0311sin θd θ3cos θd θ225π24A =+=⎰⎰.3. 求由下列曲线围成的图形绕指定轴旋转而形成的旋转体的体积: (1)22,,0(0,0)y px x a y p a ===>>;绕x 轴(2)1ln ,0,1;y x y x e x==≤≤绕x 轴(3)22,;y x x y ==绕y 轴(4)0,2,3===y x x y ;绕x 轴和绕y 轴 解:(1)22002aa x V pxdx px pa πππ===⎰(2)2221111ln ln ee x V xdx xd x xππ==-⎰⎰ 2121121111(ln 2ln )121(ln 2)32()(25)e ee ee x xdx xx x dx e xx e e x eππππ=--=-+-=-+=-⎰⎰(3)两曲线的交点为(0,0)和(1,1),所求旋转体体积为114251000113()2510y V ydy y dy y y ππππ=-=-=⎰⎰ (4)如图,绕x 轴旋转所得的旋转体的体积为π7128]π71[d πd π207206202====⎰⎰x x x x y V x绕y 轴旋转所得的旋转体的体积为.y y y x V y d ππ32d π8π22328022⎰⎰-=-⋅⋅=π564]π53[π328035=-=x 4、有一立体,以长半轴10=a 、短半轴5=b 的椭圆为底,而垂直于长轴的截面都是等边三角形,求该立体的体积. 解:解:取坐标系如图,底面椭圆方程为15102222=+y x 垂直于x 轴的截面为等边三角形, 对应于x 的截面的面积为)10(43)(22x x A -=于是所求立体体积为31010321010221033]310[43d )10(43⋅=-=-=--⎰x x x x V 5、计算曲线x y ln =相对应于3=x 到8=x 的一段曲线弧长. 解:由弧长的公式得:23ln 211d 1d 11d 1832832832+=+=+='+=⎰⎰⎰x x x x xx y s . 6、计算1=ρθ相应于自43=θ到34=θ的一段弧长. 解:由弧长的极坐标公式得:θθθθθθθθρθρd 11d )1()1(d )()(3443223443222344322⎰⎰⎰+=-+='+=s 23ln 125+=. o xabyx7、设把一金属杆的长度由a 拉长到x a +时,所需的力等于akx,其中k 为常数,试求将该金属杆由长度a 拉长到b 所作的功.解:由于金属杆拉长所需的力f 与拉长的长度成正比x ,且akxf =,其中k 为常数。
大学物理课后习题详解(第六章)中国石油大学
习 题 六6-1 一轻弹簧在60N 的拉力下伸长30cm .现把质量为4kg 物体悬挂在该弹簧的下端,并使之静止,再把物体向下拉10cm ,然后释放并开始计时.求:(1)物体的振动方程;(2)物体在平衡位置上方5cm 时弹簧对物体的拉力;(3)物体从第一次越过平衡位置时刻起,到它运动到上方5cm 处所需要的最短时间.[解] (1)取平衡位置为坐标原点,竖直向下为正方向,建立坐标系N/m 2001030602=⨯=-k设振动方程为 ()ϕω+=t A x cosrad/s 07.74200===m k ω m 1.0=A 0=t 时 m 1.0=x ϕc o s1.01.0= 0=ϕ 故振动方程为 ()m 07.7cos 1.0t x = (2)设此时弹簧对物体作用力为F ,则()()x x k x k F +=∆=0其中 m 196.02008.940=⨯==k mg x 因而有 ()N 2.2905.0196.0200=-⨯=F (3)设第一次越过平衡位置时刻为1t ,且速度小于零,则()107.7cos 1.00t = 07.75.01π=t第一次运动到上方5cm 处时刻为2t ,且速度小于零,则()207.7cos 1.005.0t =- )07.7322⨯=πt故所需最短时间为:s 074.012=-=∆t t t6-2 一质点在x 轴上作谐振动,选取该质点向右运动通过点 A 时作为计时起点(t =0),经过2s 后质点第一次经过点B ,再经 2s 后,质点第二次经过点B ,若已知该质点在A 、B 两点具有相同的速率,且10cm =AB ,求:(1)质点的振动方程;(2)质点在A 点处的速率.[解] 由旋转矢量图和||||b a v v =可知421=T s 由于42s 81,s 81ππνων====-T(1)以AB 的中点为坐标原点,x 轴指向右方.0=t 时, ϕcos 5A x =-=2s =t 时, ()ϕϕωs i n 2c o s 5A A x -=+== 由以上二式得 1tan =ϕ因为在A 点质点的速度大于零,所以43πϕ-= cm 25cos /==ϕx A所以,运动方程为:()m 4/34/cos 10252ππ-⨯=-t x(2)速度为: ⎪⎭⎫ ⎝⎛-⨯-==-434sin 41025d d 2πππt t x v 当2s =t 时 m/s 1093.3432sin 4102522--⨯=⎪⎭⎫ ⎝⎛-⨯-=πππv6-3 一质量为M 的物体在光滑水平面上作谐振动,振幅为 12cm ,在距平衡位置6cm 处,速度为24s cm ,求:(1)周期T ;(2)速度为12s cm 时的位移.[解](1)设振动方程为()cm cos ϕω+=t A x 以cm 12=A 、cm 6=x 、1s cm 24-⋅=v 代入,得:()ϕω+=t c o s 126 (1)()ϕωω+-=t sin 1224 (2)由(1)、(2)得1122412622=⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛ω 解得 334=ω s 72.2232===πωπT (2) 以1s cm 12-⋅=v 代入,得:()()ϕωϕωω+-=+-=t t sin 316sin 1212解得: ()43sin -=+ϕωt 所以 ()413cos ±=+ϕωt故 ()cm 8.1041312cos 12±=⎪⎪⎭⎫ ⎝⎛±⨯=+=ϕωt x6-4 一谐振动的振动曲线如图所示,求振动方程.[解] 设振动方程为: ()ϕω+=t A x cos 根据振动曲线可画出旋转矢量图由图可得: 32πϕ=125223πππϕω=⎪⎭⎫ ⎝⎛+=∆∆=t故振动方程为 cm 32125cos 10⎪⎭⎫⎝⎛+=ππt x6-5 一质点沿x 轴作简谐振动,其角频率s rad 10=ω,试分别写出以下两种初始状态的振动方程:(1)其初始位移0x =7.5 cm ,初始速度s cm 0.750=v ;(2)其初始位移0x =7.5 cm ,初速度s cm 0.750-=v .[解] 设振动方程为 ()ϕ+=t A x 10cos (1) 由题意得: ϕcos 5.7A = ϕsin 1075A -= 解得: 4πφ-= cm 6.10=A 故振动方程为:()cm 410cos 6.10π-=t x(2) 同法可得: ()cm 410cos 6.10π+=t x6-6 一轻弹簧在60 N 的拉力作用下可伸长30cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为4k 。
操作系统第六章作业习题解答
第六章作业习题解答3.某操作系统的磁盘文件空间共有500块,若用字长为32位的位示图管理盘空间,试问:(1)位示图需多少个字?(2)第i字第j位对应的块号是多少?(3)并给出申请/归还一块的工作流程。
答:(1) 位示图占用字数为500/32=16(向上取整)个字。
(2) 第i字第j位对应的块号为:N=32×i+j。
(3)申请时自上至下、自左至右扫描位示图跳过为1的位,找到第一个遇到的0位,根据它是第i字第j位算出对应块号,并分配出去。
归还时已知块号,块号/32算出第i字第j位并把位示图相应位清0。
9.一个UNIX/Linux文件,如果一个盘块的大小为1KB,每个盘块占4个字节,那么,若进程欲访问偏移为263168字节处的数据,需经过几次间接寻址?答:UNIX/Linux文件系统中,一个盘块的大小为1KB,每个盘块号占4个字节,即每块可放256个地址。
直接寻址为10块,一次间接寻址为256块,二次间接寻址为2562块,三次间接寻址为2563块。
首先将逻辑文件的字节偏移量转换为文件的逻辑块号和块内偏移。
方法是:将逻辑文件的字节偏移量/盘块大小,商为文件的逻辑块号,余数是块内偏移;再将文件的逻辑块号转换为物理块号,使用多重索引结构,在索引节点中根据逻辑块号通过直接索引或间接索引找到对应物理块号。
偏移为263168字节的逻辑块号是:263168/1024=257。
块内偏移量=263168-257×1024=0。
由于10<257<256+10,故263168字节在一次间接寻址内。
11 设文件ABCD为定长记录的连续文件,共有18个逻辑记录。
如果记录长为512B,物理块长为1024B,采用成组方式存放,起始块号为12,叙述第15号逻辑记录读入内存缓冲区的过程。
答:采用成组方式存放,块因子为2。
由于共有18个逻辑记录,故占用了9个物理块,而第15号逻辑记录占用的是第15/2=8(向上取整)物理块。
清华大学土力学课后答案-第六章课后习题
6 4解: 36 , 20 cos 2 0.235 sin( ) sin 2 cos (1 ) cos 主动土压力: Ka 1.500m :ea1 1h1 K a 18*1.5*0.235 6.345kPa 5.0m处, ea 2 ( 1h1 ' h2 ) K a (18*1.5 11*3.5) *0.235 15.39kPa 水压力: 5.000米m处ew w h2 10* 3.5 35kPa 分布图略
' 总土压力:Ea Ea Ea 174.30 33.78 208.08kN / m ' Ea *3 Ea *2 2.162m Ea
总土压力作用点距离墙底:d
总土压力 Ea与水平面夹角: 33.69 30 69.69
2/5
6-6解:(1)0 3m主动土压力Ea1
1 3
1 1 Ea1 h12 K a1 *18*32 *0.482 39.04kN / m 2 2 Ea1与水平面夹角1 18.43 Ea1h Ea1 cos 1 37.14kN / m,Ea1v Ea1 sin 1 12.34kN / m (2)3 8m主动土压力Ea1和水压力 题目未说明填土性质,按照砂土处理. 将水位以上土折算成 ' 10kN / m3 , 和下部土性相同. 3*18 5.4m 10 3 2 arctan( ) 30.96 , 0, 30 , 0 5 cos 2 ( 2 ) Ka2 0.633, sin( ) *sin 2 2 cos 2 *cos( 2 )[1 ] cos( 2 ) *cos 2
1 h1
结构力学_第六章_作业参考答案(整理_BY_TANG_Gui-he)
结构力学 第六章习题 参考答案TANG Gui-he6-1 试用积分法求图示刚架B 点的水平位移。
q解:(1) 实际状态下的内力AC 杆:22P qx M qlx =−+BC 杆:2P qlxM =(2) 虚拟状态下的内力AC 杆:M x = BC 杆:M x = (3)求Bx Δ200411()223 ()8l lp Bx M M ds qlx qx xdx qlx xdx EIEI EI qlΔ==+−+=∑∫∫∫i i→6-2 图示曲梁为圆弧形,EI =常数。
试求B 的水平位移。
1解:(1) 实际状态下的内力(sin 2p FM R R )θ=− (2) 虚拟状态下的内力1sin M R θ=i (3)求 Bx Δ/2312(sin )sin 22p Bx M M ds F F R R R Rd EIEIEIπθθθΔ==→−=∑∫∫ii i ()R6-3B AAB解:(1) 实际状态下的内力20sin()(1cos )p M qRd R qR θϕθϕθ=−=−∫i(2) 虚拟状态下的内力1sin M R θ=i(3)求 Bx Δ/2421(1cos )sin ()2p Bx M M ds FR qR R Rd EIEIEIπθθθΔ==←−=∑∫∫i i6-4 图示桁架各杆截面均为,32210m A −=×210 GPa E =,40 kN F =,。
试求:(a) C 点的竖向位移;(b) 角ADC 的改变量。
2 m d =F (kN)NP解: 实际状态下的桁架内力如上图。
(a )在C 点加上一个单位荷载,得到虚拟状态下的内力如上图。
11[2()(222322]22210)()N Np Cy F F l F d F d EAEA FdEAΔ==−−+↓++=+∑i i i i i i iNPNP(b)虚拟状态下的内力如上图。
11(22()(]4) ()N NpADCF F lF dEA EA dFEAϕ∠Δ==++−=∑ii i i增大6-6 试用图乘法求指定位移。
高等数学课后答案-第六章-习题详细解答
习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ). 由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: =,BM =,∴=+=+BM =与 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为 z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-= 222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB 的模、方向余弦和方向角.解: 因为(1,1)AB =-, 所以2AB =,11cos ,cos 22αβγ===-,从而π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1)BC 与CA 及其模;(2)BC 的方向余弦、方向角;(3)与BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=--{}{}12,00,011,0,1,CA =---=-- 故 2,2==BC CA .(2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===.(3)与BC 同向的单位向量为:oa =⎧⎫=⎨⎬⎩⎭BCBC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角.解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |=合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b的夹角余弦. 解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j ka b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b -解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直. 2) [()()]⋅-⋅⋅a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α,22cos ==β, 21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.解:=⨯=xy z x y zij kc a b a a a b b b 324112=--i j k =105+j k,||10==c 0||∴=c c c=.⎫±+⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=-,三角形ABC 的面积为,22516121521||21222=++=⨯=AB C A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c 解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-c z a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=;(8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成 (4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成; (3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周.(2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B 0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++c z b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a ==化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l=-.10、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ ∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线.解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kji34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz ty tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1). 又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面;(4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-. 9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为d =.证:设0M M 与L 的夹角为θ,一方面由于0sin d M M θ=;另一方面,00sin M M s M M s θ⨯=,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离. 过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC ⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB 就是飞机相对于地面的速度.840cos 840sin 4203420,3266OA i j i j AB j ππ=⋅+⋅=+=所以, 24203452,(420856.45OB i j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;图6-1 空所流动与飞机飞行速度的关系(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可. 因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形.解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪=由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k j i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kji b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y xz ⎧+=⎨=⎩. 同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1)在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(12=,解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s ,得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线1:2x L =1111y z -+=-相交的直线L 的方程.解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量},,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及AB 共面,因此1()2110312m n pAB ⨯⋅=-=-s s ,即0=-+-p n m ②,将①和②联立解得p n p m 4,5-=-=,由此得145p n m =-=-,于是所求直线方程为11453-=-=-+z y x .。
化工原理(第四版)习题解第六章蒸馏
第六章 蒸 馏相平衡【6-1】苯(A)和甲苯(B)的饱和蒸气压数据如下。
101.33 38.8 179.19 74.53 根据上表数据绘制总压为101.33kPa 时苯一甲苯溶液的-t y x -图及y x -图。
此溶液服从拉乌尔定律。
解 计算式为,0000B AA Bp p p x y x p p p -==- 计算结果见下表苯-甲苯溶液的t x y --计算数据苯-甲苯溶液的t y x --图及y x -图,如习题6-1附图1与习题6-1附图2所示。
习题6-1附图1 苯-甲苯t-y-x 图习题6-1附图2 苯-甲苯y-x 图【6-2】在总压.101325kPa 下,正庚烷-正辛烷的汽液平衡数据如下。
温度/℃ 液相中正庚烷的摩尔分数()x汽相中正庚烷的摩尔分数()y温度/℃ 液相中正庚烷的摩尔分数()x 汽相中正庚烷的摩尔分数()y 98.4 105 1101.0 0.656 0.4871.0 0.81 0.673115 120 125.60.311 0.157 00.491 0.280 0试求:(1)在总压.101325kPa 下,溶液中正庚烷为0.35(摩尔分数)时的泡点及平衡汽相的瞬间组成;(2)在总压.101325kPa 下,组成.035x =的溶液,加热到117℃,处于什么状态?溶液加热到什么温度,全部汽化为饱和蒸气?解 用汽液相平衡数据绘制t y x --图。
(1) 从t y x --图上可知,.035x =时的泡点为113.8℃,平衡汽相的瞬间组成.053y =。
(2) .035x =的溶液,加热到117℃时为气液混合物,液相组成.024x =,汽相组成.040y =。
.035x =的溶液加热到118℃时,全部汽化为饱和蒸气。
习题6-2附图 正庚烷-正辛烷t-y-x 图【6-3】 甲醇(A)-丙醇(B)物系的汽液平衡服从拉乌尔定律。
(1) 试求温度80℃t =、液相组成.05x =(摩尔分数)时的汽相平衡组成与总压。
马文蔚第五版物理第6章作业题解
马文蔚第五版物理第6章作业题解(共14页)-本页仅作为预览文档封面,使用时请删除本页-6 -9 在一半径为R 1 = cm 的金属球A 外面套有一个同心的金属球壳B .已知球壳B 的内、外半径分别为R 2= cm ,R 3 = cm .设球A 带有总电荷Q A = ×10-8C ,球壳B 带有总电荷Q B =×10-8C .(1) 求球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势;(2) 将球壳B 接地然后断开,再把金属球A 接地,求金属球A 和球壳B 内、外表面上所带的电荷以及球A 和球壳B 的电势.分析 (1) 根据静电感应和静电平衡时导体表面电荷分布的规律,电荷Q A 均匀分布在球A 表面,球壳B 内表面带电荷-Q A ,外表面带电荷Q B +Q A ,电荷在导体表面均匀分布[图(a)],由带电球面电势的叠加可求得球A 和球壳B 的电势.(2) 导体接地,表明导体与大地等电势(大地电势通常取为零).球壳B 接地后,外表面的电荷与从大地流入的负电荷中和,球壳内表面带电-Q A [图(b)].断开球壳B 的接地后,再将球A 接地,此时球A 的电势为零.电势的变化必将引起电荷的重新分布,以保持导体的静电平衡.不失一般性可设此时球A 带电q A ,根据静电平衡时导体上电荷的分布规律,可知球壳B 内表面感应-q A ,外表面带电q A -Q A [图(c )].此时球A 的电势可表示为0π4π4π4302010=-+-+=R εQ q R εq R εq V AA A A A 由V A =0 可解出球A 所带的电荷q A ,再由带电球面电势的叠加,可求出球A 和球壳B 的电势.解 (1) 由分析可知,球A 的外表面带电 ×10-8C ,球壳B 内表面带电- ×10-8C ,外表面带电 ×10-8C .由电势的叠加,球A 和球壳B 的电势分别为V 106.5π4π4π43302010⨯=-+-+=R εQ Q R εQ R εq V AA A A AV 105.4π4330⨯=+=R εQ Q V BA B(2) 将球壳B 接地后断开,再把球A 接地,设球A 带电q A ,球A 和球壳B 的电势为0π4π4π4302010=+-+-+=R εq Q R εq R εq V AA A A A 30π4R εq Q V AA B +-=解得C 1012.2831322121-⨯=-+=R R R R R R Q R R q AA即球A 外表面带电 ×10-8C ,由分析可推得球壳B 内表面带电- ×10-8C ,外表面带电 ×10-8C .另外球A 和球壳B 的电势分别为0A V =27.2910V B V =-⨯导体的接地使各导体的电势分布发生变化,打破了原有的静电平衡,导体表 面的电荷将重新分布,以建立新的静电平衡.6 -14 地球和电离层可当作球形电容器,它们之间相距约为100 km ,试估算地球-电离层系统的电容.设地球与电离层之间为真空.解 由于地球半径R 1 =×106 m ;电离层半径R 2 =×105 m +R 1 = ×106 m ,根据球形电容器的电容公式,可得F 1058.4π4212210-⨯=-=R R R R εC6 -15 两线输电线,其导线半径为 mm ,两线中心相距 m ,导线位于地面上空很高处,因而大地影响可以忽略.求输电线单位长度的电容. 解 由教材第六章6 -4 节例3 可知两输电线的电势差RRd ελU -=lnπ0因此,输电线单位长度的电容Rd εR R d εU λC ln /πln /π00≈-==代入数据 F 1052.512-⨯=C6 -24 有两块相距为 的薄金属板A 、B 构成的空气平板电容器被屏蔽在一金属盒K 内,金属盒上、下两壁与A 、B 分别相距 mm ,金属板面积为30 mm ×40 mm 。
第6章 习题解答
第六章 习题解答(部分)[1]数字滤波器经常以图P6-1描述的方式来处理限带模拟信号,在理想情况下,通过A/D 变换把模拟信号转变为序列)()(nT x n x a =,然后经数字滤波器滤波,再由D/A 变换将)(n y 变换成限带波形)(n y a ,即有∑∞-∞=-⎥⎦⎤⎢⎣⎡-=n a nT t nT t n y t y )(Tπ)(T πsin )()( 这样整个系统可等效成一个线性时不变模拟系统。
如果系统)(n h 的截止角频率是rad 8/π,ms T 01.0=,等效模拟滤波器的截止频率是多少? 设s T μ5=,截止频率又是多少?解:对采样数字系统,数字频率ω与模拟角频率Ω之间满足线性关系T Ω=ω。
因此,当ms T 01.0=时,T T cc 8πω==Ω,Hz T f c c 6251612==Ω=π当s T μ5=时, TT c c 8πω==Ω,Hz T f c c 125001612==Ω=π[2]已知模拟滤波器的系统函数为()22)(b a s bs H a ++=,试用冲激响应不变法将)(s H a 转换为)(z H 。
其中抽样周期为T ,式中a 、b 为常数,且)(s H a 因果稳定。
解:)(s H a 的极点为:jb a s +-=1,jb a s --=1将)(s H a 部分分式展开: )(21)(21)(jb a s j jb a s j s H a +---+---= 所以有1)(1)(121121)(-+------+-=z e j zej z H T jb a Tjb a通分并化简整理得:TT T ez bT e z bTe z z H ααα2211cos 21sin )(------+-= [3]设计一个模拟带通滤波器,要求其幅度特性为单调下降(无波纹),通带带宽s rad B /2002⨯=π,中心频率s rad /10020⨯=Ωπ,通带最大衰减dB p 2=δ,s rad s /80021⨯=Ωπ,s rad s /124022⨯=Ωπ,阻带最小衰减dB s 15=δ。
大学物理第六章恒定磁场习题解劝答
第6章 恒定磁场1. 空间某点磁感应强度方向,一般可以用下列几种办法来判断,其中哪个是错误? ( C )(A )小磁针北(N )极在该点指向;(B )运动正电荷在该点所受最大力与其速度矢积方向; (C )电流元在该点不受力方向;(D )载流线圈稳定平衡时,磁矩在该点指向。
2. 下列关于磁感应线描述,哪个是正确? ( D )(A )条形磁铁磁感应线是从N 极到S 极; (B )条形磁铁磁感应线是从S 极到N 极; (C )磁感应线是从N 极出发终止于S 极曲线; (D )磁感应线是无头无尾闭合曲线。
3. 磁场高斯定理说明了下面哪些叙述是正确? ( A )a 穿入闭合曲面磁感应线条数必然等于穿出磁感应线条数;b 穿入闭合曲面磁感应线条数不等于穿出磁感应线条数;c 一根磁感应线可以终止在闭合曲面内;d 一根磁感应线可以完全处于闭合曲面内。
(A )ad ; (B )ac ; (C )cd ; (D )ab 。
4. 如图所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 磁通量和面上各点磁感应强度B 将如何变化? ( D )(A )增大,B 也增大;(B )不变,B 也不变; (C )增大,B 不变; (D )不变,B 增大。
5. 两个载有相等电流I 半径为R 圆线圈一个处于水平位置,一个处于竖直位置,两个线圈圆心重合,则在圆心o 处磁感应强度大小为多少? ( C )(A )0; (B );(C ); (D )。
6、有一无限长直流导线在空间产生磁场,在此磁场中作一个以截流导线为轴线同轴圆柱形闭合高斯面,则通过此闭合面磁感应通量( A )A 、等于零B 、不一定等于零C 、为μ0ID 、为7、一带电粒子垂直射入磁场后,作周期为T 匀速率圆周运动,若要使运动周期变为T/2,磁感应强度应变为(B )A 、/2B 、2C 、D 、–8 竖直向下匀强磁场中,用细线悬挂一条水平导线。
理论力学习题解答(第六章)
6-1在图示四连杆机构中,已知:匀角速度O ω,OA =B O 1=r 。
试求在°=45ϕ且AB ⊥B O 1的图示瞬时,连杆AB 的角速度AB ω及B 点的速度。
解:连杆AB 作平面运动,由基点法得BA A B v v v +=由速度合成的矢量关系,知φcos v A BA =v杆AB 的角速度)(/AB /O BA AB 2122+==ωωv (逆时针)B 点的速度2245/r cos v O A B ω=°=v (方向沿AB )6-2. 在图示四连杆机构中,已知:3.021===L B O OA m ,匀角速度2=ωrad/s 。
在图示瞬时,11==L OB m ,且杆OA 铅直、B O 1水平。
试求该瞬时杆B O 1的角速度和角加速度。
解:一.求1ω60230..OA v A =×=⋅=ω m/s取A 为基点,则有BA A B v v v += 得 23.0/6.0ctg v v A B ===ϕ m/sm09.2)3.01()3.0/6.0(sin /v v 2/122A BA =+×==ϕ杆B O 1的角速度67630211../BO /v B ===ω rad/s 顺时针 二.求1ε取点A 为基点,则有n BA A a a a a a ++=+ττBA nB B将上式向X 轴投影21222857s /m .B O /ctg v )sin AB /v (OA ctg a )sin /a (a a a sin a cos a sin a BBA n B n BA A B nBA A n B B +=⋅+⋅+⋅−=++−=−=+−ϕϕωϕϕϕϕϕττ杆B O 1的角加速度7.1923.0/8.57/11===B O a B τεrad/s 2逆时针6-3.图示机构中,已知:OA =0.1m , DE =0.1m ,m 31.0=EF ,D 距OB 线为h=0.1m ;rad 4=OA ω。
信号与系统 第6章-作业参考答案
Hd
(z)
=
Hc(z)
s
=1− 1+
z z
−1 −1
证明:H������(z)有一个位于单位圆内的极点和一个位于单位圆外的零点
c)对于系统函数H������(z),证明�H�������ejω�� = 1
证明:
16
第六章 z 变换
第 6 章 习题参考答案
6-4 计算机设计题 答案暂略
17
和 x2(n) = �14�n u(n)
设序列x1(n)的单边和双边 变换分别为 X1( X2(z) 和 X2d (z) 。
1) 根据双边 z 变换的定义和卷积定理,求出g(n) = x1(n) ∗ x2(n); 2) 根据单边 z 变换的定义和卷积定理,求出g(n) = x1(n) ∗ x2(n); 3) 解释 1)和 2)的结果为何不同。 解:
,试用
z
变换的初值
和终值性质确定离散序列 x(n) 的初值 x(0) 和终值 x(∞) 。
6
第六章 z 变换 解:直接求出。
第 6 章 习题参考答案
6-2-26 某离散LTI系统由差分方程
y(n)
−
10 3
y(n)
+
y(n
+
1)
=
x(n)
描述。试求系统的单位样值响应 h(n) ,并确定系统的稳定性。
解:
5
第六章 z 变换
第 6 章 习题参考答案
∞
∑ 6-2-21 序列 x(n) 的自相关序列定义为φxx (n) = x(k)x(n + k) 。试利用 x(n) 的 z 变换 k =−∞
求出φxx (n) 的 z 变换。
解:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6-15 某特定工艺过程每小时需要0.188MPa ,品质(干度)不低于0.96、过热度不大于7℃的蒸汽450kg 。
现有的蒸汽压力为 1.794MPa 、温度为260℃。
(a )为充分利用现有蒸汽,先用现有蒸汽驱动一蒸汽透平,而后将其乏汽用于上述特定工艺工程。
已知透平机的热损失为5272 kJ ﹒h -1,蒸汽流量为450 kg ﹒h -1,试求透平机输出的最大功率为多少KW 。
(b )为了在透平机停工检修时工艺过程蒸汽不至于中断,有人建议将现有蒸汽经节流阀使其降至0.188MPa ,然后再经冷却就可得到工艺过程所要求的蒸汽。
试计算节流后的蒸汽需要移去的最少热量。
(a)该过程可视作稳流过程,利用热力学第一定律:0.188MPa 下,饱和水h=496.44kJ/kg ,饱和水蒸气h=2703.50kJ/kg 查表可得:P=1.794MPa ,T=260oC (即过热蒸汽状态)12936.177/,h kJ kg =21(1)2615.22/h x h xHg kJ kg =-+=21,:s sH Q W H H Q W ∆=+-=+即故:(2615.222936.177)*4505272388.663600s W kw-+==(b )节流膨胀,0H ∆=2121,2936.18/H H h h kJ kg ∴===即查得P=0.188MPa ,22936.18/h kJ kg =时, 水蒸气温度2232.36o t C =,即:2505.51t K = 节流后冷却:32Q H h h '=∆=- 由于Q 为最小,则3t 为最大 则3118.297125.29o t C =+= 查得此状态下32718.23/h kJ kg =故32()450*(2718.232936.18)98077.5/Q m h h kJ h =-=-=-6-16 某理想气体(分子量为28)在0.7MPa 、1089K 下,以35.4kg.h -1的质量流量进入一透平机膨胀到0.1MPa 。
若透平机的输出功率为3.5KW(KJ/s),热损失6710 kJ.h -1。
透平机进、出口连接钢管的内径为0.016 m ,气体的热容为1.005kJ/(kg ﹒K ),试求透平机排汽的温度和速度。
【解】:以透平机为研究对象,1kg 理想气体为计算基准,忽略动、位能变化-16710189.55kJ kg 35.4Q q m -=-==-⋅ -13.5355.93kJ kg 35.4s w -==-⋅ ()()1089 1.0051089id p h C T T ∆=-=-由理想气体状态方程Mp RT ρ=知-311310.7282.1648kg m 8.314101089p M RT ρ⨯===⋅⨯⨯ -322320.128336.78kg m 8.31410p M RT T Tρ⨯===⋅⨯ 对于稳流过程22112244m d u d u ππρρ⎛⎫⎛⎫=⋅=⋅ ⎪ ⎪⎝⎭⎝⎭因此-1122135.4360022.6m s 2.16480.7850.0164mu d πρ===⋅⨯⨯ -11212222.164822.60.145m s 336.78u u T ρρ==⨯=⋅ ()2222110.14522.60.01051255.3822u T T ⎡⎤∆=-=-⎣⎦ 由热力学第一定律表达式212s h u q w ∆+∆=+()21.00510890.01051255.38189.55355.93T T -+-=--解得:545.65T K =-120.145545.6579.23m s u =⨯=⋅6-24设有10 kg 水被下述热流体从288K 加热到333K ,水的平均恒压热容为4.1868kJ.kg -1.K -1,试计算热流体与被加热的水的熵变。
(a )用0.344MPa 的饱和水蒸气加热。
冷凝温度为411.46K ; (b )用0.344MPa 、450K 的过热蒸汽加热。
已知0.344MPa 饱和蒸汽的冷凝热为-2149.1 kJ.kg -1.K -1,411K ~450K 水蒸气的平均恒压热容为1.918 kJ.kg -1.K -1。
(假设两种情况下蒸汽冷凝但不过冷)【解】:将水从288K 加热到333K 所需热量()10 4.48683332881884.06kJP Q H mC T =∆=∆=⨯⨯-=(a )用0.344MPa 的饱和水蒸气加热,所需蒸汽量m 为:m H Q ∆=冷2149.11884.06m =0.8767kg m =-121333ln 10 4.1868ln 6.08kJ K 288p T S mC T ∆==⨯=⋅水-12149.10.8767 4.58kJ K 411.46H S m T ∆∆=⨯=⋅冷热=(b )用0.344MPa 、450℃的过热蒸汽加热。
所需蒸汽量m 为:P mC T m H Q ∆+∆=冷()1.9184504112149.11884.06m m =-+0.8471kg m =214502149.1ln 0.84711.918ln 4.57kJ411411.46p H T S mC m T T ∆⎛⎫∆==+= ⎪⎝⎭冷热+331108.2100.651169310a η⨯==⨯6-27 12MPa 、700℃的水蒸气供给一个透平机,排出的水蒸气的压力为0.6MPa 。
(a )在透平机中进行绝热可逆膨胀,求过程理想功和损失功。
(b )如果等熵效率为0.88,求过程的理想功、损失功和热力学效率。
【解】:(a )入口水蒸气性质可由水蒸气h-s 图查得:-1-117.0757kJ kg k s =⋅⋅ ,绝热可逆膨胀为等熵过程-1-1217.0757kJ kg k s s ==⋅⋅出口为过热蒸汽,由压力和熵值由h-s 图查得出口焓值-122904.1kJ kg h =⋅由热力学第一定律 -1212904.13858.4954.3kJ kgs w h h h =∆=-=-=-⋅理想功 -1954.3kJ kg id W H T S H =∆-∆=∆=-⋅ 绝热可逆膨胀的损失功 0L id S W W W =-=(b )等熵效率为0.88时()-10.8954.3839.8kJ kg s w =⨯-=-⋅对于该绝热过程-1213858.4839.83081.6kJ kg sh h w =-=-=⋅ 由h-s 图查得不可逆绝热过程的出口熵值-1-127.2946kJ kg k s =⋅⋅设环境温度为298K ,()()-10212987.29467.0757905kJ kg id W H T S h h =∆-∆=---=-⋅损失功-1839.890565.2kJ kg L S id W W W =-=-+=⋅热力学效率 839.80.928905S a idW W η===6-30 1kg 水在a 1.378MP 的压力下,从20℃恒压加热到沸点,然后在此压力下全部汽化。
环境温度为10℃。
问水吸收的热量最多有百分之几能转化为功?水加热汽化过程所需要的热由1200℃的燃烧气供给,假定加热过程燃烧气温度不变,求加热过程的损耗功。
1kg 水.()()1.378 1.37820 1.378aaMp Mpal CMp g −−−−→→−−−−→→ 010t C = 求:c η=【解】:1.378MPa 下的水的沸点(泡点温度饱和时的)为195C .水的热容-1-14.1868kJ kg K p C =⋅⋅水:20195C C →()-11 4.186819520732.69kJ kg p H C T ∆=∆=-=⋅-1-1211468ln4.1868ln 1.961kJ kg K 293p T S C T ∆===⋅⋅ 水汽化:0.38221111vr v r H T H T ⎛⎫∆-= ⎪∆-⎝⎭,已知.正常沸点-112676.1419.042257.06kJ kg v H ∆=-=⋅.0.38-1210.7232257.061920kJ kg 10.576v H -⎛⎫∆==⋅ ⎪-⎝⎭647.3c T K =24680.723647.3r T ==. 13730.576647.3r T ==. -1-121920 4.10kJ kg K 468S ∆==⋅⋅. -1732.6919202652.69kJ kg H ∆=+=⋅.-1-11.961 4.10 6.061kJ kg K S ∆=+=⋅⋅-102652.69283 6.061937.43kJ kg id W H T S =∆-∆=-⨯=⋅937.430.3532652.69id c W H η===∆ -1-12652.691.8kJ kg K 1200273swr Q S T ∆==-=-⋅⋅+()()()-1-102836.061 1.81205.63kJ kg K L swr W T S S =∆+∆=+-=⋅⋅参考陈胜作业在1.378MPa 下水的沸点为194.3036℃(省去了汽化的一个步骤)112787.302246/6.470698/()h kJ kg S kJ kg K ==20℃下,1.378MPa 的水0043.338/0.15087/()h kJ kg S kJ kg K ==则水吸收的热量,102787.30243.3382743.964/Q H h h kJ kg=∆=-=-=1.378MPa 下水蒸汽转化为20℃的水所产生的最大功0283.15*(0.1509 6.4707)2743.96954.51/id W T S HkJ kg=-∆+∆=--++=954.51*100%*100%34.786%2743.96id W Q η=== 熵变2743.961.8626/()1200273.15Q S kJ kg K T '∆=-=-=+ 1.8626(6.47070.1509) 4.457/()t S S S kJ kg K '∴∆=∆+∆=-+-= 0283.15*4.4751262/L t W T S kJ kg ∴=∆==6-34 有一温度为90℃、流量为-172000kg h ⋅的热水和另一股温度为50℃、流量为-1108000kg h ⋅的水绝热混合。
试分别用熵分析和有效能分析计算混合过程的有效能损失。
大气温度为25℃。
问此过程用哪个分析方法求有效能损失较简便?为什么?解:131231()()p p m c t t m c t t -=-- 求得366C t = Q =0 W 3=0 ΔH =0 熵分析法123112313231123()g S m m S m S m S m S m S m S m S ∆=+---=+--131232()()m S S m S S =-+-331212ln ln p p T T m c m c T T =+-133933972000 4.184ln 108000ln 1240.8kJ h 363323p c =⨯+=⋅0X L g E W T S -∆==∆5-13.710kJ kg =⨯⋅有效能分析法312X X X X E E E E ∆=--12300301100102()[()()][()()[(m m H H T S S m H H T S S m =+--------31123001*********()[()ln ][()ln )][()lnp p p T T m m c H H T m c T T T m c T T T T T =+--------363363=(72000+108000) 4.184[(66-25)-298ln72000 4.184(9025298ln )298298⨯-⨯-- 323108000 4.184[(5025)298ln]298-⨯-- 6655-11.94710 1.86810 4.48910 3.710kJ h =⨯-⨯-⨯=⨯⋅6-35 某厂因生产需要,设有过热蒸汽降温装置,将120℃的热水5-1210kg h ⨯⋅和0.7MPa 、300℃的蒸汽5-1510kg h ⨯⋅等压绝热混合。