人教版六年级上册数学分数乘法知识点

合集下载

新人教版六年级数学上册第单元分数乘法知识点汇总

新人教版六年级数学上册第单元分数乘法知识点汇总

六年级数学上册第一单元分数乘法知识点汇总(一)分数乘法意义 :1、分数乘整数的意义 与整数乘法的意义相同,就是求几个相同加数 的和的简易运算。

注:“分数乘整数”指的是第二个因数一定是整数,不可以是分数。

比如: 3 ×7表示 : 求 7 个 3的和是多少? 或表示: 3 的 7 倍是多555少?2、一个数乘分数的意义就是 求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数一定是分数,不可以是整 数。

(第一个因数是什么都能够)比如:3 1 表示 : 求 3 的 1是多少?5 ×5 669×A × 1 6 16表示 : 求 9 的表示 : 求 a 的 1 6 1 6是多少?是多少?(二)分数乘法计算法例 :1、分数乘整数的运算法例是: 分子与整数相乘,分母不变。

注:(1)为了计算简易能约分的可先约分再计算。

(整数和分母 约分)(2)约分是用整数和下边的分母约掉最大公因数。

(整数千万不可以与分母相乘,计算结果一定是最简分数)2、分数乘分数的运算法例是: 用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)注:( 1)假如分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

( 3)在乘的过程中约分,是把分子、分母中,两个能够约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母一定不再含有公因数,这样计算后的结果才是最简单分数)(4)分数的基天性质:分子、分母同时乘或许除以一个相同的数( 0 除外),分数的大小不变。

(三)积与因数的关系:一个数( 0 除外)乘大于 1 的数,积大于这个数。

a ×b=c,当 b >1 时,c>a.一个数( 0 除外)乘小于 1 的数,积小于这个数。

a ×b=c,当b <1 时,c<a (b ≠0).一个数( 0 除外)乘等于 1 的数,积等于这个数。

人教版六年级上册数学第一单元分数乘法知识点(上)

人教版六年级上册数学第一单元分数乘法知识点(上)

第一单元分数乘法
(一)分数乘法的意义
1.分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:5
12×6,表示:6个
5
12
相加是多少,还表示
5
12
的6倍是多少。

2.一个数(小数、分数、整数)乘分数:表示这个数的几分之几是多少。

例如:6×5
12,表示:6的
5
12
是多少。

2 7×
5
12
,表示:
2
7

5
12
是多少。

(二)分数乘法的计算法则:
1.整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2.分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

注意:先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)数大小的比较:
一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

人教版小学六年级数学上册知识点归纳总结

人教版小学六年级数学上册知识点归纳总结

人教版小学六年级数学上册知识点归纳总结第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b<1时,c<a(b≠0)。

< p="">一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总一、分数乘法•分数乘法的意义:理解分数乘法的两种意义——求一个数的几分之几是多少,以及分数乘整数的意义。

•分数乘法的计算方法:掌握分数乘法的计算法则,能熟练进行分数乘法运算,并理解分数乘法运算的算理。

•分数乘法与加减法的混合运算:能够进行分数乘法与加减法的混合运算,并合理运用运算律进行简便计算。

•解决实际问题:能将分数乘法运算应用于解决实际问题,如分数应用题。

二、位置与方向(二)•根据方向和距离确定物体的位置:学会根据方向和距离在平面图上确定物体的位置,能描述简单的路线图。

•在方格纸上用数对表示位置:进一步巩固用数对表示位置的方法,并能在方格纸上根据数对确定点的位置。

•比例尺的应用:理解比例尺的意义,能根据比例尺计算图上距离或实际距离。

三、分数除法•分数除法的意义:理解分数除法的意义,掌握分数除以整数的计算方法。

•一个数除以分数的计算方法:学会一个数除以分数的计算方法,并能进行分数除法的简便计算。

•分数除法的混合运算:能够进行分数除法的混合运算,包括与加、减法的混合运算。

•解决实际问题:能将分数除法运算应用于解决实际问题,如分数除法应用题。

四、比•比的意义:理解比的意义,掌握比的基本性质。

•比与分数、除法的关系:理解比与分数、除法之间的联系与区别,能够进行比与分数、除法的互化。

•比的应用:掌握比的应用,如按比例分配问题等。

五、圆•圆的认识:认识圆,掌握圆的基本特征,理解直径与半径的关系。

•圆的周长:理解圆周率的意义,掌握圆的周长计算公式,并能进行圆的周长的计算。

•圆的面积:理解圆的面积公式的推导过程,掌握圆的面积计算公式,并能进行圆的面积的计算。

•圆的对称性:理解圆是轴对称图形,能找出圆的对称轴。

六、百分数(一)•百分数的意义:理解百分数的意义,掌握百分数的读写方法。

•百分数与小数、分数的互化:学会百分数与小数、分数的互化方法。

•百分数的应用:能将百分数应用于解决实际问题,如折扣问题、纳税问题、利息问题等。

新人教版六年级数学上册知识点整理归纳

新人教版六年级数学上册知识点整理归纳

新人教版六年级数学上册知识点整理归纳第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a (b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

人教版六年级上数学知识点归纳

人教版六年级上数学知识点归纳

六年级数学(上册)知识点总结第一单元 分数乘法1、分数乘法的意义(1)分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

(2)一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

2、分数乘法的计算法则(1)整数和分数相乘:整数和分子相乘的积作分子,分母不变。

(2)分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

(3)注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、分数大小的比较(1)一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

(2)如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

4、乘法应用题有关概念(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。

人教版六年级数学上册知识点汇总

人教版六年级数学上册知识点汇总

人教版六年级数学上册知识点汇总第一单元分数乘法(一)分数乘法的意义求一个数的几分之几是多少用乘法。

例如:6×512,表示:6的512是多少。

27×512,表示:27的512是多少。

(二)分数乘法积大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(三)解决实际问题。

1、求一个数的几分之几是多少?(求一个数的几分之几用乘法计算)方法:单位“1”的数量×对应分率=对应数量。

2、分数的连乘。

找到每一个分率的单位“1”。

(1)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。

(2)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(3)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(4)分率与量要对应。

①多的对应量对多的分率;②少的对应量对少的分率;③增加的对应量对增加的分率;④减少的对应量对减少的分率;⑤提高的对应量对提高的分率;⑥降低的对应量对降低的分率;⑦工作总量的对应量对工作总量的分率;⑧工作效率的对应量对工作效率的分率;⑨部分的对应量对部分的分率;⑩总量的对应量对总量的分率;(四)倒数1、倒数:乘积是1的两个数互为倒数。

新人教版六年级上册数学知识点总结

新人教版六年级上册数学知识点总结

新人教版六年级上册数学知识点总结新人教版六年级上册数学知识点简单总结第一单元分数乘法在分数乘法中,有以下几个计算法则:1.分数与整数相乘时,分子与整数相乘的积做分子,分母不变。

例如:3/5×4=12/5.2.分数与分数相乘时,用分子相乘的积做分子,分母相乘的积做分母。

例如:3/4×1/2=3/8.3.为了计算简便,能约分的要先约分,再计算。

带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

乘法中比较大小时,有以下规律:1.一个数(除外)乘小于1的数(除外),积小于这个数。

例如:3/6×3/5<3/6.2.一个数(除外)乘1,积等于这个数。

例如:5/5×1=5/5.3.一个数(除外)乘大于1的数,积大于这个数。

例如:3/5×2>3/5.分数混合运算的运算顺序和整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

第二单元位置与方向在位置和方向的概念中,有以下几个要点:1.位置是相对的,要指出一个物体的位置,必须以另一个物体为参照物。

以谁为参照物,就以谁为观测点。

2.方向可以用角度表示,例如XXX也可以说成北偏东60°。

但在生活中一般先说与物体所在方向离得较近(夹角较小)的方位。

3.确定一个物体的准确位置,只知道方向或距离是不可以的,要同时知道这两个条件才行。

4.根据方向和距离确定物体位置的方法:1)确定好方向并用量角器测量出被测物体所在的方向(角度);2)用直尺测量出被测物体和观测点之间的图上距离,结合单位长度计算出实际距离。

分数除法是指将一个分数除以另一个分数,得到一个新的分数,表示被除数能够被除数整除的次数。

2、分数除法的方法:将除法转化为乘法,即将被除数乘以除数的倒数。

3、分数除法的性质:1)分数除以一个数,等于分子除以这个数再除以分母。

2)分数除以分数,等于分子乘以除数的倒数再除以分母。

3)分数除以分数,可以先将除数取倒数,再将除法转化为乘法。

人教版六年级上册数学知识要点(背)打印

人教版六年级上册数学知识要点(背)打印

分数乘、除法一、分数乘法(一)分数乘法的意义:1.分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如:98×5表示:5的98是多少;5个98的和是多少;98的5倍是多少;2.分数乘分数是求一个数的几分之几是多少。

例如:98×43表示:98的43是多少;43的98是多少。

(二)分数乘法的计算法则:1.分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2.分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

画一画98×4365×32说一说3.为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a一个数(0除外)乘小于1的数(0除外),积小于这个数。

a×b=c,当b <1时,c<a(b≠0)一个数(0除外)乘1,积等于这个数。

a×b=c,当b =1时,c=a在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(三)分数混合运算的运算顺序和整数的运算顺序相同。

整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

二、分数乘法的解决问题已知单位“1”的量,求单位“1”的几分之几是多少用乘法计算1.巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

2.求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×几几。

3.写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“=”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量①多的比较量对多的分率;②少的比较量对少的分率;③增加的比较量对增加的分率;④减少的比较量对减少的分率;⑤提高的比较量对提高的分率;⑥降低的比较量对降低的分率;⑦工作总量的比较量对工作总量的分率;⑧工作效率的比较量对工作效率的分率;⑨部分的比较量对部分的分率;⑩总量的比较量对总量的分率;4.什么是速度?速度是单位时间内行驶的路程。

新人教版六年级数学上册知识点总结

新人教版六年级数学上册知识点总结

第一单元分数乘法一、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)、分数混合运算的运算顺序和整数的运算顺序相同。

(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。

3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)百分率前是“的”:单位“1”的量×百分率=百分率对应量(3)百分率前是“多或少”的意思:单位“1”的量×(百分率)=百分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

人教版六年级数学上册 分数乘法 知识点归纳

人教版六年级数学上册 分数乘法 知识点归纳

《分数乘法》知识点归纳
知识点一、分数乘以整数
1、分数乘以整数和整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2、分数乘以整数的运算:
①能约分的先约分。

让分母与整数约分了,再计算。

②用分子乘以整数的积作为分子,分母保持不变。

知识点二、分数乘以分数
1、分数乘以分数和整数乘法的意义不同,分数乘以分数是求这个数的几分之几是多少。

2、分数乘以分数的运算:
①能约分的先约分。

让分子与分母约分了,再计算。

②用分子相乘的积作为结果的分子,用分母相乘的积作为结果的分母。

温馨提示:如果分数乘法中含有带分数,则要把带分数化成假分数再计算。

3、分数乘以小数,关键是要把小数转为分数,再利用分数乘法的运算法则来计算。

知识点三、乘法定律
1、乘法交换律:a×b=b×a
2、乘法结合律:a×b×c=a×(b×c)
3、乘法分配律(a+b)×c=a×c+b×c
知识点四、乘法规律
1、一个正数乘以一个大于1的数,积比原来大。

2、一个正数乘以一个小于1的数,积比原来小。

3、一个正数乘以一个1,积等于它本身。

4、0乘以任何数都等于0 。

知识点五、分数乘法应用题
1、要求一个数的几分之几是多少,就可以用乘法。

2、找单位“1”的方法:“是”、“占”、“比”字之后的量是单位“1”;“的”字前面的量是单位“1”。

人教版六年级上册数学知识点

人教版六年级上册数学知识点

人教版六年级上册数学知识点(一)分数乘法意义:1.分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算.分数乘整数指的是第二个因数必须是整数,不能是分数.2.一个数乘分数的意义就是求一个数的几分之几是多少.一个数乘分数指的是第二个因数必须是分数,不能是整数.(第一个因数是什么都可以)(二)分数乘法计算法则:1.分数乘整数的运算法则是:分子与整数相乘,分母不变.(1)为了计算简便能约分的可先约分再计算.(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数.(整数千万不能与分母相乘,计算结果必须是最简分数).2.分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母.(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算.(2)分数化简的方法是:分子.分母同时除以它们的最大公因数.(3)在乘的过程中约分,是把分子.分母中,两个可以约分的数先划去,再分别在它们的上.下方写出约分后的数.(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数).(4)分数的基本性质:分子.分母同时乘或者除以一个相同的数(0除外),分数的大小不变.(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数.a b=c,当b 1时,c a.一个数(0除外)乘小于1的数,积小于这个数.a b=c,当b 1时,c a(b 0).一个数(0除外)乘等于1的数,积等于这个数.a b=c,当b =1时,c=a .在进行因数与积的大小比较时,要注意因数为0时的特殊情况.(四)分数乘法混合运算1.分数乘法混合运算顺序与整数相同,先乘.除后加.减,有括号的先算括号里面的,再算括号外面的.2.整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便.乘法交换律:a b=b a 乘法结合律:(a b) c=a (b c)乘法分配律:a (b c)=a b a c(五)倒数的意义:乘积为1的两个数互为倒数.1.倒数是两个数的关系,它们互相依存,不能单独存在.单独一个数不能称为倒数.(必须说清谁是谁的倒数)2.判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为 1 .例如:a b=1则a.b互为倒数.3.求倒数的方法:①求分数的倒数:交换分子.分母的位置.②求整数的倒数:整数分之1.③求带分数的倒数:先化成假分数,再求倒数.④求小数的倒数:先化成分数再求倒数.4.1的倒数是它本身,因为1 1=10没有倒数,因为任何数乘0积都是0,且0不能作分母.5.真分数的倒数是假分数,真分数的倒数大于1,也大于它本身. 假分数的倒数小于或等于1.带分数的倒数小于1.(六)分数乘法应用题用分数乘法解决问题1.求一个数的几分之几是多少?(用乘法)已知单位 1 的量,求单位 1 的量的几分之几是多少,用单位 1 的量与分数相乘.2.巧找单位 1 的量:在含有分数(分率)的语句中,分率前面的量就是单位 1 对应的量,或者占是比字后面的量是单位 1 .3.什么是速度?速度是单位时间内行驶的路程.速度=路程时间时间=路程速度路程=速度时间单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟.每小时.每秒钟等.4.求甲比乙多(少)几分之几?多:(甲-乙) 乙少:(乙-甲) 乙第二单元位置与方向(二)1.什么是数对?数对:由两个数组成,中间用逗号隔开,用括号括起来.括号里面的数由左至右为列数和行数,即先列后行 .数对的作用:确定一个点的位置.经度和纬度就是这个原理.2.确定物体位置的方法:(1).先找观测点;(2).再定方向(看方向夹角的度数);(3).最后确定距离(看比例尺).描绘路线图的关键是选好观测点,建立方向标,确定方向和路程.位置关系的相对性:两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等.相对位置:东--西;南--北;南偏东--北偏西.第三单元分数的除法一.分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算.二.分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数.1.被除数除数=被除数除数的倒数.2.除法转化成乘法时,被除数一定不能变, 变成 ,除数变成它的倒数.3.分数除法算式中出现小数.带分数时要先化成分数.假分数再计算.4.被除数与商的变化规律:①除以大于1的数,商小于被除数:a b=c 当b 1时,c a (a 0)②除以小于1的数,商大于被除数:a b=c 当b 1时,c a (a 0 b 0)③除以等于1的数,商等于被除数:a b=c 当b=1时,c=a三.分数除法混合运算1.混合运算用梯等式计算,等号写在第一个数字的左下角.2.运算顺序:①连除:同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据除以几个数,等于乘上这几个数的积的简便方法计算.加.减法为一级运算,乘.除法为二级运算.②混合运算:没有括号的先乘.除后加.减,有括号的先算括号里面,再算括号外面.(a b) c=a c b c第四单元比比:两个数相除也叫两个数的比1.比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值.连比如:3:4:5读作:3比4比52.比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几.例:_∶_= =_ _= =0.6 _∶_读作:_比_区分比和比值:比值是一个数,通常用分数表示,也可以是整数.小数.比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式.3.比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变.4.化简比:化简之后结果还是一个比,不是一个数.(1).用比的前项和后项同时除以它们的最大公约数.(2).两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简.也可以求出比值再写成比的形式.(3).两个小数的比,向右移动小数点的位置,也是先化成整数比.5.求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比.6.比和除法.分数的区别:除法:被除数除号( ) 除数(不能为0) 商不变性质除法是一种运算分数:分子分数线( )分母(不能为0) 分数的基本性质分数是一个数比:前项比号(∶) 后项(不能为0) 比的基本性质比表示两个数的关系商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变.分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变.分数除法和比的应用1.已知单位 1 的量用乘法.2.未知单位 1 的量用除法.3.分数应用题基本数量关系(把分数看成比)(1)甲是乙的几分之几?甲=乙几分之几乙=甲几分之几几分之几=甲乙(2)甲比乙多(少)几分之几?4.按比例分配:把一个量按一定的比分配的方法叫做按比例分配.5.画线段图:(1)找出单位 1 的量,先画出单位 1 ,标出已知和未知.(2)分析数量关系.(3)找等量关系.(4)列方程.两个量的关系画两条线段图,部分和整体的关系画一条线段图.第五单元圆一.圆的特征1.圆是平面内封闭曲线围成的平面图形.2.圆的特征:外形美观,易滚动.3.圆心O:圆中心的点叫做圆心.圆心一般用字母O表示.圆多次对折之后,折痕的相交于圆的中心即圆心.圆心确定圆的位置.半径r:连接圆心到圆上任意一点的线段叫做半径.在同一个圆里,有无数条半径,且所有的半径都相等.半径确定圆的大小.直径d:通过圆心且两端都在圆上的线段叫做直径.在同一个圆里,有无数条直径,且所有的直径都相等.直径是圆内最长的线段.同圆或等圆内直径是半径的2倍:d=2r 或 r=d 24.等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合.同心圆:圆心重合.半径不等的两个圆叫做同心圆.5.圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形.折痕所在的直线叫做对称轴.有一条对称轴的图形:半圆.扇形.等腰梯形.等腰三角形.角.有二条对称轴的图形:长方形有三条对称轴的图形:等边三角形有四条对称轴的图形:正方形有无条对称轴的图形:圆,圆环6.画圆(1)圆规两脚间的距离是圆的半径.(2)画圆步骤:定半径.定圆心.旋转一周.二.圆的周长:围成圆的曲线的长度叫做圆的周长,周长用字母C表示.1.圆的周长总是直径的三倍多一些.2.圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母表示. 即:圆周率 = 周长直径3._所以,圆的周长(c)=直径(d) 圆周率( ) 周长公式:c= d, c=2 r圆周率是一个无限不循环小数,3._是近似值.3.周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径.直径扩大的倍数相同.4.半圆周长=圆周长一半+直径= r+d三.圆的面积s1.圆面积公式的推导如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形.圆的半径=长方形的宽圆的周长的一半=长方形的长长方形面积=长宽所以:圆的面积=圆的周长的一半( r) 圆的半径(r)S圆 = r r= r22.几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的情况下,圆的面积则最大,而长方形的面积则最小.周长相同时,圆面积最大,利用这一特点,篮子.盘子做成圆形.3.圆面积的变化的规律:半径扩大多少倍,直径.周长也同时扩大多少倍,圆面积扩大的倍数是半径.直径扩大的倍数的平方倍.4.环形面积 =大圆小圆= R2- r2扇形面积= r2 n 360(n表示扇形圆心角的度数)5.跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和.因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2 跑道宽度.一个圆的半径增加a厘米,周长就增加2 a厘米.一个圆的直径增加b厘米,周长就增加 b厘米.6.任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶ .7.常用数据=3._ 2 =6.28 3 =9.42 4 =_.56 5 =_.7第六单元百分数(一)一.百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数.百分数又叫百分比或百分率,百分数不能带单位.注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比.1.百分数和分数的区别和联系:(1)联系:都可以用来表示两个量的倍比关系.(2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位.分数不仅表示倍比关系,还能带单位表示具体数量.百分数的分子可以是小数,分数的分子只可以是整数.注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是1_的分数并不是百分数,必须把分母写成 % 才是百分数,所以分母是1_的分数就是百分数这句话是错误的. % 的两个0要小写,不要与百分数前面的数混淆.一般来讲,出勤率.成活率.合格率.正确率能达到1_%,出米率.出油率达不到1_%,完成率.增长了百分之几等可以超过1_%.一般出粉率在70%.80%,出油率在30%.40%.2.小数.分数.百分数之间的互化(1)百分数化小数:小数点向左移动两位,去掉 % .(2)小数化百分数:小数点向右移动两位,添上 % .(3)百分数化分数:先把百分数写成分母是1_的分数,然后再化简成最简分数.(4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数.(5)小数化分数:把小数成分母是_.1_.1_0等的分数再化简.(6)分数化小数:分子除以分母.二.百分数应用题1.求常见的百分率,如:达标率.及格率.成活率.发芽率.出勤率等求百分率就是求一个数是另一个数的百分之几.2.求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几.减少了百分之几.节约了百分之几等来表示增加.或减少的幅度.求甲比乙多百分之几:(甲-乙) 乙求乙比甲少百分之几:(甲-乙) 甲3.求一个数的百分之几是多少.一个数(单位 1 ) 百分率4.已知一个数的百分之几是多少,求这个数.部分量百分率=一个数(单位 1 )5.折扣.打折的意义:几折就是十分之几也就是百分之几十折扣.成数=几分之几.百分之几.小数八折=八成=十分之八=百分之八十=0.8八五折=八成五=十分之八点五=百分之八十五=0.85五折=五成=十分之五=百分之五十=0.5=半价6.利率(1)存入银行的钱叫做本金.(2)取款时银行多支付的钱叫做利息.(3)利息与本金的比值叫做利率.利息=本金利率时间税后利息=利息-利息的应纳税额=利息-利息 5% 注:国债和教育储蓄的利息不纳税7.百分数应用题型分类(1)求甲是乙的百分之几 (甲乙) 1_%=百分之几(2)求甲比乙多百分之几 (甲-乙) 乙 1_%(3)求甲比乙少百分之几 (乙-甲) 乙 1_%第七单元扇形统计图的意义1.扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间关系,也就是各部分数量占总数的百分比,因此也叫百分比图.2.常用统计图的优点:(1)条形统计图直观显示每个数量的多少.(2)折线统计图不仅直观显示数量的增减变化,还可清晰看出各个数量的多少.(3)扇形统计图直观显示部分和总量的关系.。

人教六年级数学分数乘法知识点

人教六年级数学分数乘法知识点

人教六年级数学分数乘法知识点分数乘法是人教版六年级数学教材中的重要知识点之一。

掌握分数乘法的概念和运算规则,对于学生进一步理解数学中的分数概念、提高数学运算能力具有重要意义。

本文将从多个方面详细介绍分数乘法的知识点,帮助学生更好地理解和掌握这一重要概念。

一、分数乘法的概念1.分数乘法定义:两个分数相乘,用分子的积作为积的分子,分母的积作为积的分母。

2.乘法公式:对于任意两个分数a/b和c/d,(a/b)×(c/d)=(a×c)/(b×d)。

3.乘法运算规则:分数乘法满足交换律、结合律和分配律。

二、分数乘法的应用1.解决问题:分数乘法可以应用于解决实际问题,如计算部分数量、比例关系等。

2.计算复合分数:复合分数是整数和分数的组合,计算复合分数的乘法需要将其转化为假分数或带分数进行运算。

3.简便计算:通过约分、通分等方法,可以简化分数乘法的计算过程。

三、知识点解析1.分数的分子与分母相乘:在分数乘法中,分子与分子相乘,分母与分母相乘。

例如,(2/3)×(4/5)=8/15。

2.分数的乘法运算顺序:在进行分数乘法运算时,应按照从左到右的顺序依次进行。

例如,(1/2)×(3/4)×(5/6)=15/48=(5/16)。

3.乘法分配律的应用:乘法分配律在分数乘法中同样适用。

例如,(1/2+1/3)×2=1+2/3=5/3。

4.分数乘法的约分与通分:在进行分数乘法运算时,可以通过约分和通分来简化计算过程。

约分是指将分子和分母同时除以它们的最大公约数,从而得到最简分数;通分是指将两个分数的分母统一为相同的数,从而便于进行加减运算。

5.带分数与假分数的乘法:带分数是由整数和真分数组成的分数,假分数是分子大于或等于分母的分数。

在计算带分数与假分数的乘法时,需要将其转化为假分数或带分数进行运算。

例如,3(1/2)×(5/6)=7/2×5/6=35/12=2(11/12)。

小学六年级上册人教版数学第一单元《分数乘法》知识点

小学六年级上册人教版数学第一单元《分数乘法》知识点

1.分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

2.两个数找最大公因数的办法:短除法:一般用这两个数除以它们的(公因数),一直除到所得的两个商(只有公因数1)为止。

然后把最后所有的(除数)连乘,就得到了两个数的最大公因数。

(三)积与因数的关系一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a.一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a (b ≠0).一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a . 注:在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c3.运用乘法运算定律可以使分数乘法的计算简便。

(1)几个分数连乘时,可以运用乘法运算律或结合律碱性简算。

(2)几个分数的和与整数相乘时,如果所乘整数时这几个人分数分母的公倍数,可以运用乘法分配律进行简算。

4.运用乘法运算律进行简便计算的方法一看:观察算式的特点。

二想:想一想运用哪种运算律能使计算简便。

三算:按运算律计算出结果。

(五)分数乘法应用题——用分数乘法解决问题1. 解决连续求一个数的几分之几是多少的实际问题关键是找对单位“1”。

方法1:用这个数(单位“1”的量)连续乘对应的分率;方法2:先求所求量占已知单位“1”的量的几分之几,再用已知单位“1”的量乘这个几分之几。

人教版六年级上册数学全册知识点归纳

人教版六年级上册数学全册知识点归纳

一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。

2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。

3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。

4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。

6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。

二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。

2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。

3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。

4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。

2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。

3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。

人教版六年级上册数学知识点整理

人教版六年级上册数学知识点整理

补充内容 分数乘法一、分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。

都是求几个相同加数的和的简便运算。

例如: 98×5表示求5个98的和是多少? 2、分数乘分数是求一个数的几分之几是多少。

例如: 98×43表示求98的43是多少? (二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、规律:(乘法中比较大小时) 一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(四)、分数混合运算的运算顺序和整数的运算顺序相同。

(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a c + b c a c + b c = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图; (2)部分和整体的关系:画一条线段图。

2、找单位“1”: 在分率句中分率的前面; 或 “占”、“是”、“比”的后面3、求一个数的几倍: 一个数×几倍; 求一个数的几分之几是多少: 一个数×几几。

4、写数量关系式技巧:(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”(2)分率前是“的”: 单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思: 单位“1”的量×(1±分率)=分率对应量三、倒数1、倒数的意义: 乘积是1的两个数互为..倒数。

新部编人教版小学六年级数学上册期末复习知识要点(第一单元 分数乘法 )

新部编人教版小学六年级数学上册期末复习知识要点(第一单元  分数乘法 )

小部编人教版小学六年级数学上册期末复习要点(第一单元分数乘法 )第一单元 分数乘法1、分数乘整数的意义:与整数乘法的意义相同,求几个相同加数的和的简便运算。

例如:32×3就是求3个32是多少。

2、一个数乘分数的意义:求一个数的几分之几是多少。

例如:32×43就是求32的43是多少。

3、分数乘法的运算法则:分子乘分子,分母乘分母。

例如:32×43=4×33×2=214、约分方法:用整数和下面的分母约掉最大公因数。

例如32×43=4×33×2=21。

5、分数的基本性质:分子和分母同乘或除以同一个数(0除外),分数的大小不变。

例如: 32=3×33×2=96 ; 126=6÷126÷6=216、一个数(0除外)乘大于1的数,积大于这个数。

例如:32×45>327、一个数(0除外)乘小于1的数,积小于这个数。

例如:12×43<128、一个数(0除外)乘等于1的数,积等于这个数。

例如:1×43=129、分数乘法混合运算顺序:与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

10、整数乘法运算定律对分数乘法同样适用。

乘法交换律:a ×b=b ×a 例如:32×43=43×32乘法结合律:(a ×b)×c=a ×(b ×c) 。

例如:43×53×34=(43×34)×53=53 乘法分配律:a ×(b ±c)=a ×b ±a ×c 。

例如:32×43+43×31=(32+31)×43=43 11、倒数:乘积为1的两个数互为倒数。

新人教版六年级数学上册知识点整理归纳

新人教版六年级数学上册知识点整理归纳

新人教版六年级数学上册知识点整理归纳第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a (b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

人教版六年级数学上册知识点汇总

人教版六年级数学上册知识点汇总

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b<1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b=1时,c=a。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

1、倒数是两个数的关系,它们互相依存,不能单独存在。

单独一个数不能称为倒数。

(必须说清谁是谁的倒数)2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。

例如:a×b=1,则a、b互为倒数。

3、求倒数的方法:①求分数的倒数:交换分子、分母的位置。

②求整数的倒数:整数分之1。

③求带分数的倒数:先化成假分数,再求倒数。

④求小数的倒数:先化成分数再求倒数。

4、1的倒数是它本身,因为1×1=1。

0没有倒数,因为任何数乘0积都是0,且0不能作分母。

5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

(1)用比的前项和后项同时除以它们的最大公约数。

(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

也可以求出比值再写成比的形式。

(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。

5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

6、比和除法、分数的区别:除法:被除数除号(÷)除数(不能为0)商不变性质除法是一种运算。

分数:分子分数线(—)分母(不能为0)分数的基本性质分数是一个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级上册
第一章分数乘法
一、分数乘法
(一)分数乘整数
1、分数乘整数的意义
求几个相同分数的和或求一个分数的几倍是多少
2、数乘整数的计算方法
用分数的分子和整数相乘的积作分子,分母不变
3、积化成最简分数:先约分,再计算
(二)分数乘分数
1、分数乘分数的意义
求一个分数的几分之几是多少
2、分数乘分数的计算方法
分子相乘的积作分子,分母相乘的积作分母
3、分数乘分数的简便算法
先约分,再计算;结果是最简分数
(三)分数乘小数
可以把小数化成分数,也可以把分数化成小数,再计算
(四)分数乘法的混合运算同整数乘法
(五)整数乘法运算定律对分数乘法同样适用
二、解决问题
(一)单位“ 1”和所求量的关系
1、单位“ 1”的量×比较量占单位“ 1”的几分之几 =比较量
2、单位“ 1”的量÷单位“ 1”的量被平均分的总份数×比较量所占的份数=比较量(二)求一个数的几分之几是多少的问题
(三)已知一个部分量占总量的几分之几,求另一个部分量的解题方法
1、单位“ 1”的量 - 单位“ 1”的量×一个量占单位“ 1”的几分之几 =另一个量
2、单位“ 1”的量×( 1- 一个量占单位“ 1”的几分之几) =另一个量
(四)已知一个数量比另一个数量多几分之几,求这个数量
1、单位“ 1”的量 +单位“ 1”的量×一个数量比单位“ 1”多的几分之几 =这个数量
2、单位“ 1”的量×( 1+一个数量比单位“ 1”多的几分之几) =这个数量。

相关文档
最新文档