七年级数学有理数的加减法3
京改版七年级上册第一章1.6.1有理数加减法的混合运算课件(3)(共15张PPT)
2、(-
4 )+( + 9
4 )-(+ 5
5 6
)-(+
9 )-(-1 5 10 18
)
3、
0
-212 3+ Nhomakorabea+3
1 4
-
-
2 3
-
+
1 4
4 、
-
4
7 9
-
-3
1 6
-
+2
2 9
+
-6
3 4
应用提高
有理数加减混合运算的步骤:
(1)将减法转化为加法运算; (2)省略加号和括号; (3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算.
体验收获
有理数加减法混合运算的步骤为: 方法一:减法转化成加法 1.减法变加法:a+b-c=a+b+(-c) 2.运用加法交换律使同号两数分别相加; 3.按有理数加法法则计算 方法二:省略括号法 1.省略括号; 2.同号放一起; 3.进行加减运算.
达标测评
1.对式子“-8+16-3-6”的读法正确的是(
如4.5+(-3.2)+1.1+(-1.4)可以写成 省略括号和它前面的加号的形 式:4.5 - 3.2 + 1.1 - 1.4
读作:“正4.5、负3.2、正1.1、负1.4的和” 也可读作:“4.5减3.2加1.1减1.4” 再看下面的例子:
(-8)-(-10)+(-6)-(+4) =(-8)+(+10)+(-6)+(-4) (把减法运算统一成加法运算 ) =-8+10-6-4 (省略括号和加号) 读作: 负8 正10 负6 负4 的和. 或: 负8 加10 减6 减4. 这就是省略加号的代数和.
七年级数学上册第3章有理数的运算3.1有理数的加法与减法教案(新版)青岛版
3.1有理数的加法与减法(1)【教学目标】1.在实际应用中理解有理数加法的意义。
2.熟悉有理数加法法则的过程,学会灵活运用有理数的加法法则去解题,积极地参与有理数加法法则的探索活动,并学会与他人进行交流与合作。
3.能够灵活地运用有理数的加法运算解决简单的实际问题,在教学中让学生熟悉分类讨论思想。
【学习重点】异号两数相加计算方法与技巧。
【学习难点】有理数加法法则的灵活运用。
【学习过程】一、情境导入回顾课本第44页有关黄河水位的例子。
让学生体会同号两数相加,异号两数相加以及一个数与0相加的在实际问题中的不同意义,师生共同做课本第45页题目。
师提问:如何进行有理数的加法运算呢?这是我们这节课一起与大家探讨的主要问题。
(出示课题)有理数的加法。
二、合作交流,解读探究1.看课本第45页,观察水位的变化情形与学生相互交流后,教师引导学生可以把两个有理数相加归纳为(1)、同号两数相加;(2)、异号两数相加;(3)一个数同零相加这三种情形。
初步形成有理数相加的做题方法。
2.( 补充)借助数轴来进一步理解有理数的加法。
假定一个物体向前后方向运动,我们规定向前运动为正,向后为负,向前运动8m,记作+8m,那么向后运动3m,记作-3 m。
(1)(小组合作)把我们已经得出的几种有理数相加的情况在数轴上用运动的方向表示出来,并求出结果,解释它的意义。
(2)交流汇报。
(各学习小组的汇报结果,用实物投影仪展示)(3)说一说有理数相加应注意的事项是什么?(①符号,②绝对值的和与差)指导学生用自己的语言进行归纳。
(4)在学生归纳的基础上,教师出示有理数加法法则。
(用投影仪展示)有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加。
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
③一个数同0相加,仍得这个数。
3. 自学课本例1,并独立解决(2)(3)(4)三个小题。
有理数的加法七年级数学人教版上册
(2)4+(-6)=_______;
A.1 ℃ B.3 ℃
知识点2 异号两数相加
2.气温由-2 ℃上升3 ℃后是
()
6.下表记录的是今年长江某一周内的水位变化情况,这一周的上周
末的水位已达到警戒水位(正号表示水位比前一天上升,负号表示水位比
前一天下降).
星期
一
二
三
四
五
六
水位变化/米 +0.2 +0.8 -0.4 +0.2 +0.3 -0.2
第一章 有理数
有理数的加减法
第1课时 有理数的加法(1)
有理数的加法法则 (1)同号两数相加,取相同的___符__号___,并把__绝__对__值____相加. (2)异号两数相加,取绝对值__较__大____的加数的符号,并用较大的 绝对值减去较小的绝对值. 互为相反数的两个数相加得___0__. (3)一个数同0相加,仍得这个数.
___-__2_5__,于是可得(-40)+(+15)=___-__2_5__.
3.计算(-2)+(-3)的结果是
(A )
A.-5
B.-1
C.1
D.5
知识点1 同号两数相加 例1 计算: (1)(-2)+(-11); (2)(+20)+(+12);
(3)-112+-23.
4.计算: (1)(-0.9)+(-2.7);
(7)不等式、推理与证明。此专题中不等式是重点,注重不等式与其他知识的整合。 学法指导必须与教学改革同走进行,协调开展,持之以恒。我们在数学教学的同时应关于理论联系实际,因人而异,因材施教,充分调动学生的学习积极性。
2.海平面的高度为0 m.一艘潜艇从海平面先下潜40 m,再上升
15 m,此时潜艇在水下25 m处.把上升记为正,下潜记为负,于是下 潜40 m可记作-40,上升15 m可记作___+__1_5__,水下25 m处可记为
北师大版 七年级上册 数学 有理数的加减、乘除及乘方运算 讲解及练习(无答案)
有理数的加减、乘除及乘方运算有理数的加减混合运算一、基础知识知识点1 有理数加减法统一成加法的意义1. 有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)2. 在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+33. 和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.例1 把下列各式写成省略加号的和的形式.(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.知识点2 有理数的加减混合运算的加法和步骤1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.例2 计算:(-47111)-(-5)+(-4)-(+3)分析:加减混合运算应注意有条理按步骤进行,把同号的数相结合相加,这样可以使计算简便.二、典型题解析(一)基本概念题例1 把下列各式写成省略加号的和的形式,并说出它们的两种读法.(1)-2-(+3)-(-5)+(-4);(2)(+8)-(-9)+(-12)+(+5).分析:先把加减法统一成加法;再省略括号和加号.小结:(1)和式中第一个加数若是正数,正号也可省略不写;(2)第一种读法中“的和”两字不要漏掉.(二)知识应用题例2 从-50起逐次加2,得到一连串数-48,-46,-41,-44,-40,…,问:(1)第50个整数是什么?(2)你能巧妙地运用规律计算这50个整数的和吗?小结:在求和时,找出互为相反数的数,再计算出其余的数的和,能用简便算法的尽量用简便算法.(三)学科综合题例3 小彬和小丽在一起玩游戏,游戏规则是:(1)每人每次抽取4张卡片,如果抽取到白色卡片,那么加上卡片上的数字;如果抽到红色卡片,那么减去卡片上的数字.(2)比较两人所抽4张卡片的计算结果,结果小的为胜者,小彬抽到了下面的4张卡片:红-13,白7,红-5,白4,小丽抽到了下面的4张卡片:白3.2,白-2.7,红-6,白-2问:获胜的是谁?(四)拓展创新题例4 埃及同中国一样,也是世界上著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为190个埃及分数:你能从中挑出10个,加上正负号,使他们的和等于-1吗?分析:这是一道阅读理解题,要从90个埃及分数中挑出10个,使它们的和等于-1,不能被题目所举的例子束缚了思维,必须要运用有理数的加减混合运算.(三)培优练习1.下列化简正确的是( )A.(-7)-(-3)+(-2)=-7-3-2B.(-7)-(-3)+(-2)=-7+3-2C.(-7)-(-3)+(-2)=-7-3+2D.(-7)-(-3)+(-2)=-7+3+22.下列各式中与a-b-c的值不相等的是( )A.a-(b-c)B.a-(b+c)C.(a-b)+(-c)D.(-b)+(a-c)3.负数a减去它的相反数的差的绝对值是( )A.0B.2aC.-2aD.以上都可能4.使等式|-7+x|=|-7|+|x|成立的有理数x是( )A.任意一个正数B.任意一个非正数C.小于1的有理数D.任意一个有理数5.在数轴上,点x表示到原点的距离小于3的那些点,那么|x-3|+|x+3|等于( )A.6B.-2xC.-6 D2x6.填空题(1)小于5而大于-4的所有偶数之和是________;(2)-14的绝对值的相反数与5的相反数的差是________;(3)若|x-3|+|y-2|=0,则x+y=________,x-y=________.7计算①(-1.5)+1.4-(-3.6)-4.3+(-5.2) ②(-1)-1+(-2)-(-3)-(-1)③-12-[10+(-8)-3] ④(-4)-(-2)-{(-5)-[(-7)+(-3)-(-8)]}⑤|-0.1|-|-0.2|+|-0.4|-|-0.2|-|+0.1|+0.48、在数1,2,3,4,……,2003,2004前添加“+”或“-”,然后求代数和,使求得的结果为最小的非负数;9.定义新运算a*b=a+b-1,如3*(-2)=3+(-2)-1=0.请你计算(-1)*(-3)*2=_________.10.定义一种运算☆,其规则为a ☆b =b a 11+,根据这个规则,计算-2☆3的值 .11.已知有理数x 、y 满足|x -2y|=-2|x -4|,求4x 2-3y 的值.12.已知|a|=6,|b|=3,|c|=5,且c <0,a+c >0,求a+b+c 的值.有理数的乘除及乘方运算一、基础知识点1.有理数的乘法法则:2.有理数的除法法则:3.乘方:4.处理好符号仍然是有理数乘法、除法及乘方运算的关键。
人教版数学七年级上册1.3有理数的加减法教案
1.3有理数的加减法1.3.1有理数的加法(2课时)第1课时有理数的加法教学目标1.了解有理数加法的意义,会根据有理数的加法法则进行有理数的加法运算.2.能积极地参与探究有理数加法法则的活动,并学会与他人交流合作.3.能较为熟练地进行有理数的加法运算,并能解决简单的实际间问题.教学重难点重点:了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点:有理数加法中的异号两数如何进行加法运算.教学过程活动1:创设情境,导入新课师:我们已学过正数的加法,但是在实际问题中还会遇到超出正数范围的加法情况,此时应该怎样进行计算呢?活动2:自主学习探究加法法则师:布置自学任务.自学教材16~18页的内容,归纳并识记有理数的加法法则.这一段大约用时15分钟,教师巡视指导,要关注学生能否正确理解加法法则的内容.有理数加法的法则是:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不同的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.活动3:运用法则试一试身手:口答下列算式的结果:(1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);(5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.学生逐题口答后,师生共同得出.进行有理数加法,先要判断两个加数是同号还是异号,有一个加数是否为零;再根据两个加数符号的具体情况,选用某一条加法法则.进行计算时,通常应该先确定“和”的符号,再计算“和”的绝对值.教师:出示教材例1,师生共同完成,教师规范写出解答,注意解答过程中讲解对法则的应用.解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)=-(3+9)(和取负号,把绝对值相加)=-12.(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算)=-(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值)=-0.8.教师点评法则运用过程中的注意点:先定符号,再算绝对值.下面请同学们计算下列各题以及教材第18页练习.(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9).学生练习,四位学生板演,教师巡视指导,学生交流,师生评价.本节课教师可根据时间的情况,多安排一些练习,以求通过练习达到巩固掌握知识的目的.活动4:小结与作业小结:谈一谈你对加法法则的认识,在加法计算中都应该注意哪些问题?作业:必做题,习题1.3第1,11题;选做题,习题1.3第12题.ji数学思想方法的渗透不可能立即见效,也不可能靠一朝一夕让学生理解、掌握,所以,本节课在这一方面主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号、一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.第2课时相关运算律教学目标1.正确理解加法交换律,结合律,能用字母表示运算律的内容.2.能运用运算律较熟悉地进行加法运算.教学重难点重点:加法交换律和结合律,及其合理、灵活的运用.难点:合理运用运算律教学过程一、创设情境,导入新课师投影出示练习,计算:①30+(-20);(-20)+30;②[8+(-5)]+(-4);8+[(-5)+(-4)].生独立完成后同学交流.二、推进新课(1)探索加法交换律,结合律师提出问题:观察比较第一组两题,比较它们有什么异同点.观察比较第二组两题,比较它们有什么异同点.学生讨论归纳,师生共同归纳得出加法交换律,结合律的内容,并用字母表示.(2)运用加法交换律,结合律解决问题师出示教材例2.先让学生按照从左到右的运算顺序进行计算.学生独立完成.师生共同分析运用加法交换律和结合律进行计算,教师要给出规范完整的过程,让学生看清楚听明白,从中体会认识运算律的作用.练习:教材20页练习.学生独立完成,然后进行交流.教师可安排学生板演,从中发现学生对运算律的理解和掌握程度.(3)运用有理数的加法解决问题师投影展示教材例3.学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)如果每袋小麦以90千克为标准,超过部分记为正,不足部分记为负数,那么10袋小麦对应的数分别为多少?它们的和是不是最终结果呢?学生讨论后解决.教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.三、课堂小结小结:1.谈谈你本节课的收获.2.在生活中你有没有遇到过类似例3中解法2解决问题的数学现象,你能举出一两个例子吗?四、布置作业习题1.3第2,8,9题.教学反思本节课在开始时先复习小学时学的加法运算律,然后提出问题:“我们如何知道加法的交换律在有理数范围内是否适用?”然后让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.1.3.2有理数的减法(2课时)第1课时有理数的减法法则教学目标1.掌握有理的减法法则.2.能运用有理数的减法法则进行运算.教学重点难点重点:有理数的减法法则.难点:对有理数的减法法则的探究.教学过程一、创设情境,导入新课师:出示温度计,提出问题:1.你能从温度计上看出3℃比较-3℃高多少度吗?2.你能列式求这个结果吗?学生观察后先回答问题1得出结果,然后再列出算式3-(-3)=6.二、探究新知1.探究有理数的减法法则师:这里的计算用到了有理数的减法,通过观察我们知道了3-(-3)=6,而我们还知道3+(+3)=6.即3-(-3)=3+(+3).观察这个式子,你有什么发现?学生进行讨论,教师不必急于归纳.然后教师进一步提出问题.计算:9-8,9+(-8).15-7,15+(-7).观察比较计算的结果,你有什么发现?师生共同归纳有理数的减法法则.教师板书法则.2.尝试运用法则师出示教材例4.师生共同完成.在完成过程中教师示范前两题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下两题学生尝试完成,体验法则的运用.练习:教材23页练习.三.课堂小结小结:谈谈本节课的收获.思考:以前我们只能做被减数大于减数的减法运算,现在你能做被减数小于减数的减法运算吗?这时的差是一个什么数?四、布置作业作业:习题1.3第3,4,6题.教学反思本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索。
冷水江市第九中学七年级数学上册 第一章 有理数 1.3 有理数的加减法 1.3.2 有理数的减法3
有理数的减法第2课时有理数的加减混合运算学习目标:1.理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.2.通过加减法的相互转化,培养应变能力、计算能力.重点:把加减混合运算理解为加法运算.难点:把省略括号的和的形式直接按有理数加法进行计算.自主学习一、知识链接1.有理数的加法法则__________________________________________________________________________.2.有理数的加法运算律__________________________________________________________________________. 有理数的减法法则__________________________________________________________________________. 计算(1)(-7)-(+ 4)(2)0-(-5)(3)(- 2.5)+5.9 (4)(-2)+(-1)二、新知预习一架飞机作特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?方法一:4.5+(-3.2)+1.1+(-1.4)方法二:4.5-3.2+1.1-1.4=1.3+1.1+(-1.4) =1.3+1.1-1.4=2.4+ (-1.4)=2.4-1.4=1(千米). =1(千米).比较以上两种算法,你发现了什么?【自主归纳】加法运算中,各个加数的括号及其前面的运算符号“+”可以省略不写.例如:4.5+(-3.2)+1.1+(-1.4)可写成 4.5-3.2+1.1-1.4 .它表示4.5,-3.2,1.1与-1.4的和,读作“4.5,负3.2,”,或读作“1.4”.自学自测计算(1) 10+(+4)+(-6)-(-5);(2)(-8)-(+4)+(-7)-(+9).四、我的疑惑___________________________________________________________________________________________ ___________________________________________________________课堂探究要点探究探究点1:有理数的加减混合运算问题1:引入相反数后,加减混合运算可以统一为加法运算.如:a+b-c=a+b+______.将(-20)+(+3)-(-5)-(+7)转化为加法:______________________________这个算式我们可以看作是______、______ 、______、______这四个数的和.为书写简单,省略算式中的括号和加号写为____________也可简单写为:(-20)+(+3)+(+5)+(-7)在符号简写这个环节,有什么小窍门么?问题2:观察下列式子,你能发现简化符号的规律吗?(-40)-(+27)+19-24-(-32)=-40-27+19-24+32(-9)-(-2)+(-3)-4=-9 + 2 - 3-4规律:数字前“-”号是奇数个取“-”;数字前“-”号是偶数个取“+”例1 计算:(-2)+(+30)-(-15)-(+27)例2 计算:(1) -127+116-125+115(2)(-18.25)-452+(+1841)+4.4归纳总结:有理数加减混合运算的步骤: (1)将减法转化为加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 探究点2:加减混合运算的应用例3 动物园在检验成年麦哲伦企鹅的身体状况时,最重要的一项工作就是称体重.已知某动物园对6只成年麦哲伦企鹅进行体重检测,以4kg 为标准,超过或者不足的千克数分别用正数、负数表示,称重记录如下表所示,求这6只企鹅的总体重.可以先求出每只企鹅的体重后,再相加吗?哪种方法根简便呢? 针对训练 1.计算(1) 0-1+2-3+4-5; (2) –4.2+5.7-8.4+10.2;(3)–30+11-(-10)+(-11);(4)1111320.252436⎛⎫⎛⎫⎛⎫--+--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.2.某公路养护小组乘车沿南北方向公路巡视维护,某天从地出发,约定向南行驶为正,到收工时的行驶记录如下:(单位:千米)8,-5,7,-4,-6,13,4,12,-11 (1)问收工时,养护小组在地的哪一边?距离地多远?(2)若汽车行驶毎千米耗油0.5升,求从出发到收工共耗油多少升?二、课堂小结有理数加减法混合运算: 方法一:减法转化成加法 1.减法变加法:a+b-c=a+b+(-c) 2.运用加法交换律使同号两数分别相加; 3.按有理数加法法则计算 方法二:省略括号法 1.省略括号; 2.同号放一起; 3.进行加减运算. 当堂检测1.若a= -2,b=3,c= -4 ,则a-(b-c)的值为______ .2.计算:(1)-11-9-7+6-8+10 (2)-5.75-(-3) +(-5)-3.125(3)|-141|-(-43)+1-|21-1|3.下列交换加数的位置的变形中,正确的是( ) A.1-4+5-4=1-4+4-5B.-31+43-61-41=41+43-31-61C.1-2+3-4=2-1+4-34.计算1-2+3-4+5+ …+99-100=________.5.-4,-5,+7这三个数的和比这三个数的绝对值的和小________.数轴教学目标知识与技能:1.认识数轴,会用数轴上的点表示有理数.2.了解数轴的概念,知道数轴的三要素,会画数轴.过程与方法:从直观认识到理性认识,从而建立数轴的概念.情感态度与价值观:通过数轴的学习,体会数形结合的数学思想方法,认识事物之间的联系,感受数学与生活的联系.教学重难点重点:数轴的概念难点:从直观认识到理性认识,建立数轴的概念,正确地画出数轴.教学过程活动1:创设情境,导入新课设计意图:直接抛出数轴的名称,对应学生小学中已经接触过的用直线上的点表示数,引起学生的学习兴趣,建立初步的数轴印象.师:提问有理数包括哪些数?0是正数还是负数?在日常生活中,你能举出一些用刻度来表示物品的数量的例子吗?让学生充分讨论,明确知识是从实践中得到的,它与我们的生活息息相关;再有,数除了可以用符号表示外,还有其他表示方法,从而引出新课:数轴.活动2:学习数轴的概念,探索数轴的画法设计意图:通过教具的使用,使学生能够直观地感受数与形之间的对应关系,渗透数形结合的数学思想,通过讨论、自主学习、合作交流等形式,使学生对数轴从感性认识上升到理性认识.1.教师出示温度计,问:你会读温度计吗?温度上的刻度与数值之间有什么关系?2.教师出示图片,提出:怎样用数简明的表示树、电线杆与汽车站的相对位置关系(方向、距离)?说明:将公路看作直线,将各个事物看作点.学生动手操作,感受画数轴的过程,之后,师让学生阅读教材15页上的三段话,正确规范地理解数轴的概念,然后师生共同总结数轴的三要素.活动3:学习有理数在数轴上的表示方法设计意图:会说出数轴上已知点所表示的数,能将已知数在数轴上表示出来,这是本节课要求学生掌握的最基本的技能,也是以后继续学习坐标系的基础.让学生通过练习感受数与形之间的对应关系,感受数学直观与抽象之间的联系.师:数轴上的点都是整数,分数或小数能用数轴上的点表示吗?生:思考后回答,然后完成教材练习.师:观察数轴,数轴上原点左边的数都是什么数,右边呢?生:讨论后进行归纳,最后师作点评.活动4:课后作业下列所画数轴对不对?如果不对,指出错在哪里.【答案】①错,没有原点;②错,没有正方向;③正确; ④错,没有单位长度;⑤错,单位不统一;⑥错,正方向标错.【板书设计】活动1:创设情境,导入新课活动2:学习数轴的概念,探索数轴的画法.活动3:学习有理数在数轴上的表示方法活动4:课后作业检测内容:5.3-5.4得分________ 卷后分________ 评价________一、选择题(每小题4分,共32分)1.下列A,B,C,D四幅“福牛乐乐”图中,能通过平移图①得到的是( C )2.(2019•湘西州)如图,直线a∥b,∠1=50°,∠2=40°,则∠3的度数为( B ) A.40° B.90° C.50° D.100°第2题图第3题图3.(天门中考)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是( D )A.25° B.35° C.45° D.50°4.(2019•甘肃)如图,将一块含有30°角的直角三角板的顶点放在直尺的一边上,若∠1=48°,那么∠2的度数是( D )A.48° B.78° C.92° D.102°第4题图第5题图5.(2019•泰安)如图,直线l1//l2,∠1=30°,则∠2+∠3=( C )A.150° B.180° C.210° D.240°6.下列命题:①两直线平行,同旁内角互补;②如果x2=4,那么x=2;③经过一点有且只有一条直线平行于已知直线;④邻补角的平分线互相垂直.其中假命题的个数有( B )A.1个 B.2个 C.3个 D.4个7.如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=( A )A.60° B.120° C.150° D.180°第7题图第8题图8.(内江中考)如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为( D )A.31° B.28° C.62° D.56°二、填空题(每小题4分,共16分)9.如图所示,同位角一共有__6__对,内错角一共有__4__对,同旁内角一共有__4__对.第9题图第11题图10.命题“邻补角的平分线互相垂直”的题设是__两个角是邻补角__,结论是__它们的平分线互相垂直__.它是一个__真__命题(填“真”或“假”).11.(2019•郴州)如图,直线a,b被直线c,d所截.若a∥b,∠1=130°,∠2=30°,则∠3的度数为__100__度.12.如图,在三角形ABC中,∠C=90°,AC=4,将三角形ABC沿CB向右平移得到三角形DEF,若平移距离为2,则四边形ABED的面积等于__8__.三、解答题(共52分)13.(10分)完成下面证明.如图,∠1=∠2,∠A=∠F,求证:∠C=∠D.证明:∵∠1=∠2(已知),又∵∠2=∠3(__对顶角相等__),∴∠1=∠3(__等量代换__),∴__BD__∥__CE__(_同位角相等,两直线平行_),∴∠C=∠ABD(__两直线平行,同位角相等__).∵∠A=∠F(已知),∴__AC__∥__DF__(内错角相等,两直线平行),∴∠D=∠ABD(__两直线平行,内错角相等__),∴∠C=∠D(__等量代换__).14.(10分)如图,CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问:直线EF 与AB有怎样的位置关系?为什么?解:EF∥AB.理由:∵CD∥AB,∴∠ABC=∠DCB=70°,又∵∠CBF=20°,∴∠ABF=50°,∴∠ABF+∠EFB=50°+130°=180°,∴EF∥AB(同旁内角互补,两直线平行)15.(10分)如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,且∠1=∠F,试猜想CE与DF的位置关系?并说明你的理由.解:CE∥DF.理由如下:∵BD平分∠ABC,CE平分∠ACB,∴∠1=12∠ABC,∠2=12∠ACB.又∵∠ABC=∠ACB,∴∠1=∠2,∵∠1=∠F,∴∠2=∠F,∴CE∥DF 16.(10分)如图,已知AB⊥BD,CD⊥BD,AE∥DF,问∠1=∠2吗?为什么?解:∵AB⊥BD,CD⊥BD,∴AB∥CD,∴∠BAD=∠CDA,∵AE∥DF,∴∠EAD=∠ADF,∴∠BAD-∠EAD=∠ADC-∠ADF,即∠1=∠217.(12分)(许昌期中)如图,已知MN∥PQ,点B在MN上,点C在PQ上,点A在点B 的左侧,点D在点C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE,BE交于点E,∠CBN =120°.(1)若∠ADQ=110°,求∠BED的度数;(2)将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,若∠ADQ=n°,求∠BED的度数(用含n的代数式表示).解:(1)如图①,延长DE交MN于点H.∵∠ADQ=110°,ED平分∠ADP,∴∠PDH=12∠PDA=35°,∵PQ∥MN,∴∠EHB=11 ∠PDH =35°,∵∠CBN =120°,EB 平分∠ABC ,∴∠EBH =12∠ABC =30°,∴∠BED =∠EHB +∠EBH =65°(2)有三种情形.当n °>60°时,如图②中,延长DE 交MN 于点H .∵PQ ∥MN ,∴∠QDH +∠DHB =180°,∴∠EHB =180°-12 n °,∴∠BED =∠EHB +∠EBH =180°-12n °+30°=210°-12n °;当n °<60°时,如图③中,设BE 交PQ 于点H .∵∠DHB =∠HBA =30°,∠EDH =12 n °,又∵∠DHB =∠BED +∠EDH ,∴∠BED =30°-12n °;当n °-60°时,∠BED 不存在.综上所述,∠BED =210°-12 n °或30°-12n °。
七年级数学上学期期中考点专题03有理数的加减法含解析新人教版
专题03 有理数的加减法重点突破知识点一 有理数的加法(基础)有理数的加法法则:(先确定符号,再算绝对值) 1.同号两数相加,取相同的符号,并把绝对值相加;2.异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4.一个数同0相加,仍得这个数。
有理数的加法运算律:1.两个数相加,交换加数的位置,和不变。
即a b b a +=+;2.三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。
即()()a b c a b c ++=++。
知识点二 有理数的减法(基础) 有理数的减法法则:减去一个数等于加上这个数的相反数。
即()a b a b -=+-。
【注意减法运算2个要素发生变化】:减号变成加号;减数变成它的相反数。
有理数减法步骤: 1.将减号变为加号。
2.将减数变为它的相反数。
3.按照加法法则进行计算。
考查题型考查题型一 有理数加法运算典例1.(2018·广东初一期中)计算-(-1)+|-1|,其结果为( ) A .-2 B .2 C .0 D .-1【答案】B 【解析】试题提示:由题可得:原式=1+1=2,故选B.a b的值()变式1-1.(2019·呼伦贝尔市期末)有理数a、b在数轴上的位置如图所示,则A.大于0B.小于0C.小于a D.大于b【答案】A【提示】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【详解】根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【名师点拨】此题考查数轴,绝对值,有理数的加法法则.解题关键在于用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.变式1-2.(2019·庆阳市期中)若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或7【答案】D【提示】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【名师点拨】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.变式1-3.(2019·扬州市期中)若|m|=3,|n|=5,且m-n>0,则m+n的值是()A.-2 B.-8或8 C.-8或-2 D.8或-2【答案】C【详解】∵|m|=3,|n|=5,∴m=±3,n=±5,∵m-n>0,∴m=±3,n=-5,∴m+n=±3-5,∴m+n=-2或m+n=-8.故选C .变式1-4.(2018·上饶市期末)若m 是有理数,则m m +的值是( ) A .正数 B .负数C .0或正数D .0或负数【答案】C【提示】根据:如果m>0,则|m|=m; 如果m<0,则|m|=-m; 如果m=0,则|m|=0.【详解】如果m 是正数,则m m +是正数;如果m 是负数,则m m +是0;如果m 是0,则m m +是0. 故选C【名师点拨】本题考核知识点:有理数的绝对值.解题关键点:理解绝对值的意义. 考查题型二 有理数加法中的符号问题典例2.(2018·重庆市期末)将 6-(+3)+(-2) 改写成省略括号的和的形式是( ) A .6-3-2 B .-6-3-2C .6-3+2D .6+3-2【答案】A【提示】先把加减法统一成加法,再省略括号和加号.【详解】将6﹣(+3)+(﹣2)改写成省略括号的和的形式为6﹣3﹣2. 故选A .【名师点拨】本题考查了有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.变式2-1.(2020·银川市期中)把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是( ). A .﹣3﹣5+1﹣7 B .3﹣5﹣1﹣7 C .3﹣5+1﹣7 D .3+5+1﹣7 【答案】C【解析】(+3)﹣(+5)﹣(﹣1)+(﹣7)=(+3)+(-5)+(+1)+(﹣7)=3﹣5+1﹣7, 故选:C.变式2-2.(2020·邯郸市期末)若两个非零的有理数a,b 满足:|a|=-a,|b|=b,a +b <0,则在数轴上表示数a,b 的点正确的是( ) A .B .C .D .【答案】D【提示】根据|a|=-a 得出a 是负数,根据|b|=b 得出b 是正数,根据a+b <0得出a 的绝对值比b 大,在数轴上表示出来即可.【详解】解:∵a 、b 是两个非零的有理数满足:|a|=-a,|b|=b,a+b <0, ∴a <0,b >0, ∵a+b <0, ∴|a|>|b|, ∴在数轴上表示为:故选D.【名师点拨】本题考查数轴,绝对值,有理数的加法法则等知识点,解题关键是确定出a <0,b >0,|a|>|b|. 变式2-3.(2019·深圳市期中)如果a <0,b >0,a +b <0 ,那么下列关系式中正确的是( ) A .a b b a ->>-> B .a a b b >->>- C .a b b a >>->- D .b a b a >>->-【答案】A【提示】由于a <0,b >0,a+b <0,则|a|>b,于是有-a>b,-b>a,易得a,b,-a,-b 的大小关系. 【详解】∵a <0,b >0,a+b <0, ∴|a|>b, ∴-a>b,-b>a,∴a,b,-a,-b 的大小关系为:-a>b>-b>a, 故选A .【名师点拨】本题考查了有理数的加法法则,有理数的大小比较,异号两数的加法法则确定出|a|>b 是解题的关键. 考查题型三 有理数加法在实际生活中的应用典例3(2018·厦门市期末)下列温度是由-3℃上升5℃的是( ) A .2℃ B .-2℃ C .8℃ D .-8℃【答案】A【提示】物体温度升高时,用初始温度加上上升的温度就是上升之后的温度,即是所求 【详解】(-3℃)+5℃= 2℃ 故本题答案应为:A【名师点拨】此题考查了温度的有关计算,是一道基础题.熟练掌握其基础知识是解题的关键变式3-1.(2019·石家庄市期中)在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,在向东行驶lm,这时车模的位置表示什么数?”用算式表示以上过程和结果的是( ) A .(﹣3)﹣(+1)=﹣4 B .(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+4【答案】B【详解】由题意可得:(﹣3)+(+1)=﹣2.故选B.变式3-2.(2019·石家庄市期中)一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是()A.盈利了290元B.亏损了48元C.盈利了242元D.盈利了-242元【答案】C【提示】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.【详解】∵37+(−26)+(−15)+27+(−7)+128+98=242(元),∴一周总的盈亏情况是盈利242元.故选择C.【名师点拨】本题考查正数和负数、有理数的加法,解题的关键是掌握正数和负数、有理数的加法.±kg,现随机选取10袋面粉进行质量变式3-3.(2020·沈阳市期末)面粉厂规定某种面粉每袋的标准质量为500.2检测,结果如下表所示:则不符合要求的有()A.1袋B.2袋C.3袋D.4袋【答案】A【提示】提示表格数据,找到符合标准的质量区间即可解题.±kg,即质量在49.8kg——50.2kg之间的都符合要求,【详解】解:∵每袋的标准质量为500.2根据统计表可知第5袋49.7kg不符合要求,故选A.【名师点拨】本题考查了有理数的实际应用,属于简单题,熟悉概念是解题关键.考查题型四有理数加法运算律典例4.(2019·忠县期中)计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了()A.加法交换律 B.加法结合律C.分配律 D.加法交换律与结合律【答案】D【提示】根据加法交换律与结合律即可求解.【详解】计算1-3+5-7+9=(1+5+9)+(-3-7)是应用了加法交换律与结合律.故选:D.【名师点拨】考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.变式4-1.(2018·新蔡县期中)计算()+()+()+()等于()A.-1 B.1 C.0 D. 4【答案】A【提示】有理数的加减运算,适当运用加法交换律.【详解】解:故选:A.【名师点拨】本题考查有理数的加减运算,熟记有理数的加减运算法则,同时能够题目数字特点进行灵活计算.变式4-2.(2019淮南市期中)-1+2-3+4-5+6+…-2017+2018的值为( )A.1 B.-1 C.2018 D.1009【答案】D【提示】从左边开始,相邻的两项分成一组,组共分成1009组,每组的和是1,据此即可求解.【详解】原式=(−1+2)+(−3+4)+(−5+6)+…(−2015+2016)+(−2017+2018),=1+1+1+…+1=1×1009,=1009.故选D.【名师点拨】属于规律型:数字的变化类,考查有理数的加减混合运算,掌握运算法则是解题的关键.变式4-3.(2019·南阳市期中)下列交换加数的位置的变形中,正确的是A.1-4+5-4=1-4+4-5 B.13111311 34644436 -+--=+--C.1-2+3-4=2-1+4-3 D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【详解】A. 1−4+5−4=1−4−4+5,故错误;B.13111311=-34644436-+--+--,故错误;C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确. 故选D.考查题型五 有理数减法运算典例5.(2020·济南市期末)﹣3﹣(﹣2)的值是( ) A .﹣1 B .1 C .5 D .﹣5【答案】A【提示】利用有理数的减法的运算法则进行计算即可得出答案. 【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A .【名师点拨】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键. 变式5-1.(2019·郯城县期末)比﹣1小2的数是( ) A .3 B .1 C .﹣2 D .﹣3【答案】D【提示】根据题意可得算式,再计算即可. 【详解】-1-2=-3, 故选D .【名师点拨】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数. 变式5-2.(2019·重庆市期末)若 |a |= 3, |b | =1 ,且 a > b ,那么 a -b 的值是( ) A .4 B .2 C .-4 D .4或2【答案】D根据绝对值的性质可得a =±3,b =±1,再根据a >b ,可得①a =3,b =1②a =3,b =﹣1,然后计算出a -b 即可. 【详解】∵|a |=3,|b |=1,∴a =±3,b =±1. ∵a >b ,∴有两种情况: ①a =3,b =1,则:a -b =2; ②a =3,b =﹣1,则a -b =4. 故选D .【名师点拨】本题考查了绝对值的性质,以及有理数的减法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.变式5-3.(2018·自贡市期中)若x <0,则()x x --等于( ) A .-x B .0 C .2x D .-2x【答案】D【提示】根据有理数的加法法则和绝对值的代数意义进行提示解答即可.【详解】()2x x x x x --=+=, ∵0x <, ∴20x <,∴原式=22x x =-. 故选D.【名师点拨】“由已知条件0x <得到20x <,进而根据绝对值的代数意义得到:22x x =-”是解答本题的关键. 考查题型六 有理数减法在实际生活中的应用典例6.(2019临河区期末)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃ B .6℃ C .﹣6℃ D .﹣10℃ 【答案】A【解析】提示:用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 详解:2-(-8) =2+8 =10(℃). 故选:A .名师点拨:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键. 变式6-1.(2019·长兴县月考)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是( )A .星期一B .星期二C .星期三D .星期四【答案】C【提示】利用每天的最高温度减去最低温度求得每一天的温差,比较即可解答. 【详解】星期一温差:10﹣3=7℃; 星期二温差:12﹣0=12℃; 星期三温差:11﹣(﹣2)=13℃; 星期四温差:9﹣(﹣3)=12℃; 综上,周三的温差最大. 故选C .【名师点拨】本题考查了有理数的减法的应用,根据题意正确列出算式,准确计算有理数减法是解题的关键. 变式6-2.(2018·吕梁市期末)我市冬季里某一天的最低气温是-10℃,最高气温是5℃,这一天的温差为 A .-5℃ B .5℃C .10℃D .15℃【答案】D【详解】解:5−(−10) =5+10=15℃. 故选D.变式6-3.(2020·寿阳县期末)甲、乙、丙三地海拔分别为20m ,15m -,10m -,那么最高的地方比最低的地方高( ) A .10m B .25mC .35mD .5m【答案】C【提示】根据正数与负数在实际生活中的应用、有理数的减法即可得.【详解】由正数与负数的意义得:最高的地方的海拔为20m ,最低的地方的海拔为15m - 则最高的地方比最低的地方高20(15)201535()m --=+= 故选:C .【名师点拨】本题考查了正数与负数在实际生活中的应用、有理数的减法,理解负数的意义是解题关键. 考查题型七 有理数加减混合运算典例7(2018·南阳市期中)计算:①﹣13+(﹣20)﹣(﹣33);②(+12)﹣(﹣13)+(﹣14)﹣(+16) 【答案】①0;②512. 【解析】①﹣13+(﹣20)﹣(﹣33) =﹣33+33 =0;②(+12)﹣(﹣13)+(﹣14)﹣(+16) =12+13﹣14﹣16 =643212121212+-- =512. 变式7-1.(2019·河池市期中)计算:(1) 6789-+- (2) 2(5)(8)5---+-- 【答案】(1)-2;(2)-10-+-【详解】解:(1)6789-+-=189-=79=-2---+--(2)2(5)(8)5=-+--2585=--385=--55=-10【名师点拨】此题考查的是有理数的加减法混合运算,掌握有理数的加、减法法则是解决此题的关键.变式7-2.(2019·枣庄市期中)请根据如图所示的对话解答下列问题.求:(1)a,b,c的值;(2)8-a+b-c的值.【答案】(1)a=-3,b=±7,c=-1或-15; (2)33或5.【详解】解:(1)∵a的相反数是3,b的绝对值是7,∴a=-3,b=±7;∵a=-3,b=±7,c和b的和是-8,∴当b=7时,c= -15,当b= -7时,c= -1,(2)当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33;当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5.故答案为(1)a=-3,b=±7;c=-1或-15;(2)33或5.【名师点拨】本题考查有理数的加减混合运算,掌握相反数和绝对值的概念是解题关键.。
【精品讲义】人教版 七年级数学(上) 专题1.3 有理数的加减法(知识点+例题+练习题)含答案
第一章 有理数1.3 有理数的加减法1.有理数的加法(1)有理数加法法则:①同号两数相加,取___________的符号,并把___________相加;②绝对值不相等的异号两数相加,取绝对值较___________的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得___________. ③一个数同0相加,仍得这个数. (2)用字母表示有理数加法法则: ①同号两数相加:若a >0,b >0,则a b +=___________; 若a <0,b <0,则a b +=___________. ②异号两数相加:若a >0,b <0,且||||a b >时,则a b +=___________; 若a >0,b <0,且||||a b <时,则a b +=___________; 若a >0,b <0,且a b =时,则a +b =___________. ③a +0=___________. (3)有理数的加法运算律: ①加法交换律:文字语言:两个数相加,交换加数的位置,和___________. 符号语言:a +b =___________. ②加法结合律:文字语言:三个数相加,先把前两个数相加,或者先把后两个数相加,和___________. 符号语言:(a +b )+c =___________. 2.有理数的减法:(1)有理数的减法法则:减去一个数,等于加上这个数的___________. 即a –b =a +(–b ).(2)对于有理数的减法运算,应先转化为___________,再根据有理数加法法则计算,即加法与减法是互逆运算.(3)有理数减法的三种情况:①减去一个正数等于加上一个负数;②减去一个负数等于加上一个正数;③任何数减去0仍得这个数,0减去一个数等于这个数的相反数.1.(1)相同,绝对值,大,02.(1)相反数 (2)加法一、有理数的加法法则有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0. 3.一个数同0相加,仍得这个数.1)5+8;(2)8+(–21);(3)102+0.【解析】(1)5+8=13;(2)8+(–21)=–(21–8)=–13; (3)102+0=102.二、有理数的加法运算律加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变. 表达式:a+b=b+a .加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变. 表达式:(a+b )+c=a+(b+c )(1)交换律;(2)结合律.【答案】(1)a +b =b +a ;(2)(a +b )+c =a +(b +c )【解析】根据有理数的加法运算律,可得答案为:(1)交换律:a +b =b +a ;(2)结合律:(a +b )+c =a +(b +c ).【名师点睛】在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律: (1)互为相反数的两个数先相加——“相反数结合法”; (2)符号相同的两个数先相加——“同号结合法”; (3)分母相同的数先相加——“同分母结合法”; (4)几个数相加得到整数,先相加——“凑整法”; (5)整数与整数、小数与小数相加——“同形结合法”.三、有理数的减法法则1.有理数减法法则:减去一个数,等于加这个数的相反数. 字母表示:a –b =a +(–b ).2.有理数减法法则是一个转化法则,把减数变为它的相反数,从而将减法转化为加法.可见,引进负数后的加减法运算,可以统一为加法运算来解决.1)(–3)–(–7);(2)11()43--. 【解析】(1)(–3)–(–7)=(–3)+7=4; (2)11()43--=1143+=712. 【名师点睛】运用法则时,应注意“两变,一不变”.“两变”:一是运算符号“–”变为“+”;二是减数变成它的相反数.一不变:被减数和减数的位置不能交换,即减法没有交换律.四、利用特殊规律解有关分数的计算题1.一个有理数由符号和绝对值两部分组成,所以进行加法运算时,要先确定符号,后确定绝对值. 2.当一个加数为负数时,这个负数必须用括号括起来,即两个符号要用括号隔开,如(–2)+(–1)中–1必须用括号括起来,不要写成–2+–1这样的形式.3.将减法变为加法时,注意“两变”和“一不变”.“两变”即改变运算符号(减变加)和改变减数的性质符号(变为相反数);“一不变”即被减数和减数的位置不能变换. 4.两数相减,当被减数大于减数时,差为正数;当被减数小于减数时,差为负数.5.根据题目特点,灵活将算式变形,对不同算式采取运算顺序重新组合、因数分解、裂项等不同的方法,达到优化解题过程、简化计算、解决问题的目的.5231591736342--+-.【答案】原式5231591736342=----++--5231(59173)()6342=--+-+--+-5433(59317)()6664=---++---+3(1717)(2)4=-++-+1014=-114=-.【解析】带分数相加,可将带分数中整数部分与分数部分拆开分别相加.【名师点睛】利用规律特点,灵活解分数计算题,需要认真观察,注意经常训练,提高思维的灵活性.五、有理数与相反数、绝对值的综合考查1.互为相反数的两个数的和为0. 2.绝对值具有非负性.|x –3|与|y +2|互为相反数,求x +y +3的值.【答案】4【解析】因为|x –3|与|y +2|互为相反数, 所以|x –3|+|y +2|=0,所以|x–3|=0,|y+2|=0,即x–3=0,y+2=0,所以x=3,y=–2.所以x+y+3=3+(–2)+3=4.六、有理数运算的应用用正负数可以表示相反意义的量,有理数的运算在生活中的应用十分广泛,其中,有理数的加法、减法及乘法运用较多.做题时,要认真分析,列出算式,并准确计算.8箱橘子,以每箱15千克为标准,超过的千克数记为正数,不足的千克数记为负数,现记录如下(单位:千克):1.2,–0.8,2.3,1.7,–1.5,–2.7,2,–0.2,则这8箱橘子的总重量是多少?【答案】1.2+(–0.8)+2.3+1.7+(–1.5)+(–2.7)+2+(–0.2)=1.2–0.8+2.3+1.7–1.5–2.7+2–0.2=(1.2–0.2)+(2.3+1.7+2)+(–0.8–2.7–1.5)=1+6–5=2.则15×8+2=122(千克).答:这8箱橘子的总重量是122千克.【解析】本题运用有理数的加法、乘法解决问题.先求出总增减量,再求出8箱橘子的总标准重量,两者之和便为这8箱橘子的实际总重量.8千米,到达“华能”修理部,又向北走了3.5千米,到达“捷达”修理部,继续向北走了7.5千米,到达“志远”修理部,最后又回到批发部.(1)以批发部为原点,以向南方向为正方向,用1个单位长度表示1千米,你能够在数轴上表示出“华能”“捷达”“志远”三家修理部的位置吗?(2)“志远”修理部距“捷达”修理部多远?(3)货车一共行驶了多少千米?【答案】详见解析.【解析】(1)能.三家修理部的位置如下图所示.(2)由数轴可知“志远”修理部距“捷达”修理部4.5–(–3)=4.5+3=7.5(千米).(3)货车共行驶了|8|+|–3.5|+|–7.5|+|–3|=8+3.5+7.5+3=22(千米).答:货车一共行驶了22千米.1.一个数加–0.6和为–0.36,那么这个数是A.–0.24 B.–0.96 C.0.24 D.0.962.把+3–(+2)–(–4)+(–1)写成省略括号的和的形式是A.–3–2+4–1 B.3–2+4–1 C.3–2–4–1 D.3+2–4–13.下列算式正确的是:A.(–14)–(+5)=–9 B.0–(–3)=3 C.(–3)–(–3)=–6 D.︱5–3︱=–(5–3) 4.下列结论中,正确的是A.有理数减法中,被减数不一定比减数大B.减去一个数,等于加上这个数C.零减去一个数,仍得这个数D.两个相反数相减得05.有理数a、b在数轴上的位置如图所示,则a+b的值A.大于0 B.小于0 C.等于0 D.大于b6.如果两个数的和是负数,那么这两个数A.同是正数B.同为负数C.至少有一个为正数D.至少有一个为负数7.计算│–4+1│的结果是A.–5 B.–3 C.3 D.58.比–2208大1的数是A.–2207 B.–2009 C.2007 D.20099.绝对值大于1且小于4的所有整数的和是A.6 B.–6 C.0 D.4 10.0–(–2017)=___________.11.计算:5–(–6)=___________.12.计算:–9+5=___________.13.计算:2113()() 3838---+-.1.在下列执行异号两数相加的步骤中,错误的是①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的和作为结果的绝对值A.①B.②C.③D.④2.在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m,再向东行驶1m,这时车模的位置表示什么数?”用算式表示以上过程和结果的是A.(–3)–(+1)=–4 B.(–3)+(+1)=–2C.(+3)+(–1)=+2 D.(+3)+(+1)=+43.计算12+16+112+120+130+…+19900的值为A.110099B100.1C99.100D99.4.甲、乙、丙三地的海拔高度分别为20m、–15m和–10m,那么最高的地方比最低的地方高__________m.5.若a是最小的正整数,b是绝对值最小的数,c是相反数等于它本身的数,d是到原点的距离等于2的负数,e是最大的负整数,则a+b+c+d+e=__________.6.若室内温度是20°C,室外温度是−5°C,则室内温度比室外温度高_______°C.7.计算:–14+23+(–23).8.计算:(9)(10)(2)(8)(3)+-++---++.9.a=4,b=2018,a b+≠a+b,试计算a+b的值.10.足球循环赛中,红队胜黄队4︰1,黄队胜蓝队1︰0,蓝队胜红队1︰0,计算各队的净胜球数.11.计算:(1)–(–2)+(–3);(2)(–5.3)+|–2.5|+(–3.2)–(+4.8).1.(2019•孝感)计算–19+20等于A.–39 B.–1 C.1 D.392.(2019•天水)已知|a|=1,b是2的相反数,则a+b的值为A.–3 B.–1 C.–1或–3 D.1或–33.(2019•成都)比–3大5的数是A.–15 B.–8 C.2 D.84.(2019•淄博)比–2小1的数是A.–3 B.–1 C.1 D.35.(2019•金华)某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是A.星期一B.星期二C.星期三D.星期四6.(2019•随州)2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为__________.7.(2019•乐山)某地某天早晨的气温是–2℃,到中午升高了6℃,晚上又降低了7℃.那么晚上的温度是__________℃.1.【答案】C【解析】根据加数+加数=和,可得–0.36–(–0.6)=–0.36+0.6=0.24.故选C.【名师点睛】此题主要考查了有理数的加减法,解题的关键是根据加减法的互逆性,把加法转化为减法,再利用减去一个数等于加上这个数的相反数,即可计算,比较简单.2.【答案】A【解析】先把加减法统一成加法,再省略括号和加号,即可将一个加减混合运算的式子写成省略加号的和的形式,可得+3–(+2)–(–4)+(–1)=+3–2+4–1.故选A.【名师点睛】本题考查了有理数的加减混合运算,注意将一个加减混合运算的式子写成省略加号的和的形式时,必须统一成加法后,才能省略括号和加号.3.【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(–14)–(+5)=(–14)+(–5)=–19;0–(–3)=0+(+3)=3;(–3)–(–3)=(–3)+3=0;︱5–3︱=5–3=2.故选B.4.【答案】A【解析】根据有理数的减法法则依次分析即可判断.A.有理数减法中,被减数不一定比减数大,本选项正确;B.减去一个数,等于加上这个数的相反数,本选项错误;C.零减去一个数,得这个数的相反数,本选项错误;D.两个相反数相加得0,本选项错误;故选A.【名师点睛】解答本题的关键是熟练掌握有理数的减法法则:减去一个数等于加上这个数的相反数. 5.【答案】A【解析】异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.根据数轴可得b的绝对值大于a的绝对值,则和取b的符号.6.【答案】D【解析】因为两个数的和为负数数,所以至少要有一个负数,故选D.【名师点睛】本题考查了有理数的加法法则,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.7.【答案】C【解析】│–4+1│=│–3│=3,故选C.8.【答案】A【解析】–2208+1=–(2208–1)=–2207.故选A.9.【答案】C【解析】绝对值大于1小于4的整数有:±2;±3.–2+2+3+(–3)=0.故选C.10.【答案】2017【解析】0–(–2017)=0+2017=2017.11.【答案】11【解析】5–(–6)=5+6=11.12.【答案】–4【解析】–9+5=–(9–5)=–4.13.【答案】1 2【解析】21132113211311 ()()1 38383838338822---+-=-+-=+--=-=.1.【答案】D【解析】①求两个有理数的绝对值;②比较两个有理数绝对值的大小;③将绝对值较大数的符号作为结果的符号;④将两个有理数绝对值的差作为结果的绝对值;故选D.【名师点睛】本题主要考查的是异号两数相加的计算法则,属于基础题型.理解计算法则是解题的关键.2.【答案】B【解析】由题意可得:(–3)+(+1)=–2.故选B.【名师点睛】本题主要考查了有理数的加法的应用,根据题意,正确列出算式是解题的关键.3.【答案】B【解析】原式=11111 1223344599100 ++++⋯+⨯⨯⨯⨯⨯=111111112233499100-+-+-+⋯+-, =1–1100=99100. 故选B .【名师点睛】此题主要考查了有理数的加法,正确分解分数将原式变形是解题关键.4.【答案】35【解析】最高甲,最低乙,所以最高比最低高()2015201535--=+=.故答案为:35. 5.【答案】–2【解析】因为a 是最小的正整数,b 是绝对值最小的数,c 是相反数等于它本身的数,d 是到原点的距离等于2的负数,e 是最大的负整数,所以a =1,b =0,c =0,d =–2,e =–1,所以a +b +c +d +e =1+0+0–2–1=–2.故答案为:–2.【名师点睛】本题考查了有理数的基础知识及有理数的加法运算,根据题意求得a =1,b =0,c =0,d =–2,e =–1,再利用有理数的加法法则计算.6.【答案】25【解析】用室内温度减去室外温度,即20–(–5)=20+5=25(°C ),故答案为:25.7.【答案】–14【解析】–14+23+(–23)=–14; 8.【答案】8【解析】原式=[(9)(8)(3)][(10)(2)](20)(12)8++++++-+-=++-=. 9.【答案】a +b 的值为–2014或–2022. 【解析】因为a =4,所以a =±4.因为b =2018,所以b =±2018. 因为a b +≠a +b ,所以=–(a +b ),所以a +b <0.当a =4,b =–2018时,a +b =4+(–2018)=–2014.当a =–4,b =–2018时,a +b =(–4)+(–2018)=–2022.当b =2018时,不符合题意.a b +所以a+b的值为–2014或–2022.10.【答案】红队净胜球数为2;黄队净胜球数为–2;蓝队净胜球数为0.【解析】每个队的进球总数记为正数,失球总数记为负数,这两数的和为该队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为:(+4)+(–1)+(–1)=4+(–2)=2;黄队共进2球,失4球,净胜球数为:(+1)+(+1)+(–4)=2+(–4)=–2.蓝队共进1球,失1球,净胜球数为1+(–1)=0.11.【答案】(1)–1;(2)–10.8.【解析】(1)原式=2–3=–1;(2)原式=–5.3+2.5–3.2–4.8=–5.3–3.2+2.5–4.8=–8.5+2.5–4.8=–6–4.8=–10.8.1.【答案】C【解析】–19+20=1.故选C.【名师点睛】此题主要考查了有理数的加减运算,正确掌握运算法则是解题关键.2.【答案】C【解析】因为|a|=1,b是2的相反数,所以a=1或a=–1,b=–2,当a=1时,a+b=1–2=–1;当a=–1时,a+b=–1–2=–3;综上,a+b的值为–1或–3,故选C.【名师点睛】本题主要考查有理数的加法,解题的关键是根据相反数和绝对值的性质得出a、b的值.3.【答案】C【解析】–3+5=2.故选C.【名师点睛】本题考查了有理数加法运算,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.4.【答案】A【解析】–2–1=–(1+2)=–3.故选A.【名师点睛】本题考查了有理数的减法运算,熟记运算法则是解题的关键.5.【答案】C【解析】星期一温差10–3=7℃;星期二温差12–0=12℃;星期三温差11–(–2)=13℃;星期四温差9–(–3)=12℃;故选C.【名师点睛】本题考查有理数的减法;能够理解题意,准确计算有理数减法是解题的关键.6.【答案】2;9【解析】设图中两空白圆圈内应填写的数字从左到右依次为a,b.因为外圆两直径上的四个数字之和相等,所以4+6+7+8=a+3+b+11①,因为内、外两个圆周上的四个数字之和相等,所以3+6+b+7=a+4+11+8②,联立①②解得:a=2,b=9,所以图中两空白圆圈内应填写的数字从左到右依次为2,9,故答案为:2;9.【名师点睛】此题比较简单,主要考查了有理数的加法,主要依据题中的要求①②列式即可以求解.7.【答案】–3【解析】–2+6–7=–3,故答案为:–3.【名师点睛】本题主要考查有理数的加减法,正确列出算式是解题的关键.。
北师大版七年级数学上册《有理数的加减混合运算(第3课时)》教学教案
《有理数的加减混合运算(第3课时)》教学教案课题 2.6 有理数的加减混合运算(3)单元第二单元学科数学年级七教材分析本节设置了一个丰富的现实情境一—流花河的水文资料,并据此资料,提出相关问题,综合运用有理数及其加法、减法的有关知识对现实问题进行讨论,进一步体会数学和现实生活的联系.通过对流花河一周内的水位变化的数据信息进行分析,判断一周中每天河流水位情况,继而用折线统计图表示本周的水位情况,让学生体会用数学的方法对生活中的问题进行合理判断,并学会用数学工具直观地表示事物的变化情况。
它对学生进一步理解有理数加减运算,提高运用知识解决实际问题能力,激发学习数学的热情学情分析学生在前面已经学习了有理数加减混合运算,能够综合运用有理数的意义及其加法、减法的有关知识,解决简单的实际问题.在相关知识的学习过程中,学生已经经历了观察、抽象、计算等活动,解决了一些简单的现实问题,感受到了有理数的意义和作用,体会到数学与现实生活的联系;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
学习目标1、培养学生的动态观察、对比、分析生活问题的能力;让学生能综合运用有理数及其加、减法的有关知识灵活地解决简单的实际问题。
2、在师生、生生的交流活动中,复习巩固加减运算,逐步把学生牵引到对较复杂数据的灵活处理。
使学生感受到折线统计图确实可以直观地反映事物的变化情况。
3、让学生经历和体验用所学的知识解决实际生活中问题的乐趣,感受到有理数运算的实用性,增强学生学好数学的信心。
重点利用有理数的加、减法解决实际问题.难点实际问题数学化,将实际问题转化为数学问题.教学过程教学环节教师活动学生活动设计意图导入新课1、教师出示课件:算算这两道题,课前热身一下。
2、看一看:观察流花河图片:教师以雨季流花河一周内的水位变学生自主思考,计算飞流学生有理数的运算已有认识,以流化情况引入:教师引导学生观察流花河的水文资料(单位:m),取河流警戒平均水位记作:-10.8米最低水位记作:-11.9米教师引导学生思考得出今天学习内容有理数的加减混合运算的实际应用。
2023-2024学年七年级上数学:有理数的加减法(精讲教师版)
3).
4
【分析】此题主要考查了有理数的加减混合运算,解答此题的关键是要明确:
①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成
加法,并写成省略括号的和的形式. ②转化成省略括号的代数和的形式,就
可以应用加法的运算律,使计算简化.本题根据加法交换律、加法结合律,
求出算式的值即可.
【答案】21
第 2页(共 14页)
自学笔记: 1.有理数加法法则:
(1)同号两数相加,取相同符号,并把绝对值相加; (2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并 用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得 0. (3)一个数同 0 相加,仍得这个数. 2.加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变. 表达式:a+b=b+a. 3.加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先 把后两个数相加,和不变. 表达式:(a+b)+c=a+(b+c)
C.﹣5
【答案】C
【解析】(﹣12)+7=﹣(12﹣7)=﹣5.故选 C.
D.19
【练习 3】与 3 的和为 0 的数是( )
A.﹣3 【答案】A
B.3
C.1
3
D.− 1
3
第 5页(共 14页)
【解析】3 的相反数是﹣3,故选 A.
【练习 4】计算:3+(﹣7)=( )
A.4
B.﹣4
C.10
【答案】B
第 1页(共 14页)
若 a>0,b>0,则 a b ( a b ) ; 若 a<0,b<0,则 a b ( a b ) . ②异号两数相加: 若 a>0,b<0,且 | a || b | 时,则 a b ( a b ) ;
2020年人教版七年级数学上册课件1.3.2有理数的加减混合运算
=(-29)+(+45)
按有理数加法法则计算
=16
新课讲解
典例分析
方法二:(去括号法)
解:原式 =-2+30+15-27 省略括号、加号
=-2-27+30+15 运用加法交换律使同号两
=-29+45
数分别相加
=16
新课讲解
知识点2 有理数的加减混合运算的应用
例 3 一架飞机作特技表演, 起飞后的高度变化如下表:
结论
数字前“-”号是奇数个取“-”; 数字前“-”号是偶数个取“+”.
在符号简写 这个环节,
有什么规律 吗?
新课讲解
典例分析
例 2 计算:(-2)+(+30)-(-15)-(+27)
方法一:减法变加法
解:原式=(-2)+(+30)+(+15)+(-27) 减法转化成加法
=[(-2)+(-27)]+[(+30)+(+15)]
第一章 有理数
1.3 有理数的加减法
1.3.2 有理数的减法
课时2 有理数的加减混合运算
目 录
CONTENTS
1 学习目标 3 新课讲解 5 当堂小练 7 布置作业
2 新课导入 4 课堂小结 6 拓展与延伸
学习目标
理解有理数加减法统一成加法的意义,能熟练地进行有 理数加减法的混合运算;(重点) 会用有理数的加减法解决简单的实际问题.
(6)-3
当堂小练
2.已知某动物园对6只成年企鹅进行体重检测,以4kg为标准, 超过或者不足的千克数分别用正数、负数表示,称重记录如 下表所示,求这6只企鹅的总体重.
编号
1
2
3
差值(kg) -0.08 +0.09
人教版2024年新版七年级数学上册课件:2.1.2 第2课时 有理数的加减混合运算
新知探究
例1的运算过程也可以简单地写为
(-20)+(+3)-(-5)-(+7)
=-20+3+5-7
=-20-7+3+5
=-27+8
=-19.
大胆探究:在符号
简写这个环节,有
什么小窍门吗?
新知探究
➢ 有理数加减法混合运算的符号简写方法:
1. 一个数前面有偶数个“-”号,结果为正.
例3
根据图中提供的信息,回答下列问题.
(1)A,B两点间的距离是多少?
(2)B,C两点间的距离是多少?
解:点A表示数2,点B表示数− ,点C表示数−3.
(2)因为|(−
)−(−3)|=|−
+3|=| |= ,
所以B,C两点间的距离是
.
归纳小结
利用有理数的减法求数轴上两点间的距离的方法:
(1) (−52)−(+37)+(−19)−(−24);
(2) (+2
)−(− )−(−3 )−(+5 ).
解:(1) (−52)−(+37)+(−19)−(−24)
=(−52)+(−37)+(−19)+24
=−52−37−19+24
=−108+24
=−84.
随堂练习
(2) (+2 )−(− )−(−3 )−(+5 ).
数轴上A,B两点表示的数分别为a,b时,这两点之间的距离
有理数的加减混合运算+课件2022-2023学年人教版七年级数学上册
探究新知
小丽
-3
7
0
5
小彬
-32
1 2
4
-5
你能将他们抽到的数字列成算式并计算吗?
探究新知
列出算式: 小丽:-3+7-0+5
小彬:-
3 2
−
12+4-5
快速计算出结果,并想一想上面的算式与我们小学学 的加减法的混合运算一样吗?
探究新知
根据运算顺序从左往右,按加、减法则计算
(-3)+7-0+5
= 4-0+5 = 4+5 =9
1 4
-
1; 2
(3)( - 11.5 ) - ( - 4.5 ) - 3;
(4)
1 7
+
-
2 35
-
2 5
.
随堂练习
解:(1)
1 4
+
-
3 4
-
1 2
=
-
2 4
1 2
=
-
2 4
1 2
= 1
(2)
-
9 4
1 4
-
1 2
=
-2
-
1 2
=
-2
+
-
1 2
1.加法法则:同号两数相加,取相同的符号,并把绝对 值相加.异号两数相加,绝对值相等时为0;绝对值不相等
时,取绝对值较大加数的符号,并用较大的绝对值减去较 小的绝对值.一个数与0相加,仍得这个数. 2.减法法则:减 去一个数,等于加上这个数的相反数.
2012年1月22日,哈尔滨市的最低气温是-25 ℃,最高气温是16 ℃,北京市的最低气温是-11 ℃,并且哈尔滨市的温差比北京 市的温差大1 ℃.(1)哈尔滨市的温差是多少?(2)北京市的温 差是多少?(3)北京市的最高气温是多少?学生思考,列出算 式并计算.北京市的最高气温可以用下面的方式直接求出: (-16) -(-25)-(+1)+(-11).
第1章有理数有理数混合运算知识点讲解及练习课件人教版七年级数学上册
解:原式 4 1 2
2
(2) 2.5 2 1 ;
3
解:原式 2.5 2 1
3
35 6
两数相乘,同号得正,异号得负,并把绝对值相乘.
【例2】计算:
(3) 30 6 ;
解:原式 30 6
5
能整除,可用有理数除法的法则2
法则2:两数相除,同号得正, 异号得负,并把绝对值相除
2.4
1 5
3.8
3 5
3.7
0.4 2.4 0.2 3.8 0.6 3.7
0.4 2.4 0.2 3.8 0.6 3.7
2 4 4.3 2 4.3 4
6.3 4
6.3 4
2.3
【巩固】
3. 计算:
(7) 5.13 4.62 8.57 2.3;
; 2 2 的倒数是
3 8
.
3
2 2. 化简: 2 3
3
; 12 -4 ; 6
3
7
6 7
; 0 0 85
;
1 1. 3. 已知 a,b,c,d 是非零有理数,若 a 1 , b 1 ,则 a 6 ;
b2 c3 c
【巩固】
4. 计算:
(1) 2.25 4 ;
5
解(:1)
2.25
2. 乘法运算律: 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc) 乘法分配律:a(b+c)=ab+ac
3. 有理数的除法 法则1:除以一个不等于0的数,等于乘这个数的倒数. 法则2:两数相除,同号得正,异号得负,并把绝对值相除.
0除以任何一个不等于0的数,都得0.
【例2】计算:
(1) 4 1 ;
解:原式
夏县师院附中七年级数学上册第1章有理数1.4有理数的加减3有理数的加减混合运算教案新版沪科版
3. 有理数的加减混合运算【知识与技能】1.正确理解加法交换律,结合律,能利用运算律简化运算.2.熟练掌握有理数的加法和减法运算法则.3.能进行有理数的加减混合运算,培养学生的计算能力,向学生渗透归纳、转化等数学思想;在合作学习解决问题的过程中,体会合作交流的重要性.【过程与方法】从学生熟悉的生活实例得出“有理数的加减混合运算”,并通过各种师生活动加深学生对“运算律”和“加减混合运算”的理解;使学生在经历有理数混合运算的过程中,体验数学中的转化思想.【情感态度】通过有理数加减的学习,让学生在学习的过程中通过观察、比较、思考等体验数学的创新思维和发散思维,学会与人交流,培养实事求是的科学态度,使学生养成认真、细致的计算习惯.【教学重点】重点是运用加法运算律简化计算,在有理数的混合运算中,将加减统一成加法的省略括号的形式.【教学难点】难点是将加减统一成加法的省略括号的形式.一、情境导入,初步认识【情境1】实物投影,并呈现问题:计算:(1)①5+(-13)(-13)+5;②(-4)+(-8)(-8)+(-4);(2)①8+(-5)+(-4)8+(-5)+(-4);②(-6)+(-12)+15(-6)+(-12)+15.思考观察第一组两题,比较它们有什么异同点?第二组两题呢?由此你能得出什么结论?【情境2】实物投影,并呈现问题:2014年北京一个冬天的早晨只有—7℃,中午气温上升了11℃,到半夜又下降了9℃,那么半夜的温度是多少?你能列出算式吗?【教学说明】学生独立思考后,小组讨论,教师注意引导学生观察、比较、讨论与归纳,感受运算律的意义和作用.通过实际问题引出有理数加减混合运算,并归纳出加减混合运算的一般步骤.情境1中第一组两题的两个加数相同,加数的位置不同,结果相同.两数相加,交换加数的位置,和不变.第二组两题中三个加数相同,运算顺序不同,结果相等.三个数相加,先把前两个数相加再加第三个数或把后两个数相加再加第一个数,其和不变.情境2中算式为:(-7)+11-9.【教学说明】通过现实情景再现,让学生体会数学知识与实际生活的联系.学生通过前面的情景引入,在老师的引导下,通过自己的观察,归纳出结论,进而体验到成功的喜悦,同时,也激发了学生学习的兴趣.二、思考探究,获取新知1.有理数加法的运算律问题1用语言叙述加法的交换律和结合律?问题2用字母表示加法的交换律和结合律?【教学说明】学生通过回顾旧知识,在经过观察、分析、类比后能得出结论.【归纳结论】加法运算律:加法的交换律:a+b=b+a;加法的结合律:(a+b)+c =a+(b+c).在有理数的计算中,运用运算律可以简化运算.2.加减混合运算问题1有理数加减运算的一般顺序是什么?问题2有理数加减运算的一般步骤是什么?【教学说明】学生通过回顾旧知识,在经过观察、分析、类比后能得出结论.【归纳结论】有理数加减法混合运算的一般步骤为:(1)减法转化成加法;(2)省略加号及括号;(3)运用加法交换律使相加可得到整数的先相加;分母相同或易于通分的分数可先相加;互为相反数的可先相加.注意:在交换加数的位置时,要连同加数的符号一起交换.三、运用新知,深化理解1.不改变原式的值,将6-(+3)-(-7)+(-2)中括号去掉的形式是()A.-6-3+7-2B.6-3-7-2C.6-3+7-2D.6+3-7-22.-17-8-16+7的不正确读法是()A.负17、负8、负16、正7的和B.减17减8减16加7C.负17减8减16加7D.负17加负8加负16加73.计算:(1)3+4.4+[(+334)+(-8.4)]+(-114)+6;(2)0.5+(-32)-(+2.75)-(-134).4.计算:-24+3.2-16-3.5+0.3.5.列式计算:(1)-0.3与-13的和减去-1310的差;(2)-313与-1.2的差与-212的和.【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.通过本环节的讲解与训练,让学生对有理数的加减混合运算有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理问题.【答案】1.C 2.B3.解:(1)原式=712;(2)原式=-2.4.解:原式=-24-16+3.2+0.3-3.5 =-40+3.5-3.5=-40+0=-405.解:(1)[(-0.3)+(-13)]-(-1310)=(-3310)+(-13)+(+1310)=[(-310)+(+1310)]+(-13)=1+(-13)=23.(2)[(-313)-(-1.2)]+(-212)=[(-313)+(+115)]+(-212)=-2215+(-212)=-41930四、师生互动,课堂小结1.有理数加法的运算律是什么?有理数加减混合运算的一般步骤是什么?2.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.布置作业:从教材第25页“练习”和教材第26页“习题1.4”中选取.2.完成同步练习册中本课时的练习.在本节的教学中,通过观察、对比、归纳得出有理数加法的运算律,过程中充分发挥了学生的主动性,培养学生的语言表达能力,让学生体会学习数学的快乐和成就感,进而增强学习数学的信心.有理数的混合运算又加强了学生的思维和运用技巧的能力.杨辉与数学宋元数学四大家之一的杨辉,他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。
有理数(三):有理数的加减法
有理数的加法【知识导学】1. 同号两数相加,取同样的符号,并把绝对值相加;2. 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;3. 一个数同0相加,仍得到这个数;4. 有理数加法的运算定律:(1)加法交换律:___________________;(2)加法结合律:___________________;【课堂例题】知识点一:有理数加法法则及应用例1.计算。
(1)()()37-+-= (2)()58-+= (3)()58+-= (4)()66-+=(5)()44+-= (6)()010+-= (7)()()144-++= (8)()53-+= (9)()13 2.54⎛⎫-++= ⎪⎝⎭例2.某一天,某市早上气温是-4℃,到中午气温上升了13℃,则中午的气温是_______℃。
例3.规定盈利用正数表示,亏损用负数表示,某工厂今年第一季度盈利28000元,第二季度亏损4300元,则工厂上半年盈余或亏损可以用算式表示为( )。
A .(+28000)+(+4300)B .(-28000)+(+4300)C .(+28000)+(-4300)D .(-28000)+(-4300)知识点二:有理数加法运算定律的应用例4.算式7+(-3)+(-4)+18+(-11)=(7+18)+[(-3)+(-4)+(-11)]应用了( )。
A .加法交换律B .加法结合律C .加法交换律和加法结合律D .以上都不对例5.运用运算定律计算下列各题。
(1)5.68.1 4.4+-+() (2)0.7+-++-+-2571()()()36103(3)()()()452542-+++-++- (4)()()2.49 5.24 6.519.24-+-+-+例6.股民小王上星期五以收盘价67元买进某公司股票,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?【课堂练习】1. 口算。
有理数的加减及混合运算(8种题型)-2023年新七年级数学常见题型(北师大版)(解析版)
有理数的加减及混合运算(8种题型)【知识梳理】一、有理数加法法则:①同号相加,取相同符号,并把绝对值相加.②绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.③一个数同0相加,仍得这个数.(在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.)二、相关运算律交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).三.有理数的减法(1)有理数减法法则:减去一个数,等于加上这个数的相反数.即:a﹣b=a+(﹣b)(2)方法指引:①在进行减法运算时,首先弄清减数的符号;数变相反数);【注意】:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律.减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算.四.有理数的加减混合运算(1)有理数加减混合运算的方法:有理数加减法统一成加法.(2)方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.五、有理数加减法混合运算技巧(1)把算式中的减法转化为加法;(2)去括号时注意符号,能省掉的“+”号要省掉;(3)多观察,巧妙利用运算律简便计算.【考点剖析】 题型一:有理数的加法法则 例1.计算:(1)(-0.9)+(-0.87); (2)(+456)+(-312);(3)(-5.25)+514; (4)(-89)+0.解:(1)(-0.9)+(-0.87)=-1.77; (2)(+456)+(-312)=113; (3)(-5.25)+514=0;(4)(-89)+0=-89. 【变式】计算:(1)(+20)+(+12); (2); (3)(+2)+(-11); (4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0. (1)(+20)+(+12)=+(20+12)=+32=;(2)(3)(+2)+(-11)=-(11-2)=-9 (4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9 (5)(-2.9)+(+2.9)=0; (6)(-5)+0=-5.【答案】(1) 4.62−; (2)0.25−.1223⎛⎫⎛⎫−+− ⎪ ⎪⎝⎭⎝⎭12121123236⎛⎫⎛⎫⎛⎫−+−=−+=− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【详解】(1)解:()()33 2.71 1.695⎛⎫−+−++ ⎪⎝⎭()()3.6 2.71 1.69=−+−+()3.6 2.71 1.69=−++6.31 1.69=−+()6.31 1.69=−−4.62=−;(2)115 4.257522⎛⎫−++−+ ⎪⎝⎭ ()5.5 4.257 5.5=−++−+()1.25 1.5=−+−()1.25 1.5=+− ()1.5 1.25=−−0.25=−.例2.已知|a |=5,b 的相反数为4,则a +b =________.解析:因为|a |=5,所以a =-5或5,因为b 的相反数为4,所以b =-4,则a +b =-9或1. 【变式】若,且,那么的值是( ) A .5或1 B .1或C .5或D .或【答案】D【详解】解:∵|a|=3,|b|=2, ∴a=±3,b=±2, ∵,∴a=-3,b=2或a=-3,b=-2, ∴a+b=-3+2=-1或a+b=-3+(-2)=-5. 故选:D .3,2a b ==a b <+a b 1−5−5−1−a b <题型三:有理数加法在实际生活中的应用例3.股民默克上星期五以收盘价67元买进某公司股票1000股,下表为本周内每日该股票的涨跌情况:(1)星期三收盘时,每股多少元?(2)本周内每股最高价多少元?最低价多少元?解:(1)67+(+4)+(+4.5)+(-1)=74.5(元),故星期三收盘时,每股74.5元;(2)周一:67+4=71元,周二:71+4.5=75.5元,周三:75.5+(-1)=74.5元,周四:74.5+(-2.5)=72元,周五:72+(-6)=66元,∴本周内每股最高价为75.5元,最低价66元.【变式1】温州市实验中学于10月30日开展了“行走的力量”之七都环岛毅行活动,其中九年级同学的行程要经过四个打卡点.在活动中,安全负责人王老师骑着电动车在2,3,4号打卡点之间来回巡查(2,3,4号打卡点可近似看作在一条直线上),并接送途中身体不适的同学到4号打卡点.若记队伍行进方向为“+”,王老师在2号打卡点出发,当天的6次行驶记录如下:(单位:km)(1)王老师最终停留的位置离2号打卡点的距离是多少km?(2)若电动车一次充电可以骑行30km,王老师的电动车充满电后骑8km到2号打卡点,做以上6次往返后,还需要骑行5.8km到学校车辆集中点,请问王老师的电动车能否顺利骑到学校车辆集中点?【答案】(1)1km;(2)不能++−+++−+++−【详解】解:(1)( 2.5)(2)( 4.5)(3)(2)(3)=+−0.5 1.51=1km,∴王老师最终停留位置距2号点1km.+++++++=km,(2)8 2.52 4.5323 5.830.8>,∵30.830∴王老师不能顺利骑到车辆集中点.【变式2】国内汽油价格每月会有两次调整,如果以今年6月底的油价为基准,涨价记为正方向,7月至10月的油价调整情况记录如下(单位:元/吨):(1)7月至10月之间,今年_______(填时间)的调价令油价与基准价格相差最大. (2)到10月底,油价能否回到基准价格?请说明理由. 【答案】(1)8月下旬;(2)不能,理由见解析 【详解】解:(1)7月上旬与基准价格相差:+100, 7月下旬与基准价格相差:+100, 8月上旬与基准价格相差:+100, 8月下旬与基准价格相差:+100+85=185, 9月上旬与基准价格相差:185,9月下旬与基准价格相差:185-315=-130, 10月上旬与基准价格相差:-130, 10月下旬与基准价格相差:-130+70=-60, ∴8月下旬的调价令油价与基准价格相差最大; (2)由题意可得:100+0+0+85+0-315+0+70=-60,∴到10月底,油价不能回到基准价格. 题型四:加法运算律及其应用 例4.计算:(1)31+(-28)+28+69; (2)16+(-25)+24+(-35); (3)(+635)+(-523)+(425)+(1+123).解:(1)31+(-28)+28+69=31+[(-28)+28]+69=31+0+69=100;(2)16+(-25)+24+(-35)=16+24+(-25)+(-35)=(16+24)+[(-25)+(-35)]=40+(-60)=-20; (3)(+635)+(-523)+(425)+(1+123)=(635+425)+(-523)+(223)=11+(-3)=8.【答案】(1)12 (2)3【详解】(1)解:()()25.77.313.77.3+−+−+()()25.713.77.37.3=+−+−+⎡⎤⎡⎤⎣⎦⎣⎦120=+12=(2)()()112.12535 3.258⎛⎫⎛⎫−+++++− ⎪ ⎪⎝⎭⎝⎭()()112.12553 3.285⎡⎤⎡⎤=−+++−⎢⎥⎢⎥⎣⎦⎣⎦30=+ 3=【变式2】计算(1)()()2317622+−++−; (2)()()6.35 1.47.6 5.35−+−+−+. 【答案】(1)-10 (2)-10【详解】(1)解:()()2317622+−++−2317622=−+−()()2361722=+−+2939=−10=−;(2)解:()()6.35 1.47.6 5.35−+−+−+()()()6.35 5.35 1.47.6=−++−+−⎡⎤⎣⎦()1 1.47.6=−+−+⎡⎤⎣⎦19=−−10=−. 【变式3】某公路养护小组乘车沿南北方向巡视维修,某天早晨他们从A 地出发,晚上最后到达B 地,约定向北为正方向,当天的行驶记录如下.(单位:km) +18,-9,+7,-14,+13,-6,-8. (1)B 地在A 地何方,相距多少千米?(2)若汽车行驶1km 耗油a L ,求该天耗油多少L?解:(1)(+18)+(-9)+(+7)+(-14)+(+13)+(-6)+(-8)=[(+18)+(+7)+(+13)]+[(-9)+(-14)+(-6)+(-8)]=38+(-37)=1(km) 故B 地在A 地正北,相距1千米;(2)该天共耗油:(18+9+7+14+13+6+8)a =75a(L). 答:该天耗油75aL.题型五:有理数减法法则的直接运用例5、 计算:(1)(-32)-(+5); (2)(+2)-(-25). 【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27 【变式1】计算:(1)7.2-(-4.8); (2)-312-514.解:(1)7.2-(-4.8)=7.2+4.8=12;(2)-312-514=-312+(-514)=-(312+514)=-834.【变式2】(1)2-(-3); (2)0-(-3.72)-(+2.72)-(-4); (3)41373⎛⎫+− ⎪⎝⎭. (1)2-(-3)=2+3=5 (2)原式=0+3.72+(-2.72)+4=(0+4)+(3.72-2.72)=4+1=5(3)原式=411416(3)(3)273321+−=−−=− 题型六:有理数减法的实际应用例6.上海某天的最高气温为6℃,最低气温为-1℃,则这一天的最高气温与最低气温的差为( ) A .5℃ B .6℃ C .7℃ D .8℃ 解析:由题意得6-(-1)=6+1=7(℃),故选C.【变式1】如果家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么冷冻室的温度是( ) A .18℃B .﹣26℃C .﹣22℃D .﹣18℃【解答】解:根据题意得:4﹣22=﹣18(℃), 则这台电冰箱冷冻室的温度为﹣18℃. 故选:D .题型七:有理数的加减混合运算例7.计算:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|;(2)-1423+11215-(-1223)-14+(-11215);(3)23-18-(-13)+(-38). 解:(1)-9.2-(-7.4)+915+(-625)+(-4)+|-3|=-9.2+7.4+9.2+(-6.4)+(-4)+|-3|=-9.2+7.4+9.2-6.4-4+3=(-9.2+9.2)+(7.4-6.4)-4+3=0+1-4+3=0;(2)-1423+11215-(-1223)-14+(-11215)=-1423+11215+1223-14-11215=(-1423+1223)+(11215-11215)-14=-2+0-14=-16;(3)23-18-(-13)+(-38)=23-18+13-38=(23+13)+(-18-38)=1+(-12)=12. 【变式1】计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ; (2)(+7)+(-21)+(-7)+(+21) (3) (4) (5)(6) 【答案与解析】 (1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法 =(26+5)+[(-18)+(-16)] →符号相同的数先加 = 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加 =0(3)⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫−−+−++−+−+ ⎪ ⎪⎝⎭⎝⎭132.2532 1.87584+−+1355354624618−++−⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432→同分母的数先加(4) →统一成加法→整数、小数、分数分别加(5)→统一同一形式(小数或分数),把可凑整的放一起(6)→整数,分数分别加【变式2】计算:(1)-3.72-1.23+4.18-2.93-1.25+3.72;(2)11-12+13-15+16-18+17; (3)1113.7639568 4.7621362−−+−−+ (4)51133.4643.872 1.54 3.376344+−−−+++ (5)1355354624618−++−; (6)132.2532 1.87584+−+⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫−−+−++−+−+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++−++−+− ⎪ ⎪⎝⎭⎝⎭11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+−+++−+− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦312128544⎛⎫=++−= ⎪⎝⎭132.2532 1.87584+−+(2.25 2.75)(3.125 1.875)=−++0.55 4.5=−+=1355354624618−++−1355354624618=−−++++−−1355(3546)()24618=−++−+−++−18273010036−++−=+2936=【答案与解析】(1)观察各个加数,可以发现-3.72与3.72互为相反数,把它们分为一组; 4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便. 解:-3.72-1.23+4.18-2.93-1.25+3.72 =(-3.72+3.72)+(4.18-2.93-1.25)-1.23 =0+0-1.23=-1.23(2)把正数和负数分别分为一组. 解:11-12+13-15+16-18+17 =(11+13+16+17)+(-12-15-18) =57+(-45)=12(3)仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组.解:1113.76395684.7621362−−+−−+ 111(3.76 4.76)(521)(3968)362=−+−++−+1(6)2922=−+−+= (4)3.46和1.54的和为整数, 3.87与3.37的和为-0.5,把它们分为一组;546与13−易于通分,把它们分为一组;124−与34同分母,把它们分为一组.解:51133.464 3.872 1.54 3.376344+−−−+++5113(3.46 1.54)( 3.87 3.37)(4)(2)6344=++−++−+−+115(0.5)4(1) 4.537.522=+−++−=+=(5)先把整数分离后再分组.解:1355354624618−++− 1355354624618=−−++++−−1355(3546)()24618=−++−+−++−182********−++−=+2936=注:带分数中的整数与分数分离时,如果这个数是负数,那么分离得到的整数与分数都是负数,例如113322−=−−.(6)如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解:132.2532 1.87584+−+(2.25 2.75)(3.125 1.875)=−++ 0.55 4.5=−+=题型八:利用有理数加减运算解决实际问题例8.下表是某水位站记录的潮汛期某河流一周内的水位变化情况(“+”号表示水位比前一天上升,“-”号表示水位比前一天下降,上周末的水位恰好达到警戒水位.单位:米).(1)本周哪一天河流水位最高,哪一天河流水位最低,它们位于警戒水位之上还是之下,与警戒水位的距离分别是多少?(2)与上周末相比,本周末河流的水位是上升还是下降了?解:(1)以警戒水位为基准,前两天的水位是上升的,星期一的水位是+0.20米;星期二的水位是+0.20+0.81=1.01米;星期三的水位是+1.01-0.35=+0.66米;星期四的水位是:+0.66+0.13=0.79米;星期五的水位是:0.79+0.28=1.07米;星期六的水位是:1.07-0.36=0.71米;星期日的水位是:0.71-0.01=0.7米;则水位最低的一天是第一天,高于警戒水位;水位最高的是第5天;(2)+0.20+0.81-0.35+0.13+0.28-0.36-0.01=+0.7米;则本周末河流的水位是上升了0.7米. 【变式1】小虫从点O 出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为:+5,-3,+10,-8,-6,+12,-10.(单位:cm ) (1) 小虫最后是否回到出发地O ?为什么? (2) 小虫离开O 点最远时是多少?(3) 在爬行过程中,如果每爬行1 cm 奖励1粒芝麻,则小虫一共可以得到多少粒芝麻? 【答案与解析】解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10) =(5+10+12)+(-3-8-6-10)=27-27=0 0表示最后小虫又回到了出发点O 答:小虫最后回到了出发地O. (2) (+5)+(-3)=+2; (+5)+(-3)+(+10)=+12; (+5)+(-3)+(+10)+(-8)=+4; (+5)+(-3)+(+10)+(-8)+(-6)=-2; (+5)+(-3)+(+10)+(-8)+(-6)+(+12)=+10; (+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0.因为绝对值最大的是+12,所以小虫离开O 点最远时是向右12cm; (3)(cm ), 所以小虫爬行的总路程是54 cm ,由 (粒) 答:小虫一共可以得到54粒芝麻.【变式2】某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负,某天自A 地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5. (1)问收工时距A 地多远?(2)若每千米路程耗油0.2升,问从A 地出发到收工时共耗油多少升?【答案与解析】(1)求收工时距A 地多远,应求出已知10个有理数的和,若和为正数,则在A 地前面,若和为负数,则在A 地后面;距A 地的路程均为和的绝对值. 解:(1) (+10)+(-3)+(+4)+(+2)+(-8)+(+13)+(-2)+(+12)+(+8)+(+5) =[+2+(-2)]+[(-8)+(+8)]+(+10+4+13+12+5)+(-3) =0+0+44+(-3)=41(千米);(2)要求耗油量,需求出汽车共行走的路程,即求各数的绝对值之和,然后乘以0.2升即可. (|+10|+|-3|+|+4|+|+2|+|-8|+|+13|+|-21|+|+12|+|+8|+|+5|)×0.2=67×0.2=13.4(升). 答:收工时在A 地前面41千米,从A 地出发到收工时共耗油13.4升.531086121054++−+++−+−+++−=15454⨯=【过关检测】一.选择题(共10小题)1.(2023•晋中模拟)计算﹣2+6的结果是()A.﹣8B.8C.﹣4D.4【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=+(6﹣2)=4.故选:D.【点评】此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.2.(2023•洞头区二模)计算:2+(﹣3)的结果是()A.1B.﹣1C.﹣5D.5【分析】依据有理数的加法法则进行计算即可.【解答】解:2+(﹣3)=﹣(3﹣2)=﹣1.故选:B.【点评】本题主要考查的是有理数的加法法则,熟记法则是解题的关键.3.(2023•顺庆区三模)比﹣1大2的数是()A.3B.1C.﹣1D.﹣3【解答】解:﹣1+2=(2﹣1)=1,故选:B.【点评】本题考查了有理数的加法,异号两数相加取绝对值较大的加数的符号,再用较大的绝对值减去较小的绝对值.4.(2023•哈尔滨一模)我市某天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃B.﹣6℃C.6℃D.10℃【分析】用最高气温减去最低气温,再根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:2﹣(﹣8),=2+8,=10℃.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.5.(2023•建平县模拟)计算﹣3﹣2的结果是()A.﹣1B.﹣5C.1D.5【分析】根据有理数的减法法则计算即可求解.【解答】解:﹣3﹣2=﹣5.故选:B.【点评】本题考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).6.(2023•旺苍县模拟)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.6【分析】利用有理数的减法法则计算即可.【解答】解:(﹣2)﹣(﹣4)=﹣2+4=2,故选:B.【点评】本题考查了有理数的减法,解题的关键是熟练掌握有理数的减法法则.7.(2022秋•裕华区期末)能与﹣(﹣)相加得0的是()A.﹣B.﹣+C.﹣﹣D.﹣(﹣)【分析】利用有理数的加减混合运算与相反数的定义判断.【解答】解:∵﹣(﹣)的相反数是﹣,∴能与﹣(﹣)相加得0的是﹣.故选:A.【点评】本题考查了有理数的加减混合运算与相反数的定义,解题的关键是掌握有理数的加减混合运算与相反数的定义.8.(2023•孟村县校级模拟)不改变原式的值,把7﹣(+6)﹣(﹣3)+(﹣5)写成省略加号的和的形式为()A.7﹣6+3﹣5B.7﹣6﹣3+5C.﹣7﹣6+3﹣5D.﹣7+6+3﹣5【分析】根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式【解答】解:原式=7﹣6+3﹣5,【点评】本题考查有理数加减混合运算的方法,掌握有理数加减法统一成加法是解题关键.9.(2023•温州二模)计算﹣8+2的结果是()A.﹣6B.6C.﹣10D.10【分析】根据正负数的加减法运算即可.【解答】解:﹣8+2=﹣6,故答案为:A.【点评】本题考查了有理数的加法运算,熟练掌握正负数的加减法运算是解本题的关键,难度不大,仔细审题即可.10.(2023•青龙县模拟)将﹣3﹣(+6)﹣(﹣5)+(﹣2)写成省略括号的和的形式是()A.﹣3+6﹣5﹣2B.﹣3﹣6+5﹣2C.﹣3﹣6﹣5﹣2D.﹣3﹣6+5+2【分析】原式利用减法法则变形即可得到结果.【解答】解:﹣3﹣(+6)﹣(﹣5)+(﹣2)=﹣3﹣6+5﹣2.故选:B.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.二.填空题(共8小题)11.(2022秋•郸城县期末)把5+(﹣3)﹣(﹣7)﹣(+2)写成省略括号的形式是.【解答】解:原式=5+(﹣3)+7+(﹣2)=5﹣3+7﹣2,故答案为:5﹣3+7﹣2.【点评】本题考查有理数的加减混合运算,解题的关键是熟练掌握运算法则.12.(2023•黔东南州一模)计算:﹣3+4=.【分析】根据有理数的加法法则计算即可.【解答】解:原式=+(4﹣3)=1.故答案为:1.【点评】本题考查了有理数的加法,掌握绝对值不等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值是解题的关键.13.(2022秋•秦淮区期末)有理数的减法法则是“减去一个数等于加上这个数的相反数.”在学过用字母表示数后,请借助符号描述这句话,.【分析】根据有理数的减法法则即可解决问题.【解答】解:依题意得:减去一个数,等于加上这个数的相反数,用字母表示这一法则,可写成:a﹣b=a+(﹣b).故答案为:a﹣b=a+(﹣b).【点评】此题主要考查了有理数的减法法则,同时也考查了利用字母表示数或公式,正确记忆代数式的概念是解题关键.14.(2023•德兴市一模)绝对值小于3的所有整数的和是.【分析】绝对值的意义:一个数的绝对值表示数轴上对应的点到原点的距离.互为相反数的两个数的和为0.依此即可求解.【解答】解:根据绝对值的意义得绝对值小于3的所有整数为0,±1,±2.所以0+1﹣1+2﹣2=0.故答案为:0.【点评】此题考查了绝对值的意义,并能熟练运用到实际当中.15.(2023•抚松县一模)23﹣|﹣6|﹣(+23)=.【分析】先计算绝对值,再根据有理数减法法则计算即可.【解答】解:23﹣|﹣6|﹣(+23)=23﹣6﹣23=﹣6.16.(2023•杨浦区三模)计算:﹣3﹣2=.【分析】根据有理数减法的法则,减去2等于加上﹣2,即可得解.【解答】解:﹣3﹣2=﹣3+(﹣2)=﹣5.故填﹣5.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.有理数的加法法则:两个负数相加,符号不变,把绝对值相加.17.(2022秋•辛集市期末)将(+5)﹣(+2)﹣(﹣3)+(﹣9)写成省略加号和括号的和的形式为.【分析】将有理数的加减混合运算统一成加法后,利用有理数的加法法则解答即可.【解答】解:原式=(+5)+(﹣2)+(+3)+(﹣9)=5﹣2+3﹣9,故答案为:5﹣2+3﹣9.【点评】本题主要考查了有理数的加减混合运算,将有理数的加减混合运算统一成加法是解题的关键.18.(2023•贾汪区一模)已知甲地的海拔高度是200m,乙地的海拔高度是﹣80m,那么甲地比乙地高m.【分析】根据有理数减法的运算方法,用甲地的海拔高度减去乙地的海拔高度,求出甲地比乙地高多少即可.【解答】解:200﹣(﹣80)=280(m)答:甲地比乙地高280m.故答案为:280.【点评】此题主要考查了有理数减法的运算方法,要熟练掌握.三.解答题(共10小题)19.(2022秋•德惠市期中)列式并计算:(1)求4与﹣的差;(2)求﹣15的绝对值与12的相反数的和.【分析】(1)根据题意列出算式:4,再根据有理数减法法则进行计算便可;(2)根据题意列出算式:|﹣15|+(﹣12),再根据绝对值的定义,加法法则计算便可.【解答】解:(1)4=4=5;(2)|﹣15|+(﹣12)=15﹣12=3.【点评】本题考查了有理数的加减法,绝对值和相反数的概念,关键是正确列出算式和熟记运算法则.20.(20220.5)﹣(﹣3.2)+(+2.8)﹣(+6.5).【分析】根据有理数的加减法法则以及加法交换律和结合律计算即可.【解答】解:原式=﹣0.5+3.2+2.8﹣6.5=(3.2+2.8)﹣(0.5+6.5)=6﹣7=﹣1.【点评】本题考查了有理数的加减混合运算,掌握相关运算法则是解答本题的关键.21.(2022秋•北京期末)计算:10﹣(﹣6)+8﹣(+2).【分析】先化简,再计算加减法即可求解.【解答】解:10﹣(﹣6)+8﹣(+2)=10+6+8﹣2=24﹣2=22.【点评】考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.22.(2022秋•松原期末)计算:20﹣11+(﹣10)﹣(﹣12).【分析】根据同号结合的原理,求解.【解答】解:20﹣11+(﹣10)﹣(﹣12)=20﹣11﹣10+12=32﹣21=11.【点评】本题考查了有理数的加减混合运算,掌握加法结合律是解题的关键.23.(2023春•黄浦区期中)计算:.【分析】根据有理数的加减混合运算计算即可.【解答】解:原式=3﹣2.4+1﹣1.6=(3+1)﹣(2.4+1.6)=5﹣4=1.【点评】本题考查了有理数的混合运算,根据加法的交换律结合律计算是关键.24.(2022秋•锡山区期末)在数学活动课上,王老师介绍说有人建议向火星发射如图1的图案.它叫幻方,幻方最早源于我国,古人称之为纵横图.其中9个格中的点数分别是1,2,3,4,5,6,7,8,9.每一横行、每一竖列以及两条对角线上的点数的和都相等.如果火星上有智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).(1)将﹣10,﹣8,﹣6,﹣4,﹣2,0,2,4,6这9个数分别填入图2的幻方的空格中,使得每一横﹣6,并请同学们补全其余的空格.(2)在图3的幻方中,每一横行、每一竖列以及两条对角线上的数的和都相等.根据所给信息求出x的值,并根据x的值补全图4的幻方的空格.【分析】(1)求出所给数的和为﹣18,即可求每行、每列、两条对角线上的数的和为﹣6;(2)由题意可知3x+2+=x﹣1﹣4,求出x的值,填表即可.【解答】解:(1)∵﹣10+(﹣8)+(﹣6)+(﹣4)+(﹣2)+0+2+4+6=﹣18,∴﹣18÷3=﹣6,∴每行、每列、两条对角线上的数的和为﹣6,如图,故答案为:﹣6;(2)∵每一横行、每一竖列以及两条对角线上的数的和都相等,∴3x+2+=x﹣1﹣4,∴x=﹣5,所填表如图.【点评】本题考查有理数的加法,理解题意,能够根据所给的数,列出代数式并求解是解题的关键.25.(2022秋•衡阳县期中)学习了绝对值的概念后,我们可以认为:一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,也即当a<0时,|a|=﹣a,根据以上阅读完成下面的问题:(1)|2﹣3|=;(2)|3.14﹣π|=;(3)如果有理数a<b,则|a﹣b|=;(4)请利用你探究的结论计算下面式子:|﹣1|+|﹣|+|﹣|+…+||+||.【分析】(1)原式利用绝对值的代数意义计算即可求出值;(2)原式利用绝对值的代数意义计算即可求出值;(3)判断a﹣b的正负,利用绝对值的代数意义计算即可求出值;(4)原式利用绝对值的代数意义化简,计算即可求出值.【解答】解:(1)|2﹣3|=3﹣2=1;(2)|3.14﹣π|=π﹣3.14;(3)∵a<b,即a﹣b<0,∴|a﹣b|=b﹣a;(4)原式=1﹣+﹣+﹣+…+﹣=1﹣=.故答案为:(1)1;(2)π﹣3.14;(3)b﹣a.【点评】此题考查了有理数减法,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.26.(2022秋•邻水县期末)数学张老师在多媒体.上列出了如下的材料:计算:.解:原式==.上述这种方法叫做拆项法.请仿照上面的方式计算:.【分析】根据题目所提供的计算方法,写成几个整数的和以及几个分数的和即可.【解答】解:原式=[(﹣2021)+(﹣)]+[(﹣2022)+(﹣)]+4044+=(﹣2021﹣2022+4044)+(﹣﹣+)=1+(﹣)=.【点评】本题考查有理数的加法,掌握有理数加法的计算方法是正确解答的关键.27.(2023•龙川县校级开学)一批货品每箱重量标准为2千克,质量检验员抽查其中5箱的重超过标准的记为“+”,不足的记为“﹣”,分别记为﹣0.1、﹣0.2、+0.3、+0.1、+0.5,问这5箱货品的平均重量为多少千克?【分析】超过标准的记为量,“+”,不足的记为“﹣”,所以﹣0.1、﹣0.2、+0.3、+0.1、+0.5相加就是这五箱的总情况.要注意标准为2千克.【解答】解:+2=2.12千克【点评】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.28.(2022秋•新河县校级月考)定义:对于确定位置的三个数:a,b,c,计算a﹣b,,,将这三个数的最小值称为a,b,c的“分差”,例如,对于1,﹣2,3,因为1﹣(﹣2)=3,,,所以1,﹣2,3的“分差”为﹣.(1)﹣2,﹣4,1的“分差”为;(2)调整“﹣2,﹣4,1”这三个数的位置,得到不同的“分差”,求这些不同“分差”中的最大值.【分析】(1)根据题中意思分别求出三个数,然后比较大小即可得出答案;(2)先给这三个数进行排序,分别求出其中的分差,然后比大小即可得出答案.【解答】解:(1)根据题意可得:﹣2﹣(﹣4)=2,,=﹣,∵﹣<<2,∴﹣2,﹣4,1的“分差”为﹣,故答案为:﹣;(2)①这三个数的位置为:﹣2,﹣4,﹣1时,根据(1)中所求“分差”为﹣;②这三个数的位置为:﹣2,1,﹣4时,则﹣2﹣1=﹣3,,=,∵﹣3<1<,∴﹣2,1,﹣4的“分差”为﹣3;③这三个数的位置为:1,﹣2,﹣4时,则1﹣(﹣2)=3,,=,∵<<3,∴1,﹣2,﹣4的“分差”为;④这三个数的位置为:1,﹣4,﹣2时,则1﹣(﹣4)=5,,=﹣,∵﹣<<5,∴1,﹣4,﹣2的“分差”为﹣;⑤这三个数的位置为:﹣4,1,﹣2时,则﹣4﹣1=﹣5,,=1,∵﹣5<﹣1<1,∴﹣4,1,﹣2的“分差”为﹣5;’⑥这三个数的位置为:﹣4,﹣2,1时,则﹣4﹣(﹣2)=﹣2,,=﹣1,∵<﹣2<1,∴﹣4,﹣2,1的“分差”为;∵>﹣>﹣>﹣>﹣3>﹣5,∴这些不同“分差”中的最大值为.【点评】本题考查了新定义以及有理数的运算,解题关键:理解什么叫做“分差”.。
七年级数学上册 有理数的运算
有理数第二讲有理数的运算一、梳理知识(一)有理数的加减法1、有理数的加法法则:①同号相加,符号不变,绝对值相加②绝对值不相等的异号相加,符号与较大绝对值的相同,绝对值大的减去小的③互为相反数的两个数相加得0④一个数与0相加,仍得这个数减去一个数等于加上这个数的相反数2、简化计算:①互为相反数的两数先相加②符号相同的数先相加③分母相同的先相加④几个数相加得到整数的先相加(带分数化为假分数,小数化为分数)(二)有理数的乘除法1、乘法法则:①两数相乘,同号得正,异号得负,绝对值相乘②几个不为0的数相乘,奇数个负因数积为负,偶数个负因数积为正(奇负偶正)任何数与0相乘得02、除法法则:①两数相除,同号得正,异号得负,绝对值相除②除以一个数等于乘以这个数的倒数0除以任何一个不等于0 的数得0乘法交换律:乘法结合律:乘法对加法的分配律:(三)有理数的乘方定义:求n个相同因数积的运算,叫做乘方.乘方的结果叫做幂,在n a中,a叫做底数,n叫做指数.n a读作a的n次方.(将n a看作是a的n次方的结果时,也可以读作a的n次幂.)乘方的法则:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,按小括号、中括号、大括号依次进行.(四)科学记数法科学记数法形式:10na ⨯,其中110a ≤<,n 为正整数.有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式 二、例题 例1 计算1、12411()()()23523+-++-+- 2151()054(9)3663-+-+-+-2、54(3)(1)(0.25)65-⨯⨯-⨯- 1(12)()(100)12-÷-÷-3、 9181799⨯-33514(1)(8)(3)[(2)5]217---⨯+-÷-+课堂练习:计算20(14)1813-+---- 215[4(10.2)(2)]5---+-⨯÷-512557÷例21、某辆出租车一天下午以公园为出发地在东西方向行驶,向东走为正,向西走为负,行车里程(单位:公里),依先后次序记录如下:+9、-3、-5、+6、-7、+10、-6、-4、+4、-3、+7(1)将最后一名乘客送到目的地时,出租车离公园多远?在公园的什么方向?(2)若出租车每公里耗油量为0.1升,则这辆出租车每天下午耗油多少升?2、一辆货车从超市出发送货.先向南行驶30km到达A单位,继续向南行驶20km到达B单位.回到超市后,又给向北15km处的C单位送了3次货,然后回到超市休息.(1)C单位离A单位有多远?(2)该货车一共行驶了多少km?课堂练习:1、教师节当天,出租车司机小王在东西向的街道上免费接送教师,规定向东为正,向西为负,当天出租车的行程如下(单位:千米):+5,-4,-8,+10,+3,-6,+7,-11.(1)将最后一名老师送到目的地时,小王距出发地多少千米?方位如何?(2)若汽车耗油量为0.2升/千米,则当天耗油多少升?若汽油价格为6.20元/升,则小王共花费了多少元钱?2、小明去一水库进行水位变化的实地测量,他取警戒线作为0m ,记录了这个水库一周内的水位变化情况(测量前一天的水位达到警戒水位,单位:m ,正号表示水位比前一天上(1)这一周内,哪一天水库的水位最高?哪一天的水位最低?最高水位比最低水位高多少? (2)与测量前一天比,一周内水库水位是上升了还是下降了?例31、某市去年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值精确到 ,有效数字为 .2、国家提倡“低碳减排”,湛江某公司计划在海边建风能发电站,电站年均发电量约为213000000度,若将数据213000000用科学记数法表示为 ;41.2010⨯精确到 ,有效数字为 .3、用四舍五入法按括号里的要求对下列各数取近似值 60290(保留两个有效数字); 0.03057(保留3个有效数字) 2345000(精确到万位); 34.4972(精确到0.01)课堂练习:1、近似数2.75万精确到 ,有效数字有 个,分别为 .2、据《维基百科》最新统计,使用闽南语的人数在全世界数千语种中位列第21名,目前有约70010000人使用闽南语,70010000用科学记数法表示为 ;3、42.110⨯精确到 ,有效数字为 . 4、用四舍五入法按括号里的要求对下列各数取近似值 1250(保留两个有效数字); 0.1200(保留3个有效数字) 12050(精确到千位); 120.12(精确到0.001)作业1、计算:)611()212()31(1---++-- 21122()(2)2233-+⨯--2、据统计,今年春节期间,凤凰古城接待游客约为210000人,其中210000人用科学记数法表示为 人 3、近似数2.10万精确到 ,有效数字为 ;52.1010⨯精确到 ,有效数字为 .4、用四舍五入法按括号里的要求对下列各数取近似值 2014(保留两个有效数字); 0.3450(保留2个有效数字) 201305(精确到万位); 0.12450(精确到千分位)5、食品厂从袋装食品中抽出样品30袋,检测每袋的质量是否符合标准.超过和不足的部分分别用正、负数表示,记录如下:(1)这批样品的平均质量比每袋的标准质量是多还是少?多或少多少克? (2)食品袋中标有“净重100±2克”,这批抽样食品中共有几袋质量不合格?这批抽样食品的总质量是多少?。
七年级上册数学有理数的加减混合运算
七年级上册数学有理数的加减混合运算摘要:一、有理数的加减法基本概念1.有理数的定义2.有理数的加减法法则二、有理数的加减混合运算1.加减混合运算的顺序2.加减混合运算的计算方法三、有理数加减混合运算的实例解析1.简单加减混合运算实例2.复杂加减混合运算实例四、有理数加减混合运算的技巧与方法1.运算律的应用2.先乘除后加减的原则3.括号的使用正文:一、有理数的加减法基本概念有理数是指可以用两个整数的比值表示的数,包括正有理数、负有理数和零。
有理数的加减法是指将两个有理数相加或相减,得到一个新的有理数。
有理数的加减法法则包括同号相加、异号相加、零与任何数相加以及减法的法则。
二、有理数的加减混合运算有理数的加减混合运算是指在同一运算中,既有加法又有减法。
在进行加减混合运算时,需要按照从左到右的顺序进行计算。
例如,对于表达式3 - 2 + 4 - 1,我们首先进行3 - 2得到1,然后再加上4得到5,最后减去1得到最终结果4。
三、有理数加减混合运算的实例解析在解决有理数加减混合运算的问题时,可以先按照运算顺序进行计算,然后根据有理数的加减法法则进行运算。
例如,对于表达式5 - 3 + 2 - 1,我们首先进行5 - 3得到2,然后再加上2得到4,最后减去1得到最终结果3。
四、有理数加减混合运算的技巧与方法在进行有理数加减混合运算时,可以运用运算律、先乘除后加减的原则以及括号的使用来简化运算。
例如,对于表达式5 * (2 - 1) - 3,我们首先计算2 - 1得到1,然后将5乘以1得到5,最后减去3得到最终结果2。
七年级数学 第二章 有理数及其运算 专题三 有理数加减法的综合运用作业
日期 1
2
3
4
5
购进 55 4损耗 6
2 12 4
1
解:(1)10.5千克 (2)购进水果50千克,共花费50×2.6=130(元),卖掉38千克, 赚取钱38×3.4-130=-0.8(元),即当天赔了0.8元 (3)(44+47.5+38+44.5+51)×0.8-(6+2+12+4+1)×2.6-5= 180-65-5=110(元),答:10月1日~5日该个体户共赚110元
13
10
解:(1)收入32+48+50=130(万元),支出12+13+10=35(万元)
(2)+130万元;-35万元 (3)+130-35=95(万元)
2.股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期 一至星期五该股票的涨跌情况.求:
(1)本周星期三收盘时,每股的钱数;
(2)李星星本周内哪一天把股票抛出比较合算,为什么?
第二章 有理数及其运算
专题三 有理数加减法的综合运用
1.某公司今年第一季度收入与支出情况如下表所示(单位:万元):
(1)该公司今年第一季度总收入与总支出各多少万元?
(2)如果收入用正数表示,则总收入与总支出应如何表示?
(3)该公司第一季度利润为多少万元? 月份 一月 二月 三月
收入 32
48
50
支出 12
6.某个体水果店经营某种水果,进价2.60元/千克,售价3.40元/千克,10
月1日至10月5日经营情况如下表:
(1)9月30日的库存为10 kg,则10月2日的库存为________;
(2)就10月3日经营情况看,当天是赚还是赔了?
(3)每天交卫生费1元,则10月1日~10月5日该个体户共赚多少钱?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、设两个有理数的和为a,这两个有理 数的差为b,则a、b的大小关系是( ) A、a=b B、 a<b C、a>b D、不能确定
课堂小结 今天我们从实例出发,经过比较,归纳 得出了有理数减法法则,并通过推理说明了 法则的合理性。这样有理数的减法只需将减 数变成它的相反数,把减法转化为加法(注 意被减数是永远不变的)。从而有理数的加 法和减法这两种互逆的运算可用加法统一起 来。想一想还有什么运算与这种情形类似? 这说明在一定的条件下,矛盾的双方可以向 其对立面转化。
(2)比2°C低8°C的温度是 ; 比-3°C低6°C的温度 ; (3)比0小4的数是 ; 比0 小-4的数是 ; (4)7.4比8.3小 ; 7.4比8.3大 。 4、若m>0,n<0,则m-n 0; 若m<0,n>0, 则m-n 0。
二、选择题 1、下面等式正确的是( ) A、a-b=(-a)+ b B、a-(-b)=(-a)+(-b) C、(-a)-(-b)=(-a)+(-b) D、a-(-b)=a+b 2、下列说法中下正确的是( ) A.两个数的差一定小于被减数 B、若两个数的差为0,则这两数必相等 C、零减去一个数一定得负数 D、一个负数减去一个负数结果仍是负数
2、据襄樊市气象台预报:2001年2 月7日我县的最高气温是4 °C,最 低气温是–3 °C, 请问这天温差是 多少?你是怎样算的?
4 – (– 3) = 7 ( °C)
比一比,议一议:
先请同学们计算以下两个式子: (1)11 +( –15); (2)4 + 3
比较上面的式子,你能发现其中的 规律吗?分小组讨论。
规律:减去一个数,与加上这个数 的相反数,其结果不变。
将上面的文字再整理一下,就得到今天 我们学习的有理数的减法法则:
减去一个数,等于加上这个数的相反数。
例1 计算下列各式:
(1)9 – (– 5); (2)( – 3) – 1
( 3) 0 – 8 ; (4)( – 5) – 0
例2 计算下列各式:
(7)0 – ( –7) ;(8 )( – 6) – 6 (9)9 – ( –11)
达标测试
一、填空题 1、有理数的减法法则是:减去一个数 等于加上这个数的 。 2、①3.6-4.7= ②(-7)-12= ③(+13)-(-7)= ④5-(-3)= ⑤0-15= ⑥0-(-8)= ⑦(-3.4)-0= ⑧(-1.24)-5.73= ⑨(-4)-(-4.375)= ⑩2-(+5)= 3、(1)(-5)+( )= -8; (-3)+( )=2
(1)5 – (– 15) ( 2) 0– 7 – 5
1 1 (3)( – 1.3 )–( – 2.1) (4) 1 2 3 2
口算:
( 1) 3 – 5 ; (2)3 – ( – 5);
(3)( – 3) – 5;
(4)( – 3) – ( –5);
(5)–6 –( –6); (6) – 7 – 0;
( 5.8) ( ) ( ) 11 5 11
解题反思:
(1)将小数化为分数或将分数化为 小数相加 (2)同分母相加.
新知应用
练习2 计算
1 3 1 1 7 (4 ) 2 (5 ) 5 4 4 5
新知应用
例3 计算
(-0.8)+1.2+(-0.7)+(-2.1)+0.8+3.5
解题反思:互为相反数的先相加.
新知应用
练习3 计算 (-2)+3+1+(-3)+2+(-4)
有理数的减法
想一想,做一做:
1、某天当地的气温为3°C,傍 晚时下降了6 °C,那么傍晚的 气温是多少?怎样计算的?
3 – 6 = -3( °C)
再见
; 2028长城娱乐
bth42dwb
脸色前所未有的凝重。她知道丈夫说的是实话。“可是他们没有来搜。”苏小横轻轻的笑起来,“放过这个大好的机会,说明他们顾忌我们, 比我们顾忌他们更多。又或者他们实力根本没那么强大,这次误打误撞成功了,并没办法把战果扩大。甚至,‘他们’也许根本不是张家那一 支。你也知道宫中,又岂止一个张妃……”“可是玉坠在他们手里,他们就可以指证我们呀!”老太太着急道。“不,不。”苏小横纠正她, “如果现场搜出,当然可以指证我们。但是偷了出去,却拿回来声称是我们这里偷的,我们何尝不可反咬他们自己拿到东西,却来攀诬我们? 你放心,诗儿在宫中,自有处置之道。”老太太略松口气:“那么……”“然而不管如何,诗儿是需要一个帮手的。”苏小横道,“自己族中 的血脉,总比收来的丫头好。你看着办罢?”老太太肃然应了夫婿,心里一番计量。堂表亲族且不论,嫡嫡亲的这几个孩子,是她早就想过很 多遍的,这回少不得又从头考虑起:二姑娘云诗之下,三小子明树是个已成家的小子,说不得了。四丫头明秀,未出阁,品性倒是最靠得住的, 有些地方几乎比她二姐云诗还稳妥些,只是和云诗两姐妹一母同胞,继姐姐之后,又要把妹妹送到那种地方,恐怕外人笑话苏家姿势太难看, 大儿媳妇也牺牲太大,必须立刻要把家里全交给她管才能说得过去了,这是老太太还没下定决心的。挨下来,五小子明柯又是小子,不得用了。 六丫头明蕙呢,算得活泼可爱,相貌也好,就是浮躁些,才及笄,年龄嫌小些,心性未定。下头几个,年纪更小了,不合适。外孙女玉笙,年 龄倒是合适,才貌是没得讲,竟压过苏府里所有姑娘,但实在病弱,说不准什么时候就死了,脾气也阴郁古怪,实在用不得……不管怎么算, 若这两年要进宫,最合适也唯有明秀。可明秀平日还是很得老太太欢心的呀!这样的姑娘,填进宫里头,凭良心说,可怜见的呀……老太太有 些妇人之仁的犹豫。苏小横由她想去,不再插嘴,倚在窗边听了一会儿:“哟,有琴声。”雨已停了,琴声却如远远泼在白石上的水声,隐约 玲珑,可惜响了没多一会儿,也停了。琴声来自四 的院子。那时候,五少爷明柯、七 明蕙、还有出嫁了回来省亲的姑奶奶苏含萩一路回来, 看四姐儿明秀院子最近,就先拥到明秀这儿,脱了湿衣,仗着炉火生得旺,新换了小衣、袄子,外袍都不披,裤腿扎撒着,赤足趿木屐——左 右地上新铺着锦毯呢!齐聚在她暖阁里吃酒作乐祛祛湿气。闹了一番,外头一个大丫头,名叫青翘,是五少爷屋里的,这时候来,给大家行了 个礼,跟五少爷在旁边低低说话儿。苏含萩扬声道:“弄什么鬼呢?”明柯只是笑。青翘却是大方,屈膝道:“好叫姑奶奶晓得,不过是件狼 犺物色,婢子正
第一章 有理数
1.3.1 有理数的加法
新知应用
例1 计算 16+(-25)+24+(-35) 解题反思: 符号相同的数可以先相加.
新知应用
练习1 计算 (1)23+(-17)+6+(-22)
1 1 1 ( 2) 1 ( ) ( ) 2 3 6 1 3 3 2 (3) 3 ( 2 ) 5 ( 8 ) 4 5 4 5