完整word版,MBBR工艺设计
工艺计算MBBR
![工艺计算MBBR](https://img.taocdn.com/s3/m/2877668416fc700abb68fcd1.png)
TN= NH4+-N=
58 mg/L 45 mg/L
TN= NH4+-N=
10 mg/L 1.5 mg/L
碱度SALK=
280 mg/L
pH=
7.2
SS=
70 mg/L
SS=Ce=
20 mg/L
VSS= f=VSS/SS= 夏季平均温度 T1= 冬季平均温度 T2=
52.5 mg/L 0.75
25 ℃ 10 ℃
0.451 m/s 0.174 m3/s
污泥回流渠道设计流速v 2=
0.7 m/s
渠道断面积 A=QR/v 2=
0.248 m2
渠道断面 b×h=
1×
校核流速 v= (3)进水竖井
0.347 m/s
进水孔过流量: Q'=( 1+R)× Q/n=
孔口流速 v'= 孔口过水断面积 A'=Q'/v'=
0.6 m/s 0.289 m2
(2)混合液回流比R 内计算
总氮率 ηN=(进水 TN-出水 TN)/ 进水 TN=
82.76%
混合液回流比R内= η/(1- η)=
6、剩余污泥量 (1)生物污泥产量
480%
PX YQ(S0 S) 1 Kd c
381.4 kg/d
(2) 非生物污泥量PS
PS=Q(X1-Xe)= (3) 剩余污泥量 ΔX Δ X=PX+PS= 设剩余污泥含水率按
0.5 m 0.174 m3/s
(4) 出水堰及出水竖井 矩形堰流量公式: Q3
3
0.42 2gbH 2
1.866 b H3/2
出水流量Q3= 堰宽 b= 堰上水头 H= 出水孔孔口流速v3=
MBR工艺设计(DOC)
![MBR工艺设计(DOC)](https://img.taocdn.com/s3/m/3fce9b33ed630b1c59eeb541.png)
目录一、概述 21、工程概况2、设计依据3、设计、施工范围及服务4、设计原则二、污水水质、水量及排放标准 31、设计水量2、设计进水水质3、排放出水标准三、处理工艺流程 4四、方案设计 61、单元设备2、主要构筑物及设备3、工艺布置4、电器控制5、防腐措施6、通风排气7、噪声控制8、污泥处置五、人员编制与运行管理11六、处理效果预测111、主要指标处理效果预测2、环境效益七、主要技术经济指标121、电器功率配套2、主要技术经济指标八、建议13九、报价14十、附图附页一、概述1、工程概况医疗区、生活区汇总排放的污水处理采用先进的膜处理方法-MBR处理工艺,再经过消毒后达到《城市污水再生利用城市杂用水水质》(GB/T18920-2002)标准后部分回用于洒水和绿化,部分排入水体。
生活污水回用处理设备主要材质为碳钢(Q235A),设备设置自动控制功能,采用PLC独立工作,正常工作时为全自动控制,必要时可切换为手动控制工作。
2、设计依据1、用户提供的环评报告及环保局的有关文件;2、《生活杂用水水质标准》CJ 25.1-893、《国家污水综合排放标准》GB8978/1996;4、《室外排水设计规范》GBJ14-87;5、《建筑给排水设计规范》GBJ15-88;6、《工业企业厂界噪声标准》GB12348-90;7、《医疗机构水污染排放标准》GB18466-20058、《城市污水再生利用城市杂用水水质》GB/T18920-20029、医院污水处理技术指南、给水排水工程建设有关技术规范;10、我公司完成同类工程所积累的实际技术参数和经验。
3、设计、施工范围及服务(1) 设计范围本工程的设计范围为:污水处理站的工艺、设备、电气与自控、通风等专业的全部内容。
(2) 施工范围及服务a、污水处理站中的所有土建构筑物由业主负责组织施工。
b、处理站的总进、出水管道由业主负责施工。
c、总电源由业主负责接至控制柜。
d、污水处理设备及设备内的配件均由我公司负责提供。
MBBR工艺的设计说明
![MBBR工艺的设计说明](https://img.taocdn.com/s3/m/de718bfa69dc5022aaea00d0.png)
MBBR工艺背景介随着现代化工业的进程和人口急剧的膨胀,水污染问题已经成为社会焦点之一,目前污水处理的方法主要有活性污泥法和生物膜法两大类:活性污泥法从20世纪初英国开创以来,经过几十年的发展革新已经拥有多种运行方式,同时由于其极好的污水处理效果而逐渐成为大家认可的比较成熟的工艺;生物膜法是利用附着在填料上的生物对水体进行净化的一种工艺,近年来也得到迅速的发展和提高。
从多年的运行实践来看,活性污泥法虽较为成熟,但也存在很多的缺点和不足,如曝气池容积大、占地面积高、基建费用高等,同时对水质、水量变化的适应性较低,运行效果易受水质、水量变化的影响等。
鉴于上述因素,这种污水处理方法逐渐被后来的生物膜法所取代。
生物膜法弥补了活性污泥法的很多不足,如它的稳定性好、承受有机负荷和水力负荷冲击的能力强、无污泥膨胀、无回流,对有机物的去除率高,反应器的体积小、污水处理厂占地面积小等优点。
但是生物膜法也有其特有的缺陷,如生物滤池中的滤料易堵塞、需周期性反冲洗、同时固定填料以及填料下曝气设备的更换较困难、生物流化床反应器中的载体颗粒只有在流化状态下才能发挥作用、工艺的稳定性较差…等。
介于以上两种工艺的缺点和不足,移动床生物膜反应器(moving-bed-biofilm-reactor,简称MBBR)应运而生。
MBBR法在80年代末就有所介绍并很快在欧洲得到应用,它吸取了传统的活性污泥法和生物接触氧化法两者的优点而成为一种新型、高效的复合工艺处理方法。
直接投加到曝气池中作为微生物的活性载体,依靠曝气池的曝气和水流的提升作用而处于流化状态,当微生物附着在载体上,漂浮的载体在反应器随着混合液的回旋翻转作用而自由移动,从而达到污水处理的目的。
作为悬浮生长的活性污泥法和附着生长的生物膜法相结合的一种工艺,MBBR法兼具两者的优点:占地少——在相同的负荷条件下它只需要普通氧化池20%的容积;微生物附着在载体上随水流流动所以不需活性污泥回流或循环反冲洗;载体生物不断脱落,避免堵塞;有机负荷高、耐冲击负荷能力强,所以出水水质稳定;水头损失小、动力消耗低,运行简单,操作管理容易;同时适用于改造工程等。
最新MBBR工艺精品文档
![最新MBBR工艺精品文档](https://img.taocdn.com/s3/m/930310c883c4bb4cf6ecd1ac.png)
MBBR工艺的影响因素
1. 填料 2. 溶解氧(DO) 3. 水力停留时间(HRT) 4. 水温 5. pH值 6. 其他因素
MBBR工艺布置
MBBR混合工艺
MBBR与活性污泥混合工艺,可提高处理能力50%以上并达到脱氮 除磷的目标。可在不增加池容的条件下,与A2/O、氧化沟、SBR等 多种工艺结合。
MBBR工艺
MBBR工艺的原理
吸附 扩散
水解反应
释放
降解反应
含水层
生物膜
载体
MBBR好氧反应器
好氧曝气时,悬浮载体被充分地搅拌 与水流混合,而空气又被充分地分割 成细小的气泡,增加了生物膜与氧气 的接触和传氧效率。
MBBR缺氧反应器
在厌氧条件下,水流和悬浮载体在潜水 搅拌器的作用下充分流动起来,达到生 物膜和被处理的污染物充分接触实现生 物分解的目的
结 果:污水处理厂处理能力5万吨/天,出水水质指标均已达 一级A标准;MBBR工艺对氨氮及总氮的去除达到很好的处理 效果。
MBBR工艺在运行中易出现的问题
(1)MBBR反应器的流化态
反应器中的填料依靠曝气和水流的提升作用处于流化状态, 在实际操作中,经常出现由于整个池内进气分布不均匀而导 致局部填料堆积的现象
MBBR工艺的优点
(1)处理效率高
COD容积负荷可达6~10kg/m3.d,是传统活性污泥法的2~4倍, 减少构筑物体积或提升处理能力;(应用于低浓度和难降解 化工废水时适当降低设计负荷致2~6kg/m3.d)
(2)脱氮能力强
氨氮负荷高达1kg NH3-N/ m3.d (35℃),而传统的活性污泥 法仅为0.1~0.3kg NH3-N/ m3.d,采用CBR工艺可确保高氨氮 废水的稳定达标;
MBBR工艺设计
![MBBR工艺设计](https://img.taocdn.com/s3/m/d8a41a10fe4733687f21aa1e.png)
MBBR工艺背景介随着现代化工业的进程和人口急剧的膨胀,水污染问题已经成为社会焦点之一,目前污水处理的方法主要有活性污泥法和生物膜法两大类:活性污泥法从20世纪初英国开创以来,经过几十年的发展革新已经拥有多种运行方式,同时由于其极好的污水处理效果而逐渐成为大家认可的比较成熟的工艺;生物膜法是利用附着在填料上的生物对水体进行净化的一种工艺,近年来也得到迅速的发展和提高。
从多年的运行实践来看,活性污泥法虽较为成熟,但也存在很多的缺点和不足,如曝气池容积大、占地面积高、基建费用高等,同时对水质、水量变化的适应性较低,运行效果易受水质、水量变化的影响等。
鉴于上述因素,这种污水处理方法逐渐被后来的生物膜法所取代。
生物膜法弥补了活性污泥法的很多不足,如它的稳定性好、承受有机负荷和水力负荷冲击的能力强、无污泥膨胀、无回流,对有机物的去除率高,反应器的体积小、污水处理厂占地面积小等优点。
但是生物膜法也有其特有的缺陷,如生物滤池中的滤料易堵塞、需周期性反冲洗、同时固定填料以及填料下曝气设备的更换较困难、生物流化床反应器中的载体颗粒只有在流化状态下才能发挥作用、工艺的稳定性较差…等。
介于以上两种工艺的缺点和不足,移动床生物膜反应器(moving-bed-biofilm-reactor,简称MBBR)应运而生。
MBBR法在80年代末就有所介绍并很快在欧洲得到应用,它吸取了传统的活性污泥法和生物接触氧化法两者的优点而成为一种新型、高效的复合工艺处理方法。
其核心部分就是以比重接近水的悬浮填料直接投加到曝气池中作为微生物的活性载体,依靠曝气池的曝气和水流的提升作用而处于流化状态,当微生物附着在载体上,漂浮的载体在反应器随着混合液的回旋翻转作用而自由移动,从而达到污水处理的目的。
作为悬浮生长的活性污泥法和附着生长的生物膜法相结合的一种工艺,MBBR法兼具两者的优点:占地少——在相同的负荷条件下它只需要普通氧化池20%的容积;微生物附着在载体上随水流流动所以不需活性污泥回流或循环反冲洗;载体生物不断脱落,避免堵塞;有机负荷高、耐冲击负荷能力强,所以出水水质稳定;水头损失小、动力消耗低,运行简单,操作管理容易;同时适用于改造工程等。
MBBR 工艺描述、技术说明
![MBBR 工艺描述、技术说明](https://img.taocdn.com/s3/m/534efad9c281e53a5802ffe1.png)
MBBR 工艺描述、技术说明一、工艺描述MBBR 工艺结合活性污泥法和生物膜法原理,同时兼具传统流化床和生物接触氧化的优点,是一种新型高效的污水处理工艺。
MBBR 工艺处理系统由生化池、填料、布水装置和曝气系统等部分组成。
系统依靠设备曝气和水流的提升作用使投加在反应池内的填料载体处于流化状态,形成了悬浮生长的活性污泥和附着填料生长的生物膜,充分利用反应池的空间进行生化反应,同时发挥了附着相生物和悬浮相生物两者的优势作用。
另外,通过在反应池中投加一定数量的填料,可大幅提高反应池中的生物量和生物种类,从而有效提高系统的处理效率。
且由于选用填料密度接近于水,故在曝气时填料与水呈现出完全混合的状态,通过填料的碰撞和剪切作用,使空气气泡更加微小,从而增加氧气的利用率。
同时,MBBR 工艺处理系统中,因填料中每个载体内外均生长着不同种类的微生物(内部生长厌氧菌或兼氧菌,外部生长好氧菌),每个独立的载体都似一个微型生化反应器,使反应池内硝化与反硝化反应同时进行,故而提高了污水处理的效率。
MBBR 工艺的关键在于在生化池中投加了密度接近于水、轻微搅拌下易于随水自由运动的生物填料,它具有有效比表面积大、适合微生物吸附生长的特点。
MBBR 工艺适用性强,应用范围广,既可用于有机物去除,也可用于脱氮除磷;既可用于新建的污水处理厂,更可用于现有污水处理厂的工艺改造和升级换代。
MBR 工艺的优点如下:①容积负荷高,紧凑省地。
特别对现有污水处理厂(设施)升级改造效果显著,不增加用地面积仅需对现有设施简单改造,污水处理能力可增加2~3 倍,并提高出水水质。
②耐冲击性强,性能稳定,运行可靠。
冲击负荷以及温度变化对流动床工艺的影响要远远小于对活性污泥法的影响。
当污水成分发生变化或污水毒性增加时,生物膜对此耐受力很强。
③搅拌和曝气系统操作方便,维护简单。
曝气系统采用穿孔曝气管系统,不易堵塞。
搅拌器采用外形轮廓线条柔和的搅拌叶片,不损坏填料。
MBBR生物流化床工艺说明
![MBBR生物流化床工艺说明](https://img.taocdn.com/s3/m/6594bab8524de518964b7dac.png)
MBBR™生物流化床工艺说明MBBR™生物膜工艺运用生物膜法的基本原理,充份利用了活性污泥法的优点,又克服了传统活性污泥法及固定式生物膜法的缺点。
技术关键在于研究与开发了比重接近于水,轻微搅拌下易于随水自由运动的生物填料。
生物填料具有有效表面积大,适合微生物吸附生长的特点。
填料的结构以具有受保护的可供微生物生长的内表面积为特征。
当曝气充氧时,空气泡的上升浮力推动填料与周围的水体流动起来,当气流穿过水流与填料的空隙时又被填料阻滞,并被分割成小气泡。
在这样的过程中,填料被充分地搅拌并与水流混合,而空气流又被充分地分割成细小的气泡,增加了生物膜与氧气的接触与传氧效率。
在厌氧条件下,水流与填料在潜水搅拌器的作用下充分流动起来,达到生物膜与被处理的污染物充分接触而生物分解的目的。
流动床TM生物膜反应器工艺由此而得名。
其原理示意图如图1所示。
因此,流动床TM生物膜工艺突破了传统生物膜法(固定床生物膜工艺的堵塞与配水不均,以及生物流化床工艺的流化局限)的限制,为生物膜法更广泛地应用于污水的生物处理奠定了较好的基础。
专利技术的Kaldnes悬浮填料工艺打开了污水生物处理工艺的新领域。
该工艺就是基于一种生物膜技术,其实质就是微生物以膜状生长悬浮填料上。
该悬浮填料由聚乙烯材料制成,在水中自由飘动。
在悬浮填料上没有附着生物膜的情况下,其比重接近于1g/cm3。
在好氧反应器中由于曝气器的曝气以及缺氧单元中的机械搅拌而不断运动。
悬浮填料反应器内最大填料填充率可以达到67%,其有效生物膜面积可以达到350m2/m3反应器容积。
该工艺可以通过硝化与反硝化作用完成生化好氧降解有机污染物(如BOD,COD)或完成生物脱氮,后者适用于预反硝化或后反硝化或者两者结合。
在后反硝化过程中在反应器中的总水力停留时间只要2、5-3小时就可以使脱氮率达到70%。
Kaldnes工艺与传统活性污泥法相比优点很多,例如具有高容积利用率,反应器形状灵活,无污泥回流的优点。
MBBR工艺的设计说明
![MBBR工艺的设计说明](https://img.taocdn.com/s3/m/1ee4b991bcd126fff6050b1b.png)
MBBR工艺背景介随着现代化工业的进程和人口急剧的膨胀,水污染问题已经成为社会焦点之一,目前污水处理的方法主要有活性污泥法和生物膜法两大类:活性污泥法从20世纪初英国开创以来,经过几十年的发展革新已经拥有多种运行方式,同时由于其极好的污水处理效果而逐渐成为大家认可的比较成熟的工艺;生物膜法是利用附着在填料上的生物对水体进行净化的一种工艺,近年来也得到迅速的发展和提高。
从多年的运行实践来看,活性污泥法虽较为成熟,但也存在很多的缺点和不足,如曝气池容积大、占地面积高、基建费用高等,同时对水质、水量变化的适应性较低,运行效果易受水质、水量变化的影响等。
鉴于上述因素,这种污水处理方法逐渐被后来的生物膜法所取代。
生物膜法弥补了活性污泥法的很多不足,如它的稳定性好、承受有机负荷和水力负荷冲击的能力强、无污泥膨胀、无回流,对有机物的去除率高,反应器的体积小、污水处理厂占地面积小等优点。
但是生物膜法也有其特有的缺陷,如生物滤池中的滤料易堵塞、需周期性反冲洗、同时固定填料以及填料下曝气设备的更换较困难、生物流化床反应器中的载体颗粒只有在流化状态下才能发挥作用、工艺的稳定性较差…等。
介于以上两种工艺的缺点和不足,移动床生物膜反应器(moving-bed-biofilm-reactor,简称MBBR)应运而生。
MBBR法在80年代末就有所介绍并很快在欧洲得到应用,它吸取了传统的活性污泥法和生物接触氧化法两者的优点而成为一种新型、高效的复合工艺处理方法。
直接投加到曝气池中作为微生物的活性载体,依靠曝气池的曝气和水流的提升作用而处于流化状态,当微生物附着在载体上,漂浮的载体在反应器随着混合液的回旋翻转作用而自由移动,从而达到污水处理的目的。
作为悬浮生长的活性污泥法和附着生长的生物膜法相结合的一种工艺,MBBR法兼具两者的优点:占地少——在相同的负荷条件下它只需要普通氧化池20%的容积;微生物附着在载体上随水流流动所以不需活性污泥回流或循环反冲洗;载体生物不断脱落,避免堵塞;有机负荷高、耐冲击负荷能力强,所以出水水质稳定;水头损失小、动力消耗低,运行简单,操作管理容易;同时适用于改造工程等。
工艺计算MBBR
![工艺计算MBBR](https://img.taocdn.com/s3/m/d4e229ed9e314332396893ab.png)
NW
0.124
Y(S0 S) (1 K d c )
=
(θ为温度 系数,取 1.08)
7600.5 m3 12.16 h 12173.6 m3
7.14 mg碱度; 0.1 mg碱度; 3.57 mg碱度;
5.75 mg/L 50.75 mg/L
42.25 mg/L 633.69 kg/d
kgNO3-0.028 N/kgMLVS
(1)估算出水溶 解性BOD5(Se)
S
Sz
1.42
VSS TSS(1 TSS
ekt )
(2)设计污泥龄
-8.56 mg/L
计算
硝化速率
N
0.47e0.098(T 15)
N
N 10(0.05T
1.158)
O2 kO2
O2
1
0.833(7.2
pH)
低温时μN(10)= 硝化反应所需的最 小泥龄θcm=
(4)出水堰及出水 竖井
3
矩形堰流量公式: Q3 0.42 2gbH 2 1.866b H3/2
出水流量Q3=
堰宽b=
堰上水头H=
出水孔孔口流速v3=
孔口过水断面积A3=
(5)出水管。
管道流速v4=
(
m b
q
2
g
)
2
/
3
管道过水断面积A4=
0.174 m3/s 6m
0.062 m 0.6 m/s
0.289 m2
氧总转移系数α=
氧在污水中饱和溶
解度修正系数β=
曝气池内平均溶解
氧浓度C=
所在地区大气压力
p=
因海拔高度不高引
起的压力系数ρ=
(完整word版)MBBR工艺
![(完整word版)MBBR工艺](https://img.taocdn.com/s3/m/d5c0d780bdeb19e8b8f67c1cfad6195f312be84c.png)
MBBR 工艺背景介绍跟着现代化工业的进度和人口急剧的膨胀,水污染问题已经成为社会焦点之一,当前污水办理的方法主要有活性污泥法和生物膜法两大类:活性污泥法从20 世纪初英国创始以来,经过几十年的发展改革已经拥有多种运行方式,同时因为其极好的污水办理成效而渐渐成为大家认同的比较成熟的工艺;生物膜法是利用附着在填料上的生物对水体进行净化的一种工艺,最近几年来也获得快速的发展和提高。
从多年的运行实践来看,活性污泥法虽较为成熟,但也存在好多的弊端和不足,如曝气池容积大、占地面积高、基建花费高等,同时对水质、水量变化的适应性较低,运行成效易受水质、水量变化的影响等。
鉴于上述要素,这种污水办理方法渐渐被此后的生物膜法所代替。
生物膜法填补了活性污泥法的好多不足,如它的稳固性好、蒙受有机负荷和水力负荷冲击的能力强、无污泥膨胀、无回流,对有机物的去除率高,反响器的体积小、污水办理厂占地面积小等长处。
可是生物膜法也有其独有的缺陷,如生物滤池中的滤料易拥塞、需周期性反冲刷、同时固定填料以及填料下曝气设施的改换较困难、生物流化床反响器中的载体颗粒只有在流化状态下才能发挥作用、工艺的稳固性较差等。
介于以上两种工艺的弊端和不足,挪动床生物膜反响器(moving-bed-biofilm-reactor,简称MBBR)应运而生。
MBBR 法在 80 年月末就有所介绍并很快在欧洲获得应用,它汲取了传统的活性污泥法和生物接触氧化法二者的长处而成为一种新式、高效的复合工艺办理方法。
其核心部分就是以比重靠近水的悬浮填料直接投加到曝气池中作为微生物的活性载体,依靠曝气池内的曝气和水流的提高作用而处于流化状态,当微生物附着在载体上,飘荡的载体在反响器内跟着混淆液的盘旋翻转作用而自由挪动,从而达到污水办理的目的。
作为悬浮生长的活性污泥法和附着生长的生物膜法相联合的一种工艺,MBBR 法兼具二者的长处:占地少——在相同的负荷条件下它只要要一般氧化池20% 的容积;微生物附着在载体上随水流流动所以不需活性污泥回流或循环反冲刷;载体生物不停零落,防止拥塞;有机负荷高、耐冲击负荷能力强,所以出水水质稳固;水头损失小、动力耗费低,运行简单,操作管理简单;同时合用于改造工程等。
工艺计算MBBR
![工艺计算MBBR](https://img.taocdn.com/s3/m/6e71e77a777f5acfa1c7aa00b52acfc789eb9fcd.png)
工艺计算MBBR一、生物脱氮工艺设计计算(一)设计条件:设计处理水量Q=15000m 3/d=625.00m 3/h=0.17m 3/s 总变化系数Kz= 1.53进水水质:出水水质:进水COD Cr =300mg/L COD Cr =30mg/L BOD 5=S 0=145mg/L BOD 5=S z =6mg/L TN=58mg/L TN=10mg/L NH 4+ -N=45mg/L NH 4+-N= 1.5mg/L碱度S ALK =280mg/L pH=7.2SS=70mg/L SS=C e =20mg/L VSS=52.5mg/Lf=VSS/SS=0.75曝气池出水溶解氧浓度2夏季平均温度T1=25℃硝化反应安全系数K=3冬季平均温度T2=10℃活性污泥自身氧化系数Kd=0.05活性污泥产率系数Y=0.6混合液浓度X=4000mgMLSS/L SVI=15020℃时反硝化速率常数q dn,20=0.06kgNO 3--N/kgMLVSS曝气池池数n=2若生物污泥中约含12.40%的氮用于细胞合成(二)设计计算1、好氧区容积V1计算(1)估算出水溶解性BOD 5(Se)-8.56mg/L(2)设计污泥龄计算硝化速率低温时μN(10)=0.152d -1硝化反应所需的最小泥龄θc m= 6.570d设计污泥龄θc =19.710d(3)好氧区容积V 1=4573.1m 3好氧区水力停留时间t 1=7.32h2、缺氧区容积V 2=-??-=-)1TSS TSS VSS42.1kt z e S S ([][])2.7(833.011047.022)158.105.0()15(098.02pH O k O N N e O T T N --++=--μ)1()(01c d V c K X S S Q Y V θθ+-=V T dn T X q NV ,21000=(1)需还原的硝酸盐氮量计算微生物同化作用去除的总氮= 5.75mg/L 被氧化的氨氮=进水总氮量-出水氨氮量-用于合成的总氮量=50.75mg/L 所需脱硝量=进水总氮量-出水总氮量-用于合成的总氮量=42.25mg/L 需还原的硝酸盐氮量N T =633.69kg/d (2)反硝化速率q dn,T =q dn,20θT-20=(θ为温度系数,取1.08)0.028kgNO 3--N/kgMLVSS (3)缺氧区容积V 2=7600.5m 3缺氧区水力停留时间t 2=V 2/Q=12.16h3、曝气池总容积V=V 1+V 2=12173.6m 3系统总污泥龄=好氧污泥龄+缺氧池泥龄=52.47d 4、碱度校核每氧化1mgNH 4+-N需消耗7.14mg碱度;去除1mgBOD 5产生0.1mg碱度;每还原1mgNO 3--N产生3.57mg碱度;剩余碱度S ALK1=进水碱度-硝化消耗碱度+反硝化产生碱度+去除BOD 5产生碱度=83.85mg/L>100mg/L(以 CaCO 3计)5、污泥回流比及混合液回流比(1)污泥回流比R计算=8000混合液悬浮固体浓度X(MLSS)=4000mg/L污泥回流比R=X/(X R -X)=100%(一般取50~100%)(2)混合液回流比R 内计算总氮率ηN =(进水TN-出水TN)/进水TN=82.76%混合液回流比R 内=η/(1-η)=480%6、剩余污泥量(1)生物污泥产量381.4kg/d (2)非生物污泥量P SP S =Q(X 1-X e )=-37.5kg/d(3)剩余污泥量ΔXΔX=P X +P S =343.9kg/d设剩余污泥含水率按99.20%计算7、反应池主要尺寸计算(1)好氧反应池设2座曝气池,每座容积V 单=V/n=2286.54m 3曝气池有效水深h=4mmg/L (r为考虑污泥在沉淀池中停留时间、池深、污泥厚度等因素的系数,取VT dn T X q N V ,21000=)1()(124.00c d W K S S Y N θ+-=r SVIX R 610==+-=cd X K S S YQ P θ1)(0曝气池单座有效面积A 单=V 单/h=571.63m 2采用3廊道,廊道宽b=6m 曝气池长度L=A 单/B=31.8m 校核宽深比b/h=1.50校核长宽比L/b=5.29曝气池超高取1m,曝气池总高度H=5m (2)缺氧池尺寸设2座缺氧池,每座容积V 单=V/n=3800.25m 3缺氧池有效水深h=4.1m 缺氧池单座有效面积A 单=V 单/h=926.89m 2缺氧池长度L=好氧池宽度=18.0m 缺氧池宽度B=A/L=51.5m8、进出水口设计(1)进水管。
(word完整版)MBBR技术总结汇总,推荐文档.docx
![(word完整版)MBBR技术总结汇总,推荐文档.docx](https://img.taocdn.com/s3/m/b2330d62b14e852459fb5792.png)
MBBR 技2016-07-10 中国水排水?MBBR 工背景介从多年的运行践来看,活性泥法成熟,但也存在很多的缺点和不足,如曝气池容大、占地面高、基建用高等,同水、水量化的适性低,运行效果易受水、水量化的影响等。
于上述因素,种水理方法逐被后来的生物膜法所取代。
生物膜法弥了活性泥法的很多不足,如它的定性好、承受有机荷和水力荷冲的能力、无泥膨、无回流,有机物的去除率高,反器的体小、水理厂占地面小等点。
但是生物膜法也有其特有的缺陷,如生物池中的料易堵塞、需周期性反冲洗、同固定填料以及填料下曝气的更困、生物流化床反器中的体粒只有在流化状下才能作用、工的定性差⋯等。
介于以上两种工的缺点和不足,移床生物膜反器 (moving-bed-biofilm-reactor,称 MBBR)运而生。
MBBR 法在 80 年代末就有所介并很快在欧洲得到用,它吸取了的活性泥法和生物接触氧化法两者的点而成一种新型、高效的复合工理方法。
其核心部分就是以比重接近水的浮填料直接投加到曝气池中作微生物的活性体,依靠曝气池内的曝气和水流的提升作用而于流化状,当微生物附着在体上,漂浮的体在反器内随着混合液的回旋翻作用而自由移,从而达到水理的目的。
作浮生的活性泥法和附着生的生物膜法相合的一种工, MBBR 法兼具两者的点:占地少——在相同的荷条件下它只需要普通氧化池 20%的容;微生物附着在体上随水流流所以不需活性泥回流或循反冲洗;体生物不断脱落,避免堵塞;有机荷高、耐冲荷能力,所以出水水定;水失小、力消耗低,运行,操作管理容易;同适用于改造工程等。
随着代化工的程和人口急的膨,水染已成社会焦点之一,目前水理的方法主要有活性泥法和生物膜法两大:活性泥法从20世初英国开以来,几十年的展革新已有多种运行方式,同由于其极好的水理效果而逐成大家可的比成熟的工;生物膜法是利用附着在填料上的生物水体行化的一种工,近年来也得到迅速的展和提高。
在去十几年的研究中,MBBR 法已作一种成熟的工广泛用于造水、食品工水、屠宰水、油水等工水中,同也可以理城市生活水以及城市水与工水的混合水。
mbbr工艺设计计算
![mbbr工艺设计计算](https://img.taocdn.com/s3/m/e50b03d480c758f5f61fb7360b4c2e3f5627254d.png)
mbbr工艺设计计算MBBR工艺设计计算MBBR(Moving Bed Biofilm Reactor)是一种流动床生物膜反应器,广泛应用于城市污水处理厂和工业废水处理领域。
在MBBR工艺设计计算中,需要考虑废水水质、污水处理效果、氧化负荷和生物膜扩展等因素。
一、废水水质分析MBBR工艺设计计算的第一步是对废水水质进行分析。
废水水质包括COD(化学需氧量)、BOD(生化需氧量)、氨氮、总磷等指标。
通过对废水水质的分析,可以确定MBBR工艺设计的目标和要求。
二、污水处理效果计算污水处理效果是MBBR工艺设计的关键指标之一。
根据废水水质分析结果,可以计算出MBBR工艺对COD、BOD、氨氮和总磷的去除率。
同时,还可以计算出MBBR工艺处理后的出水水质是否符合相关标准要求。
三、氧化负荷计算氧化负荷是指单位时间内污水中有机物被氧化的能力。
在MBBR工艺设计中,需要计算出氧化负荷以确定MBBR反应器的规模和数量。
氧化负荷的计算一般基于污水的COD浓度和流量。
四、生物膜扩展计算生物膜扩展是MBBR工艺的核心过程之一。
根据废水水质和MBBR 反应器的设计要求,可以计算出生物膜的扩展速率和生物膜的厚度。
生物膜的扩展速率和厚度对MBBR工艺的稳定运行和处理效果有着重要影响。
五、MBBR反应器容积计算MBBR反应器的容积计算是MBBR工艺设计的最后一步。
根据污水处理效果、氧化负荷和生物膜扩展等计算结果,可以确定MBBR反应器的容积大小。
同时,还需要考虑MBBR反应器的氧化空间和搅拌装置等设计要求。
MBBR工艺设计计算是一个综合考虑废水水质、污水处理效果、氧化负荷和生物膜扩展等因素的过程。
通过对废水水质的分析和计算,可以确定MBBR工艺设计的目标和要求;通过计算污水处理效果、氧化负荷和生物膜扩展等指标,可以确定MBBR反应器的规模和数量;最后,根据计算结果确定MBBR反应器的容积大小。
MBBR工艺设计计算的准确性和严谨性对于确保MBBR工艺的高效运行和处理效果至关重要。
MBBR和纳滤膜系统工艺要求
![MBBR和纳滤膜系统工艺要求](https://img.taocdn.com/s3/m/e9a0af54be23482fb4da4c83.png)
MBBR工艺和纳滤膜系统的详细工艺要求一、MBBR工艺要求曝气量:1L/min,溶解氧:9~10mg/L1.进水沼液水质(单位:mg/L)pH=7COD=1397NH3-N=510SS=1000TP=847TN=10622.出水要求(单位:mg/L)pH=7NH3-N=100COD=279(原液去除率80%左右)COD=500(污水综合排放标准三级标准)SS=200(400为污水综合排放标准三级标准)TP=847TN=1062参考MBBR内部结构示意图参考工艺流程图3. 悬浮填料堆积堵塞措施在实际运行中,如果不能保证MBBR中填料呈现均匀流化状态,容凝出现填料堆积的现象。
反应器长深比为0.5左右的条件下,有利于填料良好的移动,反应器内混合充分,不会产生大范围的填料堆积现象。
将反应器底部角落部分设计成斜面来防止填料在反应器底部角落的堆积。
MBBR中的填料依靠曝气扰动、机械搅拌及水流的提升作用而得到循环移动。
在相同的气容比条件下,渐进曝气和单侧曝气的填料活动强度总要明显高于均匀曝气,均匀曝气耗费能源,会增加运行成本。
4.格栅及格栅防堵塞要求缺氧池要维持其缺氧环境(DO<0.5mg/L),搅拌方式为机械搅拌,达到既能保证缺氧环境又能使填料很好的悬浮移动的目的。
将填料用网格整体罩住,即使堵塞也不会造成填料流失,也就不存在填料进入管道造成管道堵塞的问题,只要清理了堵塞的格栅,系统就正常运行。
在格栅处设置曝气装置或反吹装置来有效防止格栅堵塞。
在混合液回流处设置反吹装置来是防止其格网堵塞。
在各池安装高液位计,一格栅堵塞势必水位上升,当水位上升到高液位是系统停止进水,可防止水位溢满,填料流失以致管道堵塞。
这样在人工清理被堵的格栅后,系统可立即回复正常运行。
5.污泥上浮问题措施设计在沉淀池上方设置喷淋管道,随刮泥机一起运行。
喷淋的水釆用二沉池出水,污泥一上浮上来就用喷淋水打散使其二次沉淀,使沉淀池表面一直保持澄清的状态。
MBBR污水处理工艺
![MBBR污水处理工艺](https://img.taocdn.com/s3/m/9ee22e085ef7ba0d4b733b5c.png)
设计负荷为:700000人口当量,设计流量1200立方/小 时,BOD负荷2900公斤/天,COD负荷5929公斤/天, TSS负荷2900公斤/天,TN负荷755公斤/天,TP负荷107 公斤/天,温度10度。
MBBR:Moving Bed Biofilm Reactor Process
流动床生物膜法
是生长生物膜的载体层在水中不断流动的生 物接触氧化法。
以比重接近水的悬浮填料直接投加到 曝气池中作为微生物的活性载体,依靠曝 气池内的曝气和水流的提升作用而处于流 化状态,当微生物附着在载体上,漂浮的 载体在反应器内随着混合液的回旋翻转作 用而自由移动,从而达到污水处理的目的。
池体:池体的形状规则与否,深浅以及三个尺度方向的比 例基本不影响生物处理的效果,可以根据具体情况灵活选 择。
流动床生物膜反应器工艺的应用
MBBR工艺自1989年首次应用于挪威STENSHOLT市政污 水脱氮处理以来,已广泛应用于全球三百余个市政污水和工 业废水的处理工程,既可用于新建项目,更方便于老厂的改 造和升级换代。
积大的生物填料。
曝气系统:
采用开有中小孔径的多孔管系 要求达到布气均匀,供气量由设计而定,并可以控制。
搅拌器系统:厌氧反应池中采用香蕉型叶片的潜水搅拌器。
出水装置: 出水装置要求达到把生物填料保持在生物池中,
其孔径大小由生物填料的外形尺寸而定。 形状有多孔平板式或缠绕焊接管式(垂直或水平方
向)。出水面积取决于不同孔径的单位出流负荷。
厌氧反应器容积负荷高紧凑省地耐冲击性强性能稳定运行可靠搅拌和曝气系统操作方便维护简单生物池无堵塞生物池容积得到充分利用没有死角灵活方便使用寿命长填料好氧反应池厌氧反应池出水装置本图仅为示意图流程选择取决于污水性质和处理要求填料好氧反应池厌氧反应池出水装置填料好氧反应池厌氧反应池出水装置本图仅为示意图流程选择取决于污水性质和处理要求生物填料曝气系统搅拌系统出水装置池体工艺的基本物理要素生物填料
(2021年整理)MBBR工艺及其应用
![(2021年整理)MBBR工艺及其应用](https://img.taocdn.com/s3/m/746e511b2cc58bd63186bde3.png)
MBBR工艺及其应用编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(MBBR工艺及其应用)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为MBBR工艺及其应用的全部内容。
内容摘要:摘要:mbbr工艺是由挪威kaldnes mijecpteknogi公司与sintef研究机构联合开发的一种污水处理工艺,其吸收了传统流化床和生物接触氧化法两种工艺的优点,具有良好的脱氮除磷效果。
目前,该工艺在国外已成功应用于工业废水和生活污水的处理,但在我国应用还较少。
摘要:mbbr工艺是由挪威kaldnes mijecpteknogi公司与sintef研究机构联合开发的一种污水处理工艺,其吸收了传统流化床和生物接触氧化法两种工艺的优点,具有良好的脱氮除磷效果。
目前,该工艺在国外已成功应用于工业废水和生活污水的处理,但在我国应用还较少.关键词:mbbr 脱氮1 mbbr工艺原理及特点1.1 工艺原理污水连续经过mbbr反应器(见下图)内的悬浮填料并逐渐在填料内外表面形成生物膜,通过生物膜上的微生物作用,使污水得到净化.填料在反应器内混合液回旋翻转的作用下自由移动:对于好氧反应器,通过曝气使填料移动;对于厌氧反应器,则是依靠机械搅拌。
1。
2 工艺特点mbbr反应器既具有传统生物膜法耐冲击负荷、泥龄长、剩余污泥少的特点,又具有活性污泥法的高效性和运转灵活性,与其他工艺相比,mbbr具有以下特点:(1)反应器中污泥浓度较高,一般污泥浓度为普通活性污泥法污泥浓度的5~10倍,曝气池污泥质量浓度可高达30~40g/l。
(2)水头损失小,不易堵塞,无需反冲洗,一般不需回流。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MBBR工艺背景介随着现代化工业的进程和人口急剧的膨胀,水污染问题已经成为社会焦点之一,目前污水处理的方法主要有活性污泥法和生物膜法两大类:活性污泥法从20世纪初英国开创以来,经过几十年的发展革新已经拥有多种运行方式,同时由于其极好的污水处理效果而逐渐成为大家认可的比较成熟的工艺;生物膜法是利用附着在填料上的生物对水体进行净化的一种工艺,近年来也得到迅速的发展和提高。
从多年的运行实践来看,活性污泥法虽较为成熟,但也存在很多的缺点和不足,如曝气池容积大、占地面积高、基建费用高等,同时对水质、水量变化的适应性较低,运行效果易受水质、水量变化的影响等。
鉴于上述因素,这种污水处理方法逐渐被后来的生物膜法所取代。
生物膜法弥补了活性污泥法的很多不足,如它的稳定性好、承受有机负荷和水力负荷冲击的能力强、无污泥膨胀、无回流,对有机物的去除率高,反应器的体积小、污水处理厂占地面积小等优点。
但是生物膜法也有其特有的缺陷,如生物滤池中的滤料易堵塞、需周期性反冲洗、同时固定填料以及填料下曝气设备的更换较困难、生物流化床反应器中的载体颗粒只有在流化状态下才能发挥作用、工艺的稳定性较差…等。
介于以上两种工艺的缺点和不足,移动床生物膜反应器(moving-bed-biofilm-reactor,简称MBBR)应运而生。
MBBR法在80年代末就有所介绍并很快在欧洲得到应用,它吸取了传统的活性污泥法和生物接触氧化法两者的优点而成为一种新型、高效的复合工艺处理方法。
其核心部分就是以比重接近水的悬浮填料直接投加到曝气池中作为微生物的活性载体,依靠曝气池内的曝气和水流的提升作用而处于流化状态,当微生物附着在载体上,漂浮的载体在反应器内随着混合液的回旋翻转作用而自由移动,从而达到污水处理的目的。
作为悬浮生长的活性污泥法和附着生长的生物膜法相结合的一种工艺,MBBR法兼具两者的优点:占地少——在相同的负荷条件下它只需要普通氧化池20%的容积;微生物附着在载体上随水流流动所以不需活性污泥回流或循环反冲洗;载体生物不断脱落,避免堵塞;有机负荷高、耐冲击负荷能力强,所以出水水质稳定;水头损失小、动力消耗低,运行简单,操作管理容易;同时适用于改造工程等。
在过去十几年的研究中,MBBR法已经作为一种成熟的工艺广泛应用于造纸废水、食品工业废水、屠宰废水、炼油废水等工业废水中,同时也可以处理城市生活污水以及城市废水与工业废水的混合污水。
许多工程实例表明,用MBBR法处理污水效果良好。
MBBR工艺的原理更新时间:09-4-22 08:52MBBR工艺原理是通过向反应器中投加一定数量的悬浮载体,提高反应器中的生物量及生物种类,从而提高反应器的处理效率。
由于填料密度接近于水,所以在曝气的时候,与水呈完全混合状态,微生物生长的环境为气、液、固三相。
载体在水中的碰撞和剪切作用,使空气气泡更加细小,增加了氧气的利用率。
另外,每个载体内外均具有不同的生物种类,内部生长一些厌氧菌或兼氧菌,外部为好养菌,这样每个载体都为一个微型反应器,使硝化反应和反硝化反应同时存在,从而提高了处理效果。
MBBR工艺兼具传统流化床和生物接触氧化法两者的优点,是一种新型高效的污水处理方法,依靠曝气池内的曝气和水流的提升作用使载体处于流化状态,进而形成悬浮生长的活性污泥和附着生长的生物膜,这就使得移动床生物膜使用了整个反应器空间,充分发挥附着相和悬浮相生物两者的优越性,使之扬长避短,相互补充。
与以往的填料不同的是,悬浮填料能与污水频繁多次接触因而被称为“移动的生物膜”。
MBBR工艺影响因素分析更新时间:09-4-22 08:541填料对MBBR法的影响MBBR法的技术关键在于比重接近于水、轻微搅拌下易于随水自由运动的生物填料。
通常填料由聚乙烯塑料制成,每一个载体的外形为直径10mm、高8mm的小圆柱体,圆柱体中有十字支撑,外壁有突出的竖条状鳍翅,填料中空部分占整个体积的0.95,即在一个充满水和填料的容器中,每一个填料中水占的体积为95%。
考虑到填料旋转以及总容器容积,填料的填充比被定义为载体所占空问的比例,为了达到最好的混合效果,填料的填充比最大为0.7。
理论上填料总的比表面积是按照每一单位体积生物载体比表面积的数量来定义的,一般为700m2/m3。
当生物膜在载体内部生长时,实际有效利用的比表面积约为500m2/m3。
此类型的生物填料有利于微生物在填料内侧附着生长,形成较稳定的生物膜,并且容易形成流化状态。
当预处理要求较低或污水中含有大量纤维物质时,例如在市政污水处理中不采用初沉池或者在处理含有大量纤维的造纸废水时,采用比表面积较小、尺寸较大的生物2溶解氧(DO)对MBBR法的影响王学江等对DO在MBBR中同步硝化一反硝化生物脱氮过程中的影响机理进行了详细分析,认为DO 浓度是影响同步硝化一反硝化的一个主要的限制因素。
通过对DO浓度的控制,可使生物膜的不同部位形成好氧区或缺氧区,这样便具有了实现同步硝化一反硝化的物理条件。
从理论上讲,当DO质量浓度过于高时,DO能穿透到生物膜内部,使其内部难以形成缺氧区,大量的氨氮被氧化为硝酸盐和亚硝酸盐,使得出水TN仍然很高;反之,如果DO浓度很低,就会造成生物膜内部很大比例的厌氧区,生物膜反硝化能力增强(出水硝氮和亚硝氮浓度都很低),但由于DO供应不足,MBBR工艺硝化效果下降,使得出水氨氮浓度上升,从而导致出水TN上升,影响最终的处理效果。
通过研究最终得出了MBBR 法处理城市生活污水DO的一个最佳值:当DO质量浓度在2mg/L以上时,DO对MBBR硝化效果的影响不大,氨氮的去除率可达97%-99%,出水氨氮都能保持在1.0mg/L以下;DO质量浓度在1.0mg/L左右时,氨氮的去除率在84%左右,出水氨氮浓度有明显上升。
另外,曝气池内DO也不宜过高,溶解氧过高能够导致有机污染物分解过快,从而使微生物缺乏营养,活性污泥易于老化,结构松散。
此外,DO过高,过量耗能,在经济上也是不适宜的。
因为MBBR法主要是通过悬浮填料来实现最终的污水处理,所以DO对悬浮填料的影响也是影响整个处理结果的关键。
曹占平等对MBBR法充氧能力进行了实验研究,结果表明反应器的充氧能力在一定范围内随着悬浮填料填充率的增大而增大。
在曝气的作用下,水随填料一起流化,水流紊动程度较无填料时大,加速了气液界面的更新和氧的转移,使氧的转移速率提高。
随着填料数量的增多,填料、气流和水流三者之间的这种切割作用和紊动作用不断加强。
但加入填料量为60%时,填料在水中的流化效果变差,水体紊动程度也降低,使得氧的传递速率下降,氧的利用率降低。
所以针对不同类型的水质,控制好DO的量对整个工艺最终的处理结果是至关重要的。
3水力停留时间对MBBR工艺的影响合适的水力停留时间(HRT)是确保净化效果和工程投资经济性的重要控制因素。
水力停留时间的长短将直接影响到水中有机物与生物膜的接触时间,进而影响微生物对有机物的吸附和降解效率,所以针对不同的污水类型找出经济而合理的HRT是非常关键的问题之一。
国内外对HRT的研究并没有局限于研究HRT本身的影响,而是通过实验去宏观把握。
SHHosseini等副在用MBBR法对含酚类工业废水进行了实验研究,结果表明:在一般情况下,随着HRT的逐渐延长,出水COD浓度会逐渐降低。
但同时他也发现了一个更重要的影响因素,即废水中酚类物质的COD浓度与总的COD浓度的比值(CODph/CODtot),当这一比值达到0.6(即CODDph的浓度为480mg/L)时,COD的去除效率最高并不受水力停留时间的影响。
国内的实验大多认为出水COD平均浓度随着水力停留时间的延长而降低,若要缩短水力停留时间可通过加大填料的投加比例(高达70%)来实现,当对出水水质要求不高时可减少填料的投加比例引。
另外还有试验结果表明:在中低氨氮负荷条件下,随HRT的减少,氨氮填料表面负荷逐步升高,同时去除率维持原有水平或有一定增长;当氨氮负荷升至高水平后,随着HRT的减少,氨氮去除率逐步降低。
这些针对HRT的实验研究结果为今后MBBR法的推广应用奠定了基础,但同时也有许多需要改进之处,比如试验只是单纯的考虑HRT本身的影响,没有把其他因素与HRT的关系有机的结合起来,而SHHosseini等在酚类废水处理的研究中将HRT和其他因素有机的结合起来进行探讨,不仅找到实验最重要的影响因素,同时实验过程中各因素之间的相互影响、相互制约关系也得到了很好地体现。
所以针对影响因素的研究我们需要更全面更综合的考虑。
4水温对MBBR法的影响在影响微生物生理活动的各项因素中,温度的作用非常重要。
温度适宜,能够促进、强化微生物的生理活动;温度不适宜,能够减弱甚至破坏微生物的生理活动。
温度不适宜还能够导致微生物形态和生理特性的改变,甚至可能使微生物死亡。
而微生物的最适温度是指在这一温度条件下,微生物的生理活动强劲、旺盛,表现在增殖方面则是裂殖速度快、世代时间短。
MBBR法主要是通过生物膜中各种类型微生物的新陈代谢来达到对污水中有机污染物的降解,所以生物膜生长的好坏将直接关系到废水处理的最终结果,尤其对于硝化菌、反硝化菌而言,它们的生长周期长,且对环境的变化非常敏感,硝化菌的适宜温度是20℃-30℃,反硝化菌的适宜温度是20℃-40℃,温度低于15℃时,这两类细菌的活性均降低,5~C是完全停止,所以温度的变化将直接影响这类细菌的生长。
相关实验结果表明,氨氮填料表面负荷的变化基本与水温的变化趋势一致。
水温低时填料表面负荷低,水温高时填料表面负荷约达到水温低时的15倍。
由此可见,硝化细菌受温度影响大,低温条件下活性较弱。
5pH值对MBBR法的影响微生物的生理活动与环境的酸碱度密切相关,只有在适宜的酸碱度条件下,微生物才能进行正常的生理活动。
pH值过大的偏离适宜数值,微生物的酶系统的催化功能就会减弱,甚至消失。
不同种属的微生物生理活动适应的pH值,都有一定的范围,在这一范围内,还可分为最低pH值、最适pH 值和最高pH值。
在最低或最高的pH环境中,微生物虽然能够成活,但生理活动微弱,易于死亡,增殖速率大为降低。
参与污水生物处理的微生物,一般最佳的pH值范围,介于6.5-8.5之间。
MBBR法作为生物膜法与活性污泥法相结合的工艺,同样依赖于微生物的生长以达到有机物降解的目的。
所以保持微生物最佳pH范围是取得良好污水处理效果的必要条件,当污水(特别是工业废水)的pH值变化较大时,需要考虑设调节池,使污水的pH值调节到适宜范围后再进行曝气。
6其他因素对MBBR法的影响根据每一个具体试验条件的不同,还会有许多不同的影响因素。
如气水比一般控制在(3~4),这样的气量能使反应器中的填料均匀地循环转动起来;浊度也需要控制在一定范围内,相关研究结果表明:浊度大使得某些悬浮物容易覆盖在生物膜的表面,阻碍生物氧化作用的进行,导致处理效率大幅下降,同时还容易造成填料堵塞,另外整个实验对进水浊度和出水浊度进行了检测,进水浊度为17.6-160NTU,出水浊度为18.1-142NTU,结果发现中试装置对浊度基本没有去除效果,出水浊度随着进水浊度的变化而变化,所以我们需要严格控制好进水浊度的量;COD容积负荷对去除率也有很大的影响,研究表明COD容积负荷为0.48-2.93kg/(m3•d)的范围内对COD的去除率基本稳定在60%-80%。