必修4第二章平面向量教学质量检测

合集下载

(好题)高中数学必修四第二章《平面向量》检测卷(答案解析)

(好题)高中数学必修四第二章《平面向量》检测卷(答案解析)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.在ABC ∆中,2AB =,3AC =,5cos 6A =,若O 为ABC ∆的外心(即三角形外接圆的圆心),且AO mAB nAC +=,则2n m -=( ) A .199B .4122-C .111-D .17113.已知1a =,2b =,则a b a b ++-的最大值等于( ) A .4B .37+C .25D .54.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( ) A .2B .1C .2D .225.如图,在梯形ABCD 中,//AB CD ,6AB =,3AD CD ==,E 是CD 的中点,14DF DA =,若12AE BF ⋅=-,则梯形ABCD 的高为( )A .1B .6C .5D .26.如图,在平行四边形ABCD 中,点E F 、满足2,2BE EC CF FD ==,EF 与AC 交于点G ,设AG GC λ=,则λ=( )A .97B .74C .72D .927.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18-B .116-C .316-D .08.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-9.已知向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值,最小值分别是( ) A .42,0 B .4,42C .16,0D .4,010.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-11.在△ABC 中,点D 在线段BC 的延长线上,且3BC CD =,点O 在线段CD 上(与点C ,D 不重合),若()1AO xAB x AC =+-,则x 的取值范围是( )A .10,2⎛⎫ ⎪⎝⎭B .10,3⎛⎫ ⎪⎝⎭C .1,02⎛⎫-⎪⎝⎭ D .1,03⎛⎫- ⎪⎝⎭12.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定二、填空题13.如图,在ABC 中,D 是BC 的中点,E 在边AB 上,且2BE EA =,若3AB AC AD EC ⋅=⋅,则ABAC的值为___________.14.如图,已知ABC 为边长为2的等边三角形,动点P 在以BC 为直径的半圆上,若AP AB AC λμ=+,则2λμ+的最小值为_______.15.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 16.已知0a b c ++=,3a =,4b =,5c =,则a b b c c a ⋅+⋅+⋅=______; 17.已知3a =,2b =,()()2318a b a b +⋅-=-,则a 与b 的夹角为________. 18.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.19.已知a →,b →为单位向量,2c a b →→→=-,且,3a b π→→<>=,则,a c →→〈〉=________.20.已知向量(1,3)a =,1(2,)2b =-,若单位向量c 与2a b -平行,则c =___________.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k . 22.已知()3,0a =,(1,3)b =. (Ⅰ)求a b ⋅和b 的值;(Ⅱ)当()k k ∈R 为何值时,向量a 与k +a b 互相垂直?23.已知平面直角坐标系中,点 O 为原点,()()3,1,1,2A B - . (I)求AB 的坐标及AB ;(Ⅱ)设 e 为单位向量,且 e OB ⊥,求e 的坐标 24.已知4,3,(23)(2)61a b a b a b ==-⋅+=. (1)求a 与b 的夹角为θ; (2)求a b +;(3)若AB =a ,BC =b ,求△ABC 的面积.25.(1)已知向量()1,3a =,(),2b m =,()3,4c =,且()3a b c -⊥,求实数m 的值;(2)已知(3,2)a =,(2,1)b =-,若a b λ+与a b λ+平行,求实数λ的值 26.如图,在梯形ABCD 中,E 为DC 的中点,//,,2AD BC BAD π∠=,3BDA BC BD π∠==.(1)求AE BD ⋅;(2)求AC 与BD 夹角的余弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点32Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛⎝⎭两点间的距离,考查了运算求解能力.2.D解析:D 【分析】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,从而得到·0?0OD AB OE AC ==,,坐标化构建m ,n 的方程组,解之即可. 【详解】设,D E 分别为,AB AC 的中点,连接,OD OE ,则OD AB ⊥,OE AC ⊥,又OD AD AO =-,即11222m OD AB mAB nAC AB nAC -=--=-, 同理122nOE AE AO AC mAB -=-=-, 因为212·||?02mOD AB AB nAB AC -=-=, 所以124502m n -⨯-=,又212·||?02nOE AC AC mAB AC -=-=, 所以129502nm -⨯-=,联立方程组124502129502mn n m -⎧⨯-=⎪⎪⎨-⎪⨯-=⎪⎩,解得922811m n ⎧=-⎪⎪⎨⎪=⎪⎩,所以17211n m -=. 故选D 【点睛】本题考查了数量积运算性质、向量垂直与数量积的关系、三角形外心的性质、向量基本定理,考查了推理能力与计算能力,属于中档题.3.C解析:C 【分析】利用基本不等式得到222a b a b a b a b ++-++-≤,然后利用平面向量数量积运算求解. 【详解】因为1a =,2b =,所以222222252ab a ba b a b a b++-++-≤=+=,当且仅当a b a b+=-,即a b⊥时取等号,故选:C【点睛】本题主要考查平面向量的数量积运算以及基本不等式的应用,属于中档题.4.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OPE PF=⋅-,求得OP的最大值,由此可求得PE PF⋅的最大值.【详解】如下图所示:由题可知正方形ABCD的内切圆的半径为1,设该内切圆的圆心为O,()()()()2221 PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P为ABCD的顶点时,2OP取得最大值2,所以PE PF⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.5.C解析:C【分析】以,AD AB为一组基底,表示向量,AE BF,然后利用12AE BF⋅=-,求得2cos 3BAD ∠=,然后由梯形ABCD 的高为sin AD BAD ⋅∠求解. 【详解】因为14AE AD DE AD AB =+=+,34BF AF AB AD AB =-=-, ∴22133113444416AE BF AD AB AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-=--⋅ ⎪ ⎪⎝⎭⎝⎭, 223113cos 4416AD AB AD AB BAD =--⋅∠, 31117936cos 12448BAD =⨯-⨯-∠=-, ∴2cos 3BAD ∠=,∴25sin 1cos BAD BAD ∠=-∠=, ∴梯形ABCD 的高为sin 5AD BAD ⋅∠=. 故选:C . 【点睛】本题主要考查平面向量的数量积的运算以及平面向量的基本定理,还考查了数形结合的思想和运算求解的能力,属于中档题.6.C解析:C 【分析】设H 是BC 上除E 点外的令一个三等分点,判断出G 是三角形CFH 的重心,得出,CG CO 的比例,由此得出λ的值.【详解】设H 是BC 上除E 点外的令一个三等分点,连接FH ,连接BD 交AC 于O ,则//BD FH .在三角形CFH 中,,CG FG 是两条中线的交点,故G 是三角形CFH 的重心,结合23CH CF BH DF ==可知24.5CG CO =,由于O 是AC 中点,故224.529CG AC ==⨯.所以72AGCG=,由此可知72λ=,故选C.【点睛】本小题主要考查平行线分线段成比例,考查三角形的重心,考查比例的计算,属于中档题.7.C解析:C 【分析】建立平面直角坐标系,()0,P t ,3t ≤,则 22333()16⋅=-=--AP CP t t t ,进而可求最小值. 【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,3(0,)2C ,设()0,P t ,其中32t ≤1(,)2AP t =-,3(0,)2CP t ==,22333()2416⋅=-=--AP CP t t t ,当34t =时取最小值为316-,所以AP CP ⋅的最小值为316-.故选:C 【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.8.C解析:C 【分析】建立直角坐标系,利用向量的坐标运算求解即可. 【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯= 故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.9.D解析:D 【分析】利用向量的坐标运算得到|2|a b -用θ的三角函数表示化简求最值. 【详解】解:向量()a cos sin θθ=,,向量()31b =-,,则2a b -=(2cosθ2sinθ+1),所以|2|a b -2=(2cosθ2+(2sinθ+1)2=8﹣cosθ+4sinθ=8﹣8sin (3πθ-),所以|2|a b -2的最大值,最小值分别是:16,0; 所以|2|a b -的最大值,最小值分别是4,0; 故选:D . 【点睛】本题考查了向量的坐标运算以及三角函数解析式的化简;利用了两角差的正弦公式以及正弦函数的有界性.10.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭, ∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.11.D解析:D 【分析】设CO yBC =,则()1AO AC CO AC yBC yAB y AC =+=+=-++,根据3BC CD =得出y 的范围,再结合()1AO xAB x AC =+-得到,x y 的关系,从而得出x的取值范围. 【详解】设CO yBC =,则()()1AO AC CO AC yBC AC y AC AB yAB y AC =+=+=+-=-++, 因为3BC CD =,点O 在线段CD 上(与点C ,D 不重合), 所以10,3y ⎛⎫∈ ⎪⎝⎭,又因为()1AO xAB x AC =+-, 所以x y =-,所以1,03x ⎛⎫∈- ⎪⎝⎭. 故选:D 【点睛】本题考查平面向量基本定理及向量的线性运算,考查利用向量关系式求参数的取值范围问题,难度一般.12.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.二、填空题13.【分析】将作为平面向量的一组基底再根据平面向量基本定理用表示出再由即可得出结论【详解】因为在中D 是的中点E 在边上且所以又所以即所以故答案为:【分析】将AB AC 、作为平面向量的一组基底,再根据平面向量基本定理用AB AC 、表示出AD EC ⋅,再由3AB AC AD EC ⋅=⋅即可得出结论.【详解】因为在ABC 中,D 是BC 的中点,E 在边AB 上,且2BE EA =, 所以111()()()223AD EC AB AC AC AE AB AC AC AB ⎛⎫⋅=+⋅-=+⋅-= ⎪⎝⎭22111263AC AB AB AC -+⋅, 又3AB AC AD EC ⋅=⋅,所以2211026AC AB -=,即||3AB AC =, 所以=3ABAC. 故答案为:314.1【分析】如图建系设P 点坐标则可得的坐标根据题意可得的表达式代入所求根据的范围利用三角函数求最值即可得答案【详解】取BC 中点O 以O 为原点OCOA 方向为x 轴y 轴正方向建系如图所示由题意得:所以如图以B解析:1 【分析】如图建系,设P 点坐标(cos ,sin )θθ,则可得,,AP AB AC 的坐标,根据题意,可得,λμ的表达式,代入所求,根据θ的范围,利用三角函数求最值,即可得答案. 【详解】取BC 中点O ,以O 为原点,OC ,OA 方向为x 轴y 轴正方向建系,如图所示由题意得:2sin 603OA =︒=3),(1,0),(1,0)A B C -, 如图以BC 为直径的半圆方程为:221(0)x y y +=≤, 设(cos ,sin )P θθ,因为sin 0θ≤,所以[,2]θππ∈,则(cos ,sin 3)AP θθ=-,(1,3),(1,3)AB AC =--=-,因为AP AB AC λμ=+,所以cos sin 333θλμθλμ=-+⎧⎪⎨-=--⎪⎩,整理可得113cos sin 22131sin cos 22μθθλθθ⎧=+-⎪⎪⎨⎪=--⎪⎩,所以131113322(sin cos )cos sin sin()222226πλμθθθθθ+=--++-=-+, 因为[,2]θππ∈,所以713[,]666πππθ+∈, 当1366ππθ+=时,sin()6πθ+取最大值12,所以2λμ+的最小值为31122-=, 故答案为:1 【点睛】解题的关键是在适当位置建系,进而可得点的坐标及向量坐标,利用向量的坐标运算,即可求得2λμ+的表达式,再利用三角函数图像与性质求解,综合性较强,考查分析理解,计算求值的能力,属中档题.15.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--,因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.16.【分析】由已知得再两边平方求得代入可求得答案【详解】因为所以又因为所以即又所以所以所以故答案为:【点睛】本题考查向量的线性运算向量的数量积以及向量的模的计算属于中档题 解析:25-【分析】由已知得()c a b =-+,再两边平方22+2+25a a b b ⋅=,求得0a b ⋅=,代入可求得答案. 【详解】因为0a b c ++=,所以()c a b =-+,又因为5c =, 所以()225a b+=,即22+2+25a a b b ⋅=,又3a =,4b =,所以9+2+1625a b ⋅=,所以0a b ⋅=,所以()()20+25a b b c c a a b c b a c c c ⋅+⋅+⋅=⋅+⋅+=⋅-=-=-, 故答案为:25-. 【点睛】本题考查向量的线性运算,向量的数量积,以及向量的模的计算,属于中档题.17.【分析】本题先求再根据化简整理得最后求与的夹角为【详解】解:∵∴∵∴整理得:∴与的夹角为:故答案为:【点睛】本题考查运用数量积的定义与运算求向量的夹角是基础题 解析:3π【分析】本题先求29a =,24b =,6cos ,a b a b ⋅=,再根据()()2318a b a b +⋅-=-化简整理得1cos ,2a b =,最后求a 与b 的夹角为3π.【详解】解:∵ 3a =,2b =,∴ 229a a ==,224b b==,cos ,6cos ,a b a b a b a b ⋅=⋅⋅<>=<>,∵ ()()2318a b a b +⋅-=-,∴ ()()2223696cos ,6418a b a b aa b b a b +⋅-=-⋅-=-<>-⨯=-整理得:1cos ,2a b <>=, ∴a 与b 的夹角为:3π. 故答案为:3π 【点睛】本题考查运用数量积的定义与运算求向量的夹角,是基础题.18.【分析】将均用表示出来进而将表示成与相关可以求出同时可用表示即可求出结果【详解】因为因此故答案为:【点睛】研究向量的数量积一般有两个思路一是建立平面直角坐标系利用坐标研究向量的数量积;二是利用一组基解析:58【分析】将,,,BA CA BF CF 均用,BC AD 表示出来,进而将BA CA ⋅,BF CF ⋅表示成与,FD BC 相关,可以求出 2223,827FD BC ==,同时BE CE ⋅可用,FD BC 表示,即可求出结果. 【详解】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==, 2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58. 【点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解.19.【分析】根据向量的夹角公式及数量积的运算计算即可求解【详解】因为又所以故答案为:【点睛】本题主要考查了向量数量积的定义运算法则性质向量的夹角公式属于中档题解析:6π【分析】根据向量的夹角公式及数量积的运算计算即可求解.【详解】因为22cos(cos,2|||||2)2|aa c aa caba bcπ→→→→→→→→→→→→→→-⋅〈〉==--===⋅,又,0a cπ→→〈≤〉≤,所以,6a cπ→→〈〉=,故答案为:6π【点睛】本题主要考查了向量数量积的定义,运算法则,性质,向量的夹角公式,属于中档题. 20.或【分析】由向量的坐标运算求出并求出它的模用除以它的模得一向量再加上它的相反向量可得结论【详解】由题意∴又∴或故答案为:或【点睛】易错点睛:本题考查求单位向量一般与平行的单位向量有两个它们是相反向量解析:34,55⎛⎫-⎪⎝⎭或34,55⎛⎫-⎪⎝⎭.【分析】由向量的坐标运算求出2a b-,并求出它的模,用2a b-除以它的模,得一向量,再加上它的相反向量可得结论.【详解】由题意2(1,3)(4,1)(3,4)a b-=--=-,∴22(3)5a b-=-=,又234,552a ba b-⎛⎫=- ⎪⎝⎭-,∴c=34,55⎛⎫-⎪⎝⎭或34,55⎛⎫-⎪⎝⎭.故答案为:34,55⎛⎫-⎪⎝⎭或34,55⎛⎫-⎪⎝⎭.【点睛】易错点睛:本题考查求单位向量,一般与a平行的单位向量有两个,它们是相反向量:a a±.只写出一个向量a a是错误的.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(Ⅰ)3⋅=a b ,b =2;(Ⅱ)3k =-. 【分析】(Ⅰ)根据数量积与模的坐标表示计算; (Ⅱ)由向量垂直的坐标表示求解. 【详解】(Ⅰ)由题意3103a b ⋅=⨯+=;21(2b =+=.(Ⅱ)(3,3)a kb k k +=+, 因为向量a 与k +a b 互相垂直,所以()3(3)0a a kb k ⋅+=+=,解得3k =-. 【点睛】本题考查向量数量积与模的坐标表示,考查向量垂直的坐标表示,属于基础题.23.(1)()4,1=-AB,17;=AB (2)25,55⎛=⎝⎭e ,或25.55⎛⎫=-- ⎪ ⎪⎝⎭e【详解】试题分析:(I )利用向量的坐标运算直接求AB 的坐标及AB ; (II )利用向量的垂直,数量积为0,结合单位向量求解即可. 试题(I )()()AB 13,214,1=---=-,(AB =-=(Ⅱ)设单位向量(),e x y =, 所以221x y +=,即221x y += 又(),1,2⊥=-e OB OB , 所以20x y -+=即2x y =由2221x y x y =⎧⎨+=⎩,解得55x y ⎧=⎪⎪⎨⎪=⎪⎩或者55x y ⎧=-⎪⎪⎨⎪=-⎪⎩ 所以25,⎛= ⎝⎭e ,或25.⎛=-⎝⎭e 24.(1)23π;(23) 【分析】(1)将已知条件中的式子展开,利用公式求得6a b ⋅=-,根据向量夹角公式求得1cos 2θ=-,结合角的范围,求得结果;(2)利用向量的模的平方和向量的平方是相等的,从而求得结果; (3)根据向量所成角,求得三角形的内角,利用面积公式求得结果. 【详解】(1)因为(23)(2)61a b a b -⋅+=,所以2244361aa b b-⋅-=.又4,3a b ==, 所以6442761a b -⋅-=, 所以6a b ⋅=-, 所以61cos 432a ba b θ⋅-===-⨯. 又0≤θ≤π,所以23πθ=. (2)2222()2a b a b a a b b +=+=+⋅+=42+2×(-6)+32=13,所以13a b +=; (3)因为AB 与BC 的夹角23πθ=, 所以∠ABC =233πππ-=. 又4,3AB a BC b ====,所以S △ABC =1432⨯⨯= 【点睛】该题考查的是有关向量与解三角形的综合题,涉及到的知识点有向量数量积,向量夹角公式,向量的平方和向量模的平方是相等的,三角形面积公式,属于简单题目. 25.(1)1m =-;(2)1λ=±. 【分析】(1)先求()313,3a b m -=--,再根据向量垂直的坐标运算即可求得1m =-; (2)先计算()32,21a b λλλ+=+-,()23,2a b λλλ+=+-+,再根据向量共线的坐标运算求解即可得1λ=±. 【详解】解:(1)根据题意有:()()()31,33,213,3a b m m -=-=--,∵ ()3a b c -⊥,∴ ()()3313120a b c m -⋅=⨯--=,解得1m =-,所以实数m 的值为:1m =-.(2)根据题意:()()()3,22,132,21a b λλλλλ+=+-=+-,()()()3,22,23,2a b λλλλλ+=+-=+-+,∵ a b λ+与a b λ+平行,∴ ()()()()32223210λλλλ+-+-+-=,解得:1λ=±.【点睛】本题考查向量的坐标运算,向量垂直与平行的坐标表示,考查运算能力,是基础题.26.(1)0;(2) 【分析】(1)由BCD △为等边三角形得出2BC AD =,由向量的加法和减法运算得出13,22AE AB AD BD AD AB =+=-,再由向量的数量积公式得出AE BD ⋅的值;(2)设AD a =,则3,2,AB BC BD a AC ====,由数量积公式得出AC BD ⋅,进而得出AC 与BD 夹角的余弦值.【详解】解:(1)因为//AD BC ,,,23BAD BDA BC BD ππ∠=∠==所以BCD △为等边三角形,23BC AB AD == 又E 为DC 的中点所以1113()(),2222AE AC AD AB BC AD AB AD BD AD AB =+=++=+=- 则221313()02222AE BD AB AD AD AB AB AB AD AD ⎛⎫⋅=+⋅-=--⋅+= ⎪⎝⎭(2)设AD a =,则3,2,7AB a BC BD a AC a ==== 222(2)()2AC BD AB AD AD AB AB AD AB AD a ⋅=+⋅-=--⋅+=-设AC 与BD 的夹角为θ,则2cos 2AC BDAC BD θ⋅=== 【点睛】本题主要考查了利用定义求向量的数量积以及夹角,属于中档题.。

(好题)高中数学必修四第二章《平面向量》检测(含答案解析)

(好题)高中数学必修四第二章《平面向量》检测(含答案解析)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( ) A .4B .25C .325+D .63.已知两个单位向量a ,b ,其中向量a 在向量b 方向上的投影为12.若()()2a b a b λ+⊥-,则实数λ的值为( )A .14-B .12-C .0D .124.如图,在ABC 中,13AN NC =,P 是BN 上的一点,若2299AP m AB BC ⎛⎫=++ ⎪⎝⎭,则实数m 的值为( )A .19B .13C .1D .35.已知O 为正三角形ABC 内一点,且满足()10OA OB OC λλ+++=,若OAB 的面积与OAC 的面积之比为3,则λ=( ) A .12B .14C .34D .326.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .327.已知平面向量a 与b 的夹角为23π,若(3,1)a =-,2213a b -=,则b ( ) A .3B .4C 3D .28.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +9.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .26C 6D .22310.在边长为2的菱形ABCD 中,60BAD ∠=︒,点E 是AB 边上的中点,点F 是BC 边上的动点,则DE DF ⋅的取值范围是( )A .⎡⎣B .⎣C .⎤⎦D .[]0,311.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23π C .3π D .6π 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ; ②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =; ④若//a b ,则一定存在唯一的实数λ,使得a b λ=. A .①③B .①④C .②③D .②④二、填空题13.在ABC 中,AB AC =,E ,F 是边BC 的三等分点,若3AB AC AB AC +=-,则cos EAF ∠=_______________14.在梯形ABCD 中,//AB CD ,1CD =,2AB BC ==,120BCD ∠=︒,动点P 和Q 分别在线段BC 和CD 上,且BP BC λ=,14DQ DC λ=,则AP BQ ⋅的最大值为______.15.已知向量(2,1)a =,(,1)b x y =-,且a b ⊥,若x ,y 均为正数,则21x y+的最小值是__________.16.已知圆22:1O x y +=,A 点为圆上第一象限内的一个动点,将OA 逆时针旋转90°得OB ,又1,0P ,则PA PB ⋅的取值范围为________.17.在△ABC 中,BD =2DC ,过点D 的直线与直线AB ,AC 分别交于点E ,F ,若AE =x AB ,AF =y AC (x >0,y >0),则x +y 的最小值为_____.18.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.19.已知点O 是ABC ∆内部一点,并且满足230OA OB OC ++=,BOC ∆的面积为1S ,ABC ∆的面积为2S ,则12S S =______. 20.已知平面向量a ,b 满足1a =,2a b -与2b a -的夹角为120°,则2b 的最大值是_______.三、解答题21.已知向量(3,4)OA =-,(6,3)OB =-,(5,3)OC x =-. (1)若点A ,B ,C 三点共线,求x 的值;(2)若ABC 为直角三角形,且B 为直角,求x 的值. 22.已知||6a =,||4=b ,(2)(3)72a b a b -⋅+=-. (1)求向量a ,b 的夹角θ; (2)求|3|a b +.23.已知在直角坐标系中(O 为坐标原点),()2,5OA =,()3,1OB =,(),3OC x =. (1)若A ,B ,C 共线,求x 的值;(2)当6x =时,直线OC 上存在点M 使MA MB ⊥,求点M 的坐标. 24.设向量()3cos ,2sin a θθ=-. (1)当43θπ=时,求a 的值: (2)若()3,1b =-,且//a b ,求22cos 1224θπθ-⎛⎫+ ⎪⎝⎭的值.25.已知||2,||3,a b a ==与b 的夹角为120°. (1)求(2)(3)a b a b -⋅+与||a b +的值;(2)x 为何值时,xa b -与3a b 垂直?26.已知||1a =,||2b =.(1)若向量a 与向量b 的夹角为135︒,求||a b +及b 在a 方向上的投影; (2)若向量a b -与向量a 垂直,求向量a 与b 的夹角.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b ,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,所以1322ya y b x ⎛⎫⎛+-=-⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离,∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力.2.B解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b-=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时t =.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.3.C解析:C 【分析】记a 与b 的夹角为θ,则a 在b 上的投影为1cos 2a θ=,然后向量垂直转化为数量积为0可计算λ. 【详解】记a 与b 的夹角为θ,则a 在b 上的投影为cos a θ,则1cos 2a θ=, ∵()()2a b a b λ+⊥-,∴()()()221322221(2)022a b a b a b a b λλλλλλ+⋅-=-+-⋅=-+-⋅==, 故0λ=, 故选:C . 【点睛】结论点睛:本题考查平面向量的数量积及其几何意义.向量垂直的数量积表示. (1)设,a b 向量的夹角为θ,则a 在b 方向上的投影是cos a b a bθ⋅=;(2)对两个非零向量,a b ,0a b a b ⊥⇔⋅=.4.A解析:A 【解析】因为2299AP m AB BC ⎛⎫=++ ⎪⎝⎭29mAB AC =+,设BP tBN =,而31()()(1)44AP AB BP AB t BC CN AB t BC AC t AB t AC =+=++=+-=-+,所以1m t =-且249t =,故811199m t =-=-=,应选答案A . 5.A解析:A 【分析】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,由平面向量的线性运算可得OD OE λ=-,进而可得13OAC AEC S S =△△,即可得解.【详解】分别取AC 、BC 的中点D 、E ,连接DE 、AE ,如图,所以DE 是ABC 的中位线,因为()10OA OB OC λλ+++=,所以()OA OC OB OC λ+=-+, 所以OD OE λ=-,所以D 、E 、O 三点共线,所以111363OAC OAB ABC AEC S S S S ===△△△△,所以13OD ED =即12OD OE =-,所以12λ-=-即12λ=.故选:A. 【点睛】本题考查了平面向量共线、线性运算及基本定理的应用,考查了运算求解能力与转化化归思想,属于中档题.6.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =|,∴225AB OA OB =+= , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得55m =, ∴452555D ⎛⎝⎭;则45254525,,5555OE OD λλλ⎛⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 45255,EA ⎛⎫= ⎪ ⎪⎭;∵34OE EA ⋅=,∴234⎫⎫⋅-=⎪⎪⎪⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为))411ED OD OE λλ⎛⎫=-=-- ⎪ ⎪⎝⎭,当34λ=时,12ED ⎛== ⎝⎭;当14λ=时,32ED ==⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A. 7.A解析:A 【解析】分析:根据题设条件2213a b -=,平方化简,得到关于b 的方程,即可求解结果. 详解:由题意,(3,1)a =-且向量a 与b 的夹角为23π, 由2213a b -=,则222222444442cos523a ba b a b b b π-=+-⋅=+-⨯=, 整理得2120b b +-=,解得3b =,故选A.点睛:本题主要考查了向量的运算问题,其中熟记平面向量的数量积的运算公式,以及向量的模的计算公式是解答的关键,着重考查了推理与运算能力.8.D解析:D 【分析】根据向量的加法的几何意义即可求得结果. 【详解】在ABC ∆中,M 是BC 的中点, 又,AB a BC b ==, 所以1122AM AB BM AB BC a b =+=+=+, 故选D. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的加法运算,属于简单题目.9.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+,所以13a b ⋅=,则()2263a b a b+=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a b a b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.10.D解析:D 【分析】把DE 用,DA DB 表示,由三点共线把DF 用,DC DB 表示,然后计算数量积,利用函数的知识得取值范围. 【详解】∵菱形ABCD 边长为2,60BAD ∠=︒,2BD =,∴22cos602DA DB DB DC ⋅=⋅=⨯⨯︒=,22cos1202DA DC ⋅=⨯⨯︒=-, ∵E 是AB 边上的中点,∴1()2DE DA DB =+, 点F 是BC 边上,设BF xBC =(01x ≤≤),则()(1)DF DB BF DB xBC DB x DC DB xDC x DB =+=+=+-=+-,DE DF ⋅1()(1)2DA DB xDC x DB ⎡⎤=+⋅+-⎣⎦21(1)(1)2xDA DC x DA DB xDB DC x DB ⎡⎤=⋅+-⋅+⋅+-⎢⎥⎣⎦ []122(1)24(1)3(1)2x x x x x =-+-++-=-, ∵01x ≤≤,∴03(1)3x ≤-≤. 故选:D.【点睛】本题考查平面向量的数量积,解题关键是对动点F 引入参数x :BF xBC=(01x ≤≤),这样所求数量积就可表示为x 的函数,从而得到范围.本题考查了向量共线的条件,属于中档题.11.B解析:B 【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C . 【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-.()20,,3C C ππ∈∴=.故选:B. 【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③. 【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λbc ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确; 故选:B. 【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.【分析】以ABAC 为邻边作平行四边形ABCD 根据得到再根据得到平行四边形ABCD 是菱形则设利用勾股定理分别求得的长度在中利用余弦定理求解【详解】如图所示:以ABAC 为邻边作平行四边形ABCD 则因为所 解析:1314【分析】以AB ,AC 为邻边作平行四边形ABCD ,根据3AB AC AB AC +=-,得到3AD CB =, 再根据AB AC =,得到平行四边形ABCD 是菱形,则CB AD ⊥,设3CB =,利用勾股定理分别求得EF ,,AE AF 的长度,在AEF 中利用余弦定理求解. 【详解】 如图所示:以AB ,AC 为邻边作平行四边形ABCD ,则,AB AC AD AB AC CB +=-=, 因为3AB AC AB AC +=-,所以3AD CB =,设3CB =3AD =, 因为AB AC =,所以平行四边形ABCD 是菱形, 所以CB AD ⊥,所以223333,223AB AC EF ⎛⎫⎛⎫==+== ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以223321263AE AF ⎛⎫⎛⎫==+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以2222121113993cos 21421212AE AF EF EAF AE AF +-+-∠===⋅⋅.故答案为:13 14【点睛】本题主要考查平面向量的平行四边形法则以及余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.14.【分析】由题可知据平面向量的混合运算法则可化简得到;设函数由对勾函数的性质推出在上的单调性求出最大值即可得解【详解】根据题意作出如下所示图形:∵∴又P和Q分别在线段和上∴解得设函数由对勾函数的性质可解析:54【分析】由题可知114CQ DCλ⎛⎫=-⎪⎝⎭,1,14λ⎡⎤∈⎢⎥⎣⎦,据平面向量的混合运算法则可化简得到117524AP BQλλ⋅=+-;设函数()117524fλλλ=+-,1,14λ⎡⎤∈⎢⎥⎣⎦,由对勾函数的性质推出()fλ在1,14λ⎡⎤∈⎢⎥⎣⎦上的单调性,求出最大值即可得解.【详解】根据题意,作出如下所示图形:∵BP BCλ=,14DQ DCλ=,∴114CQ DQ DC DCλ⎛⎫=-=-⎪⎝⎭,又P和Q分别在线段BC和CD上,∴011014λλ≤≤⎧⎪⎨≤≤⎪⎩,解得1,14λ⎡⎤∈⎢⎥⎣⎦.()()()114AP BQ AB BP BC CQ AB BC BC DCλλ⎡⎤⎛⎫⋅=+⋅+=+⋅+-⎪⎢⎥⎝⎭⎣⎦2111144AB BC AB DC BC BC DCλλλλ⎛⎫⎛⎫=⋅+-⋅++-⋅⎪ ⎪⎝⎭⎝⎭11117 22cos120121cos04121cos12054424λλλλλλ⎛⎫⎛⎫=⨯⨯︒+-⨯⨯⨯︒+⨯+-⨯⨯⨯︒=+- ⎪ ⎪⎝⎭⎝⎭.设函数()117524fλλλ=+-,1,14λ⎡⎤∈⎢⎥⎣⎦,由对勾函数的性质可知,()f λ在1,410⎡⎢⎣⎭上单调递减,在,110⎛⎤⎥ ⎝⎦上单调递增, ∵114f ⎛⎫=- ⎪⎝⎭,()514f =,∴()()max 514ff λ==,即AP BQ ⋅的最大值为54.故答案为:54. 【点睛】本题考查平面向量的应用,考查数量积的定义,考查函数的单调性与最值,属于中档题.15.9【分析】根据可得然后根据利用基本不等式可求出最小值【详解】解:向量且又均为正数当且仅当即时取等号的最小值为故答案为:【点睛】本题考查了向量垂直和利用基本不等式求最值考查了方程思想和转化思想属于中档题解析:9 【分析】根据a b ⊥,可得21x y +=,然后根据()21212x y x y x y ⎛⎫+=++ ⎪⎝⎭利用基本不等式可求出最小值. 【详解】 解:向量(2,1)a =,(,1)b x y =-,且a b ⊥∴21(1)0a b x y =+-=,21x y ∴+=,又x ,y 均为正数,∴()222255292121y x y x y x y x y x y x ⎛⎫+=++=+++ ⎪⎝⎭, 当且仅当22y x x y =,即13x y ==时取等号, ∴21x y+的最小值为9. 故答案为:9. 【点睛】本题考查了向量垂直和利用基本不等式求最值,考查了方程思想和转化思想,属于中档题.16.【分析】由题意可设即有结合应用数量积的坐标公式即可求的取值范围;【详解】由题意设则即有∴而即∴故答案为:【点睛】本题考查了向量数量积的坐标表示结合坐标的三角表示正弦函数的区间值域求数量积的范围; 解析:()0,2【分析】由题意可设(cos ,sin )A αα,02πα<<,即有(sin ,cos )B αα-,结合1,0P 应用数量积的坐标公式即可求PA PB ⋅的取值范围; 【详解】由题意,设(cos ,sin )A αα,02πα<<,则(sin ,cos )B αα-,即有(cos 1,sin )PA αα-,(sin 1,cos )PB αα--,∴(cos 1)(sin 1)sin cos sin cos 12)14PA PB πααααααα⋅=---+=-+=-+,而(,)444πππα-∈-,即2sin()4πα-∈, ∴(0,2)PA PB ⋅∈, 故答案为:()0,2 【点睛】本题考查了向量数量积的坐标表示,结合坐标的三角表示、正弦函数的区间值域求数量积的范围;17.【分析】根据向量线性关系的几何应用有令结合已知条件有即可列方程组得到关于k 的表达式表示x+y 最后由基本不等式即可求得最小值【详解】由题意连接可得如下示图∵在△ABC 中=2即有若令则有又=x =y (x > 解析:213+【分析】根据向量线性关系的几何应用有12 33AD AB AC=+,令DEkDF=结合已知条件有11x kyAD AB ACk k=+++,即可列方程组,得到关于k的表达式表示x + y,最后由基本不等式即可求得最小值【详解】由题意,连接AD可得如下示图∵在△ABC中BD=2DC ,即有1233AD AB AC=+若令DEkDF=,则有111kAD AE AFk k=+++又AE=x AB,AF=y AC(x>0,y>0)∴11x kyAD AB ACk k=+++即113213xkkyk⎧=⎪⎪+⎨⎪=⎪+⎩有1(1)321(1)3x kyk⎧=+⎪⎪⎨⎪=+⎪⎩(0)k>∴22221113333k kx yk k+=++≥⋅=+2k=min22()13x y+=+故答案为:221+【点睛】本题考查了向量线性关系的几何应用,及利用基本不等式求最值,通过定向量与其它向量的线性关系找到等量关系,进而构建函数并结合基本不等式求最值18.【分析】将均用表示出来进而将表示成与相关可以求出同时可用表示即可求出结果【详解】因为因此故答案为:【点睛】研究向量的数量积一般有两个思路一是建立平面直角坐标系利用坐标研究向量的数量积;二是利用一组基解析:58【分析】将,,,BA CA BF CF 均用,BC AD 表示出来,进而将BA CA ⋅,BF CF ⋅表示成与,FD BC 相关,可以求出 2223,827FD BC ==,同时BE CE ⋅可用,FD BC 表示,即可求出结果. 【详解】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==, 2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58. 【点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解.19.【分析】将化为再构造向量和得出比例关系最后求解【详解】因为所以分别取的中点则所以即三点共线且如图所示则由于为中点所以所以故答案为:【点睛】本题考查向量的线性运算但是在三角形中考查又和三角形面积综合在解析:16【分析】将230OA OB OC ++=化为()2OA OC OB OC +=-+,再构造向量()12OA OC +和()12OB OC +,得出比例关系,最后求解12.S S【详解】因为230OA OB OC ++=,所以()2OA OC OB OC +=-+,分别取AC ,BC 的中点D ,E ,则2OA OC OD +=,2OB OC OE +=. 所以2OD OE =-,即O ,D ,E 三点共线且2OD OE =.如图所示,则13OBC DBC S S ∆∆=,由于D 为AC 中点,所以12DBC ABC S S ∆∆=,所以16OBC ABC S S ∆∆=. 故答案为:16【点睛】本题考查向量的线性运算,但是在三角形中考查,又和三角形面积综合在一起,属于中档题.20.【分析】设设则有联立四个方程令整理得到从方程有根判别式大于等于零求得结果【详解】设由题意可知则由与夹角为所以①且②③④因为联立①②③④令即整理得将其看作关于的方程若方程有解则有整理得解得因为所以的最 521+ 【分析】设设2a b c =-,2b d a =-,则有cos120c d c d ⋅=︒,22(2)(2)522c d a b b a a b a b ⋅=-⋅-=⋅--,2222(2)44c a b a a b b =-=-⋅+,2222(2)44d b a b a b a =-=-⋅+,联立四个方程,令21,m b n a b =+=⋅,整理得到2228204330n mn m m -+-+=,从方程有根,判别式大于等于零求得结果.【详解】设2a b c =-,2b d a =-,由题意可知,则由c 与d 夹角为120︒, 所以cos120c d c d ⋅=︒,①且22(2)(2)522c d a b b a a b a b ⋅=-⋅-=⋅--,②2222(2)44c a b a a b b =-=-⋅+,③ 2222(2)44d b a b a b a =-=-⋅+,④因为11,cos1202a =︒=-,联立①②③④,2222244104444b a b a a b b b a b a +-⋅=-⋅+⋅-⋅+,令21,m b n a b =+=⋅,即410m n -=2222168010044316161212129m mn n m mn m mn n n m n -+=---+++--,整理得2228204330n mn m m -+-+=,将其看作关于n 的方程,若方程有解,则有22(20)428(433)0m m m ∆=-⨯⨯-+≥,整理得2770m m -+≤,解得7722m +≤≤因为21m b =+,所以2b 的最大值是75122++-=,故答案为:52+. 【点睛】思路点睛:该题考查的是有关向量的问题,解题思路如下: (1)根据向量数量积的定义式求得两向量的数量积; (2)根据向量数量积运算法则求得其结果;(3)利用向量的平方与向量模的平方相等,得到等量关系式;(4)联立,从方程有根,判别式大于等于零,得到不等关系式,求得结果.三、解答题21.(1)19x =-;(2)1x =. 【分析】(1)由点A ,B ,C 三点共线可得AB 和BC 共线,解关于x 的方程可得答案; (2)由ABC 为直角三角形可得AB BC ⊥,即0AB BC ⋅=,解关于x 的方程可得答案. 【详解】 (1)(3,4)OA =-,(6,3)OB =-,(5,3)OC x =-,∴(3,1)AB OB OA =-=,(1,6)BC OC OB x =-=--点A ,B ,C 三点共线,∴AB 和BC 共线, 361x ∴⨯=--,解得19x =-;(2)ABC 为直角三角形,且B 为直角,∴AB BC ⊥,∴3(1)60AB BC x ⋅=--+=,解得1x =. 【点睛】方法点睛:利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.22.(1)23πθ= (2)【分析】()1利用平面向量数量积的分配律求出a b ⋅,然后代入夹角公式求解即可;()2结合()1中a b ⋅的值,利用平面向量数量积的性质:()22222a ba ba ab b+=+=+⋅+进行运算,求出23a b +的值,然后再开方即可. 【详解】∵(2)(3)72a b a b -⋅+=-,∴22672a a b b +⋅-=-, ∵6a =,4b =,∴3661672a b +⋅-⨯=-, 解得12a b ⋅=-,由平面向量数量积的夹角公式得, ∴121cos 642a b a bθ⋅-===-⨯, ∵0θπ≤≤∴23πθ=. (2)因为222369a b a a b b +=+⋅+, 所以()2336612916a b +=+⨯-+⨯108= ∴363a b +=. 【点睛】本题考查平面向量数量积的性质及其夹角公式;考查运算求解能力;属于中档题、常考题型. 23.(1)52x =;(2)()2,1或2211,55⎛⎫⎪⎝⎭. 【分析】(1)利用//AB BC ,结合向量共线的坐标表示列方程,解方程求得x 的值.(2)设M 点的坐标为()6,3λλ,利用MA MB ⊥,结合向量垂直的坐标表示列方程,解方程求得λ的值,进而求得M 点的坐标. 【详解】(1)()1,4AB OB OA =-=-;()3,2BC OC OB x =-=- ∵A 、B 、C 共线,∴//AB BC ∴()2430x +-=∴52x =. (2)∵M 在直线OC 上,∴设()6,3OM OC λλλ==∴()26,53MA OA OM λλ=-=--()36,13MB OB OM λλ=-=--∵MA MB ⊥∴()()()()263653130λλλλ--+--=即:24548110λλ-+= 解得:13λ=或1115λ=. ∴()2,1OM =或2211,55OM ⎛⎫= ⎪⎝⎭. ∴点M 的坐标为()2,1或2211,55⎛⎫⎪⎝⎭. 【点睛】本小题主要考查向量共线、垂直的坐标表示,属于中档题.24.(1;(2)23. 【分析】(1)直接利用三角运算结合向量模的运算法则计算得到答案.(2)根据向量平行得到1tan 2θ=,再化简利用齐次式计算得到答案. 【详解】(1)43θπ=,所以4433cos ,2sin ,332a ππ⎛⎫⎛=-= ⎪ ⎝⎭⎝, 所以2322a ⎛⎫== ⎪; (2)//ab ,则3cos 32sin 0θθ-+⨯=,所以1tan 2θ=, 故22cos 1cos 122sin cos tan 134θθπθθθθ-===++⎛⎫+ ⎪⎝⎭. 【点睛】本题考查了向量模的运算,向量平行的应用,三角恒等变换,齐次式求值,意在考查学生的计算能力和综合应用能力.25.(1)34-2)当245x =-时,xa b -与3a b 垂直.【分析】 (1)先由数量积的定义求出3a b ⋅=-,由数量积的运算性质可得22(2)(3)253a b a b a a b b -⋅+=+⋅-,222||||2a b a b a a b b +=+=+⋅+,将条件及a b ⋅的值代入,可得答案.(2)由xa b -与3ab 垂直,可得22()(3)(31)30xa b a b xa x a b b -⋅+=+-⋅-=,将条件代入可求出x 的值.【详解】(1)||||cos ,23cos1203a b a b a b ︒⋅=〈〉=⨯⨯=-. 22(2)(3)25324153934a b a b a a b b -⋅+=+⋅-=⨯--⨯=-.222||||2469a b a b a a b b +=+=+⋅+=-+=(2)因为()(3)xa b a b -⊥+,所以22()(3)(31)3493270xa b a b xa x a b b x x -⋅+=+-⋅-=-+-=,即245x =-. 所以当245x =-时,xa b -与3a b 垂直. 【点睛】本题考查向量数量积的定义和运算性质,求模长,根据向量垂直其数量积为零求参数的值,属于中档题.26.(1)1a b +=;-1;(2)45︒.【分析】(1)根据平面向量数量积的运算律求出||a b +,再根据平面向量的几何意义求出b 在a 方向上的投影;(2)根据向量垂直,则数量积为零,即可得到1a b ⋅=,再根据夹角公式计算可得;【详解】解:(1)由已知得2222()2121()212a b a b a a b b +=+=+⋅+=+⨯-+=,∴1a b +=;b 在a 方向上的投影为||cos1352(1b ==- (2)由已知得()0a b a -⋅=,即20a a b -⋅=∴1a b ⋅=,∴[]2cos ,,0,212a b a b a b a b π⋅===∈⨯,, ∴向量a 与b 的夹角为45︒.【点睛】本题考查平面向量的数量积及夹角的计算,属于中档题.。

人教版高中数学必修4第二章《平面向量》质量评估

人教版高中数学必修4第二章《平面向量》质量评估

单元质量评估(二)第二章(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·三明高一检测)化简-+-得( )A. B. C. D.02.已知a,b都是单位向量,则下列结论正确的是( )A.a·b=1B.a2=b2C.a∥b a=bD.a·b=03.已知A,B,C为平面上不共线的三点,若向量=(1,1),n=(1,-1),且n·=2,则n·等于( )A.-2B.2C.0D.2或-24.点C在线段AB上,且=,若=λ,则λ等于( )A. B. C.- D.-5.若a=(1,2),b=(-3,0),(2a+b)∥(a-m b),则m= ( )A.-B.C.2D.-26.(2013·牡丹江高一检测)已知a+b=(1,2),c=(-3,-4),且b⊥c,则a在c方向上的投影是( )A. B.-11 C.- D.117.(2013·兰州高一检测)若|a|=1,|b|=2,c=a+b,且c⊥a,则向量a与b的夹角为( )A.30°B.60°C.120°D.150°8.已知△ABC满足2=·+·+·,则△ABC是( )A.等边三角形B.锐角三角形C.直角三角形D.钝角三角形9.(2013·西城高一检测)在矩形ABCD中,AB=,BC=1,E是CD上一点,且·=1,则·的值为( )A.3B.2C.D.10.已知向量a=(1,2),b=(2,-3).若向量c满足(c+a)∥b,c⊥(a+b),则c=( ) A. B.C. D.11.(2013·六安高一检测)△ABC中,AB边上的高为CD,若=a,=b,a·b=0,|a|=1,|b|=2,则= ( )A.a-bB.a-bC.a-bD.a-b12.在△ABC所在平面内有一点P,如果++=,则△PAB与△ABC的面积之比是( )A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知a=(2,4),b=(-1,-3),则|3a+2b|= .14.已知向量a=(1,),b=(-2,2),则a与b的夹角是.15.(2013·江西高考)设e1,e2为单位向量.且e1,e2的夹角为,若a=e1+3e2,b=2e1,则向量a在b方向上的射影为.16.(2013·武汉高一检测)下列命题中:①a∥b 存在唯一的实数λ∈R,使得b=λa;②e为单位向量,且a∥e,则a=±|a|e;③|a·a·a|=|a|3;④a与b共线,b与c共线,则a与c共线;⑤若a·b=b·c且b≠0,则a=c.其中正确命题的序号是.三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(10分)已知梯形ABCD中,AB∥CD,∠CDA=∠DAB=90°,CD=DA=AB. 求证:AC⊥BC.18.(12分)(2013·无锡高一检测)设=(2,-1),=(3,0),=(m,3).(1)当m=8时,将用和表示.(2)若A,B,C三点能构成三角形,求实数m应满足的条件.19.(12分)在边长为1的等边三角形ABC中,设=2,=3. (1)用向量,作为基底表示向量.(2)求·.20.(12分)(2013·唐山高一检测)已知a,b,c是同一平面内的三个向量,其中a=(1,2).(1)若|b|=2,且a∥b,求b的坐标.(2)若|c|=,且2a+c与4a-3c垂直,求a与c的夹角θ.21.(12分)(能力挑战题)已知a=(1,cosx),b=(,sinx),x∈(0,π).(1)若a∥b,求的值.(2)若a⊥b,求sinx-cosx的值.22.(12分)(能力挑战题)已知向量a,b满足|a|=|b|=1,|k a+b|=|a-k b|(k>0,k∈R).(1)求a·b关于k的解析式f(k).(2)若a∥b,求实数k的值.(3)求向量a与b夹角的最大值.答案解析1.【解析】选D.-+-=+-=-=0.2.【解析】选B.因为a,b都是单位向量,所以|a|=|b|=1,所以|a|2=|b|2,即a2=b2.3.【解析】选B.因为n·=n·(-)=n·-n·,又n·=(1,-1)·(1,1)=1-1=0,所以n·=n·=2.4.【解析】选C.由=知,||∶||=2∶3,且方向相反(如图所示),所以=-,所以λ=-.5.【解析】选A.因为a=(1,2),b=(-3,0),所以2a+b=(-1,4),a-m b=(1+3m,2),又因为(2a+b)∥(a-m b),所以(-1)×2=4(1+3m),解得m=-.【拓展提升】证明共线(或平行)问题的主要依据(1)对于向量a,b,若存在实数λ,使得b=λa,则向量a与b共线(平行).(2)a=(x1,y1),b=(x2,y2),若x1y2-x2y1=0,则向量a∥b.(3)对于向量a,b,若|a·b|=|a|·|b|,则a与b共线.向量平行的等价条件有两种形式,其一是共线定理,其二是共线定理的坐标形式.其中,共线定理的坐标形式更具有普遍性,不必考虑向量是否为零和引入参数的存在性及唯一性.6.【解析】选C.a·c=[(a+b)-b]·c=(a+b)·c-b·c.因为a+b=(1,2),c=(-3,-4),且b⊥c,所以a·c=(a+b)·c=(1,2)·(-3,-4)=1×(-3)+2×(-4)=-11,所以a在c方向上的投影是==-.7.【解析】选C.因为c=a+b,c⊥a,所以c·a=(a+b)·a=a2+b·a=0,所以a·b=-a2=-|a|2=-12=-1,设向量a与b的夹角为θ,则cosθ===-,又0°≤θ≤180°,所以θ=120°.8.【解析】选C.因为=·+·+·,所以2=·+·+·,所以·(--)=·,所以·(-)=·,所以·=0,所以⊥,所以△ABC是直角三角形.【变式备选】在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,其中a,b不共线,则四边形ABCD为( )A.平行四边形B.矩形C.梯形D.菱形【解析】选C.因为=++=-8a-2b=2,所以四边形ABCD为梯形.9.【解析】选B.如图所示,以A为原点,AB所在直线为x轴建立平面直角坐标系.A(0,0),B(,0),C(,1),设点E坐标为(x,1),则=(x,1),=(,0),所以·=(x,1)·(,0)=x=1,x=,所以·=·(,1)=×+1×1=2.10.【解析】选D.设c=(x,y),则c+a=(x+1,y+2),a+b=(1,2)+(2,-3)=,因为(c+a)∥b,c⊥(a+b),所以即解得所以c=.【误区警示】解答本题易混淆向量平行和垂直的坐标表示,导致计算错误.11.【解析】选D.因为a·b=0,所以⊥,所以AB==,又因为CD⊥AB,所以△ACD∽△ABC,所以=,所以AD===,所以===(a-b)=a-b.12.【解题指南】先对++=进行变形,分析点P所在的位置,然后结合三角形面积公式分析△PAB与△ABC的面积的关系.【解析】选A.因为++==-,所以2+=0,=-2=2,所以点P是线段AC的三等分点(如图所示).所以△PAB与△ABC的面积之比是.13.【解析】因为3a+2b=3(2,4)+2(-1,-3)=(6,12)+(-2,-6)=(4,6),所以|3a+2b|==2.答案:214.【解析】设a与b的夹角为θ,a·b=(1,)·(-2,2)=1×(-2)+×2=4,|a|==2,|b|==4,所以cosθ===,又0°≤θ≤180°,所以θ=60°.答案:60°15.【解析】设a,b的夹角为θ,则向量a在b方向上的射影为|a|cos θ=|a|=,而a·b=(e1+3e2)·2e1=2+6cos=5,|b|=2,所以所求射影为.答案:16.【解析】①错误.a∥b且a≠0 存在唯一的实数λ∈R,使得b=λa;②正确.e为单位向量,且a∥e,则a=±|a|e;③正确.===;④错误.当b=0时,a与b共线,b与c共线,则a与c不一定共线;⑤错误.只要a,c在b方向上的投影相等,就有a·b=b·c.答案:②③17.【证明】以A为原点,AB所在直线为x轴,建立直角坐标系如图,设AD=1,则A(0,0),B(2,0),C(1,1),D(0,1),所以=(-1,1),=(1,1),·=-1×1+1×1=0,所以AC⊥BC.18.【解析】(1)当m=8时,=(8,3),设=x+y,则(8,3)=x(2,-1)+y(3,0)=(2x+3y,-x),所以所以所以=-3+.(2)因为A,B,C三点能构成三角形,所以,不共线,=(1,1),=(m-2,4),所以1×4-1×(m-2)≠0,所以m≠6. 19.【解析】(1)=+=-+. (2)·=·(-+)=·(-)+·=||·||cos150°+||·||cos30°=×1×+××1×=-.20.【解析】(1)设b=(x,y),因为a∥b,所以y=2x;①又因为|b|=2,所以x2+y2=20;②由①②联立,解得b=(2,4)或b=(-2,-4).(2)由已知(2a+c)⊥(4a-3c),(2a+c)·(4a-3c)=8a2-3c2-2a·c=0,又|a|=,|c|=,解得a·c=5,所以cosθ==,θ∈[0,π],所以a与c的夹角θ=.21.【解题指南】一方面要正确利用向量平行与垂直的坐标表示,另一方面要注意同角三角函数关系的应用.【解析】(1)因为a∥b,所以sinx=cosx⇒tanx=,所以===-2.(2)因为a⊥b,所以+sinxcosx=0⇒sinxcosx=-,所以(sinx-cosx)2=1-2sinxcosx=.又因为x∈(0,π)且sinxcosx<0,所以x∈⇒sinx-cosx>0,所以sinx-cosx=.22.【解题指南】(1)先利用a2=|a|2,将已知条件两边平方,然后根据数量积定义和运算律化简、变形求f.(2)先根据k>0和a∥b,判断a与b同向,再利用数量积的定义列方程求k的值.(3)先用求向量a与b夹角的公式表示出夹角的余弦值,再利用配方法求余弦值的最小值,最后根据余弦函数的单调性求夹角的最大值. 【解析】(1)由已知|k a+b|=|a-k b|有|k a+b|2=(|a-k b|)2,k2a2+2k a·b+b2=3a2-6k a·b+3k2b2.又因为|a|=|b|=1,得8k a·b=2k2+2,所以a·b=即f(k)=(k>0).(2)因为a∥b,k>0,所以a·b=>0,则a与b同向.因为|a|=|b|=1,所以a·b=1,即=1,整理得k2-4k+1=0,所以k=2±,所以当k=2±时,a∥b.(3)设a,b的夹角为θ,则cosθ==a·b===.当=,即k=1时,cosθ取最小值,又0≤θ≤π,所以θ=.即向量a与b夹角的最大值为.关闭Word文档返回原板块。

高中数学 第二章 平面向量学业质量标准检测 新人教A版必修4

高中数学 第二章 平面向量学业质量标准检测 新人教A版必修4

第二章学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.下列命题中正确的是( D ) A .OA →-OB →=AB → B .AB →+BA →=0 C .0·AB →=0D .AB →+BC →+CD →=AD →[解析] 起点相同的向量相减,则取终点,并指向被减向量,OA →-OB →=BA →;AB →,BA →是一对相反向量,它们的和应该为零向量,AB →+BA →=0;0·AB →=0.2.已知点P ,Q 是△ABC 所在平面上的两个定点,且满足PA →+PC →=0,2QA →+QB →+QC →=BC →,若|PQ →|=λ|BC →|,则正实数λ=( A )A .12B .13C .1D .14[解析] 满足PA →+PC →=0,∴点P 是线段AC 的中点. ∵2QA →+QB →+QC →=BC →,∴2QA →=QC →-QB →-QC →-QB →=2BQ →, ∴点Q 是线段AB 的中点, ∵|PQ →|=λ|BC →|, ∴λ=12.3.如果a 、b 是两个单位向量,那么下列四个结论中正确的是( D ) A .a =b B .a ·b =1 C .a =-bD .|a |=|b |[解析] 两个单位向量的方向不一定相同或相反,所以选项A 、C 不正确;由于两个单位向量的夹角不确定,则a ·b =1不成立,所以选项B 不正确;|a |=|b |=1,则选项D 正确.4.如图,a -b 等于( C )A .2e 1-4e 2B .-4e 1-2e 2C .e 1-3e 2D .3e 1-e 2[解析] a -b =e 1-3e 2.5.如图,正方形ABCD 中,点E 、F 分别是DC 、BC 的中点,那么EF →=( D )A .12AB →+12AD → B .-12AB →-12AD →C .-12AB →+12AD →D .12AB →-12AD [解析] EF →=12DB →=12(AB →-AD →).6.(λ1a |a |+λ1b |b |)·(λ2a |a |-λ2b|b |)等于( A ) A .0 B .λ1+λ2 C .λ1-λ2D .λ1λ2[解析] ∵a|a |=a 0.(a 0为a 的单位向量).∴原式即(λ1a 0+λ1b 0)(λ2a 0-λ2b 0)=λ1·λ2(a 20-b 20)=0.7.已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( A )A .322B .3152C .-322D .-3152[解析] 本题考查向量数量积的几何意义及坐标运算. 由条件知AB →=(2,1),CD →=(5,5),AB →·CD →=10+5=15. |CD →|=52+52=52,则AB →在CD →方向上的投影为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=1552=322,故选A .8.已知a 、b 是不共线的向量,AB →=λa +b ,AC →=a +μb (λ,μ∈R ),那么A 、B 、C 三点共线应满足的条件是( D )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1[解析] A ,B ,C 三点共线即存在实数k ,使得AB →=kAC →,即λa +b =k (a +μb ),所以有λa =k a ,b =kμb ,即λ=k,1=kμ,得λμ=1.9.设a 、b 是两个非零向量( C ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则|a +b |=|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得a =λbD .若存在实数λ,使得a =λb ,则|a +b |=|a |-|b |[解析] 利用排除法可得选项C 是正确的,∵|a +b |=|a |-|b |,则a 、b 共线,即存在实数λ,使得a =λb .如选项A :|a +b |=|a |-|b |时,a 、b 可为异向的共线向量;选项B :若a ⊥b ,由正方形得|a +b |=|a |-|b |不成立;选项D ;若存在实数λ,使得a =λb ,a ,b 可为同向的共线向量,此时显然|a +b |=|a |-|b |不成立.10.(山东高考)已知非零向量m 、n 满足4|m |=3|n |,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( B ) A .4 B .-4 C .94D .-94[解析] 由n ⊥(t m +n )可得n ·(t m +n )=0,则t m·n +n 2=0,所以t =-n 2m·n=-n 2|m|·|n |cos 〈m ,n 〉=-|n|2|m|×|n|×13=-3×|n||m|=-3×43=-4.故选B . 11.(2018·天津理,8)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD =120°,AB =AD =1.若点E 为边CD 上的动点,则AE →·BE →的最小值为( A )A .2116B .32C .2516D .3[解析] 如图,以D 为坐标原点建立直角坐标系.连接AC ,由题意知∠CAD =∠CAB =60°,∠ACD =∠ACB =30°,则D (0,0),A (1,0),B ⎝ ⎛⎭⎪⎫32,32,C (0,3).设E (0,y )(0≤y ≤3),则AE →=(-1,y ),BE →=⎝ ⎛⎭⎪⎫-32,y -32, ∴ AE →·BE →=32+y 2-32y =⎝ ⎛⎭⎪⎫y -342+2116,∴ 当y =34时,AE →·BE →有最小值2116. 故选A .12.已知点O 为△ABC 所在平面内一点,且OA →2+BC →2=OB →2+CA →2=OC →2+AB →2,则点O 一定为△ABC 的( D )A .外心B .内心C .重心D .垂心[解析] ∵OA →2+BC →2=OB →2+CA →2, ∴OA →2-OB →2=CA →2-BC →2,∴(OA →-OB →)·(OA →+OB →)=(CA →+BC →)·(CA →-BC →), ∴BA →·(OA →+OB →)=BA →·(CA →-BC →), ∴BA →·(OA →+OB →-CA →+BC →)=0, ∴BA →·(OA →+AC →+OC →)=0, ∴BA →·2OC →=0, ∴BA →·OC →=0,∴BA →⊥OC →.同理可得:CA →⊥OB →,CB →⊥OA →. ∴O 为△ABC 的垂心.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知向量a 、b ,且AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则A 、B 、C 、D 四点中一定共线的三点是__A 、B 、D __.[解析] BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2(a +2b )=2AB →.14.设向量a ,b ,c 满足a +b +c =0,(a -b )⊥c ,a⊥b ,若|a|=1,则|a|2+|b|2+|c|2的值是__4__.[解析] 由于a⊥b ,由此画出以a ,b 为邻边的矩形ABCD ,如图所示,其中,AD →=a ,AB →=b ,∵a +b +c =0,∴CA →=c ,BD →=a -b .∵(a -b )⊥c ,∴矩形的两条对角线互相垂直,则四边形ABCD 为正方形. ∴|a |=|b |=1,|c |=2,|a|2+|b|2+|c|2=4.15.若对n 个向量a 1,a 2,…,a n 存在n 个不全为零的实数k 1,k 2,…,k n ,使得k 1a 1+k 2a 2+…+k n a n =0成立,则称向量a 1,a 2,…,a n 为“线性相关”.依此规定,能说明a 1=(1,2),a 2=(1,-1),a 3=(2,10)“线性相关”的实数k 1,k 2,k 3依次可以取__-4,2,1__(写出一组数值即可,不必考虑所有情况).[解析] 由k 1a 1+k 2a 2+k 3a 3=0得⎩⎪⎨⎪⎧k 1+k 2+2k 3=0,2k 1-k 2+10k 3=0⇒k 1=-4k 3,k 2=2k 3,令k 3=c (c ≠0),则k 1=-4c ,k 2=2c .16.(2017天津理科)在△ABC 中,∠A =60°,AB =3,AC =2,若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为311. [解析] 由题意,知|AB →|=3,|AC →|=2, AB →·AC →=3×2×cos60°=3,AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,∴AD →·AE →=(13AB →+23AC →)·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22 =113λ-5=-4,解得λ=311. 三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知向量a =(1,2),b =(x,1). (1)若〈a ,b 〉为锐角,求x 的范围; (2)当(a +2b )⊥(2a -b )时,求x 的值.[解析] (1)若〈a ,b 〉为锐角,则a ·b >0且a 、b 不同向.a ·b =x +2>0,∴x >-2当x =12时,a 、b 同向.∴x >-2且x ≠12(2)a +2b =(1+2x,4),2a -b =(2-x,3) (2x +1)(2-x )+3×4=0 即-2x 2+3x +14=0 解得:x =72或x =-2.18.(本题满分12分)如图,∠AOB =π3,动点A 1,A 2与B 1,B 2分别在射线OA ,OB 上,且线段A 1A 2的长为1,线段B 1B 2的长为2,点M ,N 分别是线段A 1B 1,A 2B 2的中点.(1)用向量A 1A 2→与B 1B 2→表示向量MN →. (2)求向量MN →的模.[解析] (1)A 1A 2→=A 1M →+MN →+NA 2→ ①,B 1B 2→=B 1M →+MN →+NB 2→② ①+②将A 1A 2→+B 1B 2→=2MN →,所以MN →=12(A 1A 2→+B 1B 2→);(2)|MN →|2=14(A 1A 2→2+2A 1A 2→·B 1B 2→+B 1B 2→2)=14(1+2×1×2×cos π3+4)=74.∴|MN →|=72.19.(本题满分12分)已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2). (1)若|b |=25,且a∥b ,求b 的坐标.(2)若|c |=10,且2a +c 与4a -3c 垂直,求a 与c 的夹角θ. [解析] (1)设b =(x ,y ), 因为a∥b ,所以y =2x① 又因为|b |=25,所以x 2+y 2=20②由①②联立,解得b =(2,4)或b =(-2,-4). (2)由已知(2a +c )⊥(4a -3c ),(2a +c )·(4a -3c )=8a 2-3c 2-2a·c =0, 又|a |=5,|c |=10, 解得a·c =5, 所以cos θ=a·c |a||c|=22,θ∈[0,π],所以a 与c 的夹角θ=π4.20.(本题满分12分)已知a 和b 是两个非零的已知向量,当a +t b (t ∈R )的模取最小值时.(1)求t 的值;(2)已知a 与b 成45°角,求证:b 与a +t b (t ∈R )垂直.[解析] (1)设a 与b 的夹角为θ,则|a +t b |2=|a |2+t 2|b |2+2t ·a ·b =|a |2+t 2·|b |2+2|a |·|b |·t ·cos θ=|b |2(t +|a ||b |cos θ)2+|a |2(1-cos 2θ). ∴当t =-|a ||b |cos θ时,|a +t b |取最小值|a |sin θ.(2)∵a 与b 的夹角为45°,∴cos θ=22,从而t =-|a ||b |·22,b ·(a +t b )=a ·b +t ·|b |2=|a |·|b |·22-22·|a ||b |·|b |2=0,所以b 与a +t b (t ∈R )垂直,即原结论成立.21.(本题满分12分)在△ABC 中,设BC →·CA →=CA →·AB →.(1)求证:△ABC 为等腰三角形;(2)若|BA →+BC →|=2,且B ∈[π3,2π3],求BA →·BC →的取值范围.[解析] (1)证明:∵BC →·CA →=CA →·AB →, ∴CA →·(BC →-AB →)=0.又AB →+BC →+CA →=0则CA →=-(AB →+BC →), ∴-(AB →+BC →)·(BC →-AB →)=0. ∴AB →2-BC →2=0, ∴|AB →|2=|BC →|2.∴|AB →|=|BC →|,即△ABC 为等腰三角形. (2)解:∵B ∈[π3,2π3],∴cos B ∈[-12,12].设|AB →|=|BC →|=a .∵|BA →+BC →|=2,∴|BA →+BC →|2=4,则有a 2+a 2+2a 2cos B =4. ∴a 2=21+cos B ,则BA →·BC →=a 2cos B =2cos B 1+cos B =2-21+cos B.又cos B ∈[-12,12],∴BA →·BC →∈[-2,23].22.(本题满分12分)已知向量a ,b 满足|a|=|b|=1,|k a +b |=3|a -k b |(k >0,k ∈R ).(1)求a·b 关于k 的解析式f (k ). (2)若a∥b ,求实数k 的值. (3)求向量a 与b 夹角的最大值.[解析] (1)由已知|k a +b |=3|a -k b |, 有|k a +b |2=(3|a -k b |)2,k 2a 2+2k a·b +b 2=3a 2-6k a·b +3k 2b 2.又因为|a |=|b |=1, 得8k a·b =2k 2+2,所以a·b =k 2+14k,即f (k )=k 2+14k(k >0).(2)因为a∥b ,k >0,所以a·b =k 2+14k>0,则a 与b 同向.因为|a|=|b |=1,所以a·b =1,即k 2+14k=1,整理得k 2-4k +1=0,所以k =2±3,所以当k =2±3时,a∥b .(3)设a ,b 的夹角为θ,则cos θ=a·b |a||b|=a·b =k 2+14k =14(k +1k )=14[(k -1k)2+2].当k =1k,即k =1时,cos θ取最小值12,此时θ=π3.。

北师大版必修四第二章平面向量综合检测题及答案解析

北师大版必修四第二章平面向量综合检测题及答案解析

综合检测(二)(时间120分钟,满分150分)、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四 个选项中,只有一项是符合题目要求的)a ,b ,c 满足 a / b ,且 a 丄c ,贝U c (a + 2b )=( )C. 2•.a 丄c ,-'a c = 0.又•••a//b ,二可设b = a 则 c (a + 2b ) = c(1 + 2 ?)a2.已知向量a = (1,0)与向量b = (—1,^/3),则向量a 与b 的夹角是( )nA -6C.2n【答案】A. 2C-6'•'1= (1 + x,3), u= (1 — x,1), 1/u•••(1+ X)x 1-3X (1 — X) — 0,.・.x=2第二章平面向量1.若向量【解析】【答案】 D x k B1 . c o mn B.3【解析】cos〈a ,b 〉=器=T^•••0,b 〉 2n=3 .3.已知 a = (1,2), b —(X ,1),11= a + b, u= a — b,且1/ u 则x 的值为()【解析】【答案】A4.已知|a| = 2|b|, |b|M 0,且关于x的方程x2+ |a|x + ab= 0有实根,则a与b的夹角的取值范围是()n A. [0,6】n , B. [3, n> 0. C. [5,劭n ,D. [6, n【解析】|a|2— 4a b=a f — 4|a||b|cos〈a, b〉= 4|b|2— 8|b|2 cos〈a,b〉-cos a, b〉1W2,〈a, b〉€ [0, n .a,b〉【答案】5.已知|a| = 1, |b| = 6, a (b—a) = 2,则向量a与b的夹角是( )nA.6nB.4nC.nnD-22 2【解析】--a (b—a) = a b— a = 2,.・.|a||b|cos B—|a| = 2,1 n•••1x 6x cos — 1 = 2,.・.cos = 2,又0W 0W n 二=3,故选 C.【答案】 C6.已知OA= (2,2), 5B= (4,1),在x轴上一点P使A P B P有最小值,则P点的坐标是( )A. (—3,0)B. (3,0)C. (2,0)D. (4,0)【解析】设P(x,0),.・.AP= (x—2,—2), BP= (x —4,— 1),A AP BP= (x—2)(x —4)+ 22 2=x —6x+ 10= (x—3) +1,当x= 3时,AP BP取最小值,此时P(3,0).【答案】 B7•若a,b是非零向量,且a丄b,|a|M |b|,则函数f(x)= (x a+ b) (x b—a)是( )A .一次函数且是奇函数B.一次函数但不是奇函数C•二次函数且是偶函数D.二次函数但不是偶函数【解析】..a丄b,.・.a b= 0,•••f(x) = (x a + b) (x b—a) = x2(a b)+ (|b|2—|a|2)x—a b= (|bf—a|2)x,又|a|M|b|.•••f(x )是一次函数且为奇函数,故选A.【答案】 A> —> AB AC —> AB AC 18 已知非零向量AB与AC满足(=+=) BC = 0且===2则^ ABC |AB| AC| |AB| |AC|A .等边三角形B.直角三角形C.等腰非等边三角形D.三边均不相等的三角形【解析】AB和钥分别是与AB, AC同向的两个单位向量.|AB| AC|AB AC AB AC f兰+号是/BAC角平分线上的一个向量,由+弋)BC = 0知该向|AB| |AC| |AB| |AC|AB AC 1量与边BC垂直,.・.ZABC是等腰三角形.由 f f = 2知/BAC= 60 : •••ZABC是|AB|| AC|等边三角形.【答案】 A9. (2013 湖北高考)已知点 A(— 1,1), B(1,2), C(-2,— 1), D(3,4),则向量 AB 在CD 方向上的投影为()A鉅C .-寥【解析】 由已知得AB = (2,1), CD = (5,5),因此AB 在CD 方向上的投影为AB CD _ _鉅|CD| 5©2【答案】 A10•在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点'则-()D. 10【解析】--PA ^ CA — CP ,7 2 7 2 7 7 7 2 IPAl = CA — 2CP CA+CP .—7 —7 —7 —7 少 7 少 —7 —7 —7 Q •.•PB _ CB — CP ,・.|PB| _ CB — 2CP CB +CP .—7 2 —7 2 —7 2 —7 2 —7 —7 —7 —7 2 —7 2 —7 —7 —7 •••|PAr + |PBr_ (CA + CB ) — 2CP (CA + CB) + 2CP _ AB — 2CP 2CD + 2CP又AB 2= 16CP 2, CD = 2CP ,代入上式整理得 |FA|2+ |PB|2= 10|CPf ,故所求 值为10.【答案】 D二、填空题(本大题共5小题,每小题5分,共25分,将答案填在题中的横 线上)C. 5 ,211.已知向量a= (2,1), ab= 10, l a + b| = 5 迄,则|b| 等于【解析】••l a+ b|a5 72,A(a + b)2a50,即a2+ b2+ 2a b a50, 又a|=V5, a b= 10,••5+|bf+ 2X 10a 50.解得|b| = 5.【答案】 5」「4si n a— 2cos a12•已知a a g), b a(sin a, cos a,且a// b•则5^5 + 3前 a【解析】••a//b,.・.3cos aa sin a,4sin a— 2cos a 4tan a— 2 4 X 3— 2 55cos a+ 3sin a 5+ 3tan a 5+ 3X 3 75【答案】513.(2013课标全国卷n )已知正方形ABCD的边长为2, E为CD的中点,贝UAE BDa【解析】如图,以A为坐标原点,AB所在的直线为x轴,AD所在的直线为y 轴,建立平面直角坐标系,则A(0,0), B(2,0), D(0,2), E(1,2),••AE= (1,2), BDa (-2,2),••AE BD a 1X (-2) + 2X 2a2.【答案】 22 n14.已知e1, e2是夹角为~的两个单位向量,a a& —2e2, b a k e1 + e2,若a b a 0,则实数k的值为【解析】 由题意a b = 0,即有(81 — 2e 2) (*01 + e 2)= 0•••k e 1+ (1 — 2k) 81 82— 2e 2= 0.又•••|e i |= |e 2|= 1,〈e i ,e 2>2 n•'•k— 2+ (1 — 2k) cos -3 = 0, 1 — 2k 5 • k — 2= ~2~,•-k =4.【答案】515. (2012 安徽高考)设向量 a = (1,2m), b = (m + 1,1), c = (2, m).若(a + c ) 丄 b,则 a i = .【解析】 a + c = (1,2m) + (2, m) = (3,3m).••(a + c)丄 b,•••(a + c ) b = (3,3m) (m + 1,1)= 6m + 3= 0,••a = (1,— 1), la , 12 + (-1丫【答案】迈三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或 演算步骤)16.(本小题满分12分)(2013江苏高考)已知a = (cos a, sin a, b = (cos B, sin 9, 0< 3<a<n.(1)若 |a — b | = 72,求证:a 丄 b ;⑵设c = (0,1),若a + b = c ,求a 9的值. 【解】(1)证明由题意得a — b l 2 = 2, 即(a — b )2= a 2 — 2a b + b 2 = 2. 又因为 a 2= b 2= laj |b |2 = 1,2n ~3所以 2-2a b = 2, 即卩 a b = 0,故 a 丄b.⑵因为 a + b = (cos a+ cos B, sin 计 sin f) = (0,1),Icos a+ cos 3= 0, 所以1 Isin a+ sin 3= 1,由此得,cos a= cos( — 3),由 0v 3< n 得 0v n — 3^ n. a= n — 3代入 sin a+ sin 3= 1, 得 sin a= sin十“ 5 n n 所以 a=E, 3=6.【解】AC = OC — OA = (7,— 1 — m),BC = OC - 0B = (5- n ,— 2). ••A 、B 、C 三点共线,••• AC//BC ,•••—14+ (m + 1)(5 — n) = 0. 又OA 丄OB.--—■2n + m = 0.3由①②解得 m = 6, n = 3或m = 3, n =q.18.(本小题满分12分)已知a , b 是两个非零向量,当a +t b (t € R )的模取最 小值时.(1)求t 的值; ⑵求证:b 丄(a + t b ).【解】 (1)(a + t b )2= a + kb |2+ 2a t b,|a + t b |最小,即 |a |2+ |t b |2+ 2a t b 最小,又0V a< n 故 17.(本小题满分 12分)平面内三点A 、B 、C 在一条直线上,0A =(— 2, m),0B = (n,1), 0C = (5, —1),且OA 丄OB ,求实数m 、n 的值.即 t 2|b |2 + [af + 2t|a ||b |cos 〈a , b 〉最小.|a |cos 〈 a , b 〉故当t =— 石 时, |b||a +t b | 最小.2|a |cos 〈 a , b 〉 2(2)证明:b (a +1b ) = ab + t|b | ------------------ = ------ |a ||b |cos 〈 a,b 〉— |b|b | = |a ||b |cos |b|a ,b 〉一 |a ||b |cos 〈a , b 〉= 0,故 b 丄(a +1b ).19.(本小题满分13分)△ ABC 内接于以O 为圆心,1为半径的圆,且3OA +4OB + 5OC = 0. (1)求数量积 O A O B , O B OC , OC OA ; (2)求^ ABC 的面积.xKb 1. Com【解】 (1)V3OA + 4OB + 5OC = 0,••3OA + 4OB = 0-5OC , -— -—2 -— 2 即(3OA + 4OB) = (0- 5OC).—7 2 —7 —z —z 2 —7 2可得 9OA + 24OA OB + 16OB = 25OC . 又•••|OA|=|OB|=|OC| = 1,•••OA OB = 0.同理 OB OC =-5,OCOA =- 5.1 —— —— 1 —— —— (2)S Z ABC = S A OAB + Sz oBc + S ZOAC = 2|OA| | OB|sin ZAOB + 2|OB| |OC|sin /BOC + 2|OC| |OA|sin HOC. 又 |O A|= |OB|= |OC|=1.•'S^ABC^ 2(sin ZAOB+sin /BOC + sin ZAOC).由(1)OAOB= |0A| |OB|cos /AOB= cos ZAOB= 0得sin ZAOB= 1.T T T T 4OB OC= |OB| |OC| cos /BOC = cos /BOC=- 5,./ 3-sin /BOC=5,同理sin /AOC=5.5-S/yxBC = 5.20.(本小题满分13分)在平面直角坐标系xOy中,已知点A(- 1,-2),B(2,3), C( - 2,- 1).(1)求以线段AB、AC为邻边的平行四边形的两条对角线的长;(2)设实数t满足(AB-tOC) 0C= 0,求t的值.【解】(1 )由题设知AB= (3,5), AC= (—1,1),则AB + AC= (2,6), AB- AC= (4,4).所以AB+ AC| = 2^10, AB-AC匸4寸2.故所求的两条对角线长分别为4迈,2>/10.X K b心m⑵由题设知OC= (-2,- 1), AB-tOC = (3+ 2t,5 +1).由(AB-tOC) OC= 0,得(3 + 2t,5 +1) (—2,- 1)= 0,从而5t=—11,所以t115.图121.(本小题满分13分)如图1,平面内有三个向量OA, OB, OC,其中O A与OB的夹角为120°, OA与OC的夹角为30°且|5A|=|OB匸1,|oC| = 2 羽若oC = QA+ QB(入空R),求H卩的值.【解】法一:作CD //OB交直线OA于点D,作CE //OA交直线OB于点E,贝U OC = OD+ OE,由已知/OCD = /COE= 120 —30 = 90 ° 在Rt△)CD 中,OD = ^3。

(典型题)高中数学必修四第二章《平面向量》检测卷(答案解析)

(典型题)高中数学必修四第二章《平面向量》检测卷(答案解析)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( ) A .1 B .3 C .7 D .32.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .16 3.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( )A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)4.若向量a ,b 满足|a 10 ,b =(﹣2,1),a •b =5,则a 与b 的夹角为( ) A .90° B .60° C .45° D .30°5.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A 2B .1C .2D .226.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定 7.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ).A 5B .5C .42D 31 8.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18- B .116- C .316- D .09.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( )A .8B .4C .6D .310.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23πC .3πD .6π 11.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ;②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =;④若//a b ,则一定存在唯一的实数λ,使得a b λ=.A .①③B .①④C .②③D .②④二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题:①若1AB λ=,1AC μ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心;③若1λμ+=,且0μ>,则点P 在线段BC 上;④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内.其中真命题为______14.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.15.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.已知腰长为2的等腰直角△ABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值 ________.18.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______. 19.在矩形ABCD 中,2AB =,1AD =,动点P 满足||1AP =,设向量AP AB AD λμ=+,则λμ+的取值范围为____________.20.在ABC △中,已知4CA =,3CP =,23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.已知a ,b ,c 在同一平面内,且()1,2a =.(1)若35c =,且//a c ,求c ;(2)若2b =,且()()2a b a b +⊥-,求a 与b 的夹角的余弦值. 23.已知()()1,,3,2a m b ==-.(1)若()a b b +⊥,求m 的值;(2)若·1a b =-,求向量b 在向量a 方向上的投影.24.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值;(2)若2t =,求向量a ,b 的夹角.25.已知单位向量1e ,2e ,的夹角为23π,向量12a e e λ=-,向量1223b e e =+. (1)若//a b ,求λ的值;(2)若a b ⊥,求||a .26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cos sin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ; (2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题.【详解】设a 、b 所成角为θ,由||||2==a b ,2a b, 则1cos 2θ=,因为0θπ≤≤ 所以3πθ=, 记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴,建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离,由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为 P 到,A Q 两点的距离和最小,()P x 在直线y =上, ()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力. 2.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.3.C解析:C【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C -,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=,可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C -, 设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--, 当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=,当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-,故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值.4.C【详解】 由题意可得22(2)15b =-+=,所以2cos ,52a b a b a b ⋅===⋅,又因为,[0,180]<>∈a b ,所以,45<>=a b ,选C.5.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值.【详解】如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.6.C解析:C【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA ≥,由垂线段最短可确定结论.【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥, ABC ∴为直角三角形.故选:C .【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.7.B解析:B【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【详解】 由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B. 【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解.8.C解析:C【分析】建立平面直角坐标系,()0,P t ,t ≤,则 223(2416⋅=-=--AP CP t t ,进而可求最小值.【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,(0,2C ,设()0,P t ,其中2t ≤1(,)2AP t =-,(0,CP t ==,223(16⋅==-AP CP t t ,当t =时取最小值为316-,所以AP CP ⋅的最小值为316-. 故选:C【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.9.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF .【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D.【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.10.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.11.B解析:B【分析】 由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=, 故选:B .【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题. 12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③.【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λb c ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B.【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断.【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】设根据得到取中点为D 又由中点坐标得到再由得到的范围然后由求解【详解】设如图所示:因为所以取中点为D 因为所以解得所以所以点C 是以D 为圆心半径为的圆上运动又因为所以当AOB 共线时取等号所以所以【解析:3【分析】设,,OA a OB b OC c ===,根据||2,||2||a b a b -==,得到||2,||2||AB OA OB ==,取AB 中点为D ,又()()2a c b c CA CB -⋅-=⋅=,由中点坐标得到CD ==⎭2OA OB AB -≤=,得到||OA OD ⎛= 范围,然后由||||||||3c OC OD DC OD =≤+≤+.【详解】设,,OA a OB b OC c ===, 如图所示:因为||2,||2||a b a b -==, 所以||2,||2||AB OA OB ==, 取AB 中点为D ,因为()()2a c b c CA CB -⋅-=⋅=,所以2222||||24AB CB CA CB CA CB CA =-=+-⋅=, 解得228CB CA +=,所以22212322CB CA CD CB CA CB CA ⎛⎫+==++⋅= ⎪⎝⎭所以点C 是以D 3的圆上运动, 又因为2OA OB AB -≤=,所以2OB ≤,当A ,O ,B 共线时,取等号,所以2221||222OA OB OD OB OA OB OA ⎛⎫+==++⋅ ⎪⎝⎭, ()222112104322OB OA AB OB =+-=-≤, 所以||||||||333c OC OD DC OD =≤+≤+≤. 【点睛】关键点点睛:平面向量的中点坐标公式的两次应用:一是22CB CA CD ⎛⎫+= ⎪⎝⎭||2,||2||AB OA OB ==求得定值,得到点C 是以D 为圆心的圆上,实现数形结合;二是||2OA OD ⎛= ⎝⎭2OA OB AB -≤=确定范围,然后由||||||c OC OD DC =≤+求解.15.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.16.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.17.【详解】如图建立平面直角坐标系∴当sin 时得到最小值为故选 解析:48322-【详解】如图建立平面直角坐标系,()((P 2cos θ2sin θA 22B22M 02-,,,,,,,∴()()((42cos θ2θ22cos θ2θ24PA PB PC PM ⎡⎤⋅+⋅=+⋅-++⎣⎦,,()(22cos θ2sin θ2cos θ2sin θ216sin θ322sin θ32⎡⎤⋅+=++⎣⎦,,, 当sin θ1=-时,得到最小值为48322-48322-18.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可. 【详解】因为0a b c d +++=, 所以++=-a b c d ,所以()()22++=-a b cd ,所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d ,因为2a =,3b =,4c =,4d =, 所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.19.【分析】由已知得应用向量的运算律求出关系利用三角换元结合正弦函数的有界性即可求解【详解】在矩形中令其中最小值最大值分别为的取值范围为故答案为:【点睛】本题考查向量的模长以及向量的数量积运算解题的关键解析:⎡⎢⎣⎦. 【分析】由已知得2||1AP =,应用向量的运算律,求出,λμ关系,利用三角换元结合正弦函数的有界性,即可求解. 【详解】在矩形ABCD 中,,0AB AD AB AD ⊥∴⋅=22222222||()41AP AB AD AB AD λμλμλμ=+=+=+=,令12cos ,sin ,cos sin sin()22λθμθλμθθθϕ==+=+=+,其中1tan 2ϕ=,λμ+最小值、最大值分别为22-,λμ+的取值范围为55,⎡⎤-⎢⎥⎣⎦. 故答案为:55,⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量的模长以及向量的数量积运算,解题的关键用换元法将问题转化为求三角函数的最值,属于中档题.20.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3a y =, 所以,2a AD a ⎛⎫=-⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.22.(1)()3,6c =或()3,6c =--;(2)10-. 【分析】(1)设(),c x y =,由平面向量平行的坐标表示及模的坐标表示可得2y x=⎧=即可得解;(2)由平面向量垂直可得()()20a b a b +⋅-=,再由平面向量数量积的运算可得1a b ⋅=-,最后由cos ,a ba b a b⋅=⋅即可得解. 【详解】(1)设(),c x y =,因为()1,2a =,//a c ,35c =,所以235y x x y =⎧+=⎪⎩36x y =⎧⎨=⎩或36x y =-⎧⎨=-⎩, 所以()3,6c =或()3,6c =--;(2)因为()1,2a =,所以14a =+又()()2a b a b +⊥-,2b =,所以()()22225220a b a b aa b ba b +⋅-=+⋅-=+⋅-⨯=,所以1a b ⋅=-, 所以cos ,5a b a b a b⋅===⨯⋅【点睛】本题考查了平面向量共线及模的坐标表示,考查了平面向量数量积的应用及运算求解能力,属于中档题. 23.(1)8m =(2)【分析】(1)先得到()4,2a b m +=-,根据()a b b +⊥可得()0a b b +⋅=,即可求出m ;(2)根据·1a b =-求出m=2,再根据cos ,a b b a b b a b⋅=⋅求b 在向量a 方向上的投影.【详解】()()14,2a b m +=-;()a b b +⊥;()34220m ∴⋅--=;8m ∴=;()2321a b m ⋅=-=-;2m ∴=;()1,2a ∴=;b ∴在向量a 方向上的投影为cos ,55a b b a b b a b⋅=⋅==-.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题. 24.(1)1t =-;(2)23π. 【分析】(1)根据题意,设a kb =,则有122112()()e e k e te kte ke +=-=-+,分析可得11ktk=-⎧⎨=⎩,解可得t 的值;(2)根据题意,设向量a ,b 的夹角为θ;由数量积的计算公式可得a 、||b 以及a b , 由cos a b a bθ⋅=计算可得答案.【详解】(1)∵根据题意,向量12a e e =+,21b e te =-,若//a b ,则设a kb =, 则有122112()()e e k e te kte ke +=-=-+,则有11kt k =-⎧⎨=⎩,解可得1t =-;(2)根据题意,设向量a ,b 的夹角为θ;若2t =,则212b e e =-,则2221||(2)3b e e =-=,则||3b =, 又由12a e e =+,则2212||()3a e e =+=,则||3a =, 又由12213()(2)2a b e e e e =+-=-,则312cos 2||||3a b a b θ-===-⨯,又由0θπ,则23πθ=; 故向量a ,b 的夹角为23π. 【点睛】本题考查向量数量积的计算,涉及向量模的计算公式,属于基础题.25.(1)23-;(2 【分析】(1)由//a b ,所以存在唯一实数t,使得b ta =,建立方程组可得答案;(2)由已知求得12e e ⋅,再由a b ⊥得()()1212230e e e e λ-⋅+=,可解得λ,再利用向量的模的计算方法可求得答案. 【详解】(1)因为//a b ,所以存在唯一实数t,使得b ta =,即()121223e e t e e λ+=-, 所以23t tλ=⎧⎨=-⎩,解得23λ=-;(2)由已知得122111cos32e e π⋅=⨯⨯=-,由a b ⊥得()()1212230e e e e λ-⋅+=,即()12+32302λλ⎛⎫-⨯--= ⎪⎝⎭,解得4λ=,所以124a e e =-,所以22121212||416821a e e e e e e =-=+-⋅=||21a =.【点睛】本题考查向量平行的条件和向量垂直的条件,以及向量的模的计算,属于中档题.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果. 【详解】(1)由题意知,0m n =,即222cos2sin 02CC -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒. (2)2222221122a b c a b c =+⇒-=,222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。

(压轴题)高中数学必修四第二章《平面向量》检测卷(有答案解析)

(压轴题)高中数学必修四第二章《平面向量》检测卷(有答案解析)

一、选择题1.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( )A .4B .C .3+D .62.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( )A .12B .12C D .13.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .B .2C D4.已知ABC 是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且AE EB =,2AD DC =,与CE 交于点O ,则下列说法正确的是( )A .1AB CD ⋅=- B .1233BD BC BA =+ C .3OA OB OC ++=D .ED 在BC 方向上的投影为765.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( )A .(1⎤⎦B .(1⎤⎦C .1⎤⎦D .)1,+∞6.在ABC 中,4A π=,3B π=,2BC =,AC 的垂直平分线交AB 于D ,则AC CD ⋅=( )A .1-B .2-C .3-D .37.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==8.已知a ,b 为单位向量,2a b a b +=-,则a 在a b +上的投影为( )A .13B .3-C .3D .39.在ABC 中,||:||:||3:4:5AB AC BC =,圆O 是ABC 的内切圆,且与BC 切于D 点,设AB a =,AC b =,则AD =( )A .2355a b + B .3255a b + C .2133a b +D .1233a b +10.设θ为两个非零向量,a b 的夹角,且6πθ=,已知对任意实数t ,b ta +的最小值为1,则b =( ) A .14B .12C .2D .411.直线0ax by c与圆22:4O x y +=相交于M ,N 两点,若222c a b =+,P 为圆O 上任意一点,则PM PN ⋅的取值范围为( ) A .[2,6]-B .[]2,4-C .[]1,4D .[1,4]-12.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,23AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题: ①若1ABλ=,1ACμ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心; ③若1λμ+=,且0μ>,则点P 在线段BC 上; ④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内. 其中真命题为______14.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.15.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,) OC mOA nOB m n R =+∈,则mn等于.16.已知ABC的三边长3AC=,4BC=,5AB=,P为AB边上任意一点,则()CP BA BC⋅-的最大值为______________.17.已知ABC∆中,3AB=,5AC=,7BC=,若点D满足1132AD AB AC=+,则DB DC⋅=__________.18.已知向量()()2,3,1,2==-a b,若ma b+与2a b-平行,则实数m等于______. 19.已知点O是ABC∆内部一点,并且满足230OA OB OC++=,BOC∆的面积为1S,ABC∆的面积为2S,则12SS=______.20.如图,在四边形ABCD中,60B∠=︒,2AB=,6BC=,1AD=,若M,N是线段BC上的动点,且||1MN=,则DM DN⋅的取值范围为_________.三、解答题21.在ABC中,3AB=,6AC=,23BACπ∠=,D为边BC的中点,M为中线AD 的中点.(1)求中线AD的长;(2)求BM与AD的夹角θ的余弦值.22.在直角坐标系xoy中,单位圆O的圆周上两动点A B、满足60AOB∠=︒(如图),C 坐标为()1,0,记COAα∠=(1)求点A与点B纵坐标差A By y-的取值范围;(2)求AO CB ⋅的取值范围;23.在OAB 的边OA ,OB 上分别有一点P ,Q ,已知:1:2OP PA =,:3:2OQ QB =,连接AQ ,BP ,设它们交于点R ,若OA a =,OB b =.(1)用a 与b 表示OR ;(2)过R 作RH AB ⊥,垂足为H ,若1a =,2b =,a 与b 的夹角2,33ππθ⎡⎤∈⎢⎥⎣⎦,求BHBA的范围.24.如图,在ABC 中,1AB AC ==,120BAC ∠=.(Ⅰ)求AB BC 的值;(Ⅱ)设点P 在以A 为圆心,AB 为半径的圆弧BC 上运动,且AP x AB y AC →→→=+,其中,x y R ∈. 求xy 的最大值.25.如图,四边形ABOC 是边长为1的菱形,120CAB ∠=︒,E 为OC 中点.(1)求BC 和BE ;(2)若点M 满足ME MB =,问BE BM ⋅的值是否为定值?若是定值请求出这个值;若不是定值,说明理由.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b -=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.2.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫- ⎪ ⎪⎝⎭,设c 的坐标为(),x y ,由已知可得2214x y ⎛+= ⎝⎭,表示以2⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,022x y x y ⎫⎫--⋅---=⎪⎪⎪⎪⎝⎭⎝⎭,化简得22124x y ⎛-+= ⎝⎭,表示以,02⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值,因为圆到原点的距离为2,所以圆上的点到原点的距离的最小值为122-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题3.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a →,b →夹角为45︒,2222()24a b a b a a b b →→→→→→→→∴-=-=-⋅+=, 2422||cos||44b b π→→∴-⨯+=,解得:||22b →= 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.4.D解析:D 【分析】利用CE AB ⊥,判断出A 错误;由2AD DC =结合平面向量的基本定理,判断出选项B 错误;以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,写出各点坐标,计算出OA OB OC ++的值,判断出选项C 错误;利用投影的定义计算出D 正确. 【详解】由题E 为AB 中点,则CE AB ⊥,0AB CE ⋅=,所以选项A 错误;由平面向量线性运算得2133BD BC BA =+,所以选项B 错误; 以E 为原点,EA ,EC 分别为x 轴,y 轴正方向建立平面直角坐标系,如图所示,()0,0E ,1,0A ,()1,0B -,(3C ,1233D ⎛ ⎝⎭,设()0,O y ,(3y ∈,()1,BO y =,123,33DO y ⎛=-- ⎝⎭, //BO DO ,所以,3133y y -=-,解:32y =, 32OA OB OC OE OE OE ++=+==,所以选项C 错误; 123,33ED ⎛⎫= ⎪ ⎪⎝⎭,(1,3BC =,ED 在BC 方向上的投影为127326BC BCED +⋅==,故选:D . 【点睛】本题考查平面向量数量积的应用,考查平面向量基本定理,考查投影的定义,考查平面向量的坐标表示,属于中档题.5.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出22OB x y d =+=,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 取得最小值21-,O 在BM 的延长线上时,OB 取得最大值21+. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,()()2222222ax cy ac xy x y +≤++=+,取等号条件:ay cx =,令22OB x y d =+=,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得2121d -≤≤+.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.6.C解析:C 【分析】由AC 的垂直平分线交AB 于D ,且4A π=可得ACD △为等腰直角三角形,且4A ACD π∠=∠=,2ADC BDC π∠=∠=;进而由2BC =可求出,,DB CD AC 的长,从而求出AC CD ⋅的值. 【详解】解:因为AC 的垂直平分线交AB 于D 、4A π=,所以ACD △为等腰直角三角形,4A ACD π∠=∠=,2ADC BDC π∠=∠=,在BDC 中,3B π=,2BDC π∠=,2BC =,所以1,3BD CD ==,所以3AD CD ==,26AC CD ==,所以32cos63()342AC CD AC CD π⋅=⋅=⨯⨯-=-.故选:C. 【点睛】本题主要考查平面向量的数量积,考查运算求解能力,属于基础题型.7.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.8.C解析:C 【分析】由题意结合平面向量数量积的运算可得13a b ⋅=,进而可得()b a a +⋅、a b +,代入投影表达式即可得解. 【详解】因为a ,b 为单位向量,所以1==a b , 又2a b a b +=-,所以()()222a ba b +=-所以22222242a a b b a a b b +⋅+=-⋅+,即121242a b a b +⋅+=-⋅+,所以13a b ⋅=,则()2263a b a b+=+=,()243a a b a a b ⋅+=+⋅=,所以a 在a b +上的投影为()4326a a b a b⋅+==+ 故选:C. 【点睛】本题考查了平面向量数量积的应用,考查了一个向量在另一个向量上投影的求解,属于中档题.9.B解析:B 【分析】由题得三角形是直角三角形,设3,4,5AB AC BC ===,设,=,,DB BF x AD AE y EC CF z =====求出,,x y z ,再利用平面向量的线性运算求解.【详解】因为||:||:||3:4:5AB AC BC =,所以ABC 是直角三角形,设3,4, 5.AB AC BC ===如图,设,=,,DB BF x AD AE y EC CF z =====由题得34,2,1,35x y y z x y z x z +=⎧⎪+=∴===⎨⎪+=⎩,所以2232()5555AD AB BD AB BC AB AC AB AB AC =+=+=+-=+3255a b =+. 故选:B 【点睛】本题主要考查平面向量的线性运算,意在考查学生对这些知识的理解掌握水平.10.C解析:C 【分析】由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+,由二次函数的性质可知,当22cos62b a b t aaπ⋅=-=-时,()g t 取得最小值1,变形可得22sin16b π=,从而可求出b 【详解】解:由题意可知,2222()2b ta a t a bt b +=+⋅+,令222()2g t a t a bt b =+⋅+, 因为2222224()44(cos 1)06a b a b a b π∆=⋅-=-<,所以()g t 恒大于零,所以当232cos622b b a b taaaπ⋅=-=-=-时,()g t 取得最小值1,所以22233321222b b bg a a b b a a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-+⋅-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 化简得2114b =,所以2b =, 故选:C 【点睛】此题考查平面向量数量积的运算,涉及二次函数的最值,考查转化思想和计算能力,属于中档题11.A解析:A 【分析】取MN 的中点A ,连接OA 、OP ,由点到直线的距离公式可得1OA =,于是推出1cos 2AON ∠=,1cos 2MON ∠=-,而||||cos 2OM ON OM ON MON ⋅=⋅∠=-,()()PM PN OM OP ON OP ⋅=-⋅-()224cos OM ON OPOP OM ON AOP =⋅+-⋅+=-∠,其中cos [1,1]AOP ∠∈-,从而得解. 【详解】解:取MN 的中点A ,连接OA 、OP ,则OA MN ⊥,∵222c a b =+,∴点O 到直线MN 的距离221OA a b==+,在Rt AON 中,1cos 2OA AON ON ∠==, ∴2211cos 2cos 12122MON AON ⎛⎫∠=∠-=⨯-=- ⎪⎝⎭, ∴1||||cos 2222OM ON OM ON MON ⎛⎫⋅=⋅∠=⨯⨯-=- ⎪⎝⎭,∴()()PM PN OM OP ON OP ⋅=-⋅-2()OM ON OP OP OM ON =⋅+-⋅+24222||||cos OP OA OP OA AOP =-+-⋅=-⋅∠24cos AOP =-∠,当OP ,OA 同向时,取得最小值,为242-=-; 当OP ,OA 反向时,取得最大值,为246+=. ∴PM PN ⋅的取值范围为[]2,6-. 故选:A. 【点睛】本题考查点到直线距离公式、向量的数量积运算、直线与圆的方程,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查运算求解能力.12.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④ 【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断. 【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】延长BC 作圆M 的切线设切点为A1切线与BD 的交点D 结合数量积的几何意义可得点A 运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC 作圆M 的切线设切点为A1切 解析:2-延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,结合数量积的几何意义可得点A 运动到A 1时,CA 在CB 上的投影最小,设CP x =,将结果表示为关于x 的二次函数,求出最值即可. 【详解】 如图,延长BC ,作圆M 的切线,设切点为A 1,切线与BD 的交点D ,由数量积的几何意义,CA CB ⋅等于CA 在CB 上的投影与CB 之积,当点A 运动到A 1时,CA 在CB 上的投影最小; 设BC 中点P ,连MP ,MA 1,则四边形MPDA 1为矩形; 设CP =x ,则CD =2-x ,CB =2x ,CA CB ⋅=()()222224212x x x x x --⋅=-=--,[]02x ∈,, 所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.15.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OA OC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=.以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,22OC λλλ⎛⎫=︒︒ ⎪ ⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=322m n λ⎛⎫ ⎪ ⎪⎝⎭,即 3=2132m nλλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.16.9【分析】根据题意建立直角坐标系用坐标法解决即可得答案【详解】解:根据题意如图建立直角坐标系∴∴∴∴的最大值为故答案为:【点睛】本题考查坐标法表示向量向量的数量积运算线性运算的坐标表示等是中档题解析:9 【分析】根据题意,建立直角坐标系,用坐标法解决即可得答案. 【详解】解:根据题意,如图建立直角坐标系,∴ ()0,3A ()4,0B ,()0,0C , ∴ ()4,3AB =-,()()()0,34,34,33CP CA AP CA AB λλλλλ=+=+=+-=-,[]0,1λ∈,∴ ()()()[]4,330,3990,9CP BA BC CP CA λλλ⋅-=⋅=-⋅=-∈∴()CP BA BC ⋅-的最大值为9.故答案为:9 . 【点睛】本题考查坐标法表示向量,向量的数量积运算,线性运算的坐标表示等,是中档题.17.【分析】根据以为一组基底由得到再由求解【详解】因为又因为所以所以故答案为:-12【点睛】本题主要考查平面向量基本定理和向量的线性运算还考查了运算求解的能力属于中档题 解析:12-【分析】 根据1132AD AB AC =+,以,AB AC 为一组基底,由2222()2BC AC AB AC AB AB AC =-=+-⋅,得到152AB AC ⋅=-,再由2111()()3223⎛⎫⎛⎫⋅=-⋅-=-⋅- ⎪ ⎪⎝⎭⎝⎭DB DC AB AD AC AD AB AC AC AB 求解.【详解】因为2222()2BC AC AB AC AB AB AC =-=+-⋅ 又因为3AB =,5AC =,7BC = 所以152AB AC ⋅=-,所以2111()()3223DB DC AB AD AC AD AB AC AC AB ⎛⎫⎛⎫⋅=-⋅-=-⋅-=⎪ ⎪⎝⎭⎝⎭22211251521294244AB AC AB AC --+⋅=---=-. 故答案为:-12 【点睛】本题主要考查平面向量基本定理和向量的线性运算,还考查了运算求解的能力,属于中档题.18.【分析】由向量坐标的数乘及加减法运算求出与然后利用向量共线的坐标表示列式求解【详解】解:由向量和所以由与平行所以解得故答案为:【点睛】本题考查了平行向量与共线向量考查了平面向量的坐标运算属于基础题解析:12-【分析】由向量坐标的数乘及加减法运算求出ma b +与2a b -,然后利用向量共线的坐标表示列式求解. 【详解】解:由向量(2,3)a =和(1,2)b =-,所以()()()2,31,221,32m m m b m a ++=-=-+,()()()22,321,24,1a b -=--=-,由ma b +与2a b -平行,所以4(32)(21)0m m ++-=. 解得12m =-. 故答案为:12-. 【点睛】本题考查了平行向量与共线向量,考查了平面向量的坐标运算,属于基础题.19.【分析】将化为再构造向量和得出比例关系最后求解【详解】因为所以分别取的中点则所以即三点共线且如图所示则由于为中点所以所以故答案为:【点睛】本题考查向量的线性运算但是在三角形中考查又和三角形面积综合在解析:16【分析】将230OA OB OC ++=化为()2OA OC OB OC +=-+,再构造向量()12OA OC +和()12OB OC +,得出比例关系,最后求解12.S S【详解】因为230OA OB OC ++=,所以()2OA OC OB OC +=-+,分别取AC ,BC 的中点D ,E ,则2OA OC OD +=,2OB OC OE +=. 所以2OD OE =-,即O ,D ,E 三点共线且2OD OE =.如图所示,则13OBC DBC S S ∆∆=,由于D 为AC 中点,所以12DBC ABC S S ∆∆=,所以16OBC ABC S S ∆∆=. 故答案为:16【点睛】本题考查向量的线性运算,但是在三角形中考查,又和三角形面积综合在一起,属于中档题.20.【分析】首先以点为原点建立空间直角坐标系利用向量的坐标表示再求取值范围【详解】如图建立平面直角坐标系当时取得最小值当时取得最大值所以的取值范围为故答案为:【点睛】关键点点睛:本题的关键是利用坐标法解解析:11,154⎡⎤⎢⎥⎣⎦【分析】首先以点B 为原点,建立空间直角坐标系,利用向量的坐标表示DM DN ⋅,再求取值范围. 【详解】如图,建立平面直角坐标系,(3A ,(3D ,(),0M x ,()1,0N x +,(2,3DM x =--,(1,3DN x =--,[]0,5x ∈,()()212335DM DN x x x x ⋅=--+=-+231124x ⎛⎫=-+ ⎪⎝⎭,当32x =时,取得最小值114,当5x =时,取得最大值15,所以DM DN ⋅的取值范围为11,154⎡⎤⎢⎥⎣⎦故答案为:11,154⎡⎤⎢⎥⎣⎦【点睛】关键点点睛:本题的关键是利用坐标法解决数量积的范围问题.三、解答题21.(1)332;(257【分析】 (1)由于()12AD AB AC =+,进而根据向量的模的计算求解即可; (2)由于3144BM AB AC =-+,()12AD AB AC =+,进而根据向量数量积得278BM AD ⋅=,故57cos BM AD BM AD θ⋅==. 【详解】解:(1)由已知,236cos 93AB AC π⋅=⨯=-, 又()12AD AB AC =+, 所以()222124AD AB AB AC AC =+⋅+()1279183644=-+=, 所以33AD =. (2)由(1)知,()131444BM AM AB AB AC AB AB AC =-=+-=-+, 所以()293117199361681616BM=⨯-⨯-+⨯=,从而319BM =. ()311442BM AD AB AC AB AC ⎛⎫⋅=-+⋅+= ⎪⎝⎭()3212799368888-⨯-⨯-+⨯=,所以2757cos 831933BM AD BM ADθ⋅=== 解法2:(1)以点A 为原点,AB 为x 轴,过点A 且垂直于AB 的直线为y 轴建系,则()0,0A ,()3,0B ,(C -,因为D 为边BC 的中点,所以0,2D ⎛ ⎝⎭,0,2AD ⎛= ⎝⎭,所以332AD =.(2)因为M 为中线AD 的中点,由(1)知,0,4M ⎛⎫ ⎪ ⎪⎝⎭,所以3,4BM ⎛⎫=- ⎪ ⎪⎝⎭,所以9164BM ==,278BM AD ⋅=,所以27cos8BM AD BM AD θ⋅=== 【点睛】本题考查向量的数量积运算,向量夹角的计算,考查运算求解能力与化归转化思想,是中档题.本题解题的关键在于向量表示中线向量()12AD AB AC =+,进而根据向量模的计算公式计算.22.(1)[ 1.1]A B y y -∈-;(2)31,22⎡⎤-⎢⎥⎣⎦. 【分析】(1)根据三角函数的定义写出点A 与点B 纵坐标,从而将A B y y -表示成关于α的三角函数;(2)写出向量数量积的坐标运算,即AO CB OA BC ⋅=⋅,再利用三角函数的有界性,即可得答案;【详解】由题意得:()sin ,sin 60A B y y αα︒==-,∴A B y y -()1sin sin 60sin sin cos 22ααααα︒⎛⎫=--=-⋅-⋅ ⎪ ⎪⎝⎭1sin sin 223πααα⎛⎫=+=+ ⎪⎝⎭ 02απ<,∴1sin 13πα⎛⎫-≤+≤ ⎪⎝⎭,∴[ 1.1]A B y y -∈-.(2)()()() (cos ,sin )1cos 60,sin 60AO CB OA BC αααα︒︒⋅=⋅=⋅---- ()()cos cos cos 60sin sin 60ααααα︒︒=-⋅--⋅- ()22133cos sin cos sin cos sin cos 2ααααααα=-+-⋅+⋅ 1cos 2α=-, 02απ≤<,3111cos 1cos 222αα∴-≤≤⇒-≤-≤, ∴31,22AO CB ⎡⎤⋅∈-⎢⎥⎣⎦. 【点睛】根据三角函数的定义及三角恒等变换、三角函数的有界性是求解本题的关键.23.(1)1162OR a b =+;(2)171,422⎡⎤⎢⎥⎣⎦. 【分析】(1)利用,,A R Q 三点共线和,,B R P 三点共线,结合平面向量共线定理,可构造方程组求得结果;(2)设BHt BA =,利用0BH AB ⋅=,结合平面向量线性运算将两个向量转化为用,a b 表示的向量,利用平面向量数量积的运算律可整理得到t 关于cos θ的函数形式,利用cos θ的范围即可求得结果.【详解】(1)设OR OA OQ λμ=+,,,A R Q 三点共线,1λμ∴+=,又:3:2OQ QB =,35OQ OB ∴=,35OR OA OB μλ∴=+;设OR mOP nOB =+,同理可得:1m n +=,3m OR OA nOB =+, ,OA OB 不共线,335m n λμ⎧=⎪⎪∴⎨⎪=⎪⎩,51331m n m n ⎧+=⎪∴⎨⎪+=⎩,解得:1212m n ⎧=⎪⎪⎨⎪=⎪⎩,1162OR OA OB ∴=+, 即1162OR a b =+. (2)设BH t BA =,则BH tBA =,()()1162RH BH BR tBA OR OB t OA OB OA OB ⎛⎫=-=--=--- ⎪⎝⎭ 11116262t OA t OB t a t b ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 又AB OB OA b a =-=-,BH AB ⊥,0BH AB ∴⋅=,()2211112262623t a t b b a t a t b t a b ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫∴-+-⋅-=-+-+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦14134244cos 54cos cos 06363t t t t t θθθ⎛⎫=-+-+-=-+-= ⎪⎝⎭, 整理可得:134cos 138cos 136354cos 3024cos 33024cos t θθθθθ--===+---, 2,33ππθ⎡⎤∈⎢⎥⎣⎦,11cos ,22θ⎡⎤∴∈-⎢⎥⎣⎦,171,422t ⎡⎤∴∈⎢⎥⎣⎦, 即BHBA 的取值范围为171,422⎡⎤⎢⎥⎣⎦. 【点睛】思路点睛:本题考查了平面向量线性运算和数量积运算的综合应用,处理数量积运算问题时,通常利用线性运算将所求向量进行等价转化,利用模长和夹角已知的两个向量来表示所求向量,如本题中利用,a b 表示出,BH AB ,再结合数量积的运算律来进行求解. 24.(Ⅰ)32-;(Ⅱ)1. 【分析】(I )建立坐标系,求出向量坐标,代入数量积公式计算;(II )利用向量坐标运算,得到三角函数,根据三角函数求出最大值.【详解】(Ⅰ)()AB BC AB AC AB →→→→→⋅=⋅- 213122AB AC AB →→→=⋅-=--=-. (Ⅱ)建立如图所示的平面直角坐标系,则(1,0)B ,13(,)22C -. 设(cos ,sin )P θθ,[0,]3θ2π∈,由AP x AB y AC →→→=+,得13(cos ,sin )(1,0)(2x y θθ=+-. 所以3cos ,sin 22y x y θθ=-=. 所以3cos sin 3x θθ=+,33y θ=, 2232311sin cos sin 2cos 233333xy θθθθθ=+=+- 2311(2cos 2)3223θθ=-+ 21sin(2)363πθ=-+, 因为2[0,]3πθ∈,72[,]666πππθ-∈-. 所以,当262ππθ-=,即3πθ=时,xy 的最大值为1. 【点睛】本题主要考查了平面向量的数量积运算,向量的坐标运算,正弦型函数的图象与性质,属于中档题.25.(1)3BC =;72BE =;(2)是定值,78. 【分析】 (1)由()22BC AC AB =-,()2212BE BO BC ⎡⎤=+⎢⎥⎣⎦,结合数量积公式得出BC 和BE ;(2)取BE 的中点N ,连接MN ,由ME MB =,得出MN BE ⊥,由BM BN NM =+,结合数量积公式计算BE BM ⋅,即可得出定值.【详解】(1)∵BC AC AB =-∴222211211cos1203BC AC AB AB AC =+-⋅=+-⨯⨯⨯︒=∴3BC =又()12BE BO BC =+ ∴()22211372132134424BE BO BC BO BC ⎛⎫=++⋅=++⨯⨯⨯= ⎪⎝⎭ ∴7BE = (2)取BE 的中点N ,连接MN∵ME MB =,∴MN BE ⊥,且BM BN NM =+∴()BE BM BE BN NM BE BN BE NM ⋅=⋅+=⋅+⋅211177022248BE BE BE =⋅+==⨯= ∴78BE BM ⋅=(为定值)【点睛】本题主要考查了利用定义计算数量积以及模长,涉及了向量加减法的应用,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =. 因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<,则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ, 使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=,故310 CGCB.【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。

高一数学必修4第二章平面向量测试题(含答案)

高一数学必修4第二章平面向量测试题(含答案)

必修4第二章平面向量教学质量检测一.选择题(5分×12=60分):1.以下说法错误的是( )A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为的是( )A .;)++(BC CD AB B .);+)+(+(CM BC MB AD C .;-+BM AD MB D .;+-CD OA OC 3.已知=(3,4),=(5,12),与 则夹角的余弦为( )A .6563B .65C .513 D .13 4. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( )A .7B .10C .13D .45.已知ABCDEF 是正六边形,且−→−AB =→a ,−→−AE =→b ,则−→−BC =( )(A ) )(21→→-b a (B ) )(21→→-a b (C ) →a +→b 21 (D ) )(21→→+b a 6. 平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b +=( B )B. C. 4 D.27.设→1e 与→2e 是不共线的非零向量,且k →1e +→2e 与→1e +k →2e 共线,则k 的值是( )(A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数8.在四边形ABCD 中,−→−AB =−→−DC ,且−→−AC ·−→−BD =0,则四边形ABCD 是( )(A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且−→−PN =-2−→−PM ,则P 点的坐标为( )(A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)10.已知→a =(1,2),→b =(-2,3),且k →a +→b 与→a -k →b 垂直,则k =( )(A ) 21±-(B ) 12±(C ) 32±(D ) 23±11、若平面向量(1,)a x = 和(23,)b x x =+- 互相平行,其中x R ∈.则a b -= ( ) A. 2-或0; B. 25; C. 2或25; D. 2或10.12、下面给出的关系式中正确的个数是( )① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤b a b a ⋅≤⋅(A) 0 (B) 1 (C) 2 (D) 3二. 填空题(5分×5=25分):13.若),4,3(=AB A点的坐标为(-2,-1),则B点的坐标为 .14.已知(3,4),(2,3)=-=a b ,则2||3-⋅=a a b .15、已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是_________________。

高中数学 第二章 平面向量阶段质量检测B卷(含解析)新人教A版必修4

高中数学 第二章 平面向量阶段质量检测B卷(含解析)新人教A版必修4

第二章 平面向量(B 卷 能力素养提升)(时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.化简AC -BD +CD -AB 得( ) A .AB B .DA C .BCD .0解析:选D AC -BD +CD -AB=AC +CD -(AB +BD )=AD -AD =0.2.已知向量a 与b 的夹角为π3,|a |=2,则a 在b 方向上的投影为( )A. 3B. 2C.22 D.32解析:选C a 在b 方向上的投影为|a |·cos〈a ,b 〉=2cos π3=22.选C.3.向量BA =(4,-3),BC =(2,-4),则△ABC 的形状为( ) A .等腰非直角三角形 B .等边三角形 C .直角非等腰三角形 D .等腰直角三角形解析:选C AC =BC -BA =(2,-4)-(4,-3)=(-2,-1),而AC ·BC =(-2,-1)·(2,-4)=0,所以AC ⊥BC ,又|AC |≠|BC |,所以△ABC 是直角非等腰三角形.故选C.4.若OF 1=(2,2),OF 2=(-2,3)分别表示F 1,F 2,则|F 1+F 2|为( ) A .(0,5) B .25 C .2 2D .5解析:选D ∵F 1+F 2=(0,5),∴|F 1+F 2|=02+52=5. 5.若向量a ,b ,c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( ) A .4 B .3 C .2D .0解析:选D 由a ∥b 及a ⊥c ,得b ⊥c ,则c ·(a +2b )=c ·a +2c ·b =0.6.设向量a =(-1,2),b =(m,1),如果向量a +2b 与2a -b 平行,那么a 与b 的数量积等于( )A .-72B .-12C.32D.52解析:选C 可得a +λb =(1+λ,2),由(a +λb )∥c 得(1+λ)×4-3×2=0,∴λ=12. 7.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |等于( ) A. 3 B .2 3 C .4D .12解析:选B 因为|a |=2,|b |=1, ∴a ·b =2×1×cos 60°=1.∴|a +2b |=a 2+4×a ·b +4b 2=2 3.8.如图,非零向量OA =a ,|a |=2,OB =b ,a ·b =1,且BC ⊥OA ,C 为垂足,若OC =λa ,则λ为( )A.12B.13C.14D .2解析:选C 设a 与b 的夹角为θ.∵|OC |就是OB 在OA 上的投影|b |cos θ,∴|OC |=|b | cos θ=a ·b |a |=λ|a |,即λ=a ·b |a |2=14,故选C. 9.若e 1,e 2是平面内夹角为60°的两个单位向量,则向量a =2e 1+e 2与b =-3e 1+2e 2的夹角为( )A .30°B .60°C .90°D .120°解析:选 D e 1·e 2=|e 1||e 2|cos 60°=12,a ·b =(2e 1+e 2)·(-3e 1+2e 2)=-72,|a |=e 1+e 22=4+4e 1·e 2+1=7,|b |=-3e 1+2e 22=9-12e 1·e 2+4=7,所以a ,b 的夹角的余弦值为cos 〈a ,b 〉=a ·b |a ||b |=-727×7=-12,所以〈a ,b 〉=120°.故选D.10.在△ABC 中,已知向量AB 与AC 满足AB|AB |+AC|AC |·BC =0且AB|AB |·AC|AC |=12,则△ABC 为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:选D 非零向量AB 与AC 满足⎝ ⎛⎭⎪⎫AB |AB |+AC | AC |·BC =0,即∠A 的平分线垂直于BC ,∴AB =AC .又cos A =AB|AB |·AC |AC |=12,∴∠A =π3,所以△ABC 为等边三角形,选D.二、填空题(本大题共4小题,每小题5分,共20分)11.若向量AB =(3,-1),n =(2,1),且n ·AC =7,那么n ·BC =________. 解析:n ·BC =n ·(AC -AB )=n ·AC -n ·AB =7-5=2. 答案:212.已知a ,b 的夹角为θ,|a |=2,|b |=1,则a ·b 的取值范围为________. 解析:∵a ·b =|a ||b |cos θ=2cos θ,又∵θ∈[0,π],∴cos θ∈[-1,1],即a ·b ∈[-2,2]. 答案:[-2,2]13.如图,在平行四边形ABCD 中,AP ⊥BD ,垂足为P ,且AP =3,则AP ·AC =________.解析:设AC ∩BD =O ,则AC =2(AB +BO ),AP ·AC =AP ·2(AB +BO )=2AP ·AB +2AP ·BO =2AP ·AB =2AP ·(AP +PB )=2|AP |2=18.答案:1814.关于平面向量a ,b ,c ,有下列三个命题:①若a ·b =a ·c ,则b =c ;②若a =(1,k ),b =(-2,6),a ∥b ,则k =-3;③非零向量a 和b 满足|a |=|b |=|a -b |,则a 与a +b 的夹角为60°,其中真命题的序号为________.(写出所有真命题的序号)解析:①a ·b =a ·c ⇔a ·(b -c )=0,表明a 与b -c 向量垂直,不一定有b =c ,所以①不正确;对于②,当a ∥b 时,1×6+2k =0,则k =-3,所以②正确;结合平行四边形法则知,若|a |=|b |=|a -b |,则|a |,|b |,|a -b |可构成一正三角形,那么a +b 与a 的夹角为30°,而非60°,所以③错误.答案:②三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分12分)已知OA =a ,OB =b ,对于任意点M 关于A 点的对称点为S ,S 点关于B 点的对称点为N .(1)用a ,b 表示向量MN ;(2)设|a |=1,|b |=2,|MN |∈[23,27],求a 与b 的夹角θ的取值范围. 解:(1)依题意,知A 为MS 的中点,B 为NS 的中点. ∴SN =2SB ,SM =2SA .∴MN =SN -SM =2(SB -SA )=2AB =2(OB -OA )=2(b -a ). (2)∵|MN |∈[23,27],∴MN 2∈[12,28],∴12≤4(b -a )2≤28. ∴3≤4+1-2a ·b ≤7,∴-1≤a ·b ≤1.∵cos θ=a ·b |a ||b |=a ·b 2,∴-12≤cos θ≤12.∵0≤θ≤π,∴π3≤θ≤2π3,即θ的取值范围为⎣⎢⎡⎦⎥⎤π3,2π3.16.(本小题满分12分)已知在梯形ABCD 中,AB ∥CD ,∠CDA =∠DAB =90°,CD =DA =12AB .求证:AC ⊥BC .证明:以A 为原点,AB 所在直线为x 轴,建立直角坐标系,如图,设AD =1,则A (0,0),B (2,0),C (1,1),D (0,1). ∴BC =(-1,1),AC =(1,1),BC ·AC =-1×1+1×1=0,∴BC ⊥AC ,∴BC ⊥AC .17.(本小题满分12分)设函数f (x )=a ·b ,其中向量a =(m ,cos 2x ),b =(1+sin 2x ,1),x ∈R ,且y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,2.求实数m 的值.解:f (x )=a ·b =m (1+sin 2x )+cos 2x , 由已知得f ⎝ ⎛⎭⎪⎫π4=m ⎝ ⎛⎭⎪⎫1+sin π2+cos π2=2, 解得m =1.18.(本小题满分14分)(1)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,求a 与b 的夹角;(2)设OA =(2,5),OB =(3,1),OC =(6,3),在OC 上是否存在点M ,使MA ⊥MB ?若存在,求出点M 的坐标;若不存在,请说明理由.解:(1)(2a -3b )·(2a +b )=4a 2-4a ·b -3b 2=61. ∵|a |=4,|b |=3, ∴a ·b =-6,∴cos θ=a ·b |a ||b |=-64×3=-12,∴θ=120°.(2)假设存在点M ,且OM =λOC =(6λ,3λ)(0<λ≤1), ∴MA =(2-6λ,5-3λ),MB =(3-6λ,1-3λ), ∴(2-6λ)×(3-6λ)+(5-3λ)(1-3λ)=0, ∴45λ2-48λ+11=0,得λ=13或λ=1115.∴OM =(2,1)或OM =⎝ ⎛⎭⎪⎫225,115. ∴存在M (2,1)或M ⎝ ⎛⎭⎪⎫225,115满足题意.。

高中数学人教A版必修四质量检测2 平面向量

高中数学人教A版必修四质量检测2 平面向量

质量检测(二)(时间90分钟 满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在五边形ABCDE 中(如图),AB →+BC →-DC →=( ) A.AC → B.AD → C.BD →D.BE →[解析] AB →+BC →-DC →=AC →+CD →=AD →. [答案] B2.已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =( )A .(-5,-10)B .(-4,-8)C .(-3,-6)D .(-2,-4)[解析] ∵a ∥b ,∴-21=m2,∴m =-4, ∴b =(-2,-4),∴2a +3b =2(1,2)+3(-2,-4)=(-4,-8).[答案] B3.若M 是△ABC 的重心,则下列各向量中与AB →共线的是( ) A.AB →+BC →+AC → B.AM →+MB →+BC → C.AM →+BM →+CM →D .3AM →+AC →[解析] 由题意知AM →+BM →+CM →=0,∵0∥AB →,∴选C.(注意利用结论:在△ABC 中,对△ABC 的重心M 有AM →+BM →+CM →=0)[答案] C4.已知平面向量a =(1,-3),b =(4,-2),若λa +b 与a 垂直,则λ的值是( )A .-1B .1C .-2D .2[解析] 由题意可知(λa +b )·a =λa 2+b ·a =0. ∵|a |=10,a ·b =1×4+(-3)×(-2)=10, ∴10λ+10=0,λ=-1. [答案] A5.若|a |=2,|b |=2,且(a -b )⊥a ,则a 与b 的夹角是( ) A.π6 B.π4 C.π3 D.π2[解析] 由于(a -b )⊥a ,所以(a -b )·a =0,即|a |2-a ·b =0,所以a ·b =|a |2=2,所以cos 〈a ,b 〉=a ·b |a ||b |=222=22,即a 与b 的夹角是π4.[答案] B6.在△ABC 中,(BC →+BA →)·AC →=|AC →|2,则△ABC 的形状一定是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形[解析] 由(BC →+BA →)·AC →=|AC →|2,得AC →·(BC →+BA →-AC →)=0,即AC →·(BC →+BA →+CA →)=0,∴2AC →·BA →=0,∴AC →⊥BA →,∴A =90°.故选C. [答案] C7.P 是△ABC 所在平面上一点,若P A →·PB →=PB →·PC →=PC →·P A →,则P 是△ABC 的( )A .内心B .外心C .垂心D .重心[解析] ∵P A →·PB →=PB →·PC →, ∴PB →·(P A →-PC →)=0, ∴PB →·CA →=0,∴PB →⊥CA →.同理PC →⊥AB →,P A →⊥BC →,∴P 是△ABC 的垂心. [答案] C8.平面向量a =(x ,-3),b =(-2,1),c =(1,y ),若a ⊥(b -c ),b ∥(a +c ),则b 与c 的夹角为( )A .0 B.π4 C.π2 D.3π4[解析] 由题意知b -c =(-3,1-y ), a +c =(x +1,y -3),依题意得⎩⎪⎨⎪⎧-3x -3(1-y )=0,x +1+2(y -3)=0,解得⎩⎪⎨⎪⎧x =1,y =2,∴c =(1,2),而b ·c =-2×1+1×2=0, ∴b ⊥c . [答案] C9.已知AD ,BE 分别为△ABC 的边BC ,AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( )A.43a +23bB.23a +43bC.23a -43b D .-23a +43b[解析] 由题意得BE →=12(BA →+BC →),所以2BE →=BA →+BC →,①同理得2AD →=AB →+AC →=-BA →+(BC →-BA →) =-2BA →+BC →, 即2AD →=-2BA →+BC →.② ①×2+②得4BE →+2AD →=3BC →, 即4b +2a =3BC →, 所以BC →=23a +43b .选B. [答案] B10.已知向量m =(a ,b ),n =(c ,d ),p =(x ,y ),定义新运算m ⊗n =(ac +bd ,ad +bc ),其中等式右边是通常的加法和乘法运算.如果对于任意向量m 都有m ⊗p =m 成立,则向量p 为( )A .(1,0)B .(-1,0)C .(0,1)D .(0,-1)[解析] 因为m ⊗p =m ,即(a ,b )⊗(x ,y )=(ax +by ,ay +bx )=(a ,b ),所以⎩⎪⎨⎪⎧ ax +by =a ,ay +bx =b ,即⎩⎪⎨⎪⎧a (x -1)+by =0,ay +b (x -1)=0.由于对任意m =(a ,b ), 都有(a ,b )⊗(x ,y )=(a ,b )成立.所以⎩⎪⎨⎪⎧ x -1=0,y =0,解得⎩⎪⎨⎪⎧x =1,y =0.所以p =(1,0).故选A. [答案] A二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)11.在平行四边形ABCD 中,AD =1,∠BAD =60°,E 为CD 的中点.若AC →·BE →=1,则AB 的长为________.[解析] 设|AB →|=x ,x >0, 则AB →·AD →=12x .又AC →·BE →=(AD →+AB →)·(AD →-12AB →) =1-12x 2+14x =1, 解得x =12,即AB 的长为12. [答案] 1212.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.[解析] ∵λa +b 与a +2b 平行, ∴λa +b =t (a +2b )=t a +2t b∴⎩⎪⎨⎪⎧λ=t ,1=2t ,∴⎩⎪⎨⎪⎧λ=12,t =12.[答案] 1213.如图,在平行四边形中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.[解析] AP →·BP →=(AD →+DP →)·(BC →+CP →) =(AD →+14AB →)·(AD →-34AB →) =AD →2-316AB →2+⎝⎛⎭⎪⎫14-34AB →·AD →=25-316×64-12AB →·AD → =13-12AB →·AD →=2, 故AB →·AD →=22. [答案] 2214.如图所示,设P ,Q 为△ABC 内的两点,且AP →=25AB →+15AC →,AQ →=23AB →+14AC →,则△ABP 的面积与△ABQ 的面积之比为________.[解析] 根据题意,设AM →=25AB →,AN →=15AC →,则AP →=AM →+AN →,且四边形AMPN 为平行四边形,所以NP ∥AB ,所以S △ABP S △ABC =|AN →||AC →|=15.同理可得S △ABQ S △ABC =14.故S △ABP S △ABQ =45.[答案] 4∶5三、解答题(本大题共4小题,共50分,解答应写出文字说明,证明过程或演算步骤)15.(12分)已知|a |=2,|b |=3,a 与b 的夹角为60°,c =5a +3b ,d =3a +k b ,当实数k 为何值时,(1)c ∥d ;(2)c ⊥d .[解] 由题意得a ·b =|a ||b |cos60°=2×3×12=3. (1)当c ∥d ,c =λd ,则5a +3b =λ(3a +k b ). ∴3λ=5,且kλ=3,∴k =95.(2)当c ⊥d 时,c ·d =0,则(5a +3b )·(3a +k b )=0. ∴15a 2+3k b 2+(9+5k )a ·b =0, ∴k =-2914.16.(12分)(1)在直角三角形ABC 中,C =90°,AB =5,AC =4,求AB →·BC →;(2)已知向量AB →=(3,1),AC →=(-1,a ),a ∈R .若△ABC 为直角三角形,求a 的值.[解] (1)在△ABC 中,C =90°,AB =5,AC =4, 故BC =3,且cos ∠ABC =35, AB →与BC →的夹角θ=π-∠ABC ,∴AB →·BC →=-|AB →||BC →|cos ∠ABC =-5×3×35=-9. (2)∵△ABC 是直角三角形, ∴A =90°或B =90°或C =90°.当A =90°时,由AB →⊥AC →,得3×(-1)+1·a =0, ∴a =3;当B =90°时,BC →=AC →-AB → =(-4,a -1),由AB →⊥BC →,得3×(-4)+1·(a -1)=0, ∴a =13;当C =90°时,由BC →⊥AC →,得 -1×(-4)+a ·(a -1)=0, 即a 2-a +4=0,∵a ∈R ,∴方程a 2-a +4=0无解.综上所述,a =3或13.17.(12分)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61, (1)求a 与b 的夹角θ; (2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.[解] (1)∵(2a -3b )·(2a +b )=61, ∴4|a |2-4a ·b +3|b |2=61, 又|a |=4,|b |=3, ∴64-4a ·b -27=61, ∴a ·b =-6. ∴cos θ=a ·b |a ||b |=-64×3=-12. 又0≤θ≤π,∴θ=2π3.(2)可先平方转化为向量的数量积. |a +b |2=(a +b )2=|a |2+2a ·b +|b |2 =42+2×(-6)+32=13, ∴|a +b |=13.(3)∵AB →与BC →的夹角θ=2π3, ∴∠ABC =π-2π3=π3. 又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC =12×4×3×32=3 3.18.(14分)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),又点A (8,0),B (n ,t ),C (k sin θ,t )⎝ ⎛⎭⎪⎫0≤θ≤π2. (1)若AB →⊥a ,且|AB →|=5|OA →|,求向量OB →;(2)若向量AC →与向量a 共线,当k >4,且t sin θ取最大值4时,求OA →·OC →.[解] (1)由题设知AB →=(n -8,t ),∵AB →⊥a ,∴8-n +2t =0. 又∵5|OA →|=|AB →|,∴5×64=(n -8)2+t 2=5t 2.解得t =±8. 当t =8时,n =24;当t =-8时,n =-8,∴OB →=(24,8)或OB →=(-8,-8).(2)由题设知AC →=(k sin θ-8,t ).∵AC →与a 共线,∴t =-2k sin θ+16,∴t sin θ=(-2k sin θ+16)sin θ=-2k ⎝⎛⎭⎪⎫sin θ-4k 2+32k . ∵k >4,∴0<4k <1,∴当sin θ=4k 时,t sin θ取得最大值32k .由32k =4,得k =8,此时θ=π6,OC →=(4,8).∴OA →·OC →=(8,0)·(4,8)=32.由Ruize收集整理。

(好题)高中数学必修四第二章《平面向量》检测题(包含答案解析)

(好题)高中数学必修四第二章《平面向量》检测题(包含答案解析)

一、选择题1.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的个数为( )①当0x =时,[]2,3y ∈②当P 是线段CE 的中点时,12x =-,52y =③若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 ④x y -的最大值为1- A .1B .2C .3D .42.已知两个单位向量a ,b ,其中向量a 在向量b 方向上的投影为12.若()()2a b a b λ+⊥-,则实数λ的值为( )A .14-B .12-C .0D .123.过点()3,1P 的直线l 与函数21()26x f x x -=-的图象交于A ,B 两点,O 为坐标原点,则()OA OB OP +⋅=( )A .10B .210C .10D .204.设平面向量()a=1,2,()b=2,y -,若a b ,则2a b -等于( ) A .4B .5C .35D .455.延长正方形CD AB 的边CD 至E ,使得D CD E =.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到A 点,若λμAP =AB +AE ,下列判断正确的是( )A .满足2λμ+=的点P 必为CB 的中点B .满足1λμ+=的点P 有且只有一个C .λμ+的最小值不存在D .λμ+的最大值为36.已知向量()1,2a =,()2,3b =-,若向量c 满足()//c a b +,()c a b ⊥+,则c =( ) A .7793⎛⎫ ⎪⎝⎭,B .7739⎛⎫-- ⎪⎝⎭,C .7739⎛⎫ ⎪⎝⎭,D .7793⎛⎫-- ⎪⎝⎭,7.已知(),0A a ,()0,C c ,2AC =,1BC =,0AC BC ⋅=,O 为坐标原点,则OB 的取值范围是( ) A .(0,21⎤-⎦B .(0,21⎤+⎦ C .21,21⎡⎤-+⎣⎦D .)21,⎡-+∞⎣8.已知向量(3,0)a =,(0,1)b =-,(,3)c k =,若(2)a b c -⊥,则k =( ) A .2B .2-C .32D .32-9.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( ) A .18-B .116-C .316-D .010.如图,在平面直角坐标系xOy 中,原点O 为正八边形12345678PP P P P P P P 的中心,18PP x ⊥轴,若坐标轴上的点M (异于点O )满足0i j OM OP OP ++=(其中1,8i j ≤≤,且i 、j N *∈),则满足以上条件的点M 的个数为( )A .2B .4C .6D .811.已知等边ABC 的边长为2,若3BC BE =,AD DC =,则BD AE ⋅等于( ) A .103B .103-C .2D .2-12.在ABC ∆中,2,3,60,AB BC ABC AD ==∠=为BC 边上的高,O 为AD 的中点,若AO AB BC λμ=+,其中,R λμ∈,则λμ+等于( ) A .1 B .12C .13 D .23二、填空题13.已知单位向量,a b 满足1a b +=,则|a b -=___________.14.O 为坐标原点,已知向量()1,5OA =,()4,2OB =,()6,8OC =,,x y 为非负实数且01x y ≤+≤,CD xCA yCB =+,则OD 的最小值为_______________15.在△ABC 中,BD =2DC ,过点D 的直线与直线AB ,AC 分别交于点E ,F ,若AE =x AB ,AF =y AC (x >0,y >0),则x +y 的最小值为_____.16.如图,在ABC 中,已知D 是BC 延长线上一点,点E 为线段AD 的中点,若2BC CD =,且34AE AB AC λ=+,则λ=___________.17.已知(2,1)a =-,(1,)b t =,若(2)a b a -⊥,则b =__________18.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.19.在ABC 中,22AC AB ==,120BAC ∠=,O 是BC 的中点,M 是AO 上一点,且3AO MO =,则MB MC ⋅的值是______.20.已知平面单位向量a ,b 满足1a b -≤.设向量2a b +与向量2a b -的夹角为θ,则cos θ的最大值为______. 三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k .22.已知()1,2a =,()2,1b =-,k 为何值时, (1)ka b +与a b -垂直? (2)ka b +与a b -平行?23.(1)已知非零向量1e 、2e 不共线,欲使12ke e +和12e ke +共线,试确定实数k 的值. (2)已知向量1a =,2b =,()()23a b a b +⊥-,求a 与b 夹角的大小.24.已知()sin ,a x x =,()cos ,cos b x x =-,函数3()2f x a b =⋅+. (1)求函数()f x 图象的对称轴方程; (2)若方程1()3f x =在()0,π上的解为1x ,2x ,求()12cos x x +的值.25.设()2,0a →=,(b →=.(1)若a b b λ→→→⎛⎫-⊥ ⎪⎝⎭,求实数λ的值;(2)若(),m x a y b x y R →→→=+∈,且23m =,m →与b →的夹角为6π,求x ,y 的值. 26.已知向量()3,1a =-,()1,2b =-,()n a kb k R =-∈. (1)若n 与向量2a b -垂直,求实数k 的值;(2)若向量()1,1c =-,且n 与向量kb c +平行,求实数k 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用向量共线的充要条件判断出①错,③正确;利用向量的运算法则求出OP ,求出x ,y 判断出②正确,利用三点共线解得④正确 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故①错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ ()11153(2)32222OB OB AB OB OB OB OA OA OB =+-+=-+-=-+,故②对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N , 则:OP ON OM =+;又OP xOA yOB =+;0x ∴≤,1y ≥;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故④正确 所以选项②③④正确. 故选:C 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.2.C解析:C 【分析】记a 与b 的夹角为θ,则a 在b 上的投影为1cos 2a θ=,然后向量垂直转化为数量积为0可计算λ. 【详解】记a 与b 的夹角为θ,则a 在b 上的投影为cos a θ,则1cos 2a θ=, ∵()()2a b a b λ+⊥-,∴()()()221322221(2)022a b a b a b a b λλλλλλ+⋅-=-+-⋅=-+-⋅==, 故0λ=, 故选:C . 【点睛】结论点睛:本题考查平面向量的数量积及其几何意义.向量垂直的数量积表示. (1)设,a b 向量的夹角为θ,则a 在b 方向上的投影是cos a b a bθ⋅=;(2)对两个非零向量,a b ,0a b a b ⊥⇔⋅=.3.D解析:D 【分析】判断函数()f x 的图象关于点P 对称,得出过点()3,1P 的直线l 与函数()f x 的图象交于A ,B 两点时,得出A ,B 两点关于点P 对称,则有 2OA OB OP +=,再计算()OA OB OP +⋅的值.【详解】()52121263x f x x x -==+-- ,∴函数21()26x f x x -=-的图象关于点()3,1P 对称,∴过点()3,1P 的直线l 与函数()2126x f x x -=-的图象交于A ,B 两点,且A ,B 两点关于点()3,1P 对称,∴ 2OA OB OP +=,则()()222223120OA OB OP OP +⋅==⨯+=.故选D . 【点睛】本题主要考查了函数的对称性,以及平面向量的数量积运算问题,是中档题.4.D解析:D 【分析】利用向量共线定理即可得出y ,从而计算出2a b -的坐标,利用向量模的公式即可得结果. 【详解】//,220a b y ∴-⨯-=,解得4y =-,()()()221,22,44,8a b ∴-=---=,2248a b ∴-=+= D.【点睛】本题主要考查平面向量平行的性质以及向量模的坐标表示,属于中档题. 利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.5.D解析:D 【解析】试题分析:设正方形的边长为1,建立如图所示直角坐标系,则,,,,A B C D E 的坐标为(0,0),(1,0),(1,1),(0,1),(1,1)-,则(1,0),(1,1)AB AE ==-设(,)AP a b =,由λμAP =AB +AE 得(,)(,)a b λμμ=-,所以{a b λμμ=-=,当P 在线段AB 上时,01,0a b ≤≤=,此时0,a μλ==,此时a λμ+=,所以01λμ≤+≤;当P 在线段BC 上时,,此时,1b a b μλμ==+=+,此时12b λμ+=+,所以13λμ≤+≤;当P 在线段CD 上时,,此时1,1a a μλμ==+=+,此时2a λμ+=+,所以13λμ≤+≤;当P 在线段DA 上时,0,01,a b =≤≤,此时,b a b μλμ==+=,此时2b λμ+=,所以02λμ≤+≤;由以上讨论可知,当2λμ+=时,P 可为BC 的中点,也可以是点D ,所以A 错;使1λμ+=的点有两个,分别为点B 与AD 中点,所以B 错,当P 运动到点A 时,λμ+有最小值0,故C 错,当P 运动到点C 时,λμ+有最大值3,所以D 正确,故选D .考点:向量的坐标运算.【名师点睛】本题考查平面向量线性运算,属中档题.平面向量是高考的必考内容,向量坐标化是联系图形与代数运算的渠道,通过构建直角坐标系,使得向量运算完全代数化,通过加、减、数乘的运算法则,实现了数形的紧密结合,同时将参数的取值范围问题转化为求目标函数的取值范围问题,在解题过程中,还常利用向量相等则坐标相同这一原则,通过列方程(组)求解,体现方程思想的应用.6.D解析:D 【分析】设出(,)c x y =,根据向量的共线与垂直的坐标运算,列出方程组,即可求解. 【详解】设(,)c x y =,向量()1,2a =,()2,3b =-,可得(1,2),(3,1)c a x y a b +=+++=-, 由()//c a b +,可得3(1)2(2)x y -⨯+=+,即3270x y ++=, 由()c a b ⊥+,可得30x y -=, 联立方程组327030x y x y ++=⎧⎨-=⎩,解得77,93x y =-=-,即77(,)93c =--.故选:D.【点睛】本题主要考查了向量的坐标表示,以及向量的共线与垂直的坐标运算及应用,其中解答中熟记向量的共线和垂直的坐标运算时解答的关键,着重考查推理与运算能力.7.C解析:C 【分析】法一:将A ,C 视为定点,根据A 、C 分别在 x 轴、y 轴上,得到垂直关系, O 是AC 为直径的圆上的动点,AC 的中点为圆心M ,根据圆心M 和BO 的位置关系即可得取值范围. 法二:设B 的坐标,根据2AC =,1BC =得到224a c +=,()221x y c +-=,整理式子至()222251x a y x y ax cy -+=⇒+=++,利用均值不等式得出OB d ==,则212d d -≤即可算出距离的取值范围.【详解】解:法一:将A ,C 视为定点,OA OC ⊥,O 视为以AC 为直径的圆上的动点,AC 的中点为M ,当BO 过圆心M ,且O 在B ,M 之间时,OB 1,O 在BM 的延长线上时,OB 1. 故选:C法二:设(),B x y ,则224a c +=,()221x y c +-=,()222251x a y x y ax cy -+=⇒+=++,即221ax cy x y +=+-,ax cy +≤=,取等号条件:ay cx =,令OB d ==,则22112{210d d d d d ≥-≤⇔--≤或201{210d d d <<⇔+-≥,解得11d ≤≤.故选:C 【点睛】本题考查向量的坐标运算和圆的基本性质,综合性强,属于中档题.8.B解析:B 【分析】求出2a b -)2=,利用向量垂直数量积为零列方程求解即可.【详解】由(3,0)a =,(0,1)b =-,得2a b -)2=,若(2)c a b -⊥,则(2)?0a b c -=,0,2k +=∴=-.故选B. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.9.C解析:C 【分析】建立平面直角坐标系,()0,P t ,2t ≤,则 223(2416⋅=-=--AP CP t t ,进而可求最小值. 【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,C ,设()0,P t ,其中t ≤1(,)2AP t =-,(0,CP t ==,223(16⋅==-AP CP t t ,当t =时取最小值为316-,所以AP CP ⋅的最小值为316-. 故选:C 【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.10.D解析:D 【分析】分点M 在x 、y 轴进行分类讨论,可得出点i P 、j P 关于坐标轴对称,由此可得出点M 的个数. 【详解】分以下两种情况讨论:①若点M 在x 轴上,则i P 、()1,8,,j P i j i j N*≤≤∈关于x 轴对称,由图可知,1P 与8P 、2P 与7P 、3P 与6P 、4P 与5P 关于x 轴对称,此时,符合条件的点M 有4个;②若点M 在y 轴上,则i P 、()1,8,,j P i j i j N*≤≤∈关于y 轴对称,由图可知,1P 与4P 、2P 与3P 、5P 与8P 、6P 与7P 关于y 轴对称,此时,符合条件的点M 有4个.综上所述,满足题中条件的点M 的个数为8.故选:D. 【点睛】本题考查符合条件的点的个数的求解,考查了平面向量加法法则的应用,属于中等题.11.D解析:D 【分析】 根据题意得出()12BD BA BC =+,13AE BC BA =-,运用数量积求解即可. 【详解】解:等边△ABC 的边长为2,3BC BE =,AD DC =, ∴()12BD BA BC =+,1313A AB BE AB B E BC A C B =+=+=-, ∴()221111223233BD AE BA BC BC BA BC BA BC BA ⎛⎫⎛⎫+-=--⋅ ⎪ ⎪⎝=⎭⎝⎭, 112144222332⎛⎫=⨯⨯--⨯⨯⨯ ⎪⎝⎭, 2=-.故选:D . 【点睛】本题考查了平面向量的运算,数量积的求解,关键是分解向量,属于中档题.12.D解析:D 【分析】根据题设条件求得13BD BC =,利用向量的线性运算法则和平面向量的基本定理,求得1126AO AB BC =+,得到11,26λμ==,即可求解.【详解】 在ABC ∆中,2,60,AB ABC AD =∠=为BC 边上的高, 可得1sin 212BD AB ABC =∠=⨯=, 又由3BC =,所以13BD BC =, 由向量的运算法则,可得13AD AB BD AB BC =+=+, 又因为O 为AD 的中点,111226AO AD AB BC ==+,因为AO AB BC λμ=+,所以11,26λμ==,则23λμ+=. 故选:D. 【点睛】本题主要考查了平面向量的线性运算法则,以及平面向量的基本定理的应用,其中解答中熟记向量的运算法则,结合平面向量的基本定理,求得1126AO AB BC =+是解答的关键,着重考查推理与运算能力.二、填空题13.【分析】根据条件两边平方进行数量积运算可求得然后根据即可求得答案【详解】因为所以所以所以故答案为:【点睛】思路点睛:该题考查的是有关向量模的求解问题解题思路如下:(1)首先根据题中条件结合向量模的平【分析】根据条件1a b +=两边平方,进行数量积运算可求得21a b ⋅=-,然后根据2()a b a b -=-即可求得答案.【详解】因为1a b ==,1a b +=,所以2222()2221a b a b a a b b a b +=+=+⋅+=+⋅=,所以21a b ⋅=-, 所以22()223a b a b a b a b -=-=-=-⋅=,【点睛】思路点睛:该题考查的是有关向量模的求解问题,解题思路如下:(1)首先根据题中条件,结合向量模的平方等于向量的平方,求得21a b ⋅=-; (2)之后再应用向量的模的平方等于向量的平方来求解.14.【分析】根据题意得表示的区域为及内部的点进而得当时取得最小值再计算即可得答案【详解】又为非负实数且所以表示的区域为及内部的点当时取得最小值因为所在的直线方程为即则取得最小值为故答案为:【点睛】本题考解析:【分析】根据题意得D 表示的区域为ABC 及内部的点,进而得当⊥OD AB 时,OD 取得最小值,再计算即可得答案.【详解】()1,5OA =,()4,2OB =,()6,8OC =,又,x y 为非负实数且01x y ≤+≤,CD xCA yCB =+, 所以D 表示的区域为ABC 及内部的点, 当⊥OD AB 时,OD 取得最小值, 因为AB 所在的直线方程为()()5251114y x x --=-=---,即60x y +-=, 则OD 取得最小值为322=. 故答案为:32.【点睛】本题考查向量的模的求解与线性规划,解题的关键是根据题意明确D 表示的区域,是中档题.15.【分析】根据向量线性关系的几何应用有令结合已知条件有即可列方程组得到关于k 的表达式表示x+y 最后由基本不等式即可求得最小值【详解】由题意连接可得如下示图∵在△ABC 中=2即有若令则有又=x =y (x > 解析:213+【分析】根据向量线性关系的几何应用有1233AD AB AC =+,令DE k DF =结合已知条件有11x kyAD AB AC k k =+++,即可列方程组,得到关于k 的表达式表示x + y ,最后由基本不等式即可求得最小值 【详解】由题意,连接AD 可得如下示图∵在△ABC 中BD =2DC ,即有1233AD AB AC =+ 若令DE k DF =,则有111kAD AE AF k k =+++ 又AE =x AB ,AF =y AC (x >0,y >0) ∴11x kyAD AB AC k k =+++ 即113213x k ky k ⎧=⎪⎪+⎨⎪=⎪+⎩有1(1)321(1)3x k y k ⎧=+⎪⎪⎨⎪=+⎪⎩(0)k > ∴22221113333k k x y k k +=++≥⋅=+2k = min 22()13x y +=+故答案为:221+【点睛】本题考查了向量线性关系的几何应用,及利用基本不等式求最值,通过定向量与其它向量的线性关系找到等量关系,进而构建函数并结合基本不等式求最值16.【分析】利用表示向量再由可求得实数的值【详解】所以则为线段的中点则因此故答案为:【点睛】本题考查利用平面向量的基底表示求参数考查计算能力属于中等题解析:14-【分析】利用AB 、AC 表示向量AD ,再由12AE AD =可求得实数λ的值. 【详解】()22BC CD BD BC ==-,所以,32BD BC =, 则()33132222AD AB BD AB BC AB AC AB AB AC =+=+=+-=-+, E 为线段AD 的中点,则11332444AE AD AB AC AB AC λ==-+=+,因此,14λ=-.故答案为:14-. 【点睛】本题考查利用平面向量的基底表示求参数,考查计算能力,属于中等题.17.【分析】根据向量垂直得数量积为0从而求得的值利用求模公式求得向量的模【详解】若则即求得故故答案为:【点睛】本题主要考查平面向量数量积的坐标运算及向量的模的求法意在考查学生的数学运算的学科素养属中档题【分析】根据向量垂直得数量积为0,从而求得t 的值,利用求模公式求得向量的模. 【详解】(2,1)a =-,(1,)b t =,2a b -()3,2t =--,若(2)a b a -⊥,则(2)0a b a -⋅=,即()620t ++=,求得8t故 b ==【点睛】本题主要考查平面向量数量积的坐标运算及向量的模的求法,意在考查学生的数学运算的学科素养,属中档题.18.【分析】将已知条件转化为结合得到设列出关于的方程组由此求得【详解】由于所以所以即因为即化简得设所以解得故答案为:【点睛】本小题主要考查平面向量的基本定理考查平面向量的线性运算考查化归与转化的数学思想解析:53【分析】将已知条件转化为1539AO AB AC =+,结合BD DC λ=,得到111AD AB AC λλλ=+++,设AO k AD =,列出关于,k λ的方程组,由此求得λ. 【详解】由于305OA OB OC=++,所以()()350 OA AB AO AC AO+-+-=,所以935AO AB AC=+,即1539AO AB AC=+.因为BD DCλ=,即()AD AB AC ADλ-=-,化简得111AD AB ACλλλ=+++,设11k kAO k AD AB ACλλλ==+++,所以113519kkλλλ⎧=⎪⎪+⎨⎪=⎪+⎩,解得53λ=.故答案为:53【点睛】本小题主要考查平面向量的基本定理,考查平面向量的线性运算,考查化归与转化的数学思想方法,属于中档题.19.【分析】用表示向量然后利用平面向量数量积的运算律可求得的值【详解】为的中点故答案为:【点睛】本题考查平面向量数量积的计算解答的关键就是选择合适的基底表示向量考查计算能力属于中等题解析:53-【分析】用AB、AC表示向量MB、MC,然后利用平面向量数量积的运算律可求得MB MC⋅的值.【详解】O为BC的中点,()12AO AB AC∴=+,3AO MO =,()1136MO AO AB AC ∴==+,()2133AM AO AB AC ==+, ()()11233MB AB AM AB AB AC AB AC ∴=-=-+=-, ()()11233MC AC AM AC AB AC AC AB ∴=-=-+=-, 22AC AB ==,120BAC ∠=,()()()22112252299MB MC AB AC AC AB AB AC AB AC ∴⋅=-⋅-=⋅--221155122122923⎡⎤⎛⎫=⨯⨯⨯--⨯-⨯=- ⎪⎢⎥⎝⎭⎣⎦. 故答案为:53-. 【点睛】本题考查平面向量数量积的计算,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.20.【分析】设的夹角为由题可得则可化简得出即可求出最值【详解】是单位向量设的夹角为则由可得即可得则当时取得最大值为故答案为:【点睛】本题考查数量积的运算律解题的关键是先得出的夹角为满足的再将所求化为可求解析:14-【分析】设,a b 的夹角为α,由题可得1cos 2α≥,则可化简得出cos θ=-求出最值. 【详解】,a b 是单位向量,1a b ∴==,设,a b 的夹角为α,则由1a b -≤可得21a b -≤,即222cos 1aa b b α-⋅⋅+≤,可得1cos 2α≥, 则()()22222222cos 224444a b ab a b a ba ab b a a b bθ+⋅-==+⋅-+⋅+⋅-⋅+==-=- 当1cos 2α=时,cos θ取得最大值为14-.故答案为:14-. 【点睛】本题考查数量积的运算律,解题的关键是先得出,a b 的夹角为α满足的1cos 2α≥,再将所求化为cos θ=-. 三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(1)1(2)-1【分析】(1)分别表示出ka b +与a b -,再利用数量积为0求解即可; (2)若ka b +与a b -平行,则等价于22131k k -+=,化简即可; 【详解】 (1)()()()1,22,12,21ka b k k k +=+-=-+()3,1a b -=当()()ka a b b +⊥-时()()2,213,10k k -+⋅=36210k k ∴-++= 1k ∴=时()()ka a b b +⊥-(2)当()ka b +与()a b -平行时22131k k -+= 1k ∴=-1k ∴=-时,()ka b +与()a b -平行【点睛】本题考查向量加法与减法的坐标运算,由两向量平行与垂直求参数,属于基础题 23.(1)1k =±;(2)3π. 【分析】(1)本题首先可以根据12ke e +和12e ke +共线得出()1212ke e e ke λ+=+,然后通过计算即可得出结果;(2)本题首先可根据()()23a b a b +⊥-得出()()230a b a b +⋅-=,然后根据1a =以及2b =求出1cos 2θ=,最后根据[]0,θπ∈即可得出结果. 【详解】(1)因为12ke e +和12e ke +共线,非零向量1e 、2e 不共线,所以存在唯一实数λ使()1212ke e e ke λ+=+,即1212ke e e ke λλ+=+, 则1k kλλ=⎧⎨=⎩,即21k =,1k =±,故当1k =±时,12ke e +和12e ke +共线.(2)因为()()23a b a b +⊥-,所以()()22233520a b a b a a b b+⋅-=+⋅-=,令a 与b 夹角为θ, 因为1a =,2b =,所以2235231512cos 240a a b b θ+⋅-=⨯+⨯⨯⨯-⨯=,解得1cos 2θ=, 因为[]0,θπ∈,所以a 与b 的夹角3πθ=.【点睛】本题考查向量共线以及向量垂直的相关性质,若非零向量a 、b 共线,则存在唯一实数λ使λab ,若非零向量a 、b 垂直,则0a b ⋅=,考查计算能力,是中档题.24.(Ⅰ)5()212k x k Z ππ=+∈; (Ⅱ)13. 【分析】(1)先根据向量数量积的坐标表示求出()f x ,利用二倍角公式与辅助角公式化简()f x ,结合正弦函数的对称性即可求出函数的对称轴;(2)由方程1()3f x =在()0,π(上的解为12,x x ,及正弦函数的对称性可求12x x +,进而可得结果. 【详解】解:(),a sinx =,(),b cosx cosx =-,()2311212222232cos x f x a b sinxcosx x sin x sin x π+⎛⎫∴=⋅+===-- ⎪⎝⎭()1令112232x k πππ-=+可得512x k ππ=+,k z ∈∴函数()f x 图象的对称轴方程512x k ππ=+,k z ∈ ()2方程()13f x =在()0,π上的解为1x ,2x ,由正弦函数的对称性可知12526x x k ππ+=+,1x ,()20,x π∈,()1212562x x cos x x π∴+=∴+=-.【点睛】本题主要考查了向量数量积的坐标表示,正弦函数的对称性的应用,属于基础试题.以三角形和平面向量为载体,三角恒等变换为手段,对三角函数及解三角形进行考查是近几年高考考查的一类热点问题,一般难度不大,但综合性较强.解答这类问题,两角和与差的正余弦公式、诱导公式以及二倍角公式,一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心. 25.(1)12λ=;(2)1x =,1y =或1x =-,2y =. 【分析】(1)根据向量垂直的坐标运算即可求解;(2)由模的向量坐标运算及夹角的向量坐标运算联立方程即可求解. 【详解】(1)∵()2,0a →=,(b →=,∴()2,a b λλ→→-=-,∵a a b λ→→→⎛⎫-⊥ ⎪⎝⎭, ∴0a b b λ→→→⎛⎫-⋅= ⎪⎝⎭,即240λ-=, ∴12λ=. (2)∵()2,0a →=,(b →=,∴()2m x a y b x y →→→=+=+,又m →=,∴()222312x y y ++=,又cos 62m bm bπ→→→→⋅===, 即23x y +=,由()22231223x y y x y ⎧++=⎪⎨+=⎪⎩, 解得11x y =⎧⎨=⎩或12x y =-⎧⎨=⎩,∴1x =,1y =或1x =-,2y =.【点睛】本题主要考查了向量的坐标运算,考查了垂直关系,夹角公式,模的运算,属于中档题.26.(1)53-;(2)12-. 【分析】 (1)求出()3,12n k k =--+,解方程(3)(7)(12)40k k --⨯-++⨯=即得解;(2)由已知得()1,21kb c k k +=+--,解方程(3)(21)(12)(1)k k k k --⋅--=+⋅+即得解.【详解】(1)由已知得()3,12n a kb k k =-=--+,()27,4a b -=-,所以()20n a b ⊥-=,即(3)(7)(12)40k k --⨯-++⨯=, 解得53k =-; (2)由已知得()1,21kb c k k +=+--,因为()//n kb c +,所以(3)(21)(12)(1)k k k k --⋅--=+⋅+, 解得12k =-. 【点睛】本题主要考查平面向量的线性运算,考查向量垂直平行的坐标表示,意在考查学生对这些知识的理解掌握水平.。

高中数学《第二章 平面向量》质量评估 新人教A版必修4

高中数学《第二章 平面向量》质量评估 新人教A版必修4

高中新课程数学(新课标人教A版)必修四《第二章平面向量》质量评估时间:100分钟满分:120分一、选择题本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.给出下列等式:1a·0=0;20·a=0;3若a,b同向共线,则a·b=|a|·|b|;4a≠0,b≠0,则a·b≠0;5a·b=0,则a·b中至少有一个为0;6若a,b均是单位向量,则a2=b2以上成立的是.A.1256 B.36C.234 D.36解析因为a·0=0,所以1错;因为0·a=0,所以2错;当a,b同向共线时,co〈a,b〉=1,此时a·b=|a|·|b|,所以3对;若a⊥b,尽管a≠0,b≠0,仍有a·b=0,所以4错;当a≠0,b≠0,且a⊥b时,a·b=0,所以5错;因为a,b均是单位向量,所以a2=b2,即6正确.故选D答案 D2.已知向量a=1,错误!,b=错误!+1,错误!-1,则a与b的夹角为.解析co θ=错误!=错误!=错误!,又θ∈[0,π],∴θ=错误!答案 A3.设a,b是共线的单位向量,则|a+b|的值是.A.等于2 B.等于0 C.大于2 D.等于0或等于2解析|a+b|=错误!=错误!=错误!,∵a与b共线,∴co θ=1或co θ=-1∴|a+b|=0或2答案 D4.已知线段AB的中点为C,则错误!4 C,,有错误!是BC的中点,AM=1,点上且满足错误!=1知,5a5a5a25a10a5a2a2a是CD的中点.1试用a,b表示错误!的交点为Q,解1错误!=4∶5。

最新人教A版数学必修四习题:第二章 平面向量 单元质量评估试卷含答案

最新人教A版数学必修四习题:第二章 平面向量 单元质量评估试卷含答案

(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图e1,e2为互相垂直的单位向量,向量a+b+c可表示为 ( B )A.2e1+3e2B.3e1+2e2C.3e1-2e2D.-3e1-3e22.已知向量a=(1,x2),b=(x,8),若a∥b,则实数x的值为 ( A )A.2B.-2C.±2D.03.已知非零向量m,n的夹角为,且n⊥(-2m+n),则错误!未找到引用源。

= ( B )A.2B.1C.D.4.已知向量a=(-2,0),a-b=(-3,-1),则下列结论正确的是 ( D )A.a·b=2B.a∥bC.|a|=|b|D.b⊥(a+b)5.已知向量a=(λ,1),b=(λ+2,1),若|a+b|=|a-b|,则实数λ的值为( C )A.1B.2C.-1D.-26.已知A,B,C是锐角△ABC的三个内角,向量p=(sin A,1),q=(1,-cosB),则p与q的夹角是 ( A )A.锐角B.钝角C.直角D.不确定7.在△AOB中,G为AB边上一点,OG是∠AOB的平分线,且=+m(m∈R),则= ( C )A. B.1 C. D.28.若非零向量a,b的夹角为锐角θ,且=c os θ,则称a被b“同余”.已知b被a“同余”,则向量a-b在向量a上的投影是 ( A )9.已知正方形ABCD的边长为2,对角线相交于点O,P是线段BC上一点,则·的最小值为 ( C )A.-2B.-C.-D.210.已知向量a=(1,2),b=(2,-3).若向量c满足(c+a)∥b,c⊥(a+b),则c等于( D )A. B.C. D.11.已知O为△ABC内一点,满足4=+2,则△AOB与△AOC的面积之比为 ( D )A.1∶1B.1∶2C.1∶3D.2∶112.已知O是平面上一定点,A,B,C是平面上不共线的三点,动点P满足=+λ,λ∈[0,+∞),则点P的轨迹经过△ABC的 ( A )A.外心B.内心C.重心D.垂心二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.已知平面向量a与b的夹角等于,如果|a|=4,|b|=,那么|2a-b|=.14.已知a=(2si n 13°,2si n 77°),|a-b|=1,a与a-b的夹角为,则a·b=3.15.若向量a,b夹角为,且|a|=2,|b|=1,则a与a+2b的夹角为.16.已知||=1,||=m,∠AOB=π,点C在∠AOB内且·=0.若=2λ+λ(λ≠0),则m=三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设=(2,-1),=(3,0),=(m,3).(1)当m=8时,将用和表示.(2)若A,B,C三点能构成三角形,求实数m应满足的条件.解:(1)当m=8时,=(8,3).设=x+y,则(8,3)=x(2,-1)+y(3,0)=(2x+3y,-x).所以解得即=+.(2)因为A,B,C三点能构成三角形,所以,不共线.又=(1,1),=(m-2,4),所以1×4-1×(m-2)≠0,解得m≠6.18.(本小题满分12分)已知|a|=3,b=(1,).(1)若a,b共线且方向相同,求a的坐标.(2)若a与b不共线,k为何值时,a+k b与a-k b互相垂直? 解:(1)设a=(x,y),因为|a|=3,b=(1,),且a与b共线,所以解得或又因为a,b方向相同,所以a的坐标为(,).(2)因为a+kb与a-kb互相垂直,所以(a+kb)·(a-kb)=a2-k2b2=|a|2-k2|b|2=0.由已知|a|=3,b=(1,),所以|b|=.所以9-3k2=0,解得k=±.所以当k=±时,a+kb与a-kb互相垂直.19.(本小题满分12分)在边长为3的正三角形ABC中,设=2,=2.(1)用向量,表示向量,并求的模.(2)求·的值.(3)求与的夹角的大小.解:(1)因为=2,=2,所以=+=+(-)=+.又·=||·||cos A=3×3×=.故||====.(2)=-+,所以·=·=--·+=-×32-×+×32=-.(3)||====,所以cos <,>===-,所以与的夹角为120°.20.(本小题满分12分)已知正方形ABCD,E,F分别是CD,AD的中点,BE,CF交于点P.求证:(1)BE⊥CF.(2)AP=AB.解:(1)如图,建立直角坐标系xOy,其中A为原点,不妨设AB=2,则A(0,0),B(2,0),C(2,2),E(1,2),F(0,1).=-=(1,2)-(2,0)=(-1,2),=-=(0,1)-(2,2)=(-2,-1).因为·=-1×(-2)+2×(-1)=0,所以⊥,即BE⊥CF.(2)设P(x,y),则=(x,y-1),=(-2,-1).因为∥,所以-x=-2(y-1),即x=2y-2.同理由∥,得y=-2x+4,两式联立得:x=,y=,即P .所以=+=4=,所以||=||,即AP=AB.21.(本小题满分12分)已知向量a =(1,2),b =(cos α,sin α).设m =a +t b (t ∈R).(1)若α=,求当|m |取最小值时实数t 的值.(2)若a ⊥b ,问:是否存在实数t,使得向量a -b 和向量m 的夹角为,若存在,请求出t;若不存在,请说明理由.解:(1)因为α=,所以b=.所以m=a+tb=.所以|m|===,所以当t=-时,|m|取到最小值,最小值为.(2)存在满足题意的实数t.当向量a-b和向量m的夹角为时,则有cos =.又a⊥b,所以(a-b)·(a+tb)=a2+(t-1)a·b-tb2=5-t,|a-b|===,|a+tb|===.则有=,且t<5,整理得t2+5t-5=0,解得t=.所以存在t=满足条件.22.(本小题满分12分)如图,在四边形ABCD中,AD=4,AB=2.(1)若△ABC为等边三角形,且AD∥BC,E是CD的中点,求·.(2)若AC=AB,cos ∠CAB=,·=,求||.解:(1)因为△ABC为等边三角形,且AD∥BC,所以∠DAB=120°.又AD=2AB,所以AD=2BC.因为E是CD的中点,所以=(+)=(++)=(++)=+.又=-,所以·=·(-)=--·=×16-×4-×4×2×=11.(2)因为AB=AC,AB=2,所以AC=2.因为·=,所以·(-)=.所以·-·=.又·=||||cos ∠CAB=4×=,所以·=+·=.所以||2=|-|2=+-2·=4+16-2×=.即||=.。

高中数学人教B版必修四检测:阶段质量检测(二) 平面向量 Word版含解析

高中数学人教B版必修四检测:阶段质量检测(二) 平面向量 Word版含解析

阶段质量检测(二) 平面向量(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在五边形ABCDE 中(如图),AB +BC -DC =( ) A .AC B .AD C .BDD .BE解析:选B ∵AB +BC -DC =AC +CD =AD . 2.已知平面向量a =(2,-1),b =(1,3),那么|a +b |等于( ) A .5 B.13 C.17D .13解析:选B 因为a +b =(3,2),所以|a +b |=32+22=13,故选B.3.设向量a ,b 均为单位向量,且|a +b |=1,则a 与b 的夹角为( ) A.π3 B.π2 C.2π3D.3π4解析:选C ∵|a +b |=1,∴|a |2+2a ·b +|b |2=1, ∴cos 〈a ,b 〉=-12.又〈a ,b 〉∈[0,π],∴〈a ,b 〉=2π3.4.设O ,A ,M ,B 为平面上四点,OM ―→=λOB ―→+(1-λ)OA ―→,且λ∈(1,2),则( ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上D .O ,A ,B ,M 四点共线解析:选B 由题意可知OM ―→-OA ―→=λ(OB ―→-OA ―→),即AM ―→=λAB ―→, ∴A ,M ,B 三点共线.又λ∈(1,2),∴|AM ―→|>|AB ―→|,∴点B 在线段AM 上.5.若|a |=|b |=1,a ⊥b ,且(2a +3b )⊥(ka -4b ),则k =( ) A .-6 B .6 C .3D .-3解析:选B 由题意,得(2a +3b )·(ka -4b )=2ka 2+(3k -8)a ·b -12b 2=0, 由于a ⊥b ,故a ·b =0,又|a |=|b |=1,于是2k -12=0,解得k =6.6.设点A (-1,2),B (2,3),C (3,-1),且AD =2AB -3BC ,则点D 的坐标为( ) A .(2,16) B .(-2,-16) C .(4,16)D .(2,0)解析:选A 设D (x ,y ),由题意可知AD =(x +1,y -2),AB =(3,1),BC =(1,-4), ∴2AB -3BC =2(3,1)-3(1,-4)=(3,14).∴⎩⎪⎨⎪⎧ x +1=3,y -2=14,∴⎩⎪⎨⎪⎧x =2,y =16.故选A. 7.某人在静水中游泳,速度为4 3 km /h ,水流的速度为4 km/h.他沿着垂直于对岸的方向前进,那么他实际前进的方向与河岸的夹角为( )A .90 °B .30°C .45°D .60°解析:选D 如图,用OA 表示水速,OB 表示某人垂直游向对岸的速度,则实际前进方向与河岸的夹角为∠AOC .于是tan ∠AOC =|AC ||OA |=|OB ||OA |=|v 静||v 水|=3,∴∠AOC =60°,故选D.8.设D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 上的点,且DC=2BD ,CE =2EA ,AF =2FB ,则AD +BE +CF 与BC ( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直解析:选A ∵AD +BE +CF =(AB +BD )+(BA +AE )+(CB +BF )=13BC +13AC +⎝⎛⎭⎫CB +13 BA =13BA +13BC +13AC +CB =-13BC , ∴(AD +BE +CF )与BC 平行且方向相反. 9.设a ,b 是两个非零向量( ) A .若|a +b |=|a |-|b |,则a ⊥b B .若a ⊥b ,则a +b =|a |-|b |C .若|a +b |=|a |-|b |,则存在实数λ,使得b =λaD .若存在实数λ,使得b =λa ,则|a +b |=|a |-|b |解析:选C 若|a +b |=|a |-|b |,则a ,b 共线,即存在实数λ,使得a =λb ,故C 正确; 选项A :当|a +b |=|a |-|b |时,a ,b 可为异向的共线向量; 选项B :若a ⊥b ,由矩形得|a +b |=|a |-|b |不成立;选项D :若存在实数λ,使得b =λa ,a ,b 可为同向的共线向量,此时显然 |a +b |=|a |-|b |不成立.10.已知向量AB 与AC 的夹角为120°,且|AB |=2,|AC |=3.若AP =λAB +AC ,且AP ⊥BC ,则实数λ的值为( )A.37 B .13 C .6D.127解析:选D ∵AP =λAB +AC ,且AP ⊥BC ,∴AP ·BC =(λAB +AC )·(AC -AB )=AC 2-λAB 2+(λ-1)AB ·AC =0.∵AB ·AC =23(-12)=-3,∴32-λ·22+(λ-1)(-3)=0,解得λ=127.11.如图,在等腰直角三角形AOB 中,设OA ―→=a ,OB ―→=b ,OA =OB =1,C 为AB 上靠近点A 的四等分点,过C 作AB 的垂线l ,设P 为垂线上任意一点,OP ―→=p ,则p ·(b -a )=( )A .-12B .12C .-32D .32解析:选A 因为在等腰直角三角形AOB 中,OA ―→=a ,OB ―→=b ,OA =OB =1, 所以|a |=|b |=1,a ·b =0.由题意,可设OP ―→=-14(b -a )+λ·12(b +a ),λ∈R ,所以p ·(b -a )=-14(b -a )·(b -a )+λ2(b +a )·(b -a )=-14(b -a )2+λ2(|b |2-|a |2)=-14(|a |2+|b |2-2a ·b )=-14(1+1-0)=-12.12.已知在等腰三角形AOB 中,若|OA |=|OB |=5,且|OA ―→+OB ―→|≥12|AB ―→|,则OA ―→·OB―→的取值范围是( )A .[-15,25)B .[-15,15]C .[0,25)D .[0,15]解析:选A |OA ―→+OB ―→|≥12|AB ―→|=12|OB ―→-OA ―→|,所以|OA ―→+OB ―→|2≥14|OB ―→-OA ―→|2,即(OA ―→+OB ―→)2≥14(OB ―→-OA ―→)2,所以OA ―→2+2OA ―→·OB ―→+OB ―→2≥14(OB ―→2-2OA ―→·OB ―→+OA ―→2),所以52+2OA ―→·OB ―→+52≥14(52-2OA ―→·OB ―→+52),所以OA ―→·OB ―→≥-15.又OA ―→·OB ―→≤|OA ―→||OB ―→|=55=25,当且仅当OA ―→=OB ―→时取等号,因此上述等号取不到,所以OA ―→·OB ―→∈[-15,25).二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上) 13.平面向量a ,b 满足|a |=1,|b |=2,且(a +b )·(a -2b )=-7,则向量a ,b 的夹角为________.解析:(a +b )(a -2b )=|a 2|-a·b -2|b |2=1-a·b -8=-7, ∴a·b =0,∴a ⊥b .故a ,b 的夹角为π2.答案:π214.已知向量a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 解析:|5a -b |=|5a -b |2=(5a -b )2=25a 2+b 2-10a ·b= 25+9-10×1×3×⎝⎛⎭⎫-12 =7. 答案:715.设向量a =(m,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =________.解析:∵a +b =(m +1,3),∴|a +b |2=|a |2+|b |2⇔(m +1)2+32=m 2+6,解得m =-2. 答案:-216.如图,在直角梯形ABCD 中,AB ∥CD ,AB =2,AD =DC =1,P 是线段BC 上一动点,Q 是线段DC 上一动点,DQ =λDC ,CP =(1-λ)CB ,则AP ·AQ 的取值范围是________.解析:建立如图所示的平面直角坐标系,则D (0,1),C (1,1).设Q (m ,n ),由DQ =λDC 得,(m ,n -1)=λ(1,0), 即m =λ,n =1. 又B (2,0),设P (s ,t ),由CP =(1-λ)CB 得,(s -1,t -1)=(1-λ)(1,-1),即s =2-λ,t =λ,所以AP ·AQ =λ(2-λ)+λ=-λ2+3λ,λ∈[0,1]. 故AP ·AQ ∈[0,2]. 答案:[0,2]三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)不共线向量a ,b 的夹角为小于120°的角,且|a |=1,|b |=2,已知向量c =a +2b ,求|c |的取值范围.解:|c |2=|a +2b |2=|a |2+4a·b +4|b |2=17+8cos θ(其中θ为a 与b 的夹角). ∵0°<θ<120°,∴-12<cos θ<1,∴13<|c |<5,∴|c |的取值范围为(13,5).18.(本小题满分12分)已知O ,A ,B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC +CB =0,(1)用OA ,OB 表示OC .(2)若点D 是OB 的中点,证明四边形OCAD 是梯形. 解:(1)因为2 AC +CB =0, 所以2(OC -OA )+(OB -OC )=0, 2OC -2OA +OB -OC =0, 所以OC =2OA -OB .(2)证明:如图,DA =DO +OA =-12OB +OA=12(2OA -OB ). 故DA =12OC .即DA ∥OC ,且DA ≠OC ,故四边形OCAD 为梯形.19.(本小题满分12分)平面内有向量OA =(1,7),OB =(5,1),OP =(2,1),点M 为直线OP 上的一动点.(1)当MA ·MB 取最小值时,求OM 的坐标; (2)在(1)的条件下,求cos ∠AMB 的值. 解:(1)设OM =(x ,y ),∵点M 在直线OP 上, ∴向量OM 与OP 共线,又OP =(2,1).∴x 1-y 2=0,即x =2y .∴OM =(2y ,y ).又MA =OA -OM ,OA =(1,7), ∴MA =(1-2y,7-y ).同理MB =OB -OM =(5-2y,1-y ).于是MA ·MB =(1-2y )(5-2y )+(7-y )(1-y )=5y 2-20y +12. 可知当y =202×5=2时,MA ·MB 有最小值-8,此时OM =(4,2).(2)当OM =(4,2),即y =2时, 有MA =(-3,5),MB =(1,-1), |MA |=34,|MB |=2,MA ·MB =(-3)1+5(-1)=-8.cos ∠AMB =MA ·MB | MA ||MB |=-834×2=-41717.20.(本小题满分12分)如图,平行四边形ABCD 中,AB =a ,AD =b ,H ,M 分别是AD ,DC 的中点,F 使BF =13BC .(1)以a ,b 为基底表示向量AM 与HF ;(2)若|a |=3,|b |=4,a 与b 的夹角为120°,求AM ·HF .解:(1)连接AF ,由已知得AM =AD +DM =12a +b .∵AF =AB +BF =a +13b ,∴HF =HA +AF =-12b +⎝⎛⎭⎫a +13b =a -16b . (2)由已知得a ·b =|a ||b |cos 120°=34⎝⎛⎭⎫-12=-6, 从而AM ·HF =⎝⎛⎭⎫12a +b ·⎝⎛⎭⎫a -16b =12|a |2+1112a ·b -16|b |2=1232+1112(-6)-1642=-113. 21.(本小题满分12分)已知向量m =(1,1),向量n 与向量m 的夹角为3π4,且 m ·n =-1.(1)求向量n 的坐标;(2)设向量a =(1,0),向量b =(cos x ,sin x ),其中x ∈R ,若n ·a =0,试求|n +b |的 取值范围.解:(1)设n =(x ,y ),则⎩⎪⎨⎪⎧x +y =-1,2·x 2+y 2cos 3π4=-1, 解得⎩⎪⎨⎪⎧ x =-1,y =0或⎩⎪⎨⎪⎧x =0,y =-1.∴n =(-1,0)或n =(0,-1).(2)∵a =(1,0),n ·a =0,∴n =(0,-1), n +b =(cos x ,sin x -1). ∴|n +b |=cos 2x +(sin x -1)2=2-2sin x =2(1-sin x ).∵-1≤sin x ≤1,∴0≤|n +b |≤2. 故|n +b |的取值范围为[0,2].22.(本小题满分12分)在平面直角坐标系中,O 为坐标原点,已知向量a =(-1,2),且点A (8,0),B (n ,t ),C (k sin θ,t ),θ∈⎝⎛⎭⎫0,π2. (1)若AB ⊥a ,且|AB |=5|OA |,求向量OB ;(2)若向量AC 与向量a 共线,当k >4,且t sin θ取最大值4时,求OA ·OC . 解:(1)因为AB =(n -8,t ),且AB ⊥a , 所以8-n +2t =0,即n =8+2t . 又|AB |=5|OA |,所以564=(n -8)2+t 2=5t 2,解得t =±8. 所以OB =(24,8)或(-8,-8).(2)因为AC =(k sin θ-8,t ),AC 与a 共线, 所以t =-2k sin θ+16. 又t sin θ=(-2k sin θ+16)sin θ =-2k ⎝⎛⎭⎫sin θ-4k 2+32k , 当k >4时,1>4k>0,所以当sin θ=4k 时,t sin θ取得最大值32k ; 由32k =4,得k =8,此时θ=π6,故OC =(4,8),所以OA ·OC =84+80=32.。

人教版高中数学-必修4第二章 平面向量 质量评估检测

人教版高中数学-必修4第二章  平面向量 质量评估检测
由a-2b与2a+b平行得:
(2-2x)·8-(-1)·(4+x)=0,
∴x= .(6分)
(2)由题意得, 即
∴x>-3且x≠ .(12分)
22.(本小题满分12分)已知向量a=( ,-1),b= .
(1)求证:a⊥b;
(2)是否存在不等于0的实数k和t,使x=a+(t2-3)b,y=-ka+tb,且x⊥y?如果存在,试确定k与t的关系;如果不存在,请说明理由.
解析:2i+3j=(2,3),C中-3i+2j=(-3,2).因为2×(-3)+3×2=0,所以2i+3j与-3i+2j垂直.
答案:C
4.点O是△ABC所在平面内的一点,满足 · = · = · ,则点O是△ABC的()
A.三个内角的角平分线的交点
B.三条边的垂直平分线的交点
C.三条中线的交点
D.三条高的交点
19.(本小题满分12分)两个力F1=i+j,F2=4i-5j作用于同一质点,使该质点从点A(20,15)移动到点B(7,0)(其中i,j分别是与x轴、y轴同方向的单位向量).求:
(1)F1,F2分别对该质点所做的功;
(2)F1,F2的合力F对该质点所做的功.
解析: =(7-20)i+(0-15)j=-13i-15j.
∵3a-2b=(3x1-2x2,3y1-2y2),
∴|3a)
∴|3a+b|=
= =2 .(10分)
18.(本小题满分12分)如图,在平面直角坐标系中,| |=2| |=2,∠OAB= , =(-1, ).
(1)求点B,C的坐标;
(2)求证:四边形OABC为等腰梯形.
解析:(1)证明:a·b=( ,-1)· = - =0,∴a⊥b.(4分)
(2)假设存在非零实数k,t,使x⊥y,则[a+(t2-3)b]·(-ka+tb)=0.

高中数学 第二章 平面向量单元质量评估 新人教A版必修4

高中数学 第二章 平面向量单元质量评估 新人教A版必修4

第二章平面向量(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在四边形ABCD中,下列各式中成立的是( )A.-=B.+=C.++=D.+=+【解析】选 C.-=+=,故A错误;+=,故B错误;++=++=+=,故C正确;+=≠+,故D错误.2.若向量a=(1,1),b=(1,-1),c=(-1,2),则c等于( )A.a-bB.-a+bC.a-bD.-a+b【解析】选A.设c=λa+μb,则(-1,2)=λ(1,1)+μ(1,-1)=(λ+μ,λ-μ),所以解得λ=,μ=-.所以c=a-b.3.(2015·泉州高一检测)在如图所示的平面图形中,e1,e2为互相垂直的单位向量,则向量a+b-c可表示为( )A.e1-2e2B.-e1+2e2C.3e1-2e2D.3e1+2e2【解析】选A.由平面图形知a=c,所以a+b-c=a-c+b=b=-e1+2e2.4.若a=(λ,2),b=(-3,5),且a与b的夹角是钝角,则λ的取值范围是( )A. B.C. D.【解析】选A.a·b=-3λ+10<0,所以λ>.当a与b共线时,=,所以λ=-.此时,a与b同向,所以λ>.5.在△ABC中,D是BC的中点,AD=3,点P在AD上且满足=3,则·(+)=( )A.6B.-6C.-12D.12【解题指南】解答本题要注意+=2.【解析】选C.因为点D是BC的中点,所以+=2,因为AD=3,=3,所以PD=AD=2,所以·(+)=2·=2||||cosπ=2×3×2×(-1)=-12.【补偿训练】在菱形ABCD中,若AC=2,则·等于( )A.2B.-2C.||cosAD.与菱形的边长有关【解析】选B.如图,设对角线AC与BD交于点O,所以=+.·=·(+)=-2+0=-2.6.(2015·陕西高考)对任意向量a,b,下列关系式中不恒成立的是( )A.|a·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a2-b2【解析】选B.由,因为-1≤cosθ≤1,所以|a·b|≤|a||b|恒成立;由向量减法的几何意义结合三角形的三边关系可得,故B选项不成立;根据向量数量积的运算律C,D选项恒成立.7.已知三个力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,现加上一个力f4,则f4等于( )A.(-1,-2)B.(1,-2)C.(-1,2)D.(1,2)【解析】选D.根据力的平衡原理有f1+f2+f3+f4=0,所以f4=-(f1+f2+f3)=(1,2).8.设点A(2,0),B(4,2),若点P在直线AB上,且||=2||,则点P的坐标为( )A.(3,1)B.(1,-1)C.(3,1)或(1,-1)D.无数多个【解析】选C.设P(x,y),由||=2||得=2,或=-2,=(2,2),=(x-2,y),即(2,2)=2(x-2,y),所以x=3,y=1,即P(3,1),(2,2)=-2(x-2,y),所以x=1,y=-1,即P(1,-1),【误区警示】解答本题容易由||=2||,推出=2漏掉=-2的情况,导致错误.9.向量=(4,-3),向量=(2,-4),则△ABC的形状为( )A.等腰非直角三角形B.等边三角形C.直角非等腰三角形D.等腰直角三角形【解析】选C.因为=(4,-3),=(2,-4),所以=-=(-2,-1),所以·=(2,1)·(-2,4)=0,所以∠C=90°,且||=,||=2,||≠||.所以△ABC是直角非等腰三角形.10.(2015·抚顺高一检测)已知平面向量a=(1,-2),b=(2,1),c=(-4,-2),则下列结论中错误的是( )A.向量c与向量b共线B.若c=λ1a+λ2b(λ1,λ2∈R),则λ1=0,λ2=-2C.对同一平面内任意向量d,都存在实数k1,k2,使得d=k1b+k2cD.向量a在向量b方向上的投影为0【解析】选 C.因为c=-2b,所以向量c与向量b共线,所以选项A正确;由c=λ1a+λ2b可知,解得所以选项B正确;向量c与向量b共线,所以由平面向量的基本定理可知,它们的线性组合不能表示出同一平面内的任意向量,所以选项C错误;a·b=0,所以a⊥b,夹角是90°,向量a在向量b方向上的投影为|a|cos90°=0.【补偿训练】(2015·岳阳高一检测月考)设向量a=(1,0),b=,则下列结论中正确的是( ) A.|a|=|b| B.a·b=C.a-b与b垂直D.a∥b【解析】选C.因为|a|=1,|b|=,a·b=,所以A,B错;因为1×-0×≠0,所以a∥b不成立;因为(a-b)·b=·=-=0,所以a-b与b垂直,C正确.11.若同一平面内向量a,b,c两两所成的角相等,且|a|=1,|b|=1,|c|=3,则|a+b+c|等于( )A.2B.5C.2或5D.或【解析】选C.因为同一平面内向量a,b,c两两所成的角相等,所以当三个向量所成的角都是120°时,|a+b+c|2=a2+b2+c2+2a·b+2a·c+2b·c=1+1+9-1-3-3=4,即|a+b+c|=2,当三个向量所成的角都是0°时,|a+b+c|=1+1+3=5,故|a+b+c|=2或5.12.(2015·泰安高一检测)在△ABC中,P是BC边的中点,若||+||+ ||=0,则△ABC 的形状是( )A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形,但不一定是等边三角形【解析】选A.因为=-,=-且||-||+||=0,所以||-||+||(-)=0,即||+||-(||+||)=0因为P是BC边中点,所以=(+),所以||+||-(||+||)·(+)=0,所以||-(||+||)=0,且||-(||+||)=0,所以||=||=||,所以△ABC是等边三角形.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.向量a,b,c在单位正方形网格中的位置如图所示,则a·(b+c)=________.【解析】如图建立平面直角坐标系,则a=(1,3),b=(3,-1)-(1,1)=(2,-2),c=(3,2)-(5,-1)=(-2,3),所以b+c=(0,1),所以a·(b+c)=(1,3)·(0,1)=3.答案:3【补偿训练】 (2014·石家庄高一检测)向量a,b,c在正方形网格中的位置如图所示,若c=λa+μb(λ,μ∈R),则λ+μ=( )A.-B.-C.-D.【解析】选B.选择单位正交基底i,j,如图所示,则a=-i+j,b=6i+2j,c=-i-3j,由c=λa+μb得-i-3j=λ(-i+j)+μ(6i+2j),即-i-3j=(-λ+6μ)i+(λ+2μ)j,所以解得所以λ+μ=-.14.(2015·忻州高一检测)已知m,n是夹角为120°的单位向量,向量a=t m+(1-t)n,若n⊥a,则实数t=________.【解析】因为m,n是夹角为120°的单位向量,向量a=t m+(1-t)n,n⊥a,所以n·a=n·[t m+(1-t)n]=t m·n+(1-t)n2=tcos120°+1-t=1-t=0,所以t=.答案:15.(2015·福州高一检测)已知向量a与向量b的夹角为120°,若(a+b)⊥(a-2b)且|a|=2,则b在a上的投影为________.【解析】a·b=|a|·|b|cos120°=-|b|,因为(a+b)⊥(a-2b),所以(a+b)·(a-2b)=0,所以2|b|2-|b|-4=0,所以|b|=,所以b在a上的投影为=-.答案:-16.如图,△ABC中,AD=2DB,AE=EC,BE与CD相交于点P,若=x+y(x,y∈R),则x+y=________.【解析】由题可知=+=+λ=+λ(-)=+λ(--)=+λ,又=+=+μ=+μ(-)=+μ=μ+,所以可得解得λ=,故=+,所以x+y=.答案:【补偿训练】如图所示,半圆的直径AB=2,O为圆心,C是半圆上不同于A,B的任意一点,若P为半径OC上的动点,则(+)·的最小值是________.【解析】因为点O是A,B的中点,所以+=2,设||=x,则||=1-x(0≤x≤1).所以(+)·=2·=-2x(1-x)=2-.所以当x=时,(+)·取到最小值-.答案:-三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知|a|=4,|b|=3,(2a-3b)·(2a+b)=61.(1)求a与b的夹角θ.(2)求|a+b|和|a-b|.【解析】(1)因为(2a-3b)·(2a+b)=61,所以4a2-4a·b-3b2=61,即64-4a·b-27=61.所以a·b=-6.所以cosθ===-,所以θ=120°.(2)|a+b|===,|a-b|===.18.(12分)(2015·温州高一检测)已知O,A,B是平面上不共线的三点,直线AB上有一点C,满足2+=0,(1)用,表示.(2)若点D是OB的中点,证明四边形OCAD是梯形.【解析】(1)因为2+=0,所以2(-)+(-)=0,2-2+-=0,所以=2-.(2)如图,=+=-+=(2-).故=.即DA∥OC,且DA≠OC,故四边形OCAD为梯形.【拓展延伸】利用基向量方法解决平面几何问题选择已知向量或基向量的原则(1)不共线.(2)基向量的模最好是确定的.(3)基向量的夹角最好是确定的.(4)尽量使基向量和所涉及的向量共线或构成三角形或平行四边形.【补偿训练】(2015·皖南八校联考)如图,∠AOB=,动点A1,A2与B1,B2分别在射线OA,OB上,且线段A1A2的长为1,线段B1B2的长为2,点M,N分别是线段A1B1,A2B2的中点.(1)用向量与表示向量.(2)求向量的模.【解析】(1)=++,=++,两式相加,并注意到点M,N分别是线段A1B1,A2B2的中点,得=(+).(2)由已知可得向量与的模分别为1与2,夹角为,所以·=1,由=(+)得,||===.19.(12分)已知a,b,c在同一平面内,且a=(1,2).(1)若|c|=2,且c∥a,求c.(2)若|b|=,且(a+2b)⊥(2a-b),求a与b的夹角.【解析】(1)因为c∥a,所以设c=λa,则c=(λ,2λ).又|c|=2,所以λ=±2,所以c=(2,4)或(-2,-4).(2)因为(a+2b)⊥(2a-b),所以(a+2b)·(2a-b)=0.因为|a|=,|b|=,所以a·b=-.设a与b的夹角为θ,cosθ==-1,所以θ=180°.20.(12分)已知正方形ABCD,E,F分别是CD,AD的中点,BE,CF交于点P.求证:(1)BE⊥CF.(2)AP=AB.【证明】如图建立直角坐标系xOy,其中A为原点,不妨设AB=2,则A(0,0),B(2,0),C(2,2),E(1,2),F(0,1).(1)=-=(1,2)-(2,0)=(-1,2),=-=(0,1)-(2,2)=(-2,-1),因为·=-1×(-2)+2×(-1)=0,所以⊥,即BE⊥CF.(2)设P(x,y),则=(x,y-1),=(-2,-1),因为∥,所以-x=-2(y-1),即x=2y-2.同理由∥,得y=-2x+4,代入x=2y-2.解得x=,所以y=,即P.所以=+=4=,所以||=||,即AP=AB.21.(12分)如图,=(6,1),=(x,y),=(-2,-3).(1)若∥,求x与y之间的关系式.(2)若在(1)的条件下,又有⊥,求x,y的值及四边形ABCD的面积.【解析】(1)因为=++=(6,1)+(x,y)+(-2,-3)=(x+4,y-2),所以=-=(-x-4,2-y).又因为∥,=(x,y),所以x(2-y)-y(-x-4)=0,即x+2y=0.(2)因为=+=(6,1)+(x,y)=(x+6,y+1),=+=(x,y)+(-2,-3)=(x-2,y-3),且⊥,所以·=0,即(x+6)(x-2)+(y+1)(y-3)=0.又由(1)的结论x+2y=0,所以(6-2y)(-2y-2)+(y+1)(y-3)=0.化简,得y2-2y-3=0.所以y=3,或y=-1.当y=3时,x=-6.于是有=(-6,3),=(0,4),=(-8,0).所以||=4,||=8.所以S四边形ABCD=||||=16;当y=-1时,x=2.于是有=(2,-1),=(8,0),=(0,-4).所以||=8,||=4.所以S四边形ABCD=||||=16.所以或S四边形ABCD=16.22.(12分)(2015·德州高一检测)在平面直角坐标系xOy中,已知四边形OABC是等腰梯形,A(6,0),C(1,),点M满足=,点P在线段BC上运动(包括端点),如图.(1)求∠OCM的余弦值.(2)是否存在实数λ,使(-λ)⊥,若存在,求出满足条件的实数λ的取值范围,若不存在,请说明理由.【解析】(1)由题意可得=(6,0),=(1,),==(3,0),=(2,-),=(-1,-),所以cos∠OCM=cos<,>==.(2)设P(t,),其中1≤t≤5,λ=(λt,λ),-λ=(6-λt,-λ),=(2,-),若(-λ)⊥,则(-λ)·=0,即12-2λt+3λ=0⇒(2t-3)λ=12,若t=,则λ不存在,若t≠,则λ=,因为t∈∪,故λ∈(-∞,-12]∪.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修4第二章平面向量教学质量检测
姓名: 班级: 学号: 得分:
1.在四边形ABCD 中,2AB =+a b ,4BC =--a b ,53CD =--a b ,则四边形ABCD 是( ).
A.长方形
B.平行四边形 C.菱形 D.梯形
2、若向量(1,1)a =,(1,1)b =-,(1,2)c =-,则c 等于 ( B )
A 、1322a b -+
B 、1322a b -
C 、3122a b -
D 、31
22
a b -+
3.若向量a 与b 不共线,0⋅≠a b ,且()()
⋅⋅=-
⋅a a b
c a a b ,则向量a 与c 的夹角为( ).
A.
π
2
B.
π6
C.
π3
D.0
4.设i ,j 是互相垂直的单位向量,向量(1)3m =+-a i j ,(1)m =+-b i j ,
()()+⊥-a b a b ,则实数m 为( ).
A.2-
B.2 C.2
1
-
D.不存在 5.已知向量与反向,下列等式中成立的是 ( )
A .||||||-=-
B .||||-=+
C .||||||-=+
D .||||||+=+
6.点P 为△ABC 所在平面内任一点,且PA +PB +PC =AB ,则点P 与△ABC 的位置关系是( ) A.P 在△ABC 内部 B.P 在△ABC 外部
C.P 在AB 边上或其延长线上
D.P 在AC 边上
7.下列各组向量中:①)2,1(1-=e )7,5(2=e ②)5,3(1=e )10,6(2=e ③
)3,2(1-=e )4
3
,21(2-=e 其中能作为表示它们所在平面内所有向量的基底的是
( ) A .① B .①③ C .②③ D .①②③
8.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足
cos cos AB AC OP OA AB C AC B λ⎛⎫ ⎪=++ ⎪⎝⎭
,[)0,λ∈+∞,
则点P 的轨迹一定通过ABC ∆的( ) A .外心 B .内心 C .重心 D .垂心
9.若32041||-=-b a ,5||,4||==b a ,则b a 与的数量积为 ( ) A .102
B .-103
C .103
D .10
10.若将向量)1,2(=a 围绕原点按逆时针旋转4
π
得到向量b ,则b 的坐标为( ) A .)2
23,2
2(-- B .)
2
2,22
3
(- C .)22,223(- D . )2
23,2
2(
11.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( ) A .24,4 B . 4,0 C .16,0 D . 0,24
12.已知向量a ≠e ,|e |=1,对任意t ∈R ,恒有|a -t e |≥|a -e |,12、下面给出的关系式中正确的个数是( )
① 00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤b a b a ⋅≤⋅
(A) 0 (B) 1 (C) 2 (D) 3
13.已知)1,2(=a
与)2,1(=b ,要使b t a +最小,则实数t 的值为___________。

14.非零向量||||||,b a b a b a +==满足,则b a ,的夹角为 .
15、已知向量(6,2)a =与(3,)b k =-的夹角是钝角,则k 的取值范围是 .
16.已知为单位向量,||a =4,与的夹角为π3
2
,则e a 在方向上的投影为 .
17如图2,OM ∥AB,点P 在由射线OM 、线段OB 及AB 的延
长线围成的阴影区域内(不含边界)运动, 且OP xOA yOB =+,则x 的取值范围是 ;
当1
2
x =-时,y 的取值范围是 .
18.在△ABC 中,已知向量AB 与AC 满足(AB AB
+
AC AC
)·BC =0且
AB AB
·
AC AC
=
1
2
,则△ABC 为 三角形.
A
O
M P
B。

相关文档
最新文档