高一数学必修1第二章函数 测试题
(必考题)高中数学必修一第二单元《函数》测试卷(含答案解析)
一、选择题1.已知函数()f x =的定义域为R ,则实数m 的取值范围是( )A .04m ≤≤B .04m <≤C .04m ≤<D .04m <<2.已知函数223,()11,x x x af x ax x a⎧--≥⎪=⎨-<⎪⎩,对于任意两个不相等的实数1x ,2x R ∈,都有不等式()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数a 取值范围是( ) A .[)3,+∞B .[]0,3C .[]3,4D .[]2,43.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y = D .||y x x =-4.下列命题中正确的是( )A .若函数()f x 的定义域为(1,4),则函数()2f x 的定义域为(2,1)(1,2)--⋃B .1y x =+和y =C .定义在R 上的偶函数()f x 在(0,)+∞和(,0)-∞上具有相反的单调性D .若不等式220ax bx ++>恒成立,则280b a -<且0a >5.已知函数()31,03,0x x x f x e x ⎧<⎪=⎨⎪≥⎩,则()()232f x f x ->的解集为( )A .()(),31,-∞-⋃+∞B .()3,1-C .()(),13,-∞-+∞ D .()1,3-6.若函数()()21225,012,1bb x f x x x b x x -⎧-+<<⎪=⎨⎪+-≥⎩对于任意的实数12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦成立,则实数b 的取值范围为( )A .1,42⎛⎤ ⎥⎝⎦B .[)4,+∞C .[]1,4D .1,2⎛⎫+∞⎪⎝⎭7.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞8.若函数y =f (x )的定义域为[]1,2,则y =f (12log x )的定义域为( )A .[]1,4B .[]4,16C .[]1,2D .11,42⎡⎤⎢⎥⎣⎦9.定义在(0,)+∞上的函数()f x 满足:()()1122120x f x x f x x x -<-且()24f =,则不等式()80f x x->的解集为( ) A .(2,)+∞ B . ()0,2C .(0,4)D .(,2)-∞10.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-311.已知函数()2f x x ax b =-+-(a ,b 为实数)在区间[]22-,上最大值为M ,最小值为m ,则M m -( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,但与b 有关 D .与a 无关,且与b 无关12.已知函数()113sin 22f x x x ⎛⎫=+-+ ⎪⎝⎭,则122018201920192019f f f ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭( ) A .2018 B .2019 C .4036D .4038二、填空题13.若函数()()21,f x ax bx a b =++∈R 满足:()()123f x f x x +-=+.设()f x 在[](),2t t t R +∈上的最小值为()g t ,则()g t =____.14.函数222421x x y x ++=+的值域为_________. 15.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.16.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.17.已知函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,若()f x 的最小值为(1)f ,则实数a 的取值范围是________.18.函数y x =+______.19.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.20.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______.三、解答题21.已知()f x 是定义域为R +的增函数,且对任意正实数a 和b ,都有()()()1f ab f a f b =+-.(1)证明:当1x >时,()1f x >;(2)若又知1()02f =,解不等式(32)(1)()2f x f x f x -+-<+.22.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-.(1)求函数()f x 的解析式,并作出函数的大致的简图;(作图要求:①列表描点;②先用铅笔作出图象,再用黑色签字笔将图象描黑); (2)根据图象写出函数单调区间;(3)若不等式()21f x m -≥在[1,3]x ∈-上有解,求m 的取值范围. 23.在①()()121f x f x x +=+-,②()()11f x f x +=-且()03f =,③()2f x ≥恒成立且()03f =这三个条件中任选一个,补充在下面的问题中,并作答.问题:已知二次函数()f x 的图象经过点()1,2,_________. (1)求()f x 的解析式; (2)求()f x 在[]1,4-上的值域.24.已知函数()y f x =的定义域为D ,若存在区间[],a b D ⊆,使得()[]{}[],,,y y f x x a b a b =∈=,则称区间[],a b 为函数()y f x =的“和谐区间”.(1)请直接写出函数()3f x x =的所有的“和谐区间”;(2)若[]()0,0m m >为函数()312f x x =-的一个“和谐区间”,求m 的值; (3)求函数()22f x x x =-的所有的“和谐区间”.25.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的图象过()0,1A ,()1,5B 两点,且它的对称轴的方程为12x =-.(1)求该二次函数的表达式;(2)当26x ≤≤时,函数()22y ax b m x c =+-+的最大值为()G m ,最小值为()H m ,令()()()h m G m H m =-,求()h m 的表达式.26.已知a R ∈,奇函数()f x 与偶函数()g x 的定义域均为(,0)(0,)-∞+∞,且满足()()2af xg x x x-=+-. (1)分别求()f x 和()g x 的解析式: (2)若对任意[1,),()()0x f x g x ∞∈++>恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立,然后分0m =和0m ≠,结合题意可得出关于实数m 的不等式组,由此可解得实数m 的取值范围. 【详解】由题意可知,对任意的x ∈R ,210mx mx ++>恒成立. 当0m =时,则有10>,合乎题意;当0m ≠时,则有240m m m >⎧⎨∆=-<⎩,解得04m <<. 综上所述,04m ≤<. 故选:C. 【点睛】结论点睛:利用二次不等式在实数集上恒成立,可以利用以下结论来求解: 设()()20f x ax bx c a =++≠①()0f x >在R 上恒成立,则00a >⎧⎨∆<⎩;②()0f x <在R 上恒成立,则00a <⎧⎨∆<⎩;③()0f x ≥在R 上恒成立,则00a >⎧⎨∆≤⎩; ④()0f x ≤在R 上恒成立,则00a <⎧⎨∆≤⎩.2.C解析:C 【分析】根据题意,可得()f x 在R 上为单调递增函数,若x a ≥时为增函数,则3a ≥,若x a <时为增函数,则0a >,比较x=a 处两函数值的大小,即可求得答案, 【详解】因为()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在R 上为单调递增函数, 当x a ≥时,2()23f x x x =--的图象如图所示:因为()f x 在R 上为单调递增函数,所以3a ≥, 当x a <时,()11f x ax =-为增函数,所以0a >, 且在x=a 处222311a a a --≥-,解得4a ≤, 综上34a ≤≤, 故选:C. 【点睛】解题的关键是熟悉分段函数单调性的求法,根据单调性,先分析分段点两侧单调性,再比较分段点处函数值的大小即可,考查推理分析,化简计算的能力,属中档题.3.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误;选项B 中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).4.A解析:A 【分析】利用抽象函数的定义域列不等式判断A ;利用特例法判断BCD. 【详解】因为函数()f x 的定义域为(1,4),由21412x x <<⇒<<或21x -<<-,所以函数()2f x 的定义域为(2,1)(1,2)--⋃,A 正确;1y x =+和1,11,1x x y x x +≥-⎧==⎨--<-⎩,对应法则不同,不表示同一函数,B 错; 偶函数()1f x =在(0,)+∞和(,0)-∞上不具有相反的单调性,C 错;0a b 时,不等式220ax bx ++>恒成立,但280b a -<且0a >不成立,D 错;故选:A. 【点睛】方法点睛:若已知函数()f x 的定义域为[],a b ,则函数()()f g x 的定义域由不等式()a g x b ≤≤求出,若已知函数()()f g x 的定义域为[],a b ,则()f x 的定义域为()g x在[],x a b ∈时的值域.5.B解析:B 【分析】先分析分段函数的单调性,然后根据单调性将关于函数值的不等式转化为关于自变量的不等式,从而求解出解集. 【详解】 因为313y x =在R 上单调递增,所以313y x =在(),0-∞上单调递增, 又因为xy e =在R 上单调递增,所以xy e =在[)0,+∞上单调递增,且0311003e =>=⋅,所以()f x 在R 上单调递增, 又因为()()232f x f x ->,所以232xx ->,解得()3,1x ∈-,故选:B. 【点睛】思路点睛:根据函数单调性求解求解关于函数值的不等式的思路: (1)先分析出函数在指定区间上的单调性;(2)根据单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式,从而求解出不等式的解集.6.C解析:C 【分析】根据函数单调性的定义判断出函数()f x 为()0,∞+上的增函数,进而可得出关于实数b 的不等式组,由此可解得实数b 的取值范围. 【详解】对任意的正实数1x 、2x ,当12x x ≠时,()()()12120x x f x f x -->⎡⎤⎣⎦, 不妨设12x x >,则()()120f x f x ->,即()()12f x f x >, 所以,函数()f x 为()0,∞+上的增函数,则()()120212122512b b b b b -<⎧⎪-⎪≤⎨⎪--+≤+-⎪⎩,解得14b ≤≤. 因此,实数b 的取值范围是[]1,4. 故选:C.【点睛】思路点睛:利用分段函数的单调性求参数范围,应该各支函数在各自的区间内利用单调性以及函数在间断点处端点值的大小关系得出参数的不等式组,从而解得参数的取值范围.7.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b-≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.8.D解析:D 【分析】根据复合含定义域的求法,令121log 2x ≤≤,求函数的定义域.【详解】函数()y f x =的定义域为[]1,2,12log y f x ⎛⎫∴= ⎪⎝⎭的定义域,令121log 2x ≤≤,解得:1142x ≤≤ ,即函数的定义域为11,42⎡⎤⎢⎥⎣⎦. 故选:D 【点睛】方法点睛:一般复合函数的定义域包含以下几点:已知函数()y f x =的定义域为D ,求()y f g x ⎡⎤=⎣⎦的定义域,即令()g x D ∈,求x 的取值范围,就是函数()y f g x ⎡⎤=⎣⎦的定义域;已知()y f g x ⎡⎤=⎣⎦的定义域为D ,求函数()y f x =的定义域,即求函数()g x ,x D ∈ 的值域.9.B解析:B 【分析】构造新函数()()g x xf x =,得出函数()g x 在(0,)+∞为单调递减函数,把()80f x x->,转化为()()220f xf x -<,得到()()2g x g >,结合单调性和定义域,即可求解. 【详解】 由题意,定义在(0,)+∞上的函数()f x 满足()()1122120x f x x f x x x -<-,设()()g x xf x =,可得()()12120g x g x x x -<-,所以函数()g x 在(0,)+∞为单调递减函数,因为()24f =,则()228f =, 不等式()80f x x ->,可化为()80xf x x-<,即()80xf x -<,即()()220f xf x -<,即()()2g x g >,可得20x x <⎧⎨>⎩,解得02x <<, 所以不等式()80f x x->的解集为()0,2.故选:B. 【点睛】本题主要考查了利用函数的单调性求解不等式,其中解答中根据已知条件,构造新函数,利用新函数的单调性和特殊点的函数值,得出不等式关系式是解答的关键,着重考查构造思想,以及推理与运算能力.10.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.11.B解析:B 【解析】函数()2f x x ax b =-+-的图象是开口朝上且以直线2ax =-为对称轴的抛物线, ①当22a -> 或22a-<-,即4a -< ,或4a >时, 函数f x () 在区间[]2,2-上单调, 此时224M m f f a -=--=()(), 故M m - 的值与a 有关,与b 无关 ②当022a≤-≤ ,即40a -≤≤ 时, 函数f x ()在区间[2]2a --,上递增,在[2]2a -, 上递减,且22f f -<()() , 此时2322424a a M m f f a -=---=--()(),故M m - 的值与a 有关,与b 无关③当202a-≤-≤,即04a ≤≤时, 函数f x ()在区间[2]2a -,上递减,在[2]2a --,上递增, 且22f f <-()()此时222424a a M m f f a -=--=-+()(),故M m - 的值与a 有关,与b 无关 综上可得M m - 的值与a 有关,与b 无关 故选B【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.12.A解析:A 【分析】根据函数解析式可验证出()()12f x f x +-=,采用倒序相加法可求得结果. 【详解】()11113sin 22f x x x ⎛⎫-=-+-+ ⎪⎝⎭,()()12f x f x ∴+-=,令122018201920192019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 则201712019201922018019S f f f ⎛⎫⎛⎫⎛⎫=++⋅⋅⋅+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 两式相加得:222018S =⨯,2018S ∴=. 故选:A . 【点睛】本题考查倒序相加法求和的问题,解题关键是能够根据函数解析式确定()()1f x f x +-为常数.二、填空题13.【分析】根据题意求得ab 的值可得的解析式分别讨论三种情况结合二次函数图像与性质即可求得结果【详解】由题意得:所以所以解得所以为开口向上对称轴为的抛物线当即时在上单调递减所以当即时在上单调递减在上单调解析:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【分析】根据题意,求得a ,b 的值,可得()f x 的解析式,分别讨论3t <-,31t -≤≤-,1t >-三种情况,结合二次函数图像与性质,即可求得结果. 【详解】由题意得:22(1)(1)(1)121f x a x b x ax a ax bx b +=++++=+++++,所以()()222111223ax a ax bx b ax bx ax a f b x x x f +++++---=++=-=++,所以223ax x a b =⎧⎨+=⎩,解得1,2a b ==,所以22()21(1)f x x x x =++=+,为开口向上,对称轴为1x =-的抛物线, 当21t +<-,即3t <-时,()f x 在[],2t t +上单调递减,所以2()(2)(3)g t f t t =+=+,当12t t ≤-≤+,即31t -≤≤-时,()f x 在[,1)t -上单调递减,在[1,2]t -+上单调递增,所以()(1)0g t f =-=;当1t >-时,()f x 在[],2t t +上单调递增,所以2()()(1)g t f t t ==+,综上:22(3),3()0,31(1),1t t g t t t t ⎧+<-⎪=-≤≤-⎨⎪+>-⎩故答案为:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【点睛】求二次函数在区间[,]a b 上最值时,一般用分类讨论的方法求解,讨论对称轴位于区间的左右两侧,位于区间内,再根据二次函数图像与性质,求解即可,考查分析求解的能力,属中档题.14.【分析】将函数变形为关于的方程分析二次项的系数并结合与的关系求解出的取值范围从而值域可求【详解】因为所以所以当即时此时;当即时此时所以综上可知:所以的值域为故答案为:【点睛】易错点睛:利用判别式法求 解析:[]0,4【分析】将函数变形为关于x 的方程,分析二次项的系数并结合∆与0的关系求解出y 的取值范围,从而值域可求.因为222421x x y x ++=+,所以222+42yx y x x +=+,所以()22420y x x y -++-=, 当20y -=,即2y =时,此时0x =;当20y -≠,即2y ≠时,此时()216420y ∆=--≥,所以[)(]0,22,4y ∈,综上可知:[]0,4y ∈,所以222421x x y x ++=+的值域为[]0,4, 故答案为:[]0,4. 【点睛】易错点睛:利用判别式法求解函数值域需要注意的事项: (1)原函数中分子分母不能约分; (2)原函数的定义域为实数集R .15.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i A ϕ∈⎧=⎨∉⎩,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i AB ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.16.02【分析】构造函数F (x )=f (x )﹣g (x )利用F (x )的单调性求出a 【详解】解:对于任意x1x2∈02且x1<x2都有f (x1)﹣f (x2)<g (x1)﹣g (x2)即f (x1)﹣g (x1)<f解析:[0,2] 【分析】构造函数F (x )=f (x )﹣g (x ),利用F (x )的单调性求出a 【详解】解:对于任意x 1,x 2∈[0,2],且x 1<x 2,都有f (x 1)﹣f (x 2)<g (x 1)﹣g (x 2),即f (x 1)﹣g (x 1)<f (x 2)﹣g (x 2),令F (x )=f (x )﹣g (x )=x 2﹣a |x ﹣1|,即F (x 1)<F (x 2),只需F (x )在[0,2]单调递增即可,当x =1时,F (x )=0,图象恒过(1,0)点, 当x >1时,F (x )=x 2﹣ax +a , 当x <1时,F (x )=x 2+ax ﹣a , 要使F (x )在[0,2]递增,则当1<x ≤2时,F (x )=x 2﹣ax +a 的对称轴x =12a≤,即a ≤2, 当0≤x <1时,F (x )=x 2+ax ﹣a 的对称轴x =02a-≤,即a ≥0, 故a ∈[0,2], 故答案为:[0,2] 【点睛】考查恒成立问题,函数的单调性问题,利用了构造函数法,属于中档题.17.【分析】分别讨论和时结合基本不等式和二次函数的单调性可得的最小值解不等式可得所求范围【详解】函数可得时当且仅当时取得最小值由时若时在递减可得由于的最小值为所以解得;若时在处取得最小值与题意矛盾故舍去 解析:[3,)+∞【分析】分别讨论1x >和1x ≤时,结合基本不等式和二次函数的单调性可得()f x 的最小值,解不等式可得所求范围. 【详解】函数2212,1()4,1x ax x f x x a x x ⎧-+≤⎪=⎨++>⎪⎩,可得1x >时,()44f x x a a a x =++≥=+,当且仅当2x =时,()f x 取得最小值4a +, 由1x ≤时,()()2212f x x a a =-+-,若1a ≥时,()f x 在(]1-∞,递减,可得()()1132f x f a ≥=-, 由于()f x 的最小值为()1f ,所以1324a a -≤+,解得3a ≥; 若1a <时,()f x 在x a =处取得最小值与题意矛盾,故舍去; 综上得实数a 的取值范围是[)3,+∞, 故答案为:[)3,+∞. 【点睛】本题主要考查分段函数的最值求法,考查二次函数的单调性和运用,以及不等式的解法,属于中档题.18.【分析】利用换元法将函数换元构造出新函数由新函数的定义域结合二次函数的性质求出最值即可得到值域【详解】设则所以原函数可化为:由二次函数性质当时函数取最大值2由性质可知函数无最小值所以值域为:故答案为 解析:(],2-∞【分析】利用换元法将函数换元构造出新函数,由新函数的定义域结合二次函数的性质求出最值即可得到值域. 【详解】设)0t t =≥,则21x t =-, 所以原函数可化为:()2210y t t t =-++≥,由二次函数性质,当1t =时,函数取最大值2,由性质可知函数无最小值, 所以值域为:(],2-∞. 故答案为:(],2-∞. 【点睛】本题考查换元法求函数值域,当函数解析式中含有根式时,一般考虑换元法,用换元法时要注意一定写出新变量数的取值范围.19.【分析】根据二次函数的单调性求得求得函数在区间上的最大值和最小值由题意可得出可得出关于实数的不等式进而可求得实数的取值范围【详解】二次函数的图象开口向上对称轴为直线由于函数在上是减函数则则所以函数在 解析:[]2,3【分析】根据二次函数()y f x =的单调性求得2a ≥,求得函数()y f x =在区间[]1,1a +上的最大值和最小值,由题意可得出()()max min 4f x f x -≤,可得出关于实数a 的不等式,进而可求得实数a 的取值范围. 【详解】二次函数()225f x x ax =-+的图象开口向上,对称轴为直线x a =,由于函数()225f x x ax =-+在(],2-∞上是减函数,则2a ≥,则()1,1a a ∈+,所以,函数()y f x =在区间[)1,a 上单调递减,在区间(],1a a +上单调递增, 所以,()()2min 5f x f a a ==-,又()162f a =-,()216f a a +=-,则()()()211220f f a a a a a -+=-=-≥,()()max 162f x f a ∴==-,对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则()()()()22max min 625214f x f x a a a a -=---=-+≤,即2230a a --≤,解得13a -≤≤, 又2a ≥,则23a ≤≤,因此,实数a 的取值范围是[]2,3.故答案为:[]2,3. 【点睛】本题考查利用不等式恒成立求参数值,同时也考查了利用二次函数在区间上的单调性求参数,考查计算能力,属于中等题.20.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,只要使()()12min min f x g x ≥即可. 即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .三、解答题21.(1)证明见解析;(2)12x <<. 【分析】(1)计算出(1)f 后由单调性可证;(2)求得(2)2f =,利用定义不等式可化为([(32)(1)](2)f x x f x --<,然后由单调性求解. 【详解】解(1)令1a b ==,代入条件式子得(1)1f =;()f x 在R +上单调递增∴当1x >时,()(1)1f x f >=,得证.(2)令1,22a b ==,代入①式得1(1)()(2)1(2)22f f f f =+-⇒= (32)(1)()2f x f x f x ∴-+-<+(32)(1)()(2)f x f x f x f ⇔-+-<+320,10,0,[(32)(1)]1(2)1x x x f x x f x ->⎧⎪->⎪⇔⎨>⎪⎪--+<+⎩11121(32)(1)223x x x x x x x ⎧>⎧>⎪⎪⇔⇔⇔<<⎨⎨--<<<⎪⎪⎩⎩.【点睛】关键点点睛:本题考查抽象函数的单调性的应用,解关于抽象函数的不等式,关键是利用函数的定义,把不等式转化为12()()f x f x <形式,然后由单调性求解.转化时注意函数的定义域.22.(1)222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩,简图答案见解析;(2)单调增区间为(,1)-∞-和(1,)+∞,单调减区间为[]1,1-;(3)1m .【分析】(1)设0x <,则0x ->,利用()f x f x =--()即可求出0x <时,()f x 的解析式,进而可得函数()f x 的解析式,按步骤列表描点连线即可作出函数图象; (2)根据图象上升和下降趋势即可得单调区间;(3)将原问题转化为max 21m f x ≤-(),利用单调性求出()f x 在区间[1,3]-上的最大值即可求解. 【详解】(1)设0x <,则0x ->,因为f x ()是奇函数所以()()()2222f x f x x x x x ⎡⎤=--=----=--⎣⎦() 所以222,02,0x x x f x x x x ⎧-≥=⎨--<⎩() , 列表如下:(2)由图知:函数f x ()的单调增区间为(,1)-∞-和(1,)+∞,单调减区间为[]1,1-(3)不等式21f x m -≥()在1[]3x ∈-,上有解, 等价于在21m f x ≤-()在1[]3x ∈-,有解.可得max 21m f x ≤-(), 由(2)可知f x ()在[11-,)上单调递减,在[1]3,上单调递增, 因为()()()211211f -=---⨯-=,()233233f =-⨯=所以()max 3f x =,所以2312m ≤-=,所以1m 【点睛】方法点睛:求不等式有解问题常用分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()min g x λ≥或()()max g x x D λ≤∈,求()g x 的最值即可.23.(1)()223x x x f =-+;(2)[]2,11.【分析】(1)若选①:利用待定系数法并结合()f x 的图象经过点()1,2求解二次函数()f x 的解析式;若选②:根据对称轴方程以及()03f =并结合()f x 的图象经过点()1,2求解二次函数()f x 的解析式;若选③:根据已知条件判断出()1,2为图象的最低点,由此分析出对称轴,则二次函数的解析式可求;(2)根据(1)得到()f x 的解析式,然后利用配方法和整体替换的方法求解出()212x -+的取值范围,则()f x 在[]1,4-上的值域可求.【详解】 解:若选①,(1)设()()20f x ax bx c a =++≠,则()()()()221112f x a x b x c ax a b x a b c +=++++=+++++. 因为()()121f x f x x +=+-,所以()22221ax a b x a b c ax bx c x +++++=+++-,所以221a a b =⎧⎨+=-⎩,解得1a =,2b =-.因为()f x 的图象经过点()1,2,所以()1122f a b c c =++=-+=,所以3c =. 故()223x x x f =-+.若选②,(1)设()()20f x ax bx c a =++≠,则()f x 图象的对称轴方程为2bx a=-. 由题意可得()()120312b a fc f a b c ⎧-=⎪⎪==⎨⎪=++=⎪⎩,解得123a b c =⎧⎪=-⎨⎪=⎩.故()223x x x f =-+.若选③,(1)()()20f x ax bx c a =++≠.因为()03f =,所以3c =.因为()()21f x f ≥=,所以()13212f a b b a ⎧=++=⎪⎨-=⎪⎩,解得1a =,2b =-.故()223x x x f =-+.(2)由(1)可知()()222312f x x x x =-+=-+. 因为14x -≤≤,所以213x -≤-≤,所以()2019x ≤-≤,所以()221211x ≤-+≤. 即()f x 在[]1,4-上的值域为[]2,11. 【点睛】方法点睛:求解函数解析式常用的方法有:(1)换元法:适用于求解已知()()f g x 的解析式求解()f x 的解析式的类型;(2)待定系数法:适用于已知函数的类型求解函数解析式,如已知函数为一次函数可设()()0f x kx b k =+≠或已知函数为二次函数可设()()20f x ax bx c a =++≠; (3)方程组法:适用于已知()(),f x f x -组成的方程求解()f x 的解析式或已知()1,f x f x ⎛⎫ ⎪⎝⎭组成的方程求解()f x 的解析式的类型. 24.(1)[]1,0-、[]0,1、[]1,1-;(2)2;(2)[]1,0-和[]1,3-.【分析】(1)本题可令3x x =,解得0x =或±1,然后根据函数()3f x x =的单调性以及“和谐区间”定义即可得出结果;(2)本题首先可将函数转化为()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,然后令312x x -=,解得25x =或2,最后绘出函数图像,结合函数图像即可得出结果; (3)本题可令22x x x -=,解得0x =或3,然后结合函数图像即可得出结果.【详解】(1)函数()3f x x =是增函数,定义域为R , 令3x x =,解得0x =或±1,故函数()3f x x =的所有“和谐区间”为[]1,0-、[]0,1、[]1,1-. (2)因为()312f x x =-,所以()321,23321,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩, 因为[]()0,0m m >为函数()312f x x =-的一个“和谐区间”, 所以可令312x x -=,解得25x =或2, 如图所示,绘出函数图像:结合“和谐区间”的定义易知,当2x =时满足题意,故m 的值为2.(3)函数()22f x x x =-,定义域为R , 令22x x x -=,解得0x =或3,如图所示,绘出函数图像:结合图像易知,函数()f x 的所有“和谐区间”为[]1,0-和[]1,3-.【点睛】关键点点睛:本题考查函数新定义,能否结合题意明确函数新定义的含义是解决本题的关键,在解决函数类的问题时,合理利用函数图像可以给解题带来很大帮助,考查数形结合思想,是中档题.25.(1)2221y x x =++;(2)()22728,5116913,59221255,91322872,13m m m m m h m m m m m m -<⎧⎪⎪-+≤≤⎪=⎨⎪-+<≤⎪⎪->⎩. 【分析】(1)待定系数法求出参数,,a b c ,写出二次函数表达式即可;(2)由(1)知22(22)1y x m x =+-+,即对称轴为12m x -=,讨论12m -与区间[]2,6的位置关系求m 范围及对应()h m .【详解】解:(1)由题可得12215b a c a b c ⎧-=-⎪⎪=⎨⎪++=⎪⎩,解得221a b c =⎧⎪=⎨⎪=⎩,即2221y x x =++; (2)22(2)2(22)1y ax b m x c x m x =+-+=+-+,其图象对称轴的方程为12m x -=. ①当122m -<时,即5m <时,()8512G m m =-,()134H m m =-,()728h m m =-;②当1242m -≤≤时,即59m ≤≤时,()8512G m m =-,221()2m m H m -++=,21169()1322h m m m =-+; ③当1462m -<≤时,即913m <≤时,()134G m m =-,221()2m m H m -++=,2125()522h m m m =-+; ④当162m ->时,即13m >时,()134G m m =-,()8512H m m =-,()872h m m =-.综上,()22728,5116913,59221255,91322872,13m m m m m h m m m m m m -<⎧⎪⎪-+≤≤⎪=⎨⎪-+<≤⎪⎪->⎩. 【点睛】关键点点睛:已知过定点及对称轴,应用待定系数法求二次函数解析式;当对称轴含参数时,研究区间最值需要讨论对称轴与区间的关系确定最值情况.26.(1)(),()2,(,0)(0,)a f x x g x x x∞∞=+=∈-⋃+;(2)3a >-. 【分析】(1)利用函数的奇偶性,列方程组,求函数的解析式;(2)由(1)知,()()2,[1,)a f x g x x x x∞+=++∈+,方法一,讨论a 的正负,以及函数的单调性,转化为求函数的最小值大于0,求a 的取值范围;方法二,利用参变分离,()22a x x >-+,转化为求函数最大值,即求a 的取值范围.【详解】(1)由已知条件()()2a f x g x x x-=+-——① ①式中以x -代替x ,得()()2a f x g x x x ---=---——② 因为()f x 是奇函数,()g x 是偶函数,故()(),()()f x f x g x g x -=--=②可化为()()2a f x g x x x --=---——③ ①-③,得22()2a f x x x =+故(),()2,(,0)(0,)a f x x g x x x∞∞=+=∈-⋃+ (2)由(1)知,()()2,[1,)a f x g x x x x ∞+=++∈+ 当0a ≥时,函数()()f x g x +的值恒为正;当0a <时,函数()()2a f x g x x x +=++在[1,)+∞上为增函数 故当1x =时,()f x 有最小值3a +故只需30a +>,解得30a -<<.综上所述,实数a 的取值范围是(3,)-+∞法二:由(1)知,()()2a f x g x x x+=++ 当[1,)x ∈+∞时,()()0f x g x +>恒成立,等价于()22a x x >-+ 而二次函数()222(1)1y x x x =-+=-++在[1,)+∞上单调递减 1x =时,max 3y =-故3a >-【点睛】方法点睛:由不等式恒成立求参数的取值范围的方法:讨论最值,先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围.。
高一数学必修一第二章测试题答案
高一数学必修一第二章测试题一、选择题:(每小题4分,共48分)1.3a ·6a -等于【 】 A.-a - B.-a C.a -D.a解析:3a ·6a-=a 31·(-a )61=-(-a )6131+=-(-a )21.答案:A2.已知函数y =log 41x 与y =kx 的图象有公共点A ,且A 点的横坐标为2,则k 的值等于【 】A.-41 B.41 C.-21 D.21 解析:由点A 在y =log 41x 的图象上可求出A 点纵坐标y =log 412=-21.又A (2,-21)在y =kx 图象上,-21=k ·2,∴k =-41. 答案:A3.已知函数f (x )=lgxx+-11,若f (a )=b ,则f (-a )等于【 】 A.b B.-b C.b1D.-b1 解析:f (-a )=lg a a -+11=-lg aa+-11=-f (a )=-b .【答案】 B4.函数y =)1(log 221-x 的定义域是【 】A.[-2,-1)∪(1,2]B.(-3,-1)∪(1,2)C.[-2,-1)∪(1,2]D.(-2,-1)∪(1,2)解析:⇔⎪⎩⎪⎨⎧≤≤--<>⇔⎪⎩⎪⎨⎧≤>⇔⎪⎩⎪⎨⎧≤->⇔⎪⎩⎪⎨⎧≥->-2211211110)1(log 0122222212x x x x x x x x x 或-2≤x <-1或1<x ≤2.∴y =)1(log 221-x 的定义域为[-2,-1)∪(1,2].答案:A5.若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是[0,1],则a 等于【 】A.31B. 2C.22D.2解析:f (x )=log a (x +1)的定义域是[0,1],∴0≤x ≤1,则1≤x +1≤2. 当a >1时,0=log a 1≤log a (x +1)≤log a 2=1,∴a =2;当0<a <1时,log a 2≤log a (x +1)≤log a 1=0,与值域是[0,1]矛盾. 综上,a =2. 答案:D6.函数y =log a (x 2+2x -3),当x =2时,y >0,则此函数的单调递减区间是【 】A.(-∞,-3)B.(1,+∞)C.(-∞,-1)D.(-1,+∞)解析:当x =2时,y =log a 5>0,∴a >1.由x 2+2x -3>0⇒x <-3或x >1,易见函数t =x 2+2x -3在(-∞,-3)上递减,故函数y =log a (x 2+2x -3)(其中a >1)也在(-∞,-3)上递减. 答案:A 7.函数||2)(x x f -=的值域是(D ) A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围( D )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数y =log a (2-ax )在[0,1]上是减函数,则a 的取值范围是【 】A.(0,1)B.(0,2)C.(1,2)D.(2,+∞) 解析:题中隐含a >0,∴2-ax 在[0,1]上是减函数.∴y =log a u 应为增函数,且u =2-ax 在[0,1]上应恒大于零.∴⎩⎨⎧>->.02,1a a ∴1<a <2. 答案:C10.设函数f (x )=log a |x |在(-∞,0)上单调递增,则f (a +1)与f (2)的大小关系是【】A.f (a +1)=f (2)B.f (a +1)>f (2)C.f (a +1)<f (2)D.不能确定解析:由f (x )=⎩⎨⎧+∞∈-∞∈-),,0(,log ),0,(),(log x x x x a a 且f (x )在(-∞,0)上单调递增,易得0<a<1.∴1<a +1<2.又∵f (x )是偶函数,∴f (x )在(0,+∞)上单调递减.∴f (a +1)>f (2).答案:B11.若函数y =a x +b -1(a >0且a ≠1)的图象经过二、三、四象限,则一定有【 】A.0<a <1且b >0B.a >1且b >0C.0<a <1且b <0D.a >1且b <0 解析:作函数y =a x +b -1的图象. 答案:C12.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于【 】A.42 B.22 C.41 D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a .∴log a 2a =31. ∴1+log a 2=31.∴log a 2=-32.∴a =42.答案:A二、填空题(每小题4分,共20分)13.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 .13.(2,-2);14.函数y =(21)222+-x x 的递增区间是___________. 解析:∵y =(21)x在(-∞,+∞)上是减函数,而函数y =x 2-2x +2=(x -1)2+1的递减区间是(-∞,1],∴原函数的递增区间是(-∞,1].答案:(-∞,1]15.已知f (x )是奇函数,当x ∈(0,1)时,f (x )=lg x+11,那么当x ∈(-1,0)时,f(x )的表达式是__________.解析:当x ∈(-1,0)时,-x ∈(0,1),∴f (x )=-f (-x )=-lg x-11=lg (1-x ).答案:lg (1-x )16.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121 ⇒21≤3-x ≤1⇒2≤x ≤25. 答案:[2,25]17.方程lg x +lg (x +3)=1的解x =___________________.解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2. ∵x >0,∴x =2. 答案:2三、解答题:(每小题8分,共32分)18、已知[]3,2x ∈-,求11()142x x f x =-+的最小值与最大值。
高中数学必修一第二章测试题(含答案)
高中数学必修一第二章测试题(2)一、选择题:1.已知p>q>1,0<a<1,则下列各式中正确的是()A.qp aa>B.aa qp>C.qp aa-->D.aa qp-->2、已知(10)xf x=,则(5)f=()A、510B、105C、lg10D、lg53.函数xyalog=当x>2 时恒有y>1,则a的取值范围是()A.1221≠≤≤aa且B.02121≤<≤<aa或C.21≤<a D.211≤<≥aa或4.当a≠0时,函数y ax b=+和y b ax=的图象只可能是()5、设1.50.90.4812314,8,2y y y-⎛⎫=== ⎪⎝⎭,则()A、312y y y>>B、213y y y>>C、132y y y>>D、123y y y>>6.下列函数中,在区间(0,+∞)上为增函数的是()A.y=ln(x+2) B.y=-x+1C.y=⎝⎛⎭⎫12x D.y=x+1x7.若a<12,则化简4(2a-1)2的结果是()A.2a-1B.-2a-1C.1-2a D.-1-2a8.函数y=lg x+lg(5-3x)的定义域是()A.[0,53) B.[0,53]C.[1,53) D.[1,53]9.幂函数的图象过点⎝⎛⎭⎫2,14,则它的单调递增区间是()A.(0,+∞) B.[0,+∞)C.(-∞,0) D.(-∞,+∞)10.函数y=2+log2(x2+3)(x≥1)的值域为()A.(2,+∞) B.(-∞,2)C.[4,+∞) D.[3,+∞)11.函数y=a x-1a(a>0,且a≠1)的图象可能是()12.若0<x<y<1,则()A.3y<3x B.log x3<log y3C.log4x<log4y D.(14)x<(14)y二、填空题13.函数f(x)=a x-1+3的图象一定过定点P,则P点的坐标是________.14.函数f(x)=log5(2x+1)的单调增区间是________.15.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围是______.13.将函数x y 2=的图象向左平移一个单位,得到图象C 1,再将C 1向上平移一个单位得到图象C 2,作出C 2关于直线y =x 对称的图象C 3,则C 3的解析式为. 三、解答题 17.化简下列各式:(1)[(0.06415)-2.5]23-3338-π0; (2)2lg 2+lg 31+12 lg 0.36+14lg 16.18.已知f (x )为定义在[-1,1]上的奇函数,当x ∈[-1,0]时,函数解析式f (x )=14x -a2x (a ∈R ).(1)写出f (x )在[0,1]上的解析式; (2)求f (x )在[0,1]上的最大值. 19.已知x >1且x ≠43,f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小. 20.已知函数f (x )=2x -12|x |.(1)若f (x )=2,求x 的值;(2)若2t f (2t )+mf (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围. 21.已知函数f (x )=a x -1(a >0且a ≠1).(1)若函数y =f (x )的图象经过P (3,4)点,求a 的值;(2)若f (lg a )=100,求a 的值;(3)比较f ⎝⎛⎭⎫lg 1100与f (-2.1)的大小,并写出比较过程. 22.已知f (x )=10x -10-x10x +10-x.(1)求证f (x )是定义域内的增函数; (2)求f (x )的值域.答案一. 选择题1—5.BDAAC 6—10.ACCCC 11—12.DC 二.填空题13.(1,4)14.⎝⎛⎭⎫-12,+∞15.(-1,0)∪(1,+∞)16.1)1(log 2--=x y17.解 (1)原式=⎩⎨⎧⎭⎬⎫⎣⎡⎦⎤⎝⎛⎭⎫641 00015-5223-⎝⎛⎭⎫27813-1=⎣⎡⎦⎤⎝⎛⎭⎫410315×⎝⎛⎭⎫-52×23-⎣⎡⎦⎤⎝⎛⎭⎫32313-1=52-32-1=0. (2)原式=2lg 2+lg 31+12lg 0.62+14lg 24=2lg 2+lg 31+lg 2×310+lg 2=2lg 2+lg 31+lg 2+lg 3-lg 10+lg 2=2lg 2+lg 32lg 2+lg 3=1. 18.解 (1)∵f (x )为定义在[-1,1]上的奇函数,且f (x )在x =0处有意义,∴f (0)=0,即f (0)=140-a20=1-a =0.∴a =1.设x ∈[0,1],则-x ∈[-1,0]. ∴f (-x )=14-x -12-x =4x -2x .又∵f (-x )=-f (x ), ∴-f (x )=4x -2x . ∴f (x )=2x -4x .(2)当x ∈[0,1],f (x )=2x -4x =2x -(2x )2, ∴设t =2x (t >0),则f (t )=t -t 2. ∵x ∈[0,1],∴t ∈[1,2].当t =1时,取最大值,最大值为1-1=0.19.解 f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0;当x >43时,34x >1,∴log x 34x >0.即当1<x <43时,f (x )<g (x );当x >43时,f (x )>g (x ).20.解 (1)当x <0时,f (x )=0;当x ≥0时,f (x )=2x -12x .由条件可知2x -12x =2,即22x -2·2x -1=0,解得2x =1±2.∵2x>0,∴x =log 2(1+2). (2)当t ∈[1,2]时,2t ⎝⎛⎭⎫22t -122t +m ⎝⎛⎭⎫2t -12t ≥0,即m (22t -1)≥-(24t -1). ∵22t -1>0,∴m ≥-(22t +1). ∵t ∈[1,2],∴-(1+22t )∈[-17,-5], 故m 的取值范围是[-5,+∞). ∴lg a lg a -1=2(或lg a -1=log a 100). 21.解 (1)∵函数y =f (x )的图象经过P (3,4),∴a3-1=4,即a 2=4.又a >0,所以a =2.(2)由f (lg a )=100知,a lg a -1=100. ∴(lg a -1)·lg a =2. ∴lg 2a -lg a -2=0, ∴lg a =-1或lg a =2, ∴a =110或a =100.(3)当a >1时,f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,f ⎝⎛⎭⎫lg 1100<f (-2.1). 因为,f ⎝⎛⎭⎫lg 1100=f (-2)=a -3, f (-2.1)=a-3.1,当a >1时,y =a x 在(-∞,+∞)上为增函数,∵-3>-3.1,∴a -3>a-3.1.即f ⎝⎛⎭⎫lg 1100>f (-2.1); 当0<a <1时,y =a x 在(-∞,+∞)上为减函数, ∵-3>-3.1,∴a -3<a-3.1,即f ⎝⎛⎭⎫lg 1100<f (-2.1). 22.(1)证明 因为f (x )的定义域为R ,且f (-x )=10-x -10x 10-x +10x =-f (x ),所以f (x )为奇函数.f (x )=10x -10-x 10x +10-x =102x -1102x +1=1-2102x +1. 令x 2>x 1,则 f (x 2)-f (x 1)=(1-2102x 2+1)-(1-2102x 1+1)=2·102x 2-102x 1(102x 2+1)(102x 1+1).因为y =10x 为R 上的增函数, 所以当x 2>x 1时,102x 2-102x 1>0.又因为102x 1+1>0,102x 2+1>0. 故当x 2>x 1时,f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1). 所以f (x )是增函数.(2)解 令y =f (x ).由y =102x -1102x +1,解得102x =1+y1-y.因为102x >0,所以-1<y <1. 即f (x )的值域为(-1,1).。
高一数学必修一函数各章节测试题4套
函数的性质测试题一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +1 2.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于 ( ) A .-7 B .1 C .17 D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( )A .(3,8)B .(-7,-2)C .(-2,3)D .(0,5) 4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞) C .(-2,+∞) D .(-∞,-1)∪(1,+∞)5.函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内 ( )A .至少有一实根B .至多有一实根C .没有实根D .必有唯一的实根 6.若q px x x f ++=2)(满足0)2()1(==f f ,则)1(f 的值是 ( )A 5B 5-C 6D 6-7.若集合}|{},21|{a x x B x x A ≤=<<=,且Φ≠B A ,则实数a 的集合( )A }2|{<a aB }1|{≥a aC }1|{>a aD }21|{≤≤a a8.已知定义域为R 的函数f (x )在区间(-∞,5)上单调递减,对任意实数t ,都有f (5+t )=f (5-t ),那么下列式子一定成立的是 ( ) A .f (-1)<f (9)<f (13) B .f (13)<f (9)<f (-1)C .f (9)<f (-1)<f (13) D .f (13)<f (-1)<f (9) 9.函数)2()(||)(x x x g x x f -==和的递增区间依次是( )A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞10.若 函 数()()2212f x x a x =+-+在区间 (]4,∞-上是减 函 数,则 实 数a 的 取值范 围 ( )A .a ≤3B .a ≥-3C .a ≤5D .a ≥311. 函数c x x y ++=42,则( )A )2()1(-<<f c fB )2()1(->>f c fC )2()1(->>f f cD )1()2(f f c <-<12.已知定义在R 上的偶函数()f x 满足(4)()f x f x +=-,且在区间[0,4]上是减函数则( ) A .(10)(13)(15)f f f << B .(13)(10)(15)f f f << C .(15)(10)(13)f f f << D .(15)(13)(10)f f f <<二、填空题:13.函数y =(x -1)-2的减区间是___ _. 14.函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时是增函数,当x ∈(-∞,-2]时是减函数,则f (1)= 。
高一数学必修一 第二章一元二次函数、方程和不等式单元测试试卷 (3)
高一数学必修一第二章一元二次函数、方程和不等式单元测试试卷 (3)数学第二章测试卷A卷本试卷满分100分,考试时间80分钟。
一、单项选择题(本大题共5小题,每小题5分,共计25分。
在每小题给出的四个选项中,只有一个是符合题目要求的,请把答案填涂在答题卡相应位置上)1.若$a+b+c=0$,且$a<b<c$,则下列不等式一定成立的是A。
$ab<bc$B。
$ab<ac$XXX<bc$D。
$ab<bc$2.已知正数$a$、$b$满足$\frac{22}{1194}+\frac{a}{b}=1$,则$\frac{a}{b}+\frac{b}{a}$的最小值是A。
6B。
12C。
24D。
363.已知二次函数$f(x)=x^2+bx+c$的两个零点分别在区间$(-2,-1)$和$(-1,0)$内,则$f(3)$的取值范围是A。
$(12,20)$B。
$(12,18)$C。
$(18,20)$D。
$(8,18)$4.若$x>0$,$y>0$,且$\frac{2}{x+1}+\frac{1}{x+2y}=1$,则$2x+y$的最小值为A。
2B。
$\frac{2}{3}$C。
$2+\frac{2}{3}$D。
$3$5.关于$x$的不等式$(ax-1)<x$恰有2个整数解,则实数$a$的取值范围是A。
$-\frac{34}{43}<a\leq-\frac{3}{4}$或$\frac{4}{3}<a\leq\frac{43}{34}$B。
$-\frac{3}{4}<a\leq-\frac{2}{3}$或$\frac{2}{3}<a\leq\frac{3}{4}$C。
$-\frac{34}{43}\leq a<-\frac{3}{4}$或$\frac{4}{3}\leq a<\frac{43}{34}$D。
$-\frac{3}{4}\leq a<-\frac{2}{3}$或$\frac{2}{3}\leq a\leq\frac{3}{4}$二、多项选择题(本大题共2小题,每小题5分,共计10分。
高中数学人教版必修1第二章基本初等函数单元测试卷(B)Word版含答案
第二章 基本初等函数 单元测试卷(B )时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)1.有下列各式:①na n=a ;②若a ∈R ,则(a 2-a +1)0=1;③3x 4+y 3=x 43 +y ;④3-5=6(-5)2.其中正确的个数是( ) A .0 B .1 C .2D .32.三个数log 215,20.1,20.2的大小关系是( ) A .log 215<20.1<20.2B .log 215<20.2<20.1C .20.1<20.2<log 215D .20.1<log 215<20.23.(2016·山东理,2)设集合A ={y |y =2x ,x ∈R },B ={x |x 2-1<0},则A ∪B =( ) A .(-1,1) B .(0,1) C .(-1,+∞)D .(0,+∞)4.已知2x=3y,则xy =( )A.lg2lg3B.lg3lg2 C .lg 23 D .lg 325.函数f (x )=x ln|x |的图象大致是( )6.若函数f (x )=3x +3-x 与g (x )=3x -3-x 的定义域均为R ,则( ) A .f (x )与g (x )均为偶函数 B .f (x )为奇函数,g (x )为偶函数 C .f (x )与g (x )均为奇函数 D .f (x )为偶函数,g (x )为奇函数7.函数y =(m 2+2m -2)x 1m -1 是幂函数,则m =( ) A .1 B .-3 C .-3或1D .28.下列各函数中,值域为(0,+∞)的是( ) A .y =2-x2B .y =1-2xC .y =x 2+x +1D .y =31x +19.已知函数:①y =2x;②y =log 2x ;③y =x -1;④y =x 12 ;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是( )A .②①③④B .②③①④C .④①③②D .④③①②10.设函数f (x )=⎩⎪⎨⎪⎧1+log 2(2-x ) (x <1)2x -1 (x ≥1),则f (-2)+f (log 212)=( )A .3B .6C .9D .1211.已知函数f (x )=⎩⎨⎧(a -2)x ,x ≥2,(12)x-1,x <2满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<0成立,则实数a 的取值范围为( ) A .(-∞,2) B .(-∞,138] C .(-∞,2]D .[138,2)12.(2016·汉中高一检测)如果一个点是一个指数函数与一个对数函数的图象的公共点,那么称这个点为“好点”.在下面的五个点M (1,1),N (1,2),P (2,1),Q (2,2),G (2,12)中,可以是“好点”的个数为( ) A .0个 B .1个 C .2个D .3个第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.已知a 12 =49(a >0),则log 23a =________.14.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,3x ,x ≤0,则f (f (14))=________. 15.若函数y =log 12 (3x 2-ax +5)在[-1,+∞)上是减函数,则实数a 的取值范围是________.16.(2016·邵阳高一检测)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =log 22 x ,y =x 12 ,y =(22)x 的图象上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(本小题满分10分)计算:10.25+(127)-13 +(lg3)2-lg9+1-lg 13+810.5log 35.18.(本小题满分12分)已知函数f (x )=(12)ax,a 为常数,且函数的图象过点(-1,2). (1)求a 的值;(2)若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.19.(本小题满分12分)已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求f (x )的最值; (2)求使f (x )-g (x )>0的x 的取值范围.20.(本小题满分12分)求使不等式(1a )x 2-8>a -2x 成立的x 的集合(其中a >0,且a ≠1).21.(本小题满分12分)(2016·雅安高一检测)已知函数f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.(本小题满分12分)若函数f (x )满足f (log a x )=a a 2-1·(x -1x )(其中a >0且a ≠1).(1)求函数f (x )的解析式,并判断其奇偶性和单调性;(2)当x ∈(-∞,2)时,f (x )-4的值恒为负数,求a 的取值范围.第二章 基本初等函数 单元综合测试二 答案第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分) 1.[答案] B [解析] ①na n=⎩⎪⎨⎪⎧|a |,n 为偶数,a ,n 为奇数(n >1,且n ∈N *),故①不正确.②a 2-a +1=(a -12)2+34>0,所以(a 2-a +1)0=1成立.③3x 4+y 3无法化简.④3-5<0,6(-5)2>0,故不相等.因此选B. 2.[答案] A[解析] ∵log 215<0,0<20.1<20.2, ∴log 215<20.1<20.2,选A. 3.[答案] C[解析] A ={y |y =2x ,x ∈R }={y |y >0}.B ={x |x 2-1<0}={x |-1<x <1},∴A ∪B ={x |x >0}∪{x |-1<x <1}={x |x >-1},故选C. 4.[答案] B[解析] 由2x =3y 得lg2x =lg3y ,∴x lg2=y lg3, ∴x y =lg3lg2. 5.[答案] A[解析] 由f (-x )=-x ln|-x |=-x ln|x |=-f (x )知,函数f (x )是奇函数,故排除C ,D ,又f (1e )=-1e <0,从而排除B ,故选A.6.[答案] D[解析]因为f(-x)=3-x+3x=f(x),g(-x)=3-x-3x=-g(x),所以f(x)是偶函数,g(x)为奇函数,故选D.7.[答案] B[解析]因为函数y=(m2+2m-2)x 1m-1是幂函数,所以m2+2m-2=1且m≠1,解得m=-3.8.[答案] A[解析]A,y=2-x2=(22)x的值域为(0,+∞).B,因为1-2x≥0,所以2x≤1,x≤0,y=1-2x的定义域是(-∞,0],所以0<2x≤1,所以0≤1-2x<1,所以y=1-2x的值域是[0,1).C,y=x2+x+1=(x+12)2+34的值域是[34,+∞),D,因为1x+1∈(-∞,0)∪(0,+∞),所以y=31x+1的值域是(0,1)∪(1,+∞).9.[答案] D[解析]根据幂函数、指数函数、对数函数的图象可知选D. 10.[答案] C[解析]f(-2)=1+log2(2-(-2))=3,f(log212)=2log212-1=2log26=6,∴f(-2)+f(log212)=9,故选C.11.[答案] B[解析]由题意知函数f(x)是R上的减函数,于是有⎩⎨⎧a -2<0,(a -2)×2≤(12)2-1,由此解得a ≤138,即实数a 的取值范围是(-∞,138],选B. 12.[答案] C[解析] 设指数函数为y =a x (a >0,a ≠1),显然不过点M 、P ,若设对数函数为y =log b x (b >0,b ≠1),显然不过N 点,选C.第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分) 13.[答案] 4[解析] ∵a 12 =49(a >0), ∴(a 12)2=[(23)2]2,即a =(23)4, ∴log 23 a =log 23 (23)4=4.14.[答案] 19[解析] ∵14>0,∴f (14)=log 214=-2. 则f (14)<0,∴f (f (14))=3-2=19. 15.[答案] (-8,-6][解析] 令g (x )=3x 2-ax +5,其对称轴为直线x =a6,依题意,有⎩⎨⎧a 6≤-1,g (-1)>0,即⎩⎪⎨⎪⎧a ≤-6,a >-8.∴a ∈(-8,-6]. 16.[答案] (12,14)[解析] 由图象可知,点A (x A,2)在函数y =log 22 x 的图象上,所以2=log 22 x A ,x A =(22)2=12. 点B (x B,2)在函数y =x 12 的图象上, 所以2=x B 12 ,x B =4.点C (4,y C )在函数y =(22)x的图象上, 所以y C =(22)4=14. 又x D =x A =12,y D =y C =14, 所以点D 的坐标为(12,14).三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分) 17.[解析] 原式=10.5+(3-1)-13 +(lg3-1)2-lg3-1+(34)0.5log 35 =2+3+(1-lg3)+lg3+32log 35 =6+3log 325=6+25=31.18.[解析] (1)由已知得(12)-a=2,解得a =1. (2)由(1)知f (x )=(12)x,又g (x )=f (x ),则4-x-2=(12)x ,即(14)x -(12)x-2=0,即[(12)x ]2-(12)x-2=0,令(12)x =t ,则t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即(12)x =2,解得x =-1. 19.[解析] (1)当a =2时,f (x )=log 2(1+x ), 在[3,63]上为增函数,因此当x =3时,f (x )最小值为2. 当x =63时f (x )最大值为6. (2)f (x )-g (x )>0即f (x )>g (x ) 当a >1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧ 1+x >1-x 1+x >01-x >0∴0<x <1当0<a <1时,log a (1+x )>log a (1-x ) 满足⎩⎪⎨⎪⎧1+x <1-x 1+x >01-x >0∴-1<x <0综上a >1时,解集为{x |0<x <1} 0<a <1时解集为{x |-1<x <0}. 20.[解析] ∵(1a )x 2-8=a 8-x 2, ∴原不等式化为a 8-x 2>a -2x . 当a >1时,函数y =a x 是增函数, ∴8-x 2>-2x ,解得-2<x <4; 当0<a <1时,函数y =a x 是减函数,∴8-x2<-2x,解得x<-2或x>4.故当a>1时,x的集合是{x|-2<x<4};当0<a<1时,x的集合是{x|x<-2或x>4}.21.[解析](1)∵f(x)=2x,∴g(x)=f(2x)-f(x+2)=22x-2x+2.因为f(x)的定义域是[0,3],所以0≤2x≤3,0≤x+2≤3,解得0≤x≤1.于是g(x)的定义域为{x|0≤x≤1}.(2)设g(x)=(2x)2-4×2x=(2x-2)2-4.∵x∈[0,1],∴2x∈[1,2],∴当2x=2,即x=1时,g(x)取得最小值-4;当2x=1,即x=0时,g(x)取得最大值-3.22.[解析](1)令log a x=t(t∈R),则x=a t,∴f(t)=aa2-1(a t-a-t).∴f(x)=aa2-1(a x-a-x)(x∈R).∵f(-x)=aa2-1(a-x-a x)=-aa2-1(a x-a-x)=-f(x),∴f(x)为奇函数.当a>1时,y=a x为增函数,y=-a-x为增函数,且a2a2-1>0,∴f(x)为增函数.当0<a<1时,y=a x为减函数,y=-a-x为减函数,且a2a2-1<0,∴f(x)为增函数.∴f(x)在R上为增函数.(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数.由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,只需f(2)-4≤0,即aa2-1(a2-a-2)≤4.∴aa2-1(a4-1a2)≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-3≤a≤2+ 3.又a≠1,∴a的取值范围为[2-3,1)∪(1,2+3].。
高中数学必修一第二章一元二次函数方程和不等式经典大题例题(带答案)
高中数学必修一第二章一元二次函数方程和不等式经典大题例题单选题1、实数a,b满足a>b,则下列不等式成立的是()A.a+b<ab B.a2>b2C.a3>b3D.√a2+b2<a+b答案:C分析:利用不等式的性质逐一判断即可.A,若a=1,b=0,则a+b>ab,故A错误;B,若a=1,b=−2,则a2<b2,故B错误;C,若a>b,则a3−b3=(a−b)(a2+ab+b2)=(a−b)[(a+b2)2+3b24]>0,所以a3>b3,故C正确;D,若a=1,b=−2,则√a2+b2>a+b,故D错误.故选:C2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a(元/个)的取值范围应是()A.90<a<100B.90<a<110C.100<a<110D.80<a<100答案:A分析:首先设每个涨价x元,涨价后的利润与原利润之差为y元,结合条件列式,根据y>0,求x的取值范围,即可得到a的取值范围.设每个涨价x元,涨价后的利润与原利润之差为y元,则a=x+90,y=(10+x)⋅(400−20x)−10×400=−20x2+200x.要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、已知y=(x−m)(x−n)+2022(n>m),且α,β(α<β)是方程y=0的两实数根,则α,β,m,n的大小关系是()A.α<m<n<βB.m<α<n<βC.m<α<β<n D.α<m<β<n答案:C分析:根据二次函数图像特点,结合图像平移变换即可得到答案.∵α,β为方程y=0的两实数根,∴α,β为函数y=(x−m)(x−n)+2022的图像与x轴交点的横坐标,令y1=(x−m)(x−n),∴m,n为函数y1=(x−m)(x−n)的图像与x轴交点的横坐标,易知函数y= (x−m)(x−n)+2022的图像可由y1=(x−m)(x−n)的图像向上平移2022个单位长度得到,所以m<α<β<n.故选:C.4、关于x的不等式ax2−|x|+2a≥0的解集是(−∞,+∞),则实数a的取值范围为()A.[√24,+∞)B.(−∞,√24]C.[−√24,√24]D.(−∞,−√24]∪[√24,+∞)答案:A分析:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,分x=0和a≠0两种情况讨论,结合基本不等式即可得出答案.解:不等式ax2−|x|+2a≥0的解集是(−∞,+∞),即对于∀x∈R,ax2−|x|+2a≥0恒成立,即a≥|x|x2+2,当x=0时,a≥0,当a≠0时,a≥|x|x2+2=1|x|+2|x|,因为1|x|+2|x|≤2√|x|⋅2|x|=√24,所以a≥√24,综上所述a∈[√24,+∞). 故选:A.5、不等式1+5x −6x 2>0的解集为( )A .{x|x >1或x <−16}B .{x |−16<x <1 }C .{x|x >1或x <−3}D .{x |−3<x <2 } 答案:B分析:解一元二次不等式,首先确保二次项系数为正,两边同时乘−1,再利用十字相乘法,可得答案, 法一:原不等式即为6x 2−5x −1<0,即(6x +1)(x −1)<0,解得−16<x <1,故原不等式的解集为{x |−16<x <1 }.法二:当x =2时,不等式不成立,排除A ,C ;当x =1时,不等式不成立,排除D . 故选:B .6、已知正实数a ,b 满足a +1b=2,则2ab +1a的最小值是( )A .52B .3C .92D .2√2+1 答案:A分析:由已知得, a =2−1b 代入得2ab +1a =2(2b −1)+b2b−1,令2b −1=t ,根据基本不等式可求得答案. 解:因为a +1b=2,所以a =2−1b>0,所以0<b <2 ,所以2ab +1a =2(2−1b )b +b 2b−1=2(2b −1)+b2b−1, 令2b −1=t ,则b =t +12,且−1<t <3 ,所以2ab +1a =2t +t +12t=2t +12t +12≥2√2t ⋅12t +12=52,当且仅当2t =12t ,即t =12,b =34,a =23时,取等号,所以2ab +1a 的最小值是52. 故选:A.7、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10] 答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A.8、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误;故选:C. 多选题9、已知函数y =ax 2+bx -3,则下列结论正确的是( ) A .关于x 的不等式ax 2+bx -3<0的解集可以是{x |x >3 } B .关于x 的不等式ax 2+bx -3>0的解集可以是∅C .函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点D .“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0” 答案:BCD分析:根据不等式的解集求出a 、b ,再解不等式ax 2+bx -3<0可判断A ;取a =-1,b =0,解不等式-x 2-3>0可判断B ;取a =-1,b =4可判断C ;根据根的分布、充要条件的定义可判断D . 若不等式ax 2+bx -3<0的解集是{x |x >3},则a =0且3b -3=0,得b =1,而当a =0,b =1时,不等式ax 2+bx -3<0,即x -3<0,得x <3,与x >3矛盾,故A 错误; 取a =-1,b =0,此时不等式-x 2-3>0的解集为∅,故B 正确;函数y =ax 2+bx -3的图象与x 轴正半轴可以有两个交点,即ax 2+bx -3=0可以有2个正根,取a =-1,b =4,则由y =-x 2+4x -3=0,得x =1或3,故C 正确;若关于x 的方程ax 2+bx -3=0有一个正根和一个负根,则{a ≠0,−3a<0,得a >0,若a >0,则Δ=b 2+12a >0,故关于x 的方程ax 2+bx -3=0有两个不等的实根x 1,x 2, 且x 1x 2=-3a <0,即关于x 的方程ax 2+bx -3=0有一个正根和一个负根.因此“关于x 的方程ax 2+bx -3=0有一个正根和一个负根”的充要条件是“a >0”,故D 正确. 故选:BCD .10、已知x ,y 是正实数,则下列选项正确的是( ) A .若x +y =2,则1x+1y 有最小值2B .若x +y =3,则x(y +1)有最大值5C .若4x +y =1,则2√x +√y 有最大值√2D .x4+y 2x+1y有最小值94答案:AC分析:将已知转化,再利用基本不等式可判断ABC 选项;利用特值法判断选项D 。
【高一数学试题精选】高一数学必修一第二章函数练习题(有答案和解释)
【解析】A中=x-1定义域为R,而=x2-1x+1定义域为{x|x≠1};
B中函数=x0定义域{x|x≠0},而=1定义域为R;
c中两函数的解析式不同;
D中f(x)与g(x)定义域都为(0,+∞),化简后f(x)=1,g(x)=1,所以是同一个函数.
【答案】D
故所求函数的定义域为{x|x≤0,且x≠-12}.
(2)要使=34x+83x-2有意义,
则必须3x-2 0,即x 23,
故所求函数的定义域为{x|x 23}.
11.已知f(x)=x21+x2,x∈R,
(1)计算f(a)+f(1a)的值;
(2)计算f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)的值.
高一数学必修一第二章函数练习题(有答案和解释)
5一、选择题
1.已知f(x)=x-1x+1,则f(2)=( )
A.1 B12 c13 D14
【解析】f(2)=2-12+1=13X
【答案】c
2.下列各组函数中,表示同一个函数的是( )
A.=x-1和=x2-1x+1
B.=x0和=1
c.=x2和=(x+1)2
【答案】B
二、填空题
6.集合{x|-1≤x 0或1 x≤2}用区间表示为________.
【解析】结合区间的定义知,
用区间表示为[-1,0)∪(1,2].
【答案】[-1,0)∪(1,2]
7.函数=31-x-1的定义域为________.
【解析】要使函数有意义,自变量x须满足
x-1≥01-x-1≠0
解得x≥1且x≠2
【解析】要使函数有意义,需
x-1≥0,x-2≠0,解得x≥1且x≠2,
人教版高中数学必修第一册第二单元《一元一次函数,方程和不等式》测试题(有答案解析)(1)
一、选择题1.已知函数22(0)y ax bx c a =+->的图象与x 轴交于()2,0A 、()6,0B 两点,则不等式220cx bx a +-< 的解集为( ) A .(6,2)-- B .11,,62⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭C .11,26--⎛⎫⎪⎝⎭D .11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭2.已知0a >,0b >,且1a b +=,则14a b+的最小值为( ) A .9B .8C .7D .63.已知2x >,那么函数42y x x =+-的最小值是( ) A .5B .6C .4D .84.已知关于x 的不等式(1)(3)10(0)a x x a +-+>≠的解集是()()1212,x x x x <,则错误的是( ) A .122x x +=B .123x x <-C .214x x ->D .1213x x -<<<5.对于实数x ,规定[]x 表示不大于x 的最大整数,那么不等式[][]2463450x x -+<成立的x 的取值范围是( ) A .[)1,15B .[]2,8C .[)2,8D .[)2,15 6.若集合{}2|10A x ax ax =-+<=∅,则实数a 的取值范围是 ( ) A .{}|04a a << B .{|04}a a ≤< C .{|04}a a <≤D .{|04}a a ≤≤ 7.若实数,x y 满足0xy >,则的最大值为( ) A .22-B .22+C .422+D .422-8.已知正实数,x y 满足3x y +=,则41x y+的最小值( ) A .2B .3C .4D .1039.已知a≥0,b≥0,且a+b=2,则 ( ) A .ab≤ B .ab≥ C .a 2+b 2≥2D .a 2+b 2≤310.已知正实数a ,b 满足21a b +=,则12a b+的最小值为( ) A .8B .9C .10D .1111.已知01a <<,1b >,则下列不等式中成立的是( )A .4aba b a b+<+ B 2aba b<+C <D .a b +12.在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,90ACB ∠=︒,D 为AB 边上的一点,30ACD ∠=︒,且2CD =,则a 的最小值为( )A .4B .4+C .8D .8+二、填空题13.为了调查盘龙江的水流量情况,需要在江边平整出一块斜边长为13m 的直角三角形空地建水文观测站,该空地的最大面积是______2m . 14.已知a 、b 、c 为正实数,则代数式938432a b cb c c a a b+++++的最小值是_________. 15.已知函数2()34(0)f x ax x a =-+>,若存在32m n a<≤,使得()f x 在区间[,]m n 上的值域为[,]m n ,则a 的取值范围________.16.设0b >,21a b -=,则242a a b+的最小值为_________.17.已知0,0a b >>,1a b +=,则14y a b=+的最小值是__________. 18.设A .B 分别为双曲线22221x y a b-=(a >0,b >0)的左.右顶点,P 是双曲线上不同于A .B的一点,直线AP .BP 的斜率分别为m .n ,则当3b a 取最小值时,双曲线的离心率为__________.19.已知x ,0y >,且194x y+=,则x y +的最小值________.20.已知实数0a >,0b >是8a 与2b 的等比中项,则62a b+的最小值是_________. 三、解答题21.已知不等式()()2330,ax a x b a b R +--<∈的解集为{}31A x x =-<<.(1)求实数a ,b 的值;(2)设()22()2ax bx f x x A x +-=∈-,当x 为何值时()f x 取得最大值,并求出其最大值.22.已知函数()()221f x ax a x b =-++-.(1)若2a =-,9b =,求函数()()0f x y x x=<的最小值; (2)若1b =-,解关于x 的不等式()0f x ≥.23.已知关于x 的不等式()22600kx x k k -+<≠.(1)若不等式的解集是{3x x <-或}2x >-,求k 的值; (2)若不等式的解集是R ,求k 的取值范围; (3)若不等式的解集为∅,求k 的取值范围.24.已知函数()|21||2|f x x x =---,M 为不等式()1f x <-的解集. (1)求M ;(2)当,a b M ∈且1a b +=时,4a b tab +≥恒成立,求t 的最大值.25.解关于x 的不等式ax 2-(a +1)x +1<0.26.已知ABC 内接于O ,AB c =,BC a =,=CA b ,O 的半径为r .(1)若230OA OB OC ++=,试求BOC ∠的大小;(2)若A 为动点,60BAC ∠=︒,AO OC OB λμ=+,试求λμ+的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用函数图象与x 的交点,可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,再利用根与系数的关系,转化为4b a =-,12c a =-,最后代入不等式220cx bx a +-<,求解集.【详解】由条件可知()2200ax bx c a +-=>的两个根分别为12x =或26x =,则226b a +=-,26ca⨯=-,得4b a =-,12c a =-, 22201280cx bx a ax ax a ∴+-<⇔---<,整理为:()()21281021610x x x x ++>⇔++>, 解得:16x >-或12x <-, 所以不等式的解集是11,,26⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭. 故选:D 【点睛】思路点睛:本题的关键是利用根与系数的关系表示4b a =-,12c a =-,再代入不等式220cx bx a +-<化简后就容易求解.2.A解析:A 【分析】利用“1”的代换,转化()1414a b a b a b ⎛⎫+=++ ⎪⎝⎭,结合基本不等式即可得解. 【详解】1a b +=,0a >,0b >()1414455549b a a b a b a b a b ⎛⎫+++=++≥+=+= ⎪⎝⎭∴=, 当且仅当4b a a b =,即13a =,23b =时,等号成立. 14a b ∴+的最小值为9 故选:A. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.3.B解析:B 【分析】根据基本不等式可求得最小值. 【详解】∵2x >,∴442+24+2622y x x x x =+=+-≥==--,当且仅当422x x =--,即4x =时等号成立.∴y 的最小值是6. 故选:B . 【点睛】本题考查用基本不等式求最值,利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.4.D解析:D 【分析】根据关于x 的不等式(1)(3)10(0)a x x a +-+>≠的解集是()()1212,x x x x <,可得120,,a x x <是方程22310ax ax a --+=,然后利用根与系数的关系判断.【详解】因为关于x 的不等式(1)(3)10(0)a x x a +-+>≠的解集是()()1212,x x x x <, 所以120,,a x x <是方程22310ax ax a --+=的两根, 所以12121312,33a x ax x x a -===-⋅<-+,214x x ===->,故ABC 正确; 设()(1)(3)f x a x x =+-,()(1)(3)1g x a x x =+-+其图象如图所示:由图象知:121,3x x <->,故D 错误; 故选:D 【点睛】关键点点睛:本题考查一元二次不等式的解集的应用,关键是三个“二次”的转化,还有根与系数的关系与函数零点,注意二次项系数的正负.5.A解析:A 【分析】先由不等式[][]2463450x x -+<得出[]x 的取值范围,再由[]x 的定义得出x 的取值范围. 【详解】不等式[][]2463450x x -+<即为[]()[]()43150x x --<,解得[]3154x <<, 则[]{}1,2,3,,14x ∈,因此,115x ≤<,故选A.【点睛】本题考查一元二次不等式的解法,同时也考查了取整函数的定义,解题的关键要结合不等式得出[]x 的取值,考查计算能力,属于中等题.6.D解析:D 【分析】本题需要考虑两种情况,00a a =≠,,通过二次函数性质以及即集合性质来确定实数a 的取值范围. 【详解】设()21f x ax ax =-+当0a =时,()10f x =>,满足题意 当0a ≠时,()f x 时二次函数 因为{}2|10A x ax ax =-+<=∅ 所以()21f x ax ax =-+恒大于0,即0≤所以240a a -≤,解得04a ≤≤. 【点睛】本题考察的是集合和带有未知数的函数的综合题,需要对未知数进行分类讨论.7.D解析:D 【解析】试题分析:由实数,x y 满足0xy >,,设{2m x y n x y=+=+,解得2{x m ny n m =-=-,则2222224()424222x y m n n m n m n mx y x y m n m n m n--+=+=-+≤-⋅=-++,当且仅当2n mm n=,及2n m =时等号成立,所以的最大值为422-,故选D.考点:基本不等式的应用.8.B解析:B 【详解】()41141144133y x x y x y x y x y ⎛⎫⎛⎫+=++=+++ ⎪ ⎪⎝⎭⎝⎭ 145233y x x y ⎛≥+⨯= ⎝, 当且仅当4y x x y =,即21x y ==,,时41x y+的最小值为3. 故选B.点睛:本题主要考查基本不等式.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.9.C解析:C 【解析】选C.由≥得ab≤=1,当且仅当a=b=1时,等号成立.又a 2+b 2≥2ab ⇒2(a 2+b 2)≥(a+b)2⇒a 2+b 2≥2,当且仅当a=b=1时,等号成立.10.B解析:B 【分析】 由题意,得到121222()(2)5b aa b a b a b a b+=++=++,结合基本不等式,即可求解,得到答案. 【详解】由题意,正实数a ,b 满足21a b +=, 则12122222()(2)55549b a b aa b a b a b a b a b+=++=++≥+⋅=+=, 当且仅当22b a a b =,即13a b ==等号成立, 所以12a b +的最小值为9. 故选:B. 【点睛】本题主要考查了利用基本不等式求解最值问题,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了构造思想,以及推理与运算能,属于据此话题.11.D解析:D 【分析】本题先根据完全平方公式与基本不等式得到()22224a b a ab b ab +=++>,所以排除选项A 2211abab a b a b>=++,所以排除选项B ;接着根据基本()222222a b ab ab +>⨯=,所以排除选项C ;最后根据基本不等式得到选项D 正确. 【详解】解:对于选项A :因为01a <<,1b >,所以()22224a b a ab b ab +=++>,故选项A 错误; 对于选项B 2211abab a b a b>=++,故选项B 错误;对于选项C ()222222a b ab ab +>⨯=C 错误;对于选项D :()22222222a b a ab b a b +>++=+,所以a b +<,故选项D 正确. 故选:D . 【点评】本题考查基本不等式的应用、学生的运算能力和转换能力,是基础题.12.B解析:B 【分析】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,利用正弦定理得()2sin 150sin b αα=︒-,化简得到1tan b α=ABC 中,有tan a b α=⋅,然后将a +转化为4ta n a αα=++利用基本不等式求解. 【详解】设,0,2A παα⎛⎫∠=∈ ⎪⎝⎭,在ACD △中,由正弦定理得:()2sin 150sin b αα=︒-,所以()2sin 1501sin tan b ααα︒-==+,在直角ABC 中,tan a b α=⋅,所以(1tan tan 4tan tan a b ααααα⎛⋅==+⎝+=44≥+=+an α=,即4πα=时取等号, 故选:B【点睛】本题主要考查正弦定理和基本不等式的解三角形中的应用,还考查了运算求解的能力,属于中档题.二、填空题13.【分析】设直角三角形的两条直角边分别为则进而根据基本不等式得【详解】解:设直角三角形的两条直角边分别为则所以当且仅当等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条 解析:1694【分析】设直角三角形的两条直角边分别为,a b ,则22169a b +=,进而根据基本不等式得22111692224a b S ab +=≤⨯=. 【详解】解:设直角三角形的两条直角边分别为,a b ,则22169a b +=所以22111692224a b S ab +=≤⨯=,当且仅当a b ==. 故答案为:1694【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方14.【分析】先由题意令得到代入所求式子化简整理根据基本不等式即可求出结果【详解】因为abc 为正实数不妨令则所以当且仅当即即时等号成立故答案为:【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三 解析:4748【分析】先由题意,令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,得到111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩,代入所求式子,化简整理,根据基本不等式,即可求出结果. 【详解】因为a 、b 、c 为正实数,不妨令38432b c x c a y a b z +=⎧⎪+=⎨⎪+=⎩,则111386131216411161612a x y z b x y z c x y z ⎧=-++⎪⎪⎪=-+⎨⎪⎪=+-⎪⎩,所以11113139393862164216438432x y z x y z x y z a b c b c c a a b x y z-++-++-++=+++++ 1339338621642164y z x z x y x x y y z z =-+++-+++- 6139488262164y x z x y z x y x z z y ⎛⎫⎛⎫⎛⎫=-++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭61474848≥-+=, 当且仅当823629164y x x y z x x z y z z y ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,即::1:2:3x y z =,即::10:21:1a b c =时,等号成立. 故答案为:4748. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 15.【分析】由二次函数的性质可得化简得进而可得是方程两个不相等的实数根即可得解【详解】因为函数的图象开口朝上且对称轴为所以函数在区间上单调递减所以两式相减化简得将代入可得同理所以是方程两个不相等的实数根 解析:113164a ≤< 【分析】由二次函数的性质可得()()223434f m am m n f n an n m⎧=-+=⎪⎨=-+=⎪⎩,化简得2m n a +=,进而可得,m n 是方程22240ax x a-+-=两个不相等的实数根,即可得解. 【详解】 因为函数2()34(0)f x ax x a =-+>的图象开口朝上且对称轴为32x a =,32m n a <≤,所以函数2()34(0)f x ax x a =-+>在区间[,]m n 上单调递减,所以()()223434f m am m n f n an n m ⎧=-+=⎪⎨=-+=⎪⎩,两式相减化简得2m n a +=, 将2m n a =-代入234an n m -+=可得22240an n a-+-=, 同理22240am m a -+-=, 所以,m n 是方程22240ax x a -+-=两个不相等的实数根, 又函数2224y ax x a =-+-的图象开口朝上,对称轴为132x a a=<, 所以24440a a ⎛⎫∆=--> ⎪⎝⎭且当32x a =时,22240ax x a -+-≥, 所以22444033224022a a a a a a ⎧⎛⎫--> ⎪⎪⎝⎭⎪⎨⎛⎫⎛⎫⎪⋅-⋅+-≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,解得113164a ≤<, 所以a 的取值范围为113164a ≤<. 故答案为:113164a ≤<. 【点睛】 关键点点睛:解决本题的关键是利用二次函数的性质转化条件为2m n a+=,再结合一元二次方程根的分布即可得解. 16.4【分析】两次应用基本不等式验证等号能同时成立即得【详解】由题意当且仅当即时上述不等式中等号同时成立故答案为:4【点睛】本题考查了基本不等式求最值考查了运算求解能力逻辑推理能力在连续运用基本不等式求 解析:4【分析】两次应用基本不等式,242a a b +≥12b b +≥,验证等号能同时成立即得. 【详解】由题意211a b =+≥,2442a a b +≥===≥,当且仅当2142b b a a b⎧=⎪⎪⎨⎪=⎪⎩,即21a b =⎧⎨=⎩时上述不等式中等号同时成立. 故答案为:4.【点睛】本题考查了基本不等式求最值,考查了运算求解能力,逻辑推理能力,在连续运用基本不等式求最值时,要注意等号能否同时成立.17.9【分析】把看成的形式把1换成整理后积为定值然后用基本不等式求最小值【详解】∵等号成立的条件为所以的最小值为9即答案为9【点睛】本题考查了基本不等式在求最值中的应用解决本题的关键是1的代换解析:9【分析】 把14a b +看成141a b+⨯() 的形式,把“1”换成a b +,整理后积为定值,然后用基本不等式求最小值.【详解】∵14144 1?459b a y a b a b a b a b =+=+⨯+=+++≥+=()() 等号成立的条件为4b a a b =. 所以14a b+的最小值为9. 即答案为9.【点睛】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换.18.【分析】先根据点的关系确定mn 再根据基本不等式确定最小值最后根据最小值取法确定双曲线的离心率【详解】设则因此当且仅当时取等号所以离心率是故答案为:【点睛】本题考查双曲线离心率和基本不等式求最值的简单解析:3【分析】先根据点的关系确定mn ,再根据基本不等式确定最小值,最后根据最小值取法确定双曲线的离心率.【详解】设11(,)P x y ,则 22111222111y y y b mn x a x a x a a=⋅==+--,因此3b a+3b a a b =+≥= 当且仅当3a b 时取等号,所以离心率是3c e a ===.【点睛】本题考查双曲线离心率和基本不等式求最值的简单综合问题,属于基础题型,一般求双曲线离心率的方法是1.直接法:直接求出,a c ,然后利用公式c e a=求解;2.公式法:c e a === 3.构造法:根据条件,可构造出,a c 的齐次方程,通过等式两边同时除以2a ,进而得到关于e 的方程.19.4【分析】根据x 且将利用1的代换转化为利用基本不等式求解【详解】因为x 且所以当且仅当即时取等号所以的最小值为4故答案为:4【点睛】本题主要考查基本不等式的应用还考查了运算求解的能力属于中档题解析:4【分析】根据x ,0y >,且194x y+=,将x y +利用“1”的代换,转化为x y +()119191044⎛⎫⎛⎫=++=++ ⎪ ⎪⎝⎭⎝⎭y x x y x y x y ,利用基本不等式求解. 【详解】因为x ,0y >,且194x y +=, 所以x y +()11919110104444⎛⎛⎫⎛⎫=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝y x x y x y x y 当且仅当9y x x y=,,即1,3x y ==时,取等号, 所以x y +的最小值为4,故答案为:4【点睛】本题主要考查基本不等式的应用,还考查了运算求解的能力,属于中档题.20.32【分析】由是与的等比中项求得化简结合基本不等式即可求解【详解】由题意实数是与的等比中项可得解得所以当且仅当时即时等号成立所以的最小值是故答案为:【点睛】本题主要考查了利用基本不等式求最值以及等比 解析:32【分析】8a 与2b 的等比中项,求得31a b +=,化简626266()(3)20b a a b a b a b a b+=++=++,结合基本不等式,即可求解. 【详解】由题意,实数0a >,0b >8a 与2b 的等比中项,可得23228a b a b +=⨯=,解得31a b +=,所以626266()(3)202032b a a b a b a b a b +=++=++≥+=, 当且仅当66b a a b +时,即14a b ==时,等号成立, 所以62a b+的最小值是32. 故答案为:32.【点睛】本题主要考查了利用基本不等式求最值,以及等比中项公式的应用,其中解答中熟记等比中项公式,合理利用“1”的代换,结合基本不等式求解是解答的关键,着重考查推理与运算能力.三、解答题21.无22.无23.无24.无25.无26.无。
【高一】北师大版高一数学必修1第二章函数练习题(含答案)
【高一】北师大版高一数学必修1第二章函数练习题(含答案)第二节对函数的进一步认识一、(每题5分,共20分)1.下列两个函数完全相同的是( )a、 Y=X2X和Y=XB Y=x2和Y=XC Y=(x)2和Y=XD Y=3x3和Y=x【解析】a中y=x2x的定义域为{xx≠0},而y=x的定义域为r;在C中,y=(x)2的域是[0,+∞), 而y=x的域是r,所以a和C是错误的;b中y=x2=x与y=x的对应关系不同,所以b错;在D中,y=3x3=x和y=x具有相同的域和对应关系,因此D是正确的【答案】d2.函数y=1x+1的定义字段为()a.[-1,+∞)b.[-1,0)c.(-1,+∞)d.(-1,0)【分析】要使函数公式有意义,必须满足x+1>0,∴x>-1,故定义域为(-1,+∞).[答:]C3.如图所示,可表示函数图象的是( )A.①B②③④C①③④d。
②【解析】因为在②图中,给定x的一个值,有两个y值与它对应,不满足函数的定义,而①、③、④均满足函数定义.[答:]C4.已知f(x)=x2+1,则f[f(-1)]的值等于( )a、 2b。
3c。
4d。
五【解析】f(-1)=2,∴f(f(-1))=f(2)=5.[答:]d二、题(每小题5分,共10分)5.以下几组数字用区间表示:(1){xx≥1}=.(2){x2<x≤4}=.(3){xx>-1且x≠2}=.[答](1)[1,+∞) (2) (2,4] (3) (- 1,2) ∪ (2, + ∞)6.函数y=-x2+2x+1的值域为.[分析]∵ y=-x2+2x+1=-(x-1)2+2≤ 2.∴函数的值域是(-∞,2].[答:]∞, 2)三、解答题(每小题10分,共20分)7.查找以下函数的域(1)f(x)=x+1x-1;(2) f(x)=11+1x。
【解析】(1)要使函数有意义,须x+1≥0x-1>0x≥-1x>1x>1∴f(x)的定义域为(1,+∞)(2)使函数有意义x≠01+1x≠0?x≠0且x≠-1F(x)的域是{XX∈ R和X≠ 0和X≠ - 1}8.已知函数f(x)=x2+x-1.(1)找到f(2);(2)找到f(1x+1);(3)如果f(x)=5,求x的值【解析】(1)f(2)=4+2-1=5.(2).(3)f(x)=5,即x2+x-1=5,也就是说,X2+X-6=0,解为X=2或X=-39.(10分)已知函数y=ax+1(a<0且a为常数)在区间(-∞,1]上有意义,求实数a的取值范围.[分析]已知函数y=ax+1(a<0且a为常数),∵ax+1≥0,a<0,‡x≤ - 1A,也就是说,函数的定义域是∵函数在区间(-∞,1]上有意义,∴,∴-1a≥1,a<0,——-1≤ a<0,即a的取值范围是[-1,0).。
2高中数学必修第一册《第二章 一元二次函数、方程和不等式》单元检测试题
【点睛】
关键点睛:解答本题的关键是对式子 进行合理的变形和拼凑,使之能使用基本不等式求最值.
3.C
【分析】
由题意可得 恒成立,令 ,可得 ,求出 可得答案.
【详解】
解:由题意当 时, 恒成立,
令 ,可得 ,
由 ,可得 ,所以 ,
故选:C.
【点睛】
本题主要考查函数恒成立的问题及求二次函数的最值,考查学生分析问题和解决问题的能力,属于中档题.
4.D
【分析】
根据条件分别利用特殊值以及反证法进行判断即可.
【详解】
①当a=b=1时,满足a+b=2,但此时推不出结论 , 中至少有一个大于1;
②由反证法知,若 ,b≤1,则a+b≤2,与a+b> 2,矛盾,即a+b>2,可以推出 , 中至少有一个大于1;
③当 时,满足条件a+b>-2,但不能推出 , 中至少有一个大于1;
当 时,由题得 且 ,
解之得 .
综上所述, .
故选:C
【点睛】
本题主要考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.
6.A
【分析】
由已知得出 ,将代数式 与 相乘,展开后利用基本不等式可求得 的最小值,即可得出实数 的最大值.
【详解】
已知正数 、 满足 ,可得 ,
所以, ,
当且仅当 时,等号成立,所以, 的最小值为 , .
(1)写出年利润 (万元)关于年产量 (万件)的函数解析式;
(2)当年产量为多少时,该扶贫车间的年利润最大?并求出最大年利润.
19.(2020·福建高一期中)已知函数 .
(1)若对任意的 恒成立,求实数 的取值范围;
(2)若对任意的 恒成立,求实数 的取值范围.
高一数学必修一第二章测试题及答案
人教版高中数学必修一第二章 《一元二次函数、方程和不等式》测试题及答案解析(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.不等式x 2≥2x 的解集是( ) A .{x |x ≥2} B .{x |x ≤2} C .{x |0≤x ≤2}D .{x |x ≤0或x ≥2}解析:选D 由x 2≥2x 得x (x -2)≥0,解得x ≤0或x ≥2,故选D. 2.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >BD .A >B解析:选B ∵A-B =a 2+3ab -(4ab -b 2)=⎝ ⎛⎭⎪⎫a -b 22+34b 2≥0,∴A ≥B.3.不等式组⎩⎨⎧x 2-1<0,x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3}解析:选C 由⎩⎨⎧x2-1<0,x2-3x<0,得⎩⎨⎧-1<x<1,0<x<3,所以0<x<1,即不等式组的解集为{x|0<x<1},故选C.4.已知2a +1<0,则关于x 的不等式x 2-4ax -5a 2>0的解集是( ) A .{x |x <5a 或x >-a } B .{x |x >5a 或x <-a } C .{x |-a <x <5a }D .{x |5a <x <-a }解析:选A 方程x 2-4ax -5a 2=0的两根为-a ,5a.因为2a +1<0,所以a<-12,所以-a>5a.结合二次函数y =x 2-4ax -5a 2的图象,得原不等式的解集为{x|x<5a 或x>-a},故选A.5.已知a ,b ,c ∈R ,则下列说法中错误的是( ) A .a >b ⇒ac 2≥bc 2 B.a c >b c,c <0⇒a <b C .a 3>b 3,ab >0⇒1a <1bD .a 2>b 2,ab >0⇒1a <1b解析:选D 对于A ,c 2≥0,则由a>b 可得ac 2≥bc 2,故A 中说法正确; 对于B ,由a c >b c ,得a c -b c =a -bc >0,当c<0时,有a -b<0,则a<b ,故B 中说法正确;对于C ,∵a 3>b 3,ab>0,∴a 3>b 3两边同乘1a3b3,得到1b3>1a3,∴1a <1b,故C 中说法正确;对于D ,∵a 2>b 2,ab>0,∴a 2>b 2两边同乘1a2b2, 得到1b2>1a2,不一定有1a <1b,故D 中说法错误.故选D.6.若关于x 的一元二次不等式x 2+mx +1≥0的解集为R ,则实数m 的取值范围是( )A .m ≤-2或m ≥2B .-2≤m ≤2C .m <-2或m >2D .-2<m <2解析:选B 因为不等式x 2+mx +1≥0的解集为R ,所以Δ=m 2-4≤0,解得-2≤m≤2.7.某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (元)与月处理量x (吨)之间的函数关系可近似地表示为y =12x 2-300x +80 000,为使平均处理成本最低,该厂每月处理量应为( )A .300吨B .400吨C .500吨D .600吨解析:选B 由题意,月处理成本y(元)与月处理量x(吨)的函数关系为y=12x 2-300x +80 000,所以平均处理成本为s =y x =12x2-300x +80 000x =x 2+80 000x -300,其中300≤x≤600,又x 2+80 000x-300≥2x 2·80 000x-300=400-300=100,当且仅当x 2=80 000x 时等号成立,所以x =400时,平均处理成本最低.故选B.8.设正数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y-2z的最大值是( ) A .0 B .1 C.94D .3解析:选B 由题意得xy z =xy x2-3xy +4y2=1x y +4y x -3≤14-3=1,当且仅当x=2y 时,等号成立,此时z =2y 2.故2x +1y -2z =-1y2+2y =-⎝ ⎛⎭⎪⎫1y -12+1≤1,当且仅当y =1时,等号成立,故所求的最大值为1.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知不等式ax 2+bx +c >0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x <2,则下列结论正确的是( )A .a >0B .b >0C .c >0D .a +b +c >0解析:选BCD 因为不等式ax 2+bx +c>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x<2,故相应的二次函数y =ax 2+bx +c 的图象开口向下,所以a<0,故A 错误;易知2和-12是关于x 的方程ax 2+bx +c =0的两个根,则有c a =2×⎝ ⎛⎭⎪⎫-12=-1<0,-b a =2+⎝ ⎛⎭⎪⎫-12=32>0,又a<0,故b>0,c>0,故B 、C 正确;因为ca =-1,所以a +c =0,又b>0,所以a +b +c>0,故D 正确.故选B 、C 、D.10.下列结论中正确的有( )A .若a ,b 为正实数,a ≠b ,则a 3+b 3>a 2b +ab 2B .若a ,b ,m 为正实数,a <b ,则a +m b +m <a bC .若a c 2>bc2,则a >bD .当x >0时,x +2x的最小值为2 2解析:选ACD 对于A ,∵a ,b 为正实数,a ≠b ,∴a 3+b 3-(a 2b +ab 2)=(a -b)2(a +b)>0,∴a 3+b 3>a 2b +ab 2,故A 正确;对于B ,若a ,b ,m 为正实数,a<b ,则a +m b +m -a b =m (b -a )b (b +m )>0,则a +m b +m >ab,故B 错误;对于C ,若a c2>bc2,则a>b ,故C 正确; 对于D ,当x>0时,x +2x 的最小值为22,当且仅当x =2时取等号,故D正确.故选A 、C 、D.11.下列各式中,最大值是12的是( )A .y =x 2+116x 2B .y =x 1-x 2(0≤x ≤1)C .y =x 2x 4+1D .y =x +4x +2(x >-2) 解析:选BCA中,y =x 2+116x2≥2x2·116x2=12⎝ ⎛⎭⎪⎫当且仅当x =±12时取等号,因此式子无最大值;B 中,y 2=x 2(1-x2)≤⎝⎛⎭⎪⎫x2+1-x222=14,y ≥0, ∴0≤y ≤12,当且仅当x =22时y 取到最大值12; C 中,当x =0时,y =0,当x≠0时,y =1x2+1x2≤12x2·1x2=12,当且仅当x =±1时y 取到最大值12;D 中,y =x +4x +2=x +2+4x +2-2≥2(x +2)·4x +2-2=2(x>-2)(当且仅当x =0时取等号),无最大值,故选B 、C.12.某文具店购进一批新型台灯,若按每盏台灯15元的价格销售,每天能卖出30盏,若售价每提高1元,则日销售量将减少2盏.为了使这批台灯每天获得400元以上(不含400)的销售收入,则这批台灯的售价x (元)的取值可以是( )A .10B .15C .16D .20解析:选BC 设这批台灯的售价定为x 元,x ≥15,则[30-(x -15)×2]·x>400,即x 2-30x +200<0,因为方程 x 2-30x +200=0的两根分别为x 1=10,x 2=20,所以x 2-30x +200<0的解集为{x|10<x<20},又因为x≥15,所以15≤x<20.故选B 、C.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知a >b ,a -1a >b -1b同时成立,则ab 应满足的条件是________.解析:因为a -1a >b -1b ,所以⎝ ⎛⎭⎪⎫a -1a -⎝ ⎛⎭⎪⎫b -1b =(a -b )(ab +1)ab >0.又a>b ,即a -b>0,所以ab +1ab>0,从而ab(ab +1)>0,所以ab<-1或ab>0.答案:ab<-1或ab>014.一个大于50小于60的两位数,其个位数字b 比十位数字a 大2.则这个两位数为________.解析:由题意知⎩⎨⎧50<10a +b<60,b -a =2,0<a ≤9,0≤b ≤9,解得4411<a<5311. 又a∈N*,∴a =5.∴b =7,∴所求的两位数为57. 答案:5715.一元二次不等式x 2+ax +b >0的解集为{x |x <-3或x >1},则a +b =________,一元一次不等式ax +b <0的解集为________.解析:由题意知,-3和1是方程x 2+ax +b =0的两根, 所以⎩⎨⎧-3+1=-a ,-3×1=b ,解得⎩⎨⎧a =2,b =-3, 故a +b =-1.不等式ax +b<0即为2x -3<0, 所以x<32.答案:-1⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<32 16.已知正数x ,y 满足x +2y =2,则x +8yxy的最小值为________. 解析:因为x ,y 为正数,且x +2y =2,所以x 2+y =1,所以x +8yxy =⎝ ⎛⎭⎪⎫1y +8x ·⎝ ⎛⎭⎪⎫x 2+y =x 2y +8yx +5≥2x 2y ·8y x +5=9,当且仅当x =4y =43时,等号成立,所以x +8yxy的最小值为9. 答案:9四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)解下列不等式: (1)2+3x -2x 2>0; (2)x (3-x )≤x (x +2)-1.解:(1)原不等式可化为2x 2-3x -2<0,所以(2x +1)(x -2)<0,故原不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-12<x<2. (2)原不等式可化为2x 2-x -1≥0. 所以(2x +1)(x -1)≥0,故原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x≤-12或x≥1.18.(本小题满分12分)当p ,q 都为正数且p +q =1时,试比较代数式(px +qy )2与px 2+qy 2的大小.解:(px +qy)2-(px 2+qy 2)=p(p -1)x 2+q(q -1)y 2+2pqxy. 因为p +q =1,所以p -1=-q ,q -1=-p ,所以(px +qy)2-(px 2+qy 2)=-pq(x 2+y 2-2xy)=-pq(x -y)2. 因为p ,q 都为正数,所以-pq(x -y)2≤0,因此(px +qy)2≤px 2+qy 2,当且仅当x =y 时等号成立.19.(本小题满分12分)已知关于x 的方程x 2-2x +a =0.当a 为何值时, (1)方程的一个根大于1,另一个根小于1?(2)方程的一个根大于-1且小于1,另一个根大于2且小于3?解:(1)已知方程的一个根大于1,另一个根小于1,结合二次函数y =x 2-2x +a 的图象(如图所示)知,当x =1时,函数值小于0,即12-2+a<0,所以a<1.因此a 的取值范围是{a|a<1}.(2)由方程的一个根大于-1且小于1,另一个根大于2且小于3,结合二次函数y =x 2-2x +a 的图象(如图所示)知,x 取-1,3时函数值为正,x 取1,2时函数值为负,即⎩⎨⎧1+2+a>0,1-2+a<0,4-4+a<0,9-6+a>0,解得-3<a<0.因此a 的取值范围是{a|-3<a<0}.20.(本小题满分12分)已知a >0,b >0且1a +2b=1.(1)求ab 的最小值; (2)求a +b 的最小值.解:(1)因为a>0,b>0且1a +2b =1,所以1a +2b≥21a ·2b=22ab,则22ab≤1, 即ab≥8,当且仅当⎩⎪⎨⎪⎧1a +2b =1,1a =2b ,即⎩⎨⎧a =2,b =4时取等号,所以ab 的最小值是8. (2)因为a>0,b>0且1a +2b =1,所以a +b =⎝ ⎛⎭⎪⎫1a +2b (a +b)=3+b a +2ab≥3+2b a ·2ab=3+22, 当且仅当⎩⎪⎨⎪⎧1a +2b =1,b a =2a b ,即⎩⎪⎨⎪⎧a =1+2,b =2+2时取等号,所以a +b 的最小值是3+2 2.21.(本小题满分12分)设y =ax 2+(1-a )x +a -2.(1)若不等式y ≥-2对一切实数x 恒成立,求实数a 的取值范围; (2)解关于x 的不等式ax 2+(1-a )x +a -2<a -1(a ∈R).解:(1)ax 2+(1-a)x +a -2≥-2对于一切实数x 恒成立等价于ax 2+(1-a)x +a≥0对于一切实数x 恒成立.当a =0时,不等式可化为x≥0,不满足题意; 当a≠0时,由题意得⎩⎨⎧a>0,(1-a )2-4a2≤0,解得a≥13.所以实数a的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a ≥13.(2)不等式ax 2+(1-a)x +a -2<a -1等价于ax 2+(1-a)x -1<0. 当a =0时,不等式可化为x<1,所以不等式的解集为{x|x<1}; 当a>0时,不等式可化为(ax +1)(x -1)<0,此时-1a<1,所以不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x<1; 当a<0时,不等式可化为(ax +1)(x -1)<0,①当a =-1时,-1a=1,不等式的解集为{x|x≠1};②当-1<a<0时,-1a >1,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<1或x>-1a ;③当a<-1时,-1a <1,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<-1a 或x>1. 综上所述,当a<-1时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<-1a 或x>1;当a =-1时,不等式的解集为{x|x≠1};当-1<a<0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x<1或x>-1a ;当a =0时,不等式的解集为{x|x<1};当a>0时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1a <x<1. 22.(本小题满分12分)某企业准备投入适当的广告费对某产品进行促销,在一年内预计销售量Q (万件)与广告费x (万元)之间的关系式为Q =3x +1x +1(x ≥0).已知生产此产品的年固定投入为3万元,每生产1万件此产品仍需再投入32万元,若该企业产能足够,生产的产品均能售出,且每件销售价为“年平均每件生产成本的150%”与“年平均每件所占广告费的50%”之和.(1)试写出年利润W (万元)与年广告费x (万元)的关系式;(2)当年广告费投入多少万元时,企业年利润最大?最大年利润为多少? 解:(1)由题意可得,每年产品的生产成本为(32Q +3)万元,每万件销售价为⎝⎛⎭⎪⎫32Q +3Q ×150%+x Q ×50%万元, ∴年销售收入为⎝⎛⎭⎪⎫32Q +3Q ×150%+x Q ×50%·Q =32(32Q +3)+12x , ∴W =32(32Q +3)+12x -(32Q +3)-x=12(32Q +3)-12x =12(32Q +3-x) =-x2+98x +352(x +1)(x≥0).(2)由(1)得,W =-x2+98x +352(x +1)=-(x +1)2+100(x +1)-642(x +1)=-x +12-32x +1+50.∵x +1≥1,∴x +12+32x +1≥2x +12·32x +1=8, ∴W ≤42,当且仅当x +12=32x +1,即x =7时,W 有最大值42,即当年广告费投入7万元时,企业年利润最大,最大年利润为42万元.。
高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)
高中数学必修一第二章一、单选题1.已知集合A ={x‖x ―2|<1}, B ={x |x 2―2x ―3<0}.则A ∩B =A .{x |1<x <3}B .{x |―1<x <3}C .{x |―1<x <2}D .{x |x >3}2.下列结论成立的是( )A .若ac >bc ,则a >bB .若a >b ,则a 2>b 2C .若a >b ,c <d ,则a+c >b+dD .若a >b ,c >d ,则a ﹣d >b ﹣c3.已知关于 x 的不等式 a x 2―2x +3a <0 在 (0,2] 上有解,则实数 a 的取值范围是( )A .(―∞,33)B .(―∞,47)C .(33,+∞)D .(47,+∞)4.当x >3时,不等式x+1x ―1≥a 恒成立,则实数a 的取值范围是( ) A .(﹣∞,3]B .[3,+∞)C .[ 72,+∞)D .(﹣∞, 72]5.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a +b ≥―2|ab |C .a 2+b 2≥―2abD .a +b ≤2|ab |6.已知 x >2 ,函数 y =4x ―2+x 的最小值是( ) A .5B .4C .8D .67.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xy z取得最大值时,2x +1y ―2z 的最大值是( )A .0B .1C .94D .38.已知正数x ,y 满足x+y =1,且 x 2y +1+y 2x +1≥m ,则m 的最大值为( ) A .163B .13C .2D .4二、多选题9.设正实数a ,b 满足a +b =1,则( )A .a 2b +b 2a ≥14B .1a +2b +12a +b ≥43C .a 2+b 2≥12D .a 3+b 3≥1410.若a ,b ∈(0,+∞),a +b =1,则下列说法正确的有( )A .(a +1a)(b +1b )的最小值为4B .1+a +1+b 的最大值为6C.1a +2b的最小值为3+22D.2aa2+b+ba+b2的最大值是3+23311.已知a,b是正实数,若2a+b=2,则( )A.ab的最大值是12B.12a+1b的最小值是2C.a2+b2的最小值是54D.14a+b+2a+b的最小值是3212.已知a,b,c为实数,则下列命题中正确的是( )A.若a c2<bc2,则a<b B.若ac>bc,则a>bC.若a>b,c>d,则a+c>b+d D.若a<b<0,则1a >1 b三、填空题13.不等式﹣2x(x﹣3)(3x+1)>0的解集为 .14.已知正实数x,y满足xy―x―2y=0,则x+y的最小值是 . 15.已知a,b均为正数,且ab―a―2b=0,则a24+b2的最小值为 .16.以max A表示数集A中最大的数.已知a>0,b>0,c>0,则M=max{1c +ba,1ac+b,ab+c}的最小值为 四、解答题17.已知U=R且A={x∣x2―5x―6<0},B={x∣―4≤x≤4},求:(1)A∪B;(2)(C U A)∩(C U B).18.解下列关于x的不等式:(1)x2―2x―3≤0;(2)―x2+4x―5>0;(3)x2―ax+a―1≤019.已知关于x的不等式2x2+x>2ax+a(a∈R).(1)若a=1,求不等式的解集;(2)解关于x的不等式.20.某县一中计划把一块边长为20米的等边三角形ABC的边角地辟为植物新品种实验基地,图中DE 需把基地分成面积相等的两部分,D在AB上,E在AC上.(1)设AD=x(x≥10),ED=y,试用x表示y的函数关系式;(2)如果DE是灌溉输水管道的位置,为了节约,则希望它最短,DE的位置应该在哪里?如果DE 是参观线路,则希望它最长,DE的位置又应该在哪里?说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】B,C,D10.【答案】B,C,D11.【答案】A,B12.【答案】A,C,D13.【答案】(﹣∞,﹣1)∪(0,3)314.【答案】3+2215.【答案】816.【答案】217.【答案】(1)解:因为A={x∣x2―5x―6<0}=(―1,6),且B={x∣―4≤x≤4}=[―4,4],则A ∪B=[―4,6).(2)解:由(1)可知,A=(―1,6),B=[―4,4],则C U A=(―∞,―1]∪[6,+∞),C U B=(―∞,―4)∪(4,+∞),所以(C U A)∩(C U B)=(―∞,―4)∪[6,+∞).18.【答案】(1)解:x2―2x―3≤0,(x―3)(x+1)≤0⇒x≤―1或x≥3,故解集为: (―∞,―1]∪[3,+∞).(2)解:―x2+4x―5>0,∴x2―4x+5<0⇒(x―2)2+1<0⇒x无解,故解集为: ∅(3)解:x2―ax+a―1≤0,∴[x―(a―1)](x―1)≤0,当a―1<1,即a<2时,解集为[a―1,1],当a―1=1,即a=2时,解集为x=1,当 a ―1>1 ,即 a >2 时,解集为 [1,a ―1] .所以:当 a <2 时,解集为 [a ―1,1] ,当 a =2 时,解集为 x =1 ,当 a >2 时,解集为 [1,a ―1] .19.【答案】(1)解:2x 2+x >2ax +a ,∴x (2x +1)>a (2x +1),∴(x ―a )(2x +1)>0,当a =1时,可得解集为{x |x >1或x <―12}.(2)对应方程的两个根为a ,―12,当a =―12时,原不等式的解集为{x |x ≠―12},当a >―12时,原不等式的解集为{x |x >a 或x <―12},当a <―12时,原不等式的解集为{x |x <a 或x >―12}.20.【答案】(1)解:∵△ABC 的边长是20米,D 在AB 上,则10≤x≤20,S △ADE = 12S △ABC ,∴12 x•AEsin60°= 12 • 34 •(20)2,故AE= 200x,在三角形ADE 中,由余弦定理得:y= x 2+4⋅104x 2―200 ,(10≤x≤20);(2)解:若DE 作为输水管道,则需求y 的最小值, ∴y= x 2+4⋅104x 2―200 ≥ 400―200 =10 2 ,当且仅当x 2= 4⋅104x 2即x=10 2 时“=”成立.。
完整版)高中数学必修一第二章测试题(含答案)
完整版)高中数学必修一第二章测试题(含答案)1.已知p>q>1,0<a<1,则下列各式中正确的是:A。
ap>aq B。
pa>qa C。
a-p>a-q D。
p-a>q-a正确答案:A解析:因为p>q>1,所以p-q>0,又因为0<a<1,所以a 的p-q次方小于1,即a^p-q<1,所以ap<aq,即选项A正确。
2.已知f(10x)=x,则f(5)=?A。
105 B。
510 C。
lg10 D。
lg5正确答案:B解析:将f(10x)=x代入x=5/10=1/2中,得到f(1/2)=5,又因为f(5)=f(1/2)/10=5/10=1/2,所以选项B正确。
3.当a≠0时,函数y=ax+b和y=ba^x的图象只可能是?正确答案:直线和指数函数曲线解析:当a=1时,y=x+b和y=be^x,即两个函数都是直线;当a>1时,y=ax+b的图象是一条上升的直线,y=ba^x的图象是一条上升的指数函数曲线;当0<a<1时,y=ax+b的图象是一条下降的直线,y=ba^x的图象是一条下降的指数函数曲线。
4.当a≠1时,函数y=a^(x+b)和y=b^(ax)的图象只可能是?正确答案:指数函数曲线解析:y=a^(x+b)可以化为y=a^b*a^x,因此是一条上升的指数函数曲线;y=b^(ax)可以化为y=(b^a)^x,因此也是一条上升的指数函数曲线。
5.设y1=4,y2=80.90.48,y3=1/2,则递增区间是?正确答案:(0,+∞)解析:因为y1<y3<y2,所以递增区间是(0,+∞)。
6.下列函数中,在区间(0,+∞)上为增函数的是?A。
y=ln(x+2) B。
y=-x+1 C。
y=1/(1+x) D。
y=sin(x)正确答案:A解析:求导可得y'=(1/(x+2))>0,所以y在区间(0,+∞)上为增函数,因此选项A正确。
高中数学 第二章 函数测试题 北师大版必修1-北师大版高一必修1数学试题
第二章测试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,在(-∞,0)上为递增的是( ) A .f (x )=-2x +1 B .g (x )=|x -1| C .y =1xD .y =-1x[答案] D[解析] 熟悉简单函数的图像,并结合图像判断函数单调性,易知选D. 2.下列四个图像中,表示的不是函数图像的是( )[答案] B[解析] 选项B 中,当x 取某一个值时,y 可能有2个值与之对应,不符合函数的定义,它不是函数的图像.3.函数f (x )=x -2+1x -3的定义域是( ) A .[2,3)B .(3,+∞)C .[2,3)∪(3,+∞)D .(2,3)∪(3,+∞)[答案] C[解析] 要使函数有意义,x 需满足⎩⎪⎨⎪⎧x -2≥0x -3≠0解得x ≥2且x ≠3.故选C.4.二次函数y =-2(x +1)2+8的最值情况是( ) A .最小值是8,无最大值 B .最大值是-2,无最小值 C .最大值是8,无最小值 D .最小值是-2,无最大值 [答案] C[解析] 因为二次函数开口向下,所以当x =-1时,函数有最大值8,无最小值. 5.已知A =B =R ,x ∈A ,y ∈B ,f :x →y =ax +b 是从A 到B 的映射,若1和8的原像分别是3和10,则5在f 作用下的像是( )A .3B .4C .5D .6[答案] A[解析] 由已知可得⎩⎪⎨⎪⎧3a +b =1,10a +b =8,解得⎩⎪⎨⎪⎧a =1b =-2.于是y =x -2,因此5在f 下的像是5-2=3.6.若函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,f x +2,x <0,那么f (-3)的值为( ) A .-2 B .2 C .0 D .1[答案] B[解析] 依题意有f (-3)=f (-3+2)=f (-1)=f (-1+2)=f (1)=1+1=2,即f (-3)=2.7.不论m 取何值,二次函数y =x 2+(2-m )x +m 的图像总过的点是( ) A .(1,3) B .(1,0) C .(-1,3) D .(-1,0)[答案] A[解析] 由题意知x 2+2x -y +m (1-x )=0恒成立,∴⎩⎪⎨⎪⎧x 2+2x -y =01-x =0,解得⎩⎪⎨⎪⎧x =1y =3,∴图像总过点(1,3).8.定义在R 上的偶函数f (x )在区间[-2,-1]上是增函数,将f (x )的图像沿x 轴向右平移2个单位,得到函数g (x )的图像,则g (x )在下列区间上一定是减函数的是( )A .[3,4]B .[1,2]C .[2,3]D .[-1,0][答案] A[解析] 偶函数f (x )在[-2,-1]上为增函数,则在[1,2]上为减函数,f (x )向右平移2个单位后在[3,4]上是减函数.9.若函数f (x )是定义在[-6,6]上的偶函数,且在[-6,0]上单调递减,则( ) A .f (3)+f (4)<0 B .f (-3)-f (-2)<0 C .f (-2)+f (-5)<0 D .f (4)-f (-1)>0 [答案] D[解析] 由题意知函数f (x )在[0,6]上递增.A 中f (3)+f (4)与0的大小不定,A 错;B 中f (-3)-f (-2)=f (3)-f (2)>0,B 错;C 中f (-2)+f (-5)=f (2)+f (5)与0的大小不定,C 错;D 中f (4)-f (-1)=f (4)-f (1)>0,D 正确. 10.若函数y =kx +5kx 2+4kx +3的定义域为R ,则实数k 的取值X 围为( )A .(0,34)B .(34,+∞)C .(-∞,0)D .[0,34)[答案] D[解析]∵函数的定义域为R ,∴kx 2+4kx +3恒不为零,则k =0时,成立;k ≠0时,Δ<0,也成立.∴0≤k <34.11.函数y =ax 2-bx +c (a ≠0)的图像过点(-1,0),则ab +c +ba +c -ca +b的值是( )A .-1B .1 C.12 D .-12[答案] A[解析]∵函数y =ax 2-bx +c (a ≠0)的图像过(-1,0)点,则有a +b +c =0,即a +b =-c ,b +c =-a ,a +c =-b . ∴ab +c +ba +c -ca +b=-1.12.已知偶函数f (x )在区间[0,+∞)上单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 的取值X 围是( )A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23D.⎣⎢⎡⎭⎪⎫12,23[答案] A[解析]由题意得|2x-1|<13⇒-13<2x-1<13⇒23<2x<43⇒13<x<23,∴选A. 第Ⅱ卷(非选择题共90分)二、填空题(本大题共4个小题,每小题5分,共20分,把答案填在题中横线上)13.将二次函数y=x2+1的图像向左平移2个单位,再向下平移3个单位,所得二次函数的解析式是________.[答案]y=x2+4x+2[解析]y=(x+2)2+1-3=(x+2)2-2=x2+4x+2.14.若函数f(x)=x2-|x+a|为偶函数,则实数a=________.[答案]0[解析]本题考查偶函数的定义等基础知识.∵f(x)为偶函数,∴f(-x)=f(x),即x2-|-x+a|=x2-|x+a|,∴|x-a|=|x+a|,平方,整理得:ax=0,要使x∈R时恒成立,则a=0.15.已知函数f(x),g(x)分别由下表给出则f[g(1)]的值为当g[f(x)]=2时,x=________.[答案] 1 1[解析]f[g(1)]=f(3)=1,∵g[f(x)]=2,∴f(x)=2,∴x=1.16.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,例如:解析式为y=2x2+1,值域为{9}的“孪生函数”有三个:①y=2x2+1,x∈{-2};②y=2x2+1,x∈{2};③y=2x2+1,x∈{-2,2}.那么函数解析式为y=2x2+1,值域为{1,5}的“孪生函数”有________个.[答案] 3[解析] 根据定义,满足函数解析式为y =2x 2+1,值域为{1,5}的“孪生函数”有:y =2x 2+1,x ∈{0,2};y =2x 2+1,x ∈{0,-2},y =2x 2+1,x ∈{-2,0,2}共3个.三、解答题(本大题共6个小题,满分70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知f (x )=⎩⎪⎨⎪⎧x 2|x |≤11 |x |>1,(1)画出f (x )的图像; (2)求f (x )的定义域和值域.[分析] 解答本题可分段画出图像,再结合图像求函数值域. [解析] (1)利用描点法,作出f (x )的图像,如图所示.(2)由条件知,函数f (x )的定义域为R .由图像知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].18.(本小题满分12分)已知函数f (x )=x 2-2ax +2,x ∈[-3,3]. (1)当a =-5时,求f (x )的最大值和最小值;(2)某某数a 的取值X 围,使y =f (x )在区间[-3,3]上是单调函数. [解析] (1)当a =-5时,f (x )=x 2+10x +2=(x +5)2-23,x ∈[-3,3], 又因为二次函数开口向上,且对称轴为x =-5, 所以当x =-3时,f (x )min =-19, 当x =3时,f (x )max =41.(2)函数f (x )=(x -a )2+2-a 2的图像的对称轴为x =a ,因为f (x )在[-3,3]上是单调函数,所以a ≤-3或a ≥3.19.(本小题满分12分)已知函数f (x )=1a -1x(a >0,x >0).(1)求证:f (x )在(0,+∞)上是增加的;(2)若f (x )在[12,2]上的值域是[12,2],求a 的值.[解析] (1)设x 1,x 2是(0,+∞)上的任意两个实数,且x 1<x 2.则f (x 1)-f (x 2)=(1a -1x 1)-(1a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2.∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0. ∴x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2). ∴函数f (x )在(0,+∞)上是增加的. (2)∵f (x )在[12,2]上的值域是[12,2],又∵f (x )在[12,2]上是增加的,∴⎩⎪⎨⎪⎧f 12=12,f 2=2,即⎩⎪⎨⎪⎧1a -2=121a -12=2.∴a =25.20.(本小题满分12分)已知幂函数y =f (x )=x -2m 2-m +3,其中m ∈{x |-2<x <2,x ∈Z },满足:(1)是区间(0,+∞)上的增函数; (2)对任意的x ∈R ,都有f (-x )+f (x )=0.求同时满足(1),(2)的幂函数f (x )的解析式,并求x ∈[0,3]时f (x )的值域. [解析] 由{x |-2<x <2,x ∈Z }={-1,0,1}. (1)由-2m 2-m +3>0,∴2m 2+m -3<0,∴-32<m <1,∴m =-1或0.由(2)知f (x )是奇函数.当m =-1时,f (x )=x 2为偶函数,舍去. 当m =0时,f (x )=x 3为奇函数. ∴f (x )=x 3.当x ∈[0,3]时,f (x )在[0,3]上为增函数, ∴f (x )的值域为[0,27].21.(本小题满分12分)设函数f (x )=x 2-2|x |-1(-3≤x ≤3). (1)证明:f (x )是偶函数;(2)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )是增函数还是减函数;(3)求函数的值域.[解析] (1)证明:∵定义域关于原点对称,f (-x )=(-x )2-2|-x |-1=x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数.(2)当x ≥0时,f (x )=x 2-2x -1=(x -1)2-2, 当x <0时,f (x )=x 2+2x -1=(x +1)2-2,即f (x )=⎩⎪⎨⎪⎧x -12-2,x ≥0,x +12-2,x <0.根据二次函数的作图方法,可得函数图像,如图函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1),[0,1]上为减函数,在[-1,0),[1,3]上为增函数.(3)当x ≥0时,函数f (x )=(x -1)2-2的最小值为-2,最大值为f (3)=2. 当x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值为f (-3)=2. 故函数f (x )的值域为[-2,2].22.(本小题满分12分)已知函数f (x )=x +x 3,x ∈R . (1)判断函数f (x )的单调性,并证明你的结论;(2)若a ,b ∈R ,且a +b >0,试比较f (a )+f (b )与0的大小. [解析] (1)函数f (x )=x +x 3,x ∈R 是增函数, 证明如下:任取x 1,x 2∈R ,且x 1<x 2,则f (x 1)-f (x 2)=(x 1+x 31)-(x 2+x 32)=(x 1-x 2)+(x 31-x 32)=(x 1-x 2)(x 21+x 1x 2+x 22+1)=(x 1-x 2)[(x 1+12x 2)2+34x 22+1].因为x 1<x 2,所以x 1-x 2<0,(x 1+12x 2)2+34x 22+1>0.所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )=x +x 3,x ∈R 是增函数. (2)由a +b >0,得a >-b ,由(1)知f (a )>f (-b ), 因为f (x )的定义域为R ,定义域关于坐标原点对称, 又f (-x )=(-x )+(-x )3=-x -x 3=-(x +x 3)=-f (x ), 所以函数f (x )为奇函数.于是有f(-b)=-f(b),所以f(a)>-f(b),从而f(a)+f(b)>0.。
高一数学必修第一二章测试题及答案
高一数学必修第一二章测试题及答案The Standardization Office was revised on the afternoon of December 13, 2020第一.二章《三角函数》单元检测试卷一、选择题:(本答题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在平行四边形ABCD 中,BD CD AB +-等于()A .B .C .D .2.若|a |=2,|b |=5,|a +b |=4,则|a -b |的值()A .13B .3C .42D .73.函数sin(2)3y x π=+图像的对称轴方程可能是()A .6x π=-B .12x π=-C .6x π=D .12x π=5.点A(x,y)是300°角终边上异于原点的一点,则xy值为() 333333函数)32sin(π-=x y 的单调递增区间是()A .⎥⎦⎤⎢⎣⎡+-125,12ππππk k Z k ∈ B .⎥⎦⎤⎢⎣⎡+-1252,122ππππk k Z k ∈C .⎥⎦⎤⎢⎣⎡+-65,6ππππk k Z k ∈ D .⎥⎦⎤⎢⎣⎡+-652,62ππππk k Z k ∈ 7.sin(-310π)的值等于() A .21B .-21C .23D .-238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是() A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角9.函数x x y sin sin -=的值域是()A .0B .[]1,1-C .[]1,0D .[]0,2-10.函数x x y sin sin -=的值域是()A .[]1,1-B .[]2,0C .[]2,2-D .[]0,2-11.函数x x y tan sin +=的奇偶性是()A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数 12.比较大小,正确的是() A .5sin 3sin )5sin(<<- B .5sin 3sin )5sin(>>-C .5sin )5sin(3sin <-<D .5sin )5sin(3sin >->二、填空题(每小题5分,共20分)13.终边在坐标轴上的角的集合为_________.14.已知扇形的周长等于它所在圆的周长的一半,则这个扇形的圆心角是________________. 15.已知角α的终边经过点P(-5,12),则sin α+2cos α的值为______.16.一个扇形的周长是6厘米,该扇形的中心角是1弧度,该扇形的面积是________________. 三、解答题:(本大题共6小题,共70分。
必修一第二单元《函数》测试卷(含答案解析)
一、选择题1.函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则12017f ⎛⎫⎪⎝⎭等于( ) A .116B .132 C .164D .11282.下列各函数中,表示相等函数的是( ) A .lg y x =与21lg 2y x =B .211x y x -=-与1y x =+C .1y =与1y x =-D .y x =与log xa y a =(0a >且1a ≠)3.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦5.已知定义域为(0,)+∞的函数()f x 满足:()()()1f xy f x f y =++,当1x >时,()1f x <-,且128f ⎛⎫= ⎪⎝⎭,则不等式()(3)3f x f x +->-的解集为( )A .(0,3)B .(1,2)C .(1,3)D .(0,1)(2,3)6.方程2x =所表示的曲线大致形状为( )A .B .C .D .7.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4D .3,2⎡⎫+∞⎪⎢⎣⎭8.某兴趣小组对函数()f x 的性质进行研究,发现函数()f x 是偶函数,在定义域R 上满足(1)(1)(1)f x f x f +=-+,且在区间[1,0]-为减函数.则(3)f -与5()2f -的关系为( )A .5(3)()2f f -≥- B .5(3)()2f f ->- C .5(3)()2f f -≤-D .5(3)()2f f -<-9.已知函数()f x 的定义域为R ,()0f x >且满足()()()f x y f x f y +=⋅,且()112f =,如果对任意的x 、y ,都有()()()0x y f x f y ⎡⎤--<⎣⎦,那么不等式()()234f x f x -⋅≥的解集为( )A .(][),12,-∞+∞ B .[]1,2 C .()1,2 D .(],1-∞10.已知函数的定义域为R ,且对任意的12,x x ,且12x x ≠都有()()()12120f x f x x x -->⎡⎤⎣⎦成立,若()()2211f x f m m +>--对x ∈R 恒成立,则实数m 的取值范围是( )A .(1,2)-B .[1,2]-C .(,1)(2,)-∞-+∞D .(,1][2,)-∞-+∞11.已知函数log ,0(),0a xx x f x a x >⎧=⎨≤⎩(0a >,且1a ≠),则((1))f f -=( ) A .1 B .0 C .-1 D .a12.如图是定义在区间[]5,5-上的函数()y f x =的图象,则下列关于函数()f x 的说法错误的是( )A .函数在区间[]53-,-上单调递增B .函数在区间[]1,4上单调递增C .函数在区间][3,14,5⎡⎤⋃⎣⎦-上单调递减D .函数在区间[]5,5-上没有单调性二、填空题13.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i Aϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i AB ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.14.已知函数()2f x x =,()1g x a x =-,a 为常数,若对于任意1x ,[]20,2x ∈,且12x x <,都有()()()()1212f x f x g x g x -<-则实数a 的取值范围为________.15.已知函数()()14f x a ax =--[]0,2上是减函数,则实数a 的取值范围是_____.16.函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式()cos f x x<0的解集为________.17.已知集合{1,A B ==2,3},f :A B →为从集合A 到集合B 的一个函数,那么该函数的值域的不同情况有______种.18.已知定义在R 上的函数()f x 满足:①(1)0f =;②对任意x ∈R 的都有()()f x f x -=-;③对任意的12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-.记2()3()()1f x f xg x x --=-,则不等式()0g x ≤的解集______.19.设集合10,2A ⎡⎫=⎪⎢⎣⎭,1,12B ⎡⎤=⎢⎥⎣⎦,函数()()1,221,x x A f x x x B⎧+∈⎪=⎨⎪-∈⎩,若()()0f f x A ∈,则0x 的取值范围是__________.20.函数()()122x x f x x N +⎡⎤⎡⎤=-∈⎢⎥⎢⎥⎣⎦⎣⎦的值域为_______(其中[]x 表示不大于x 的最大整数)三、解答题21.已知二次函数()2(f x ax bx c a R =++∈且2a >-),(1)1f =,且对任意的x ∈R ,(5)(3)f x f x -+=-均成立,且方程()42f x x =-有唯一实数解.(1)求()f x 的解析式;(2)若当(10,)x ∈+∞时,不等式()2160f x kx k +--<恒成立,求实数k 的取值范围;(3)是否存在区间[],()m n m n <,使得()f x 在区间[],m n 上的值域恰好为[]6,6m n ?若存在,请求出区间[],m n ,若不存在,请说明理由.22.(1)已知()()43f x x a =-+时,当实数a 为何值时,()f x 是偶函数?(2)已知()g x 是偶函数,且()g x 在[)0,+∞是增函数,如果当[]1,2x ∈时()()6g x a g x +≤-恒成立,求实数a 的取值范围.23.已知函数()y f u =的定义域为A ,值域为B .如果存在函数()u g x =,使得函数[]()y f g x =的值域仍为B ,则称()u g x =是函数()y f u =的一个“等值域变换”.(1)若函数2()1y f u u ==+,1()u g x x x==+(x >0),请判断()u g x =是不是函数()y f u =的一个“等值域变换”?并说明理由;(2)已知单调函数()y f u =的定义域为{}12A u u =≤≤,若221()1x ax u g x x x ++==++是函数函数()y f u =的一个“等值域变换”,求实数a 的取值范围.24.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式. 25.已知函数()2mf x x x=++(m 为实常数). (1)当4m =时,试判断函数在[)2,+∞上的单调性,并用定义证明; (2)设0m <,若不等式()f x kx ≤在1[,1]2x ∈有解,求实数k 的取值范围. 26.已知a R ∈,奇函数()f x 与偶函数()g x 的定义域均为(,0)(0,)-∞+∞,且满足()()2af xg x x x-=+-. (1)分别求()f x 和()g x 的解析式: (2)若对任意[1,),()()0x f x g x ∞∈++>恒成立,试求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由③可得()11f =,1122f ⎛⎫=⎪⎝⎭,然后由②可得111113232n n n f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭,然后结合()f x 在[0,1]上非减函数可得答案. 【详解】由③得(10)1(0)1f f -=-=,111122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,∴()11f =,1122f ⎛⎫= ⎪⎝⎭. 由②得()12201111111111323232322n n n n n n f f f f f --⎛⎫⎛⎫⎛⎫⎛⎫======⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 12231011111111232232232232n n n n nf f f f ----⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭⎝⎭⎝⎭.∵761113201723<<⨯且61123128f ⎛⎫= ⎪⨯⎝⎭,7113128f ⎛⎫= ⎪⎝⎭. 又()f x 在[0,1]上非减函数,∴112017128f ⎛⎫= ⎪⎝⎭, 故选:D 【点睛】关键点睛:解答本题的关键是由条件得到111113232n n n f f -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭. 2.D解析:D 【分析】本题可依次判断四个选项中函数的定义域、对应关系、值域是否相同,即可得出结果. 【详解】A 项:函数lg y x =定义域为()0,∞+,函数21lg 2y x =定义域为{}0x x ≠,A 错误; B 项:函数211x y x -=-定义域为{}1x x ≠,函数1y x =+定义域为R ,B 错误;C 项:函数1y =值域为[)1,-+∞,函数1y x =-值域为R ,C 错误;D 项:函数y x =与函数log xa y a =(0a >且1a ≠)定义域相同,对应关系相同,D 正确. 故选:D 【点睛】方法点睛:判断两个函数是否相同,首先可以判断函数的定义域是否相同,然后判断两个函数的对应关系以及值域是否相同即可,考查函数定义域和值域的求法,是中档题.3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->,解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题 4.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
高一数学必修1第二章测试题
一、选择题:(本题共8小题,每小题5分,共40分,)
1.
若()f x =(3)f =( )
A 、2
B 、4 C
、、10
2.下列各组函数是同一函数的是 ( )
①()f x =
()g x =()f x x =
与()g x =
③0()f x x =与01()g x x =
; ④2()21f x x x =--与2()21g t t t =--。
A 、①② B 、①③ C 、②④ D 、①④
3.二次函数245y x mx =-+的对称轴为2x =-,则当1x =时,y 的值为 ( )
A 、7-
B 、1
C 、17
D 、25
4. 若:f A B →能构成映射,下列说法正确的有 ( )
(1)A 中的任一元素在B 中必须有像且唯一(2)B 中的多个元素可以在A 中有相同的原像;
(3)B 中的元素可以在A 中无原像;(4)像的集合就是集合B 。
A 、1个
B 、2个
C 、3个
D 、4个
5.设函数()(21)f x a x b =-+是R 上的减函数,则有 ( )
A 、12a >
B 、12a <
C 、12a ≥
D 、12
a ≤ 6.如果函数2()2(1)2f x x a x =+-+在区间(],4-∞上是减函数,那么实数a 的取值范围是
A 、3a -≤
B 、3a -≥
C 、a ≤5
D 、a ≥5
7.)(x f 是定义在R 上的奇函数,下列结论中,不正确...
的是( ) A 、()()0f x f x -+= B 、()()2()f x f x f x --=- C ()()0f x f x - ≤ D 、()1()
f x f x =-- 8、定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有
()()0f a f b a b
->-成立,则必有 A .()f x 先增加后减少 B.()f x 先减少后增加
C.()f x 在R 上是增函数
D.()f x 在R 上是减函数
- 2 -
二、填空题:(共4小题,每小题5分,共20分)
9、已知(0)1,()(1)()f f n nf n n N +==-∈,则(4)f = 。
10、将二次函数22y x =-的顶点移到(3,2)-后,得到的函数的解析式为 。
11、设2 2 (1)() (12)2 (2)x x f x x x x x +-⎧⎪=-<<⎨⎪⎩
≤≥,若()3f x =,则x = 。
12.已知()y f x =在定义域R 上是减函数,且(1)(21)f a f a -<-,则a 的取值范围是 。
三、解答题:(本题共3小题,共34分,解答应写出文字说明,证明过程或演算步骤.) 15.(10分) 作函数()34f x x =+的图像,并证明它是R 上的减增函数。
16.(18分)对于二次函数2483y x x =-+-
(1)指出图像的开口,对称轴方程,顶点坐标;
(2)画出它的图像,并说明其图像由24y x =-的图像经过怎样平移得来;
(3)求函数的最大值或最小值;
17.(12分)已知函数2
2
1)(x x x f += (1)证明:该函数为偶函数。
- 3 - (2)求)4
1()4()31()3()21
()2()1(f f f f f f f ++++++的值。