概率论第19题
考研数学三(概率统计)模拟试卷19(题后含答案及解析)
考研数学三(概率统计)模拟试卷19(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.将一枚硬币独立地掷两次,引进事件:A1={掷第一次出现正面},A2={掷第二次出现正面},A3={正、反面各出现一次},A4={正面出现两次},则事件A.A1,A2,A3相互独立B.A2,A3,A4相互独立C.A1,A2,A3两两独立D.A2,A3,A1两两独立正确答案:C解析:(本题的硬币应当设是“均匀”的)。
由题意易见:可见A1,A2,A3两两独立,故选(C)。
知识模块:概率与数理统计填空题2.设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1一2X2)2+b(3X3一4X4)2。
则当a=________,b=________时,统计量X服从χ2分布,其自由度为________。
正确答案:解析:∵E(X1一2X2)=EX1—2EX2=0D(X1一2X2)=DX1+4DX2=4+4×4=20E(3X3—4X4)=3EX3—4EX4=3×0—4×0=0D(3X3—4X4)=9DX3+16DX4=9X4+16×4=100与题目的X比较即得结果。
知识模块:概率与数理统计3.设总体X的概率密度为(一∞<x<+∞),X1,X2,…,Xn为总体X的简单随机样本,其样本方差为S2,则ES2=________。
正确答案:2解析:而E(S2)=DX,故ES2=2。
知识模块:概率与数理统计4.设X1,…,Xn是来自正态总体N(μ,σ2)的简单随机样本,其中参数μ,σ2未知。
记则假设H0:μ=0的t检验使用的统计量t________。
正确答案:解析:知识模块:概率与数理统计解答题解答应写出文字说明、证明过程或演算步骤。
5.设二维随机变量(X,Y)的概率密度为求常数A及条件概率密度fY|X(y|x)。
概率复习题-答案
<概率论>试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7. 已知随机变量X的密度为,且,则________ ________8. 设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~或~。
特别是,当同为正态分布时,对于任意的,都精确有~或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于.22.设是来自正态总体的样本,令则当时~。
23.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24.设X1,X2,…X n为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P (A+B) = P (A);(B)(C)(D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为(A)“甲种产品滞销,乙种产品畅销”;(B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
概率论与数理统计习题答案1-19章
1 随机事件及其概率·样本空间·事件的关系及运算一、任意抛掷一颗骰子,观察出现的点数。
设事件A 表示“出现偶数点”,事件B 表示“出现的点数能被3整除”.(1)写出试验的样本点及样本空间;(2)把事件A 及B 分别表示为样本点的集合;(3)事件B A AB B A B A ,,,,分别表示什么事件?并把它们表示为样本点的集合.解:设i ω表示“出现i 点”)6,,2,1( i ,则(1)样本点为654321,,,,,ωωωωωω;样本空间为}.,,,,,{654321 (2)},,{642ωωωA ; }.,{63ωωB (3)},,{531ωωωA ,表示“出现奇数点”;},,,{5421ωωωωB ,表示“出现的点数不能被3整除”;},,,{6432ωωωωB A ,表示“出现的点数能被2或3整除”;}{6ωAB ,表示“出现的点数能被2整除且能被3整除”;},{B A 51ωω ,表示“出现的点数既不能被2整除也不能被3整除”二、写出下列随机试验的样本空间及各个事件中的样本点:(1)同时掷三枚骰子,记录三枚骰子的点数之和.A —“点数之和大于10”,B —“点数之和小于15”.(2)一盒中有5只外形相同的电子元件,分别标有号码1,2,3,4,5.从中任取3只,A —“最小号码为1”.解:(1) 设i ω表示“点数之和等于i ”)18,,4,3( i ,则},,,{1843ωωω Ω;},,,{181211ωωωA ;}.,,,{1443ωωωB (2) 设ijk ω表示“出现号码为k j i ,,”);5,,2,1,,(k j i k j i ,则},,,,,,,,,{345245235234145135134125124123ωωωωωωωωωω Ω }.,,,,,{145135134125124123ωωωωωωA三、设C B A ,,为三个事件,用事件之间的运算表示下列事件: (1) A 发生, B 与C 都不发生; (2) C B A ,,都发生;(3) C B A ,,中至少有两个发生; (4) C B A ,,中至多有两个发生. 解:(1) C B A ;(2) ABC ;(3) ABC C AB C B A BC A 或CA BC AB(4) BC A C B A C AB C B A C B A C B A C B A 或C B A 或.ABC四、一个工人生产了n 个零件,以i A 表示他生产的第 i 个零件是合格品(n i 1).用i A 表示下列事件:(1)没有一个零件是不合格品; (2)至少有一个零件是不合格品; (3)仅有一个零件是不合格品;(4)至少有一个零件不是不合格品. 解:(1) n A A A 21;(2) n A A A 21或n A A A 21; (3) n n n A A A A A A A A A 212121 (4) n A A A 21或.21n A A A2 概率的古典定义·概率加法定理一、电话号码由七个数字组成,每个数字可以是0,1,2,…,9中的任一个数(但第一个数字不能为0),求电话号码是由完全不同的数字组成的概率.解:基本事件总数为611011011011011011019109 C C C C C C C 有利事件总数为456789214151617181919C C C C C C C 设A 表示“电话号码是由完全不同的数字组成”,则0605.0109456789)(62 A P 二、把十本书任意地放在书架上,求其中指定的三本书放在一起的概率.解:基本事件总数为!101010A 指定的三本书按某确定顺序排在书架上的所有可能为!777A 种;这三本书按确定的顺序放在书架上的所以可能的位置共818C 种;这三本书的排列顺序数为!333 A ;故有利事件总数为!3!8!38!7 (亦可理解为)3388P P设A 表示“指定的三本书放在一起”,则067.0151!10!3!8)( A P三、为了减少比赛场次,把二十个队任意分成两组(每组十队)进行比赛,求最强的两个队被分在不同组内的概率.解:20个队任意分成两组(每组10队)的所以排法,构成基本事件总数1020C ;两个最强的队不被分在一组的所有排法,构成有利事件总数91812C C 设A 表示“最强的两队被分在不同组”,则526.01910)(102091812 C C C A P四、某工厂生产的产品共有100个,其中有5个次品.从这批产品中任取一半来检查,求发现次品不多于1个的概率.解:设i A 表示“出现的次品为i 件”)5,4,3,2,1,0( i ,A 表示“取出的产品中次品不多于 1个”,则 .10A A A 因为V A A 10,所以).()()(10A P A P A P 而0281.0979942347)(5010050950 C C A P 1529.09799447255)(501004995151 C C C A P 故 181.01529.00281.0)( A P五、一批产品共有200件, 其中有6件废品.求 (1) 任取3件产品恰有1件是废品的概率; (2) 任取3件产品没有废品的概率; (3) 任取3件产品中废品不少于2件的概率.解:设A 表示“取出的3件产品中恰有1件废品”;B 表示“取出的3件产品中没有废品”;C 表示“取出的3件产品中废品不少于2件”,则 (1) 0855.019819920019319418)(3200219416 C C C A P (2) 912.0198199200192193194)(32003194 C C B P(3) 00223.019819920012019490)(3200019436119426 C C C C C C P六、设41)( ,0 ,31)()()(BC P P(AC)P(AB)C P B P A P .求A , B , C 至少有一事件发生的 概率.解:因为0 P(AC)P(AB),所以V AC V AB ,,从而V C AB )(可推出0)( ABC P设D 表示“A , B , C 至少有一事件发生”,则C B A D ,于是有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P 75.043413131313 条件概率与概率乘法定理·全概率公式与贝叶斯公式一、设,6.0)|(,4.0)(,5.0)( B A P B P A P 求)|(,)(B A A P AB P . 解:因为B A AB B B A A )(,所以)()()(B A P AB P A P ,即14.06.0)4.01(5.0)()()()()()( B A P B P A P B A P A P AB P68.074.05.036.0)4.01(5.05.0)()()()()()]([)|(B A P B P A P A P B A P B A A P B A A P二、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求他拨号不超过两次而接通所需电话的概率.若已知最后一个数字是奇数,那么此概率是多少? 解:设A 表示“第一次拨通”,B 表示“第二次拨通”,C 表示“拨号不超过两次而拨通”(1)2.0101101)()()(19111101911011 C C C C C C A B P A P C P(2)4.05151)()()(2511141511 A A A A A A B P A P C P三、两台车床加工同样的零件,第一台出现废品的概率是0.03,第二台出现废品的概率是0.02.加工出来的零件放在一起,并且已知第一台加工的零件比第二台加工的零件多 一倍.(1)求任意取出的零件是合格品的概率;(2)如果任意取出的零件是废品,求它是第二台车床加工的概率. 解:设i A 表示“第i 台机床加工的零件”)2,1( i ;B 表示“出现废品”;C 表示“出现合格品”973.0)02.01(31)03.01(32(2)25.002.03103.03202.031)()()()()()()()()(22112222A B P A P A B P A P A B P A P B P B A P B A P四、猎人在距离100米处射击一动物,击中的概率为0.6;如果第一次未击中,则进行第二次射击,但由于动物逃跑而使距离变为150米;如果第二次又未击中,则进行第三次射击,这时距离变为200米.假定击中的概率与距离成反比,求猎人三次之内击中动物的概率.解:设i A 表示“第i 次击中”)3,2,1( i ,则由题设,有1006.0)(1kA P ,得60 k ,从而有4.015060150)(2 k A P ,.3.020060200)(3 k A P设A 表示“三次之内击中”,则321211A A A A A A A ,故有)()()()()()()(321211A P A P A P A P A P A P A P832.03.0)4.01()6.01(4.0)6.01(6.0 (另解)设B 表示“猎人三次均未击中”,则168.0)3.01)(4.01)(6.01()( B P故所求为 832.0)(1)( B P B P五、盒中放有12个乒乓球,其中有9个是新的.第一次比赛时从其中任取3个来用,比赛后仍放回盒中.第二次比赛时再从盒中任取3个,求第二次取出的都是新球的概率. 解:设i A 表示“第一次取得i 个新球”)3,2,1,0( i ,则2201)(312330 C C A P 22027)(31219231 C C C A P 220108)(31229132 C C C A P 22084)(31239033 C C C A P 设B 表示“第二次取出的都是新球”,则31236312373123831239322084220108220272201)()()(C C C C C C C C A B P A P B P i i i146.05324007761611122084447220108551422027552122014 随机事件的独立性·独立试验序列一、一个工人看管三台车床,在一小时内车床不需要工人照管的概率:第一台等于0.9,第二台等于0.8,第三台等于0.7.求在一小时内三台车床中最多有一台需要工人照管的概率. 解:设i A 表示“第i 台机床不需要照管”)3,2,1( i ,则9.0)(1 A P 8.0)(2 A P 7.0)(3 A P再设B 表示“在一小时内三台车床中最多有一台需要工人照管”,则321321321321A A A A A A A A A A A A B于是有)()()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P B P )7.01(8.09.07.0)8.01(9.07.08.0)9.01(7.08.09.0902.0 .(另解)设i B 表示“有i 台机床需要照管”)1,0( i ,B 表示“在一小时内三台车床中最多有一台需要工人照管”,则10B B B 且0B 、1B 互斥,另外有 504.07.08.09.0)(0 B P398.0)7.01(8.09.07.0)8.01(9.07.08.0)9.01()(1 B P 故902.0398.0504.0)()()()(1010 B P B P B B P B P .二、电路由电池a 与两个并联的电池b 及c 串联而成.设电池c b a ,,损坏的概率分别是0.3、0.2、0.2,求电路发生间断的概率. 解:设1A 表示“a 损坏”;2A 表示“b 损坏”;3A 表示“c 损坏”;则3.0)(1 A P 2.0)()(32 A P A P 又设B 表示“电路发生间断”,则321A A A B 于是有)()()()()(321321321A A A P A A P A P A A A P B P)()()()()()(321321A P A P A P A P A P A P 328.02.02.03.02.02.03.0 .三、三个人独立地去破译一个密码,他们能译出的概率分别为51、31、41,求能将此密码译出的概率.解:设A 表示“甲能译出”;B 表示“乙能译出”;C 表示“丙能译出”,则51)( A P 31)( B P 41)( C P设D 表示“此密码能被译出”,则C B A D ,从而有)()()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P D P)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P 6.0413151415141513151413151 . (另解)52)411)(311)(511()()()()()( C P B P A P C B A P D P ,从而有6.053521)(1)( D P D P四、甲、乙、丙三人同时对飞机进行射击,三人的命中概率分别为7.0,5.0,4.0.飞机被一人击中而被击落的概率为2.0,被两人击中而被击落的概率为6.0,若三人都击中,则 飞机必被击落.求飞机被击落的概率. 解:设1A 表示“甲命中”;2A 表示“乙命中”;3A 表示“丙命中”;则4.0)(1 A P5.0)(2 A P 7.0)(3 A P设i B 表示“i 人击中飞机” )3,2,1,0( i ,则09.0)7.01)(5.01)(4.01()())(()()(3213210 A P A P A P A A A P B P3213213211 )()()(321321321A A A P A A A P A A A P)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P36.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.0)()(3213213212A A A A A A A A A P B P )()()(321321321A A A P A A A P A A A P)()()()()()()()()(321321321A P A P A P A P A P A P A P A P A P41.07.0)5.01)(4.01()7.01(5.0)4.01()7.01)(5.01(4.014.07.05.04.0)()()()()(3213213 A P A P A P A A A P B P 设A 表示“飞机被击落”,则由题设有0)(0 B A P 2.0)(1 B A P 6.0)(2 B A P 1)(3 B A P故有458.0114.06.041.02.036.0009.0)()()(30 i i i B A P B P A P .五、某机构有一个9人组成的顾问小组,若每个顾问贡献正确意见的概率都是0.7,现在该机构内就某事可行与否个别征求每个顾问的意见,并按多数人意见作出决策,求作 出正确决策的概率.解:设i A 表示“第i 人贡献正确意见”,则7.0)( i A P )9,,2,1( i .又设m 为作出正确意见的人数,A 表示“作出正确决策”,则 )9()8()7()6()5()5()(99999P P P P P m P A P277936694559)3.0()7.0()3.0()7.0()3.0()7.0(C C C 9991889)7.0()3.0()7.0( C C273645)3.0()7.0(36)3.0()7.0(84)3.0()7.0(126918)7.0()3.0()7.0(90403.01556.02668.02668.01715.0 901.0 .六、每次试验中事件A 发生的概率为p ,为了使事件A 在独立试验序列中至少发生一次的概率不小于p ,问至少需要进行多少次试验? 解:设做n 次试验,则n p A P A P )1(1}{1}{ 一次都不发生至少发生一次要p p n )1(1,即要p p n 1)1(,从而有.1)1(log )1( p n p 答:至少需要进行一次试验.5 离散随机变量的概率分布·超几何分布·二项分布·泊松分布一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的概率分布. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即亦即二、自动生产线在调整以后出现废品的概率为p .生产过程中出现废品时立即进行调整.求在两次调整之间生产的合格品数的概率分布.解:设X 表示“在两次调整之间生产的合格品数”,且设p q 1,则ξ的概率分布为三、已知一批产品共20个,其中有4个次品.(1)不放回抽样.抽取6个产品,求样品中次品数的概率分布; (2)放回抽样.抽取6个产品,求样品中次品数的概率分布. 解:(1)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)4,3,2,0()(6206164 x C C C x X P xx从而X 的概率分布为即(2)设X 表示“取出的样本中的次品数”,则X 服从超几何分布,即X 的概率函数为)6,5,4,3,2,0()2.01()2.0()(66 x C x X P xx x从而X即四、电话总机为300个电话用户服务.在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内有4个用户使用电话的概率(先用二项分布计算,再用泊松分布近似计算,并求相对误差). 解:(1)用二项分布计算)01.0( p168877.0)01.01()01.0()1()4(2964430029644300 C p p C ξP(2)用泊松分布计算)301.0300( np λ168031355.0!43)4(34 e ξP相对误差为.5168877.0168031355.0168877.0000δ五、设事件A 在每一次试验中发生的概率为0.3,当A 发生次数不少于3次时,指示灯发出信号.现进行了5次独立试验,求指示灯发出信号的概率. 解:设X 表示“事件A 发生的次数”,则3.0)( p A P ,5 n ,).3.0,5(~B X 于是有)5()4()3()3( X P X P X P X P5554452335)1()1(p C p p C p p C16308.000243.002835.01323.0(另解) )2()1()0(1)3(1)3( X P X P X P X P X P322541155005)1()1()1(11p p C p p C p p C 16308.0六、设随机变量X 的概率分布为2, 1, ,0 , !)( k k ak X P k;其中λ>0为常数,试确定常数a .解:因为1)(k k X P ,即01!k kk λa ,亦即1 λae ,所以.λe a6 随机变量的分布函数·连续随机变量的概率密度一、函数211x 可否是连续随机变量X 的分布函数?为什么?如果X 的可能值充满区间: (1)( ,);(2)(0, ).解:(1)设211)(xx F,则1)(0 x F 因为0)(limx F x ,0)(limx F x ,所以)(x F 不能是X 的分布函数.(2)设211)(x x F,则1)(0 x F 且0)(lim x F x ,1)(lim 0 x F x 因为)0( 0)1(2)('22x x xx F ,所以)(x F 在(0, )上单增. 综上述,故)(x F 可作为X 的分布函数.二、函数x x f sin )( 可否是连续随机变量X 的概率密度?为什么?如果X 的可能值充满区间:(1)2,0 ; (2) ,0; (3) 23,0 .解:(1)因为 2,0πx ,所以0sin )( x x f ;又因为1cos )(2020x dx x f ,所以当2,0πx 时,函数x x f sin )( 可作为某随机变量X 的概率密度.(2)因为 πx ,0 ,所以0sin )( x x f ;但12cos )(0x dx x f ,所以当 πx ,0时,函数x x f sin )( 不可能是某随机变量X 的概率密度.(3)因为23,0πx ,所以x x f sin )( 不是非负函数,从而它不可能是随机变量X 的概率密度.二、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取1个.如果每次取出的废品不再放回去,求在取得合格品以前已取出的废品数的分布函数,并作出分布函数的图形. 解:设X 表示“取出的废品数”,则X 的分布律为于是, 3,1x四、(柯西分布)设连续随机变量X 的分布函数为x x B A x F ,arctan )(.求:(1)系数A 及B ;(2)随机变量X 落在区间)1 ,1( 内的概率;(3) X 的概率密度.解:(1) 由0)2()(lim πB A x F x ,12)(lim πB A x F x ,解得.1,21πB A即)( ,arctan 121)( x x πx F .(2) .21)]1arctan(121[]1arctan 121[)1()1()11( F F X P(3) X 的概率密度为)1(1)()(2x x F x f . 五、(拉普拉斯分布)设随机变量X 的概率密度为x Ae x f x,)(.求:(1)系数A ;(2)随机变量X 落在区间)1,0(内的概率;(3)随机变量X 的分布函数.解:(1) 由1)( dx x f ,得1220 A dx e A dx Ae xx ,解得21 A ,即有 ).( ,21)( x e x f x(2) ).11(21)(2121)()10(101010ee dx e dx xf X P x x(3) 随机变量X 的分布函数为21102121)()(x e x e dx e dx x f x F x xx xx .7 均匀分布·指数分布·随机变量函数的概率分布一、公共汽车站每隔5分钟有一辆汽车通过.乘客到达汽车站的任一时刻是等可能的.求乘客候车时间不超过3分钟的概率.解:设随机变量X 表示“乘客的候车时间”,则X 服从]5,0[上的均匀分布,其密度函数为]5,0[,0]5,0[,51)(x x x f 于是有.6.053)()30(3dx x f X P二、已知某种电子元件的使用寿命X (单位:h)服从指数分布,概率密度为.0,0;0,8001)(800x x e x f x任取3个这种电子元件,求至少有1个能使用1000h 以上的概率. 解:设A 表示“至少有1个电子元件能使用1000h 以上”;321A 、A 、A 分别表示“元件甲、乙、丙能使用1000h 以上”.则287.08001)1000()()()(4510008001000800321e e dx e X P A P A P A P xx)()()()()()()()()(321313221321321A A A P A A P A A P A A P A P A P A P A A A P A P638.0287.0287.03287.0332(另解)设A 表示“至少有1个电子元件能使用1000h 以上”.则287.08001)1000(4510008001000800ee dx e X P xx从而有713.01)1000(1)1000(45eX P X P ,进一步有638.0713.01)]1000([1)(33 X P A P三、(1) 设随机变量X 服从指数分布)( e .证明:对于任意非负实数s 及t ,有).()(t X P s X t s X P这个性质叫做指数分布的无记忆性.(2) 设电视机的使用年数X 服从指数分布)10(.e .某人买了一台旧电视机,求还能使用5年以上的概率. 解:(1)因为)(~ e X ,所以R x ,有xex F 1)(,其中)(x F 为X 的分布函数.设t s X A ,t X B .因为s 及t 都是非负实数,所以B A ,从而A AB .根据条件概率公式,我们有)(1)(1)()()()()()()()(s X P t s X P s X P t s X P B P A P B P AB P B A P s X t s X Pt st s e e e ]1[1]1[1)(. 另一方面,我们有t t e e t F t X P t X P t X P )1(1)(1)(1)(1)(.综上所述,故有)()(t X P s X t s X P .(2)由题设,知X 的概率密度为.,;,0001.0)(1.0x x e x f x 设某人购买的这台旧电视机已经使用了s 年,则根据上述证明的(1)的结论,该电视机还能使用5年以上的概率为6065.01.0)()5()5(5.051.051.05e e dx e dx xf X P s X s X P xx .答:该电视机还能使用5年以上的概率约为6065.0.四、设随机变量X 服从二项分布)4.0 ,3(B ,求下列随机变量函数的概率分布: (1)X Y 211 ;(2)2)3(2X X Y. 解:X 的分布律为(1)X Y 211 的分布律为(2)2)3(2X XY 的分布律为即五、设随机变量X 的概率密度为.0,0;0,)1(2)(2x x x x f求随机变量函数X Y ln 的概率密度.解:因为)()()(ln )()(yX y Y e F e X P y X P y Y P y F 所以随机变量函数X Y ln 的概率密度为)( )1(2)()()()(2'' y e e e e f e e F y F y f y yyyyyXYY ,即)( )1(2)(2 y e e y f yyY .8 二维随机变量的联合分布与边缘分布一、把一颗均匀的骰子随机地掷两次.设随机变量X 表示第一次出现的点数,随机变量Y 表示两次出现点数的最大值,求二维随机变量),(Y X 的联合概率分布及Y 的边缘概率分布. 解:二维随机变量),(Y X 的联合概率分布为Y 的边缘概率分布为二、设二维随机变量(X ,Y )的联合分布函数)3arctan )(2arctan (),(yC x B A y x F .求:(1)系数A 、B 及C ;(2)(X ,Y )的联合概率密度:(3)边缘分布函数及边缘概率密度. 解:(1)由0)0,(,0),0(,1),( F F F ,得0)2(0)2)(0(1)2)(2(πB AC πC B A πC πB A 解得2πC B ,.12πA (2)因为)3arctan 2)(2arctan 2(1),(2yx y x F ,所以(X ,Y )的联合概率密度为.)9)(4(6),(),(222"y x y x F y x f xy (3)X 及Y 的边缘分布函数分别为xx x X x dx x dy y x f dx x F 2arctan 1)4(2),()(2 2arctan 121xyx y Y y dy y dx y x f dy x F 3arctan 1)9(3),()(2 3arctan 121yX 及Y 的边缘概率密度分别为0222222)9(1)4(112)9)(4(6),()(dy y x dy y x dy y x f x f X)4(2)3arctan 31()4(1122022x y x 022222241)9(12)9)(4(6),()(dx xy dx y x dx y x f y f Y )9(3)2arctan 21()9(122022y x y三、设),(Y X 的联合概率密度为., 00;0,,Ae ),(3y)(2x 其它y x y x f 求:(1)系数A ;(2)),(Y X 的联合分布函数;(3)X 及Y 的边缘概率密度;(4)),(Y X落在区域R :632 ,0 ,0 y x y x 内的概率. 解:(1)由1),(dy dx y x f ,有16132A dy e dx eA y x,解得.6 A (2)),(Y X 的联合分布函数为其它0,06),(),(0032y x dy e dx e dy y x f dx y x F x y y x xy其它0,0)1)(1(32y x e e y x (3)X 及Y 的边缘概率密度分别为00020006),()(2032x x ex x dy e e dy y x f x f x y x X00030006),()(3032y y ex x dx e e dx y x f y f y y x Y(4)x y xRdy e dx edxdy y x f R Y X P 32203326),(}),{(6306271)(2 e dx e e x四、设二维随机变量),(Y X 在抛物线2x y 与直线2 x y 所围成的区域R 上服从均匀分布.求:(1) ),(Y X 的联合概率密度;(2) 概率)2( Y X P . 解:(1) 设),(Y X 的联合概率密度为.),(, 0;),(,),(R y x R y x C y x f 则由129)322()2(21322122212 C x x x C dx x x C dy dx C Cdxdy x x R解得92C .故有.),(, 0;),(,92),(R y x R y x y x f(2) x x x x y x dy dx dy dx dxdy y x f Y X P 2212210229292),()2(21210)2(92292dx x x xdx 481.02713)322(92922132102x x x x . 9 随机变量的独立性·二维随机变量函数的分布一、设X 与Y 是两个相互独立的随机变量,X 在]1,0[上服从均匀分布,Y 的概率密度为.0,0;0,21)(2y y e y f yY求 (1) ),(Y X 的联合概率密度; (2) 概率)(X Y P .解: (1)X 的概率密度为)1,0(,0)1,0(,1)(x x x f X ,),(Y X 的联合概率密度为(注意Y X ,相互独立)其它,00,10,21)()(),(2y x e y f x f y x f yY X(2)dx edx edy e dx dxdy y x f X Y P x xyxyxy12102212)(21),()(7869.0)1(2221122e ex二、设随机变量X 与Y 独立,并且都服从二项分布:.,,2 ,1 ,0 ,)(; ,,2 ,1 ,0 ,)(212211n j qp C j p n i q p C i p jn jjn Y in i i n X证明它们的和Y X Z 也服从二项分布. 证明: 设j i k , 则ik n i k i k n ki i n i i n ki Y X Z q p C q p C i k P i P k Z P k P 22110)()()()( ki k n n k i n in q p C C2121)( 由knm ki ik nk m C C C, 有k n n ki in i n C C C21210. 于是有 ),,2,1,0( )(212121n n k q p C k P kn n k i n n Z 由此知Y X Z 也服从二项分布.三、设随机变量X 与Y 独立,并且X 在区间[0,1]内服从均匀分布,Y 在区间[0,2]内服从辛普森分布:.20,;21,2;1,)(yyyyyyyfY或求随机变量YXZ的概率密度.解: X的概率密度为]1,0[,0]1,0[,1)(xxyf . 于是),(YX的联合概率密度为.0,21,1,210,1,),(其它当当yxyyxyyxfYXZ的联合分布函数为}),{(}{}{)(DyxPzYXPzZPzFZ,其中D是zyx与),(yxf的定义域的公共部分.故有322932121233123,0)(222zzzzzzzzzzzFZ从而随机变量YXZ的概率密度为323213213,0)(zzzzzzzzzfZ三、电子仪器由六个相互独立的部件ijL(3,2,1;2,1ji)组成,联接方式如右图所示.设各个部件的使用寿命ijX服从相同的指数分布)(e,求仪器使用寿命的概率密度.解: 由题设,知ijX的分布函数为,0,1xxeFxX ij先求各个并联组的使用寿命)3,2,1(iYi的分布函数.因为当并联的两个部件都损坏时,第i 个并联组才停止工作,所以有)3,2,1(),m ax(21iYiii从而有)3,2,1(iYi的分布函数为,0,)1()(221yyeFFyFyXXY iii设Z"仪器使用寿命".因为当三个并联组中任一个损坏时,仪器停止工作.所以有),,min(321YYYZ .从而有Z的分布函数为0,00,])1(1[10,00)],(1)][(1)][(1[1)(32321z z e z z z F z F z F z F z Y Y Y Z 故Z 的概率密度为0,00,)2)(1(6)(23z z e e e z f z z z Z10 随机变量的数学期望与方差一、一批零件中有9个合格品与3个废品.安装机器时从这批零件中任取一个.如果取出的废品不再放回去,求在取得合格品以前已取出的废品数的数学期望、方差与标准差. 解:设X 表示“在取得合格品以前已取出的废品数”,则X 的概率分布为即1103322013220924491430EX 即3.0004.03041.02205.0175.00 EX2X 的分布为即于是有229220192209444914302EX 即4091.0004.09041.04205.0175.002 EX从而有3191.013310042471)11033(229)(222EX EX DX 565.03191.0 DX X二、对某一目标进行射击,直至击中为止.如果每次射击命中率为p ,求射击次数的数学期望及方差. 解:设X 表示“第i 次击中”),2,1( i ,则X 的分布为p q p q q p q p iqp ipqEX i i i i i i 1)1()1()(2111112Xpp p p q q p q p q q p pqi EX i i i ii i 122)1()1()(])([223111122进一步有pp p p p EX EX DX 11)1(12)(22222三、设离散型随机变量X 的概率函数为,,2,1,21]2)1([ k k X P k k k问X 的数学期望是否存在?若存在,请计算)(X E ;若不存在,请解释为什么.解:因为1111)1(212)1(]2)1([2)1()(k k k k k k k k k k ki i i k k k X P k x X P x 不绝对收敛,所以 没有数学期望.四、设随机变量X 的概率密度为.1, 0;1,11)(2x x x x f 求数学期望)(X E 及方差)(X D .解:011)()(112dx xx dx x xf X Edx x x dx x x dx x f x X D 1022112221211)()(21]arcsin 2112[2102 x x x π五、(拉普拉斯分布)设随机变量X 的概率密度为 )( ,21)( x e x f x.求数学期望)(X E 及方差)(X D . 解:021)(dx xe dx x xf EX x2!2)3(21)(0222dx e x dx e x dx x f x DX x x(分部积分亦可)11 随机变量函数的数学期望·关于数学期望与方差的定理一、设随机变量X 服从二项分布)4.0,3(B ,求2)3(X X Y 的数学期望及方差. 解:X 的概率分布为Y 的概率分布为2Y 的分布为72.072.0128.00 EY 72.072.0128.002 EY2016.0)72.0(72.0)(222 EY EY DY二、过半径为R 的圆周上一点任意作这圆的弦,求所有这些弦的平均长度.解:在圆周上任取一点O ,并通过该点作圆得直径OA .建立平面直角坐标系,以O 为原点,且让OA 在x 轴的正半轴上.通过O 任作圆的一条弦OB ,使OB 与x 轴的夹角为 ,则 服从]2,2[ 上的均匀分布,其概率密度为]2,2[,0]2,2[,1)(f . 弦OB 的长为 ]2,2[cos 2)(R L ,故所有弦的平均长度为22cos 21)()()]([d R d L f L ERR d R4sin 4cos 42020.三、一工厂生产的某种设备的寿命X (以年计)服从指数分布,概率密度为. 0,0 ;0 ,41)(4x x e x f x工厂规定,出售的设备若在售出一年之内损坏可予以调换.若工厂售出一台设备赢利100元,调换一台设备厂方需花费300元.试求厂方出售一台设备的平均净赢利. 解:由题设,有104110441141)()1(e e dx e dx x f X P x x 进而有 41)1(1)1( eX P X P设Y 表示“厂方出售一台设备获得的净赢利”,则Y 的概率分布为从而有64.33200300100)1(200414141ee e EY答:厂方出售一台设备获得的平均净赢利约为64.33元.四、设随机变量n X X X ,,21相互独立,并且服从同一分布,数学期望为 ,方差为2.求这些随机变量的算术平均值 ni i X n X 11的数学期望与方差.解:因为 )(i X E ,2)( i X D ,且随机变量n X X X ,,21相互独立.所以有ni n i i ni i n i i n X E n X E n X n E X E 11111)(1)(1)1()(,nn X D n X D n X n D X D ni ni in i i n i i 2122121211)(1)(1)1()(.五、一民航送客车载有20位旅客自机场开出,沿途有10个车站可以下车,到达一个车站时如没有旅客下车就不停车.假设每位旅客在各车站下车是等可能的,且各旅客是否下车相互独立.求该车停车次数的数学期望.解: 设i X 表示"第i 站的停车次数" (10,,2,1 i ). 则i X 服从"10 "分布. 其中站有人下车若在第站无人下车若在第i i X i ,1,0于是i X 的概率分布为设ni iXX 1, 则X 表示沿途停车次数, 故有]})10110(1[1)10110(0{10)(2020101101 i i i i EX X E EX748.8)9.01(1020即停车次数的数学期望为748.8.12 二维随机变量的数字特征·切比雪夫不等式与大数定律一、设二维随机变量),(Y X 的联合概率密度为. 1,222y xAy x f求:(1)系数A ;(2)数学期望)(X E 及)(Y E ,方差)(X D 及)(Y D ,协方差),cov(Y X .解: (1) 由1),(dxdy y x f . 有1112022222A dr rrd A dxdy y xA解得,1A .(2)011),()(222dx y xxdy dxdy y x xf X E .由对称性, 知 0)( Y E .dxdy y x f x EX EX X E X D ),(])[()(222dx y xx dy 222211022022220223]11)1ln([1)1(211r r dr r rr r dr rr d同理, 有 )(Y D .)()])([(),cov(XY E EY Y Ex X E Y Xdxdy y x xyf ),(011),(222dx y xxydy dxdy y x xyf .二、设二维随机变量),(Y X 的联合概率密度为其它.,0;10,,1),(x x y y x f 求(1) ),cov(Y X ;(2) X 与Y 是否独立,是否相关,为什么?解: (1) 因为 10210322),(dx x dy xdx dxdy y x xf EX x x0),(10xx ydy dx dxdy y x yf EY0),()(1xxydy xdx dxdy y x xyf XY E所以有])32[()])([(),cov(Y X E EY Y EX X E Y X dxdy y x xyf ),(010xxydy xdx .(2) 当)1,0( x 时,有x dy dy y x f x f xxX 2),()(; 当)1,0( x 时, 有0)( x f X .即)1,0(0)1,0(2)(X x x x x f 同理有)1,0(1)1,0(1)1,0()1,0()(11Y x y x y x dx x dx y f yy因为 ),()()(y x f y f x f Y X , 所以X 与Y 不是独立的.又因为0),cov( Y X , 所以X 与Y 是不相关的.三、利用切比雪夫不等式估计随机变量X 与其数学期望)(X E 的差的绝对值大于三倍标准差)(X 的概率.解:91)3()3(2D D DE P .四、为了确定事件A 的概率,进行10000次重复独立试验.利用切比雪夫不等式估计:用事件A在10000次试验中发生的频率作为事件A 的概率的近似值时,误差小于0.01的概率. 解:设ξ表示“在10000次试验中事件A 的次数”,则)5.0,10000(~B 且有50005.010000 np E 2500)5.01(5.010000 npq D于是有npqp npq p np m P p n m P 22)01.0(1)01.0(1)01.0()01.0(75.025.011 pq五、样检查产品质量时,如果发现次品多于10个,则认为这批产品不能接受.应该检查多少个产品,可使次品率为10%的一批产品不被接受的概率达到0.9? 解:设ξ表示“发现的次品件数”,则)1.0,(~n B ξ,现要求.nn ξE 1.0 n ξD 09.0要使得9.0)10( ξP ,即9.0)10( n ξP ,因为9.0)10( n ξP ,所以 )3.01.03.01.03.01.010()10(nn n n n ξn n P ξD ξE n ξD ξE ξξD ξE P)3.01.010()3()33.01.03.01.010(1,01,0nn n n n n ξn n P ΦΦ1)3.0101.0()3(1,01,0 nn n ΦΦ (德莫威尔—Laplace 定理)因为10 n ,所以53 n ,从而有1)3(1,0 n Φ,故9.0)3.0101.0(1,0 nn Φ. 查表有8997.0)28.1(1,0 Φ,故有28.13.0101.0 nn ,解得.146 n 答:应该检查约146个产品,方可使次品率为10%的一批产品不被接受的概率达到0.9.13 正态分布的概率密度、分布函数、数学期望与方差一、设随机变量X 服从正态分布)2,1(2N ,求(1))8.56.1( X P ;(2))56.4( X P .解:(1) )4.2213.1()8.416.2()8.56.1(X P X P X P 8950.09032.019918.0)]3.1(1[)4.2()3.1()4.2(1,01,01,01,0 ΦΦΦΦ(2) )78.12178.2(1)56.4(1)56.4(X P X P X P )]78.2(1)78.1(1)]78.2()78.1([11,01,01,01,0ΦΦΦΦ.0402.09973.09625.02二、已知某种机械零件的直径X (mm )服从正态分布)6.0,100(2N .规定直径在2.1100 (mm )之间为合格品,求这种机械零件的不合格品率. 解:设p 表示这种机械零件的不合格品率,则)2.1100(1)2.1100( X P X P p .而)26.01002()6.02.16.01006.02.1()2.1100( X P X P X P 1)2(2)]2(1[)2()2()2( 9544.019772.02故0456.09544.01 p .三、测量到某一目标的距离时发生的误差X (m)具有概率密度3200)20(22401)(x ex f求在三次测量中至少有一次误差的绝对值不超过30m 的概率.解:三次测量中每次误差绝对值都超过30米可表为}30{}30{}30{ ξξξD 第三次第二次第一次因为)40,20(~2N ξ,所以由事件的相互独立性,有31,01,033)]25.0(1)25.1([})3030{(})30{()(ΦΦ ξξP ξP D P13025.05069.0)8944.05987.02(33于是有86975.013025.01)(1}30{ D P P 米至少有一次绝对值三次测量中 .四、设随机变量),(~2 N X ,求随机变量函数Xe Y 的概率密度(所得的概率分布称为对数正态分布).解:由题设,知X 的概率密度为)(21)(222)(x ex f x X从而可得随机变量Y 的分布函数为)()()(y e P y Y P y F X Y .当0 y 时,有0)( y F Y ;此时亦有0)( y F Y . 当0 y 时,有dx ey X P y F yx Yln 2)(2221)ln ()(.此时亦有222)(ln 21)(y Y eyy F .从而可得随机变量Y 的概率密度为.0,21;0,0)(222)(ln y e yy y f y Y五、设随机变量X 与Y 独立,),(~211 N X ,),(~222 N Y ,求: (1) 随机变量函数bY aX Z 1的数学期望与方差,其中a 及b 为常数; (2) 随机变量函数XY Z2的数学期望与方差.解:由题设,有211)(,)( X D X E ;222)(,)( Y D Y E .从而有(1)211)()()()()()( b a Y bE X aE bY E aX E bY aX E Z E ; 222212221)()()()()()( b a Y D b X D a bY D aX D bY aX D Z D . (2)212)()()()( Y E X E XY E Z E ;)()()()()()()()(22222222Y E X E Y E X E XY E Y X E XY D Z D )()()]()()][()([2222Y E X E Y E Y D X E X D )()()()()()(22X E Y D Y E X D Y D X D212222212221 .14 二维正态分布·正态随机变量线性函数的分布·中心极限定理四、 设二维随机变量),(Y X 服从二维正态分布,已知0)()( Y E X E ,16)( X D ,25)( Y D ,并且12),cov( Y X ,求),(Y X 的联合概率密度.解:已知0 y x ,416 x ,525 y ,53),cov(),(y x Y X Y X r .从而 2516)53(1122r ,5412 r . 进一步按公式])())((2)([)1(21222222121),(yy y x y x x x y y x r x r y x ery x f,可得),(Y X 的联合概率密度为)2550316((322522321),(y xy x e y x f.二、设随机变量X 与Y 独立,并且)1,0(~N X ,)2,1(~2N Y .求随机变量32 Y X Z 的概率密度. 解:由题设,有0)( X E ,1)( X D ,1)( Y E ,4)( Y D .又根据关于数学期望的定理和方差的定理以及独立正态随机变量线性组合的分布,我们有2)3()()(2)32()( E Y E X E Y X E Z E . 8)3()()(4)32()( D Y D X D Y X D Z D .且)8,2())(,)((~N Z D Z E N Z ,故随机变量32 Y X Z 的概率密度为16)2(82)2(2241821)(z z Z eez f)( z .三、 台机床分别加工生产轴与轴衬.设随机变量X (mm)表示轴的直径,随机变量Y (mm)表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴衬的内径与轴的直径之差在3~1(mm)之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率.解:由题设,知随机变量X 与Y 是独立的,且)3.0,50(~2N X ,)4.0,52(~2N Y .设XY Z 根据独立正态随机变量线性组合的分布,我们有)5.0,2()3.0)1(4.0,50)1(52(~2222N N Z .根据题目假设,我们知道当31 X Y Z 时,轴与轴衬可以配套使用.于是所求概率为1)2(2)2()2()25.022()5.0235.025.021()31( Z P Z P Z P9544.019772.02 .四、100台车床彼此独立地工作着,每台车床的实际工作时间占全部工作时间的80%,求: (1) 任一时刻有70至86台车床在工作的概率;(2) 任一时刻有不少于80台车床在工作的概率. 解:设ξ表示“任一时刻正在工作的车床数”,则)8.0,100(~B .808.0100 E . 16)8.01(8.0100 D .(1))5.2()5.1()168070()168086()8670(1,01,01,01,0 P 927.019938.09332.0)]5.2(1[)5.1(1,01,0 (2))16800()168080([1)800(1)80(1,01,0 P P )20()0(2)20()0(11,01,01,01,0 5.015.02 .五、在一家保险公司里有10000人参加保险,每人每年付12元保险费.在一年内一个人死亡的概率为0.006,死亡时其家属可向保险公司领得1000元.问: (1) 保险公司亏本的可能性是多大?(2) 保险公司一年的利润不少于50000元的概率是多少? 解:设X 表示“一年内死亡的人数”,则)006.0,10000(~B X .60006.010000 EX . 84.59)006.01(006.010000 DX .(1))84.596012084.596084.59600(1)1200(1)12100001000( P X P X P 0)7.7(22)]7.7()7.7([11,01,01,0 ΦΦΦ. 即保险公司不可能亏本.(2))84.591084.596084.5960()700()5000010001210000(X P X P X P9032.01)756.7()293.1()756.7()293.1( . 即保险公司一年利润不少于50000元的概率为9032.0.15 总体与样本·统计量·几个常用分布一、已知样本观测值为15.8 24.2 14.5 17.4 13.2 20.817.9 19.1 21.0 18.5 16.4 22.6,计算样本均值、样本方差与样本二阶中心矩.解:样本均值为 17.920.813.217.414.524.2 15.8(121x 44.18)22.616.418.521.019.1样本方差为22222)44.184.17()44.185.14()44.182.24()44.188.15[(111s 2222)44.181.19()44.189.17()44.188.20()44.182.13(])44.186.22()44.184.16()44.185.18()44.180.21(22224356.02916.05696.50816.14576.275236.151776.339696.6(1117756.10115312.118 .样本二阶中心矩22222)44.184.17()44.185.14()44.182.24()44.188.15[(121u 2222)44.181.19()44.189.17()44.188.20()44.182.13(])44.186.22()44.184.16()44.185.18()44.180.21(22228776.9125312.118 .解:样本均值为14.3)76215204253212 151(1001x 样本方差为 2222)14.33(25)14.32(21)14.31(51[11001s1216.2])14.36(7)14.35(1222样本二阶中心矩为2222)14.33(25)14.32(21)14.31(51[1001~s 1004.2])14.36(7)14.35(1222三、设总体X 的均值与方差分别为 与2 ,n X X X ,,,21 是来自该总体的简单随机样本,X 与2S 分别是样本均值与样本方差,求)(,)(,)(2S E X D X E .解: ni n i i n i i n x E n x n E x E 1111)(1)1()(n n x D n x n D x D n i n i i n i i 21221211)(1)1()(ni i n i i x nE x E n x n x n E s E 1222122)]()([11)](11[)(ni i i x E x D n Ex x D n 122])()([])()([{110}][][{1112222ni nn n n 四、设总体X 与Y 相互独立且均服从正态分布23 ,0N ,921,,,X X X 和921,,,Y Y Y 分别为来自X 与Y 的样本,则统计量292221921YY Y X X X U服从什么分布?解:因为)3 0(~2,N X ,)3 0(~2,N Y , 所以)9 , 2 , 1( )3 0(~ )3 0(~22,,,i N Y N X i i . 于是有 9) 2 1( 93 0 0222,,, i S DX S EY EX Y X i i推得292221921Y Y Y X X X U99191919191291291291YY i i i ii i S XE X S X Y X Y X。
概率论与数理统计(第二版)课后答案
各章大体题详解习题一一、选择题1. (A )A B A B B ⊂−−→=;(B )B A A B A B B ⊂−−→⊂−−→=; (C )AB A B A B B φ=−−→⊂−−→=;(D )AB B A φ=−−→⊂ 不必然能推出A B B =(除非A B =)所以 选(D )2. ()()()()()()()P A B P AB P AB P A P B P A P B -==--++ ()()()P A P B P AB =+-所以 选(C )3. )()()()()()()()|(A P B P A P B P A P B P AB P B A P B A ≥−→−==−→−⊂所以 选(B )4. 1)(0)()()()()(==−→−==B P A P B P A P AB P A P 或 所以 选(B )5. (A )若B A =,则φ=AB ,且φ==A A B A ,即B A ,不相容(B )若φ≠⊃B A ,且Ω≠A ,则φ≠AB ,且φ≠=A B A ,即B A ,相容 (C )若φφ≠=B A ,,则φ=AB ,且φ≠=B B A ,即B A ,相容 (D )若φ≠AB ,不必然能推出φ=B A 所以 选(D )6. (A )若φ≠AB ,不必然能推出)()()(B P A P AB P =(B )若1)(=A P ,且φ≠⊃B A ,则)()()()(B P A P B P AB P ==,即A,B 独立(C )若φ=AB ,1)(0<<A P ,1)(0<<B P ,则)()()(B P A P AB P ≠ (D )若1)(=A P ,则A 与任何事件都彼此独立 所以 选(B )7. 射击n 次才命中k 次,即前1-n 次射击恰好命中1-k 次,且第n 次射击时命中目标,所以 选(C )二、填空题8. C A C A C A A C A C A C A C A )())((= C C C C A A C C A C A C ==== ))(()()( 所以 C B =9. 共有44⨯种大体事件,向后两个邮筒投信有22⨯种大体事件,故所求概率为414422=⨯⨯ 10. 设事件A 表示两数之和大于21,则 样本空间}10,10|),{(<<<<=Ωy x y x ,}10,10,21|),{(<<<<>+=y x y x y x A 872121211=⋅⋅-==ΩS S P A 11. 由1.0)(,8.0)(=-=B A P A P ,得7.0)(=AB P ,故3.0)(=AB P 12. 由4.0)(,3.0)(,2.0)(===B A P B P A P ,得1.0)(=AB P ,故2.0)()()(=-=AB P B P A B P 13. 2.0)|()()(==A B P A P AB P ,故8.0)|()()(==B A P AB P B P14. )()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P +---++=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=2719=15. 由于A,B 彼此独立,可得91)()()(==B P A P B A P ,)()(B A P B A P =,于是31)()(==B P A P ,故32)(=B P 三、计算题16.(1))},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(T T T H T T T H T H H T T T H H T H T H H H H H =Ω;(2)}3,2,1,0{=Ω;(3)}1|),{(22≤+=Ωy x y x ;(4)}5:0,5:1,5:2,5:3,5:4,4:5,3:5,2:5,1:5,0:5{=Ω 17.(1)C B A ; (2))(C B A ; (3)C B A C B A C B A ; (4)AC BC AB ; (5)C B A ; (6)C B A ; (7)ABC18. 法一,由古典概率可知,所求概率为:2016420109⋅C ;法二,由伯努利定理可知,所求概率为:1644209.01.0⋅⋅C19. 只有唯一的一个六位数号码开能打开锁。
2020年中考数学浙江省绍兴市第19题统计概率专题训练卷含答案
2020年中考数学浙江省绍兴市第19题统计概率专题训练卷1.某运动品牌对第一季度A,B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:,求一月份B款运动鞋销售了多少双?(1)一月份B款运动鞋的销售量是A款的45(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量).(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.2.2019年沈阳国际马拉松赛事设有“马拉松”(A),“半程马拉松”(B),“10公里跑”(C),“迷你马拉松”(D)四个项目,小明和小亮参加了该赛事的志愿者服务工作,组委会将志愿者随机分配到四个项目组,被分配到每个项目组的机会是相同的.(1)小明被分配到“马拉松”(A)项目组的概率为________;(2)利用画树状图或列表法求小明和小亮被分配到同一个项目组进行志愿服务的概率.(项目名称可用字母表示)3.现有甲、乙、丙三名学生参加学校演讲比赛,并通过抽签确定三人演讲的先后顺序.(1)求甲第一个演讲的概率;(2)画树状图或表格,求丙比甲先演讲的概率.4.某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查过程如下,请补充完整收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试测试成绩(百分制)如下:甲班:65,75,75,80,60,50,75,90,85,65乙班:90,55,80,70,55,70,95,80,65,70(1)整理描述数据:按如下分数段整理、描述这两组样本数据:在表中:m=________;n=________。
(2)分析数据:①两组样本数据的平均数、中位数、众数如表所示:在表中:x=________,y=________。
②若规定测试成绩在80分(含80分)以上的学生身体素质为优秀请估计乙班50名学生中身体素质为优秀的学生有________ 人。
专升本高等数学第九章概率论练习题
第九章 概率论1、已知)(,8.0)|(,6.0)(,5.0)(B A P A B P B P A P 求===2、已知)(,6.0)(,3.0)(,4.0)(B A P B A P B P A P 求===3、已知)(,8.0)|(,4.0)(,3.0)(B A P A B P B P A P 求===4、设)(,6.0)(,2.0)(,B P B A P A P B A 求互不相容,且=+=5、设)(,2.0)(,7.0)(B A P B A P A P +=-=求6、设)(,2.0)(,4.0)(,6.0)(,AB P AB P B P A P B A 求为随机事件,且===7、袋中有5个黑球和3个白球,从中无放回取两次,设{}{})|(A B P B A ,求第二次取白球,第一次取黑球==8、已知)|(,6.0)(,2.0)(A B P B A P A P 求==9、设)|(,41)|(,21)(,31)(,B A P B A P B P A P B A 求为随机事件,===10、设)(,41)(,0)()(,31)()()(C B A P BC P AC P AB P C P B P A P 求======11、掷一枚均匀的骰子两次,求前后两次出现的点数之和是6的概率12、袋中有3个白球,2个红球,第一次取出一球,不放回,第二次再取出一球,求两次都取出的是白球的概率13、在9:1的整数中可重复的随机选取6个组成一个六位数,求下列事件的概率: (1)6个数完全不同;(2)6个数中不含奇数。
(只需列式,不需计算)14、设)(,3.0)(,5.0)(,B A P B P A P B A 求相互独立,且==15、设)(,4.0)(,5.0)(,25.0)(,,C B A P C P B P A P C B A 求相互独立,且===16、设袋中有五个球,分别编号为,5,4,3,2,1从中取三个球,用随机变量X 表示三个球中的最大号码,求X 的分布列17、掷一枚均匀的骰子,用X 表示掷出的点数,求X 的分布列和分布函数求(1)a 的值;(2))45.1(<<X P ;(3)分布函数)(x F ;(4))5.2(F19、设离散型随机变量X 的分布函数⎪⎪⎩⎪⎪⎨⎧≥<≤<≤--<=31327.0213.010)(x x x x x F ,求X 的分布列20、随机变量X 服从参数为3,p 的二项分布,已知2719)1(=≥X p ,求)2(=X P21、设).1(,95)1),,3(:),,2(:≥=≥Y P X P p B Y p B X 求(若22、某城市每天发生火灾的次数X 服从参数为1的泊松分布,求该城市一天内发生3次货3次以上火灾的概率23、随机变量X 服从泊松分布,且已知)2(),2()1(====X P X P X P 求24、设从学校乘汽车到火车站有三个交通岗,汽车在各交通岗遇到红灯是相互独立的,其概率均为0.4,求汽车在途中遇到红灯的概率且y x X E ,,5)(求=26、设随机变量)12(),(),12(),2(:2+-X D X E X E P X 求26、设连续型随机变量X 的密度函数为的值;)求(其他a x x a x xx f 1,02110)(⎪⎩⎪⎨⎧≤≤-<<=(2) 1.5);P(X =(3));2.12.0(<<X P (4))(),(X D X E28、设随机变量)53(),6,2(:<<X P U X 计算29、设=k E X 则),2(: 时,41)2(=<<k x k P第九章 概率论1、7.02、3.03、46.04、4.05、5.06、2.07、73 8、25.0 9、127 10、43 11、365 12、10313、(1)6699A ,(2)6694 14、65.0 15、775.0X 的分布函数为:⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<≤<=616565543243213231216110)(x x x x x x x x F 18、(1)2.0=a ,(2),5.0)45.1(=<<X P(3)分布函数:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<≤<≤<=41438.0325.0213.0101.000)(x x x x x x x F (4)5.0)5.2(=F20、9 21、27 22、08.0 23、22-e 24、784.0 25、3.0,2.0==y x 26、8,6,327、3613,1,5039,87,2 28、 5.0 29、2ln。
(完整)概率复习题及答案
〈概率论〉试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,.则=3.若事件A和事件B相互独立, ,则4。
将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。
5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7。
已知随机变量X的密度为,且,则________________8。
设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________ 10。
若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12。
用()的联合分布函数F(x,y)表示13。
用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15。
已知,则=16.设,且与相互独立,则17。
设的概率密度为,则=18。
设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19。
设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。
特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于。
22.设是来自正态总体的样本,令则当时~。
23。
设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。
概率论与数理统计答案完整版
概率论与数理统计答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】习题答案第1章三、解答题1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确.2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤,又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以(1) 当)()(B A P B P =时P (AB )取到最大值,最大值是)()(A P AB P ==.(2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ).解:因为)()(B A P AB P =,即)()()(1)(1)()(AB P B P A P B A P B A P AB P +--=-== ,所以 .1)(1)(p A P B P -=-=4.已知P (A ) = ,P (A – B ) = ,试求)(AB P .解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P .5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n=种,以下求至少有两只配成一双的取法k :法一:分两种情况考虑:15C k=24C 212)(C +25C 其中:2122415)(C C C 为恰有1双配对的方法数法二:分两种情况考虑:!2161815C C C k ⋅⋅=+25C其中:!2161815C C C ⋅⋅为恰有1双配对的方法数法三:分两种情况考虑:)(142815C C C k-=+25C其中:)(142815C C C -为恰有1双配对的方法数法四:先满足有1双配对再除去重复部分:2815C C k=-25C法五:考虑对立事件:410C k=-45C 412)(C其中:45C 412)(C 为没有一双配对的方法数法六:考虑对立事件:!4141618110410C C C C C k ⋅⋅⋅-=其中:!4141618110C C C C ⋅⋅⋅为没有一双配对的方法数所求概率为.2113410==C k p6.在房间里有10个人,分别佩戴从1号到10号的纪念章,任取3人记录其纪念章的号码.求: (1) 求最小号码为5的概率; (2) 求最大号码为5的概率.解:(1) 法一:12131025==C C p ,法二:1213102513==A A C p (2) 法二:20131024==C C p ,法二:2013102413==A A C p 7.将3个球随机地放入4个杯子中去,求杯子中球的最大个数分别为1,2,3的概率. 解:设M 1, M 2, M 3表示杯子中球的最大个数分别为1,2,3的事件,则834)(3341==A M P , 1694)(324232=⨯=A C M P , 1614)(3143==C M P8.设5个产品中有3个合格品,2个不合格品,从中不返回地任取2个,求取出的2个中全是合格品,仅有一个合格品和没有合格品的概率各为多少解:设M 2, M 1, M 0分别事件表示取出的2个球全是合格品,仅有一个合格品和没有合格品,则3.0)(25232==C C M P ,6.0)(2512131==C C C M P ,1.0)(25221==C C M P 9.口袋中有5个白球,3个黑球,从中任取两个,求取到的两个球颜色相同的概率.解:设M 1=“取到两个球颜色相同”,M 1=“取到两个球均为白球”,M 2=“取到两个球均为黑球”,则φ==2121M M M M M 且.所以.2813C C C C )()()()(282328252121=+=+==M P M P M M P M P10. 若在区间(0,1)内任取两个数,求事件“两数之和小于6/5”的概率.解:这是一个几何概型问题.以x 和y 表示任取两个数,在平面上建立xOy 直角坐标系,如图. 任取两个数的所有结果构成样本空间 = {(x ,y ):0 x ,y 1} 事件A =“两数之和小于6/5”= {(x ,y ) : x + y 6/5} 因此2517154211)(2=⎪⎭⎫ ⎝⎛⨯-=Ω=的面积的面积A A P . 图11.随机地向半圆220x ax y -<<(a 为常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点和该点的连线与x 轴的夹角小于4π的概率. 解:这是一个几何概型问题.以x 和y 表示随机地向半圆内掷一点的坐标,表示原点和该点的连线与x 轴的夹角,在平面上建立xOy 直角坐标系,如图.随机地向半圆内掷一点的所有结果构成样本空间 ={(x ,y ):220,20x ax y a x -<<<<}事件A =“原点和该点的连线与x 轴的夹角小于4π” ={(x ,y ):40,20,202πθ<<-<<<<x ax y a x }因此211214121)(222+=+=Ω=πππa aa A A P 的面积的面积.12.已知21)(,31)(,41)(===B A P A B P A P ,求)(B A P . 解:,1213141)()()(=⨯==A B P A P AB P ,6121121)|()()(=÷==B A P AB P B P 13.设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率是多少解:题中要求的“已知所取两件产品中有一件是不合格品,则另一件也是不合格品的概率”应理解为求“已知所取两件产品中至少有一件是不合格品,则两件均为不合格品的概率”。
吴赣昌-第五版-经管类概率论与数理统计课后习题-完整版
吴赣昌-第五版-经管类概率论与数理统计课后习题-完整版随机事件及其概率1.1 随机事件习题1试说明随机试验应具有的三个特点.习题2将一枚均匀的硬币抛两次,事件A,B,C分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”,试写出样本空间及事件A,B,C中的样本点.1.3 古典概型现习题3现习题4现习题5现习题6现习题7现习题8现习题9现习题101.4 条件概率习题3 空现习题41.5 事件的独立性现习题6现习题7现习题8总习题1习题3. 证明下列等式:习题4.现习题5习题6.习题7习题8习题9习题10习题11现习题12习题13习题14习题15习题16习题17习题18习题19习题20习题21习题22现习题23现习题24第二章随机变量及其分布2.1 随机变量习题1随机变量的特征是什么?解答:①随机变量是定义在样本空间上的一个实值函数.②随机变量的取值是随机的,事先或试验前不知道取哪个值.③随机变量取特定值的概率大小是确定的.习题2试述随机变量的分类.解答:①若随机变量X的所有可能取值能够一一列举出来,则称X为离散型随机变量;否则称为非离散型随机变量.②若X的可能值不能一一列出,但可在一段连续区间上取值,则称X为连续型随机变量.习题3盒中装有大小相同的球10个,编号为0,1,2,⋯,9, 从中任取1个,观察号码是“小于5”,“等于5”,“大于5”的情况,试定义一个随机变量来表达上述随机试验结果,并写出该随机变量取每一个特定值的概率.2.2 离散型随机变量及其概率分布习题1设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},求λ.习题2设随机变量X的分布律为P{X=k}=k15,k=1,2,3,4,5,试求(1)P{12<X<52; (2)P{1≤X≤3};(3)P{X>3}.习题3一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取3只,以X表示取出的3只球中的最大号码,写出随机变量X的分布律.习题4 (空)习题5某加油站替出租车公司代营出租汽车业务,每出租一辆汽车,可从出租公司得到3元.因代营业务,每天加油站要多付给职工服务费60元,设每天出租汽车数X是一个随机变量,它的概率分布如下:求因代营业务得到的收入大于当天的额外支出费用的概率.习题6设自动生产线在调整以后出现废品的概率为p=0.1, 当生产过程中出现废品时立即进行调整,X代表在两次调整之间生产的合格品数,试求:(1)X的概率分布;(2)P{X≥5};(3)在两次调整之间能以0.6的概率保证生产的合格品数不少于多少?习题7设某运动员投篮命中的概率为0.6,求他一次投篮时,投篮命中的概率分布.习题8某种产品共10件,其中有3件次品,现从中任取3件,求取出的3件产品中次品的概率分布.习题9一批产品共10件,其中有7件正品,3件次品,每次从这批产品中任取一件,取出的产品仍放回去,求直至取到正品为止所需次数X的概率分布.习题10 纺织厂女工照顾800个纺绽,每一纺锭在某一段时间τ内断头的概率为0.005,在τ这段时间内断头次数不大于2的概率.习题11设书籍上每页的印刷错误的个数X服从泊松分布,经统计发现在某本书上,有一个印刷错误与有两个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.2.3 随机变量的分布函数习题1.解答:离散.由于F(x)是一个阶梯函数,故知X是一个离散型随机变量.习题2习题3已知离散型随机变量X的概率分布为P{X=1}=0.3,P{X=3}=0.5,P{X=5}=0.2,试写出X的分布函数F(x),并画出图形.习题4习题5习题6在区间[0,a]上任意投掷一个质点,以X表示这个质点的坐标.设这个质点落在[0,a]中任意小区间内的概率与这个小区间的长度成正比例,试求X的分布函数.2.4 连续型随机变量及其概率密度习题1习题2习题3习题4习题5设一个汽车站上,某路公共汽车每5分钟有一辆车到达,设乘客在5分钟内任一时间到达是等可能的,试计算在车站候车的10位乘客中只有1位等待时间超过4分钟的概率.习题6习题7 (空) 习题8习题9习题10习题112.5 随机变量函数的分布习题1习题2习题3习题4习题5习题6总习题二1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、。
概率论课本习题答案.
2.设在15只同类型零件中有2只为次品,在其中取3次,每次任取1只,作不放回抽样,以X 表示取出的次品个数,求: (1) X 的分布律;(2) X 的分布函数并作图; (3)133{},{1},{1},{12}222P X P X P X P X ≤<≤≤≤<<.【解】313315122133151133150,1,2.C 22(0).C 35C C 12(1).C 35C 1(2).C 35X P X P X P X ========== 故X 的分布律为 X 012P2235 1235 135(2) 当x <0时,F (x )=P (X ≤x )=0当0≤x <1时,F (x )=P (X ≤x )=P (X =0)=2235当1≤x <2时,F (x )=P (X ≤x )=P (X =0)+P (X =1)=3435当x ≥2时,F (x )=P (X ≤x )=1 故X 的分布函数0,022,0135()34,12351,2x x F x x x <⎧⎪⎪≤<⎪=⎨⎪≤<⎪⎪≥⎩(3)1122()(),2235333434(1)()(1)02235353312(1)(1)(1)2235341(12)(2)(1)(2)10.3535P X F P X F F P X P X P X P X F F P X ≤==<≤=-=-=≤≤==+<≤=<<=--==--=7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?【解】设X 表示出事故的次数,则X ~b (1000,0.0001)(2)1(0)(1)P X P X P X ≥=-=-=0.10.11e0.1e --=--⨯8.已知在五重贝努里试验中成功的次数X 满足P {X =1}=P {X =2},求概率P {X =4}. 【解】设在每次试验中成功的概率为p ,则1422355C (1)C (1)p p p p -=-故 13p =所以 4451210(4)C ()33243P X ===. 9.设事件A 在每一次试验中发生的概率为0.3,当A 发生不少于3次时,指示灯发出信号, (1) 进行了5次独立试验,试求指示灯发出信号的概率; (2) 进行了7次独立试验,试求指示灯发出信号的概率. 【解】(1) 设X 表示5次独立试验中A 发生的次数,则X ~6(5,0.3)5553(3)C (0.3)(0.7)0.16308kk k k P X -=≥==∑(2) 令Y 表示7次独立试验中A 发生的次数,则Y~b (7,0.3)7773(3)C (0.3)(0.7)0.35293k k k k P Y -=≥==∑10.某公安局在长度为t 的时间间隔内收到的紧急呼救的次数X 服从参数为(1/2)t 的泊松分布,而与时间间隔起点无关(时间以小时计).(1) 求某一天中午12时至下午3时没收到呼救的概率;(2) 求某一天中午12时至下午5时至少收到1次呼救的概率. 【解】(1)32(0)e P X -== (2) 52(1)1(0)1eP X P X -≥=-==-12.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.【解】令X 为2000册书中错误的册数,则X~b (2000,0.001).利用泊松近似计算,20000.0012np λ==⨯=得 25e 2(5)0.00185!P X -=≈= 14.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1) 保险公司亏本的概率;(2) 保险公司获利分别不少于10000元、20000元的概率. 【解】以“年”为单位来考虑.(1) 在1月1日,保险公司总收入为2500×12=30000元. 设1年中死亡人数为X ,则X~b (2500,0.002),则所求概率为(200030000)(15)1(14)P X P X P X >=>=-≤由于n 很大,p 很小,λ=np =5,故用泊松近似,有514e 5(15)10.000069!kk P X k -=>≈-≈∑(2) P (保险公司获利不少于10000)(30000200010000)(10)P X P X =-≥=≤510e 50.986305!kk k -=≈≈∑即保险公司获利不少于10000元的概率在98%P (保险公司获利不少于20000)(30000200020000)(5)P X P X =-≥=≤55e 50.615961!kk k -=≈≈∑即保险公司获利不少于20000元的概率约为62%16.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1) 在开始150小时内没有电子管损坏的概率; (2) 在这段时间内有一只电子管损坏的概率; (3) F (x ). 【解】(1) 15021001001(150)d .3P X x x ≤==⎰ 33128[(150)]()327p P X =>==(2) 1223124C ()339p ==(3) 当x <100时F (x )=0当x ≥100时()()d xF x f t t -∞=⎰100100()d ()d x f t t f t t -∞=+⎰⎰2100100100d 1xt t x==-⎰ 故 1001,100()0,0x F x xx ⎧-≥⎪=⎨⎪<⎩ 18.设随机变量X 在[2,5]上服从均匀分布.现对X 进行三次独立观测,求至少有两次的观测值大于3的概率. 【解】X ~U [2,5],即1,25()30,x f x ⎧≤≤⎪=⎨⎪⎩其他 5312(3)d 33P X x >==⎰故所求概率为22333321220C ()C ()33327p =+= 19.设顾客在某银行的窗口等待服务的时间X (以分钟计)服从指数分布1()5E .某顾客在窗口等待服务,若超过10分钟他就离开.他一个月要到银行5次,以Y 表示一个月内他未等到服务而离开窗口的次数,试写出Y 的分布律,并求P {Y ≥1}. 【解】依题意知1~()5X E ,即其密度函数为51e ,0()50,xx f x -⎧>⎪=⎨⎪≤⎩x 0 该顾客未等到服务而离开的概率为25101(10)e d e 5x P X x -∞->==⎰2~(5,e )Y b -,即其分布律为225525()C (e )(1e ),0,1,2,3,4,5(1)1(0)1(1e )0.5167kk k P Y k k P Y P Y ----==-=≥=-==--=20.某人乘汽车去火车站乘火车,有两条路可走.第一条路程较短但交通拥挤,所需时间X 服从N (40,102);第二条路程较长,但阻塞少,所需时间X 服从N (50,42). (1) 若动身时离火车开车只有1小时,问应走哪条路能乘上火车的把握大些? (2) 又若离火车开车时间只有45分钟,问应走哪条路赶上火车把握大些? 【解】(1) 若走第一条路,X~N (40,102),则406040(60)(2)0.977271010x P X P Φ--⎛⎫<=<== ⎪⎝⎭若走第二条路,X~N (50,42),则506050(60)(2.5)0.993844X P X P Φ--⎛⎫<=<== ⎪⎝⎭++故走第二条路乘上火车的把握大些.(2) 若X~N (40,102),则404540(45)(0.5)0.69151010X P X P Φ--⎛⎫<=<== ⎪⎝⎭若X~N (50,42),则504550(45)( 1.25)44X P X P Φ--⎛⎫<=<=- ⎪⎝⎭1(1.25)0.1056Φ=-= 故走第一条路乘上火车的把握大些.21.设X ~N (3,22),(1) 求P {2<X ≤5},P {-4<X ≤10},P {|X |>2},P {X >3}; (2) 确定c 使P {X >c }=P {X ≤c }. 【解】(1) 23353(25)222X P X P ---⎛⎫<≤=<≤⎪⎝⎭11(1)(1)1220.841310.69150.5328ΦΦΦΦ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭=-+=433103(410)222X P X P ----⎛⎫-<≤=<≤ ⎪⎝⎭770.999622ΦΦ⎛⎫⎛⎫=--=⎪ ⎪⎝⎭⎝⎭(||2)(2)(2)P X P X P X >=>+<-323323222215151122220.691510.99380.6977X X P P ΦΦΦΦ-----⎛⎫⎛⎫=>+< ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫=--+-=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=+-=333(3)()1(0)0.522X P X P Φ->=>=-=- (2) c=322.由某机器生产的螺栓长度(cm )X ~N (10.05,0.062),规定长度在10.05±0.12内为合格品,求一螺栓为不合格品的概率. 【解】10.050.12(|10.05|0.12)0.060.06X P X P ⎛-⎫->=>⎪⎝⎭ 1(2)(2)2[1(2)]0.0456ΦΦΦ=-+-=-=28.设随机变量X 的分布律为 X -2 -1 0 1 3P k1/5 1/6 1/5 1/15 11/30求Y =X 2的分布律.【解】Y 可取的值为0,1,4,91(0)(0)5117(1)(1)(1)615301(4)(2)511(9)(3)30P Y P X P Y P X P X P Y P X P Y P X =======-+==+====-=====故Y 的分布律为Y 0 1 4 9 P k1/5 7/30 1/5 11/3049.设随机变量X 在区间(1,2)上服从均匀分布,试求随机变量Y =e 2X 的概率密度f Y (y ). 【解】1,12()0,X x f x <<⎧=⎨⎩其他因为P (1<X <2)=1,故P (e 2<Y <e 4)=1当y ≤e 2时F Y (y )=P (Y ≤y )=0.当e 2<y <e 4时,2()()(e )X Y F y P Y y P y =≤=≤ 1(1ln )2P X y =<≤1ln 211d ln 12y x y -==-⎰当y ≥e 4时,()()1Y F y P Y y =≤=即 22440,e 1()ln 1,e e 21,e Y y F y y y y ⎧≤⎪⎪=-<<⎨⎪≥⎪⎩故 241,e e2()0,Y y y f y ⎧<<⎪=⎨⎪⎩其他8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰x204.8(2)d 2.4(2),01,=0,.0,y x y x x x ⎧⎧--≤≤⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)dY f y f x y x +∞-∞=⎰12y 4.8(2)d 2.4(34),01,=0,.0,y x x y y y y ⎧-⎧-+≤≤⎪=⎨⎨⎩⎪⎩⎰其他题8图 题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰e d e ,0,=0,.0,y x x y x +∞--⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰0e d e ,0,=0,.0,yy x x y y --⎧⎧>⎪=⎨⎨⎩⎪⎩⎰其他题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cx(1) 试确定常数c ;(2) 求边缘概率密度. 【解】(1)(,)d d (,)d d Df x y x y f x y x y +∞+∞-∞-∞⎰⎰⎰⎰如图2112-14=d d 1.21xx cx y y c ==⎰⎰ 得214c =. (2) ()(,)d X f x f x y y +∞-∞=⎰212422121(1),11,d 840,0,.x x x x x y y ⎧⎧--≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他 ()(,)d Y f y f x y x +∞-∞=⎰522217d ,01,420,0, .y y x y x y y -⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩⎰其他13.设二维随机变量(X ,Y )的联合分布律为 2 5 80.4 0.80.15 0.30 0.35 0.05 0.12 0.03(1)求关于X 和关于Y 的边缘分布; (2) X 与Y 是否相互独立? 【解】(1)X 和Y 的边缘分布如下表2 5 8 P {Y=y i } 0.4 0.15 0.30 0.35 0.8 0.80.05 0.12 0.03 0.2{}i P X x =0.20.420.38(2) 因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处. y 1 y 2 y 3P {X =x i }=p ix 1 x 21/81/8P {Y =y j }=p j 1/61【解】因21{}{,}j j iji P Y y P P X x Y y ======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯==== 即:1111{}/.2464P X x === 又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+== 即1,3111{},4248P X x Y y =++== XYXY YX从而131{,}.12P X x Y y === 同理21{},2P Y y ==223{,}8P X x Y y === 又31{}1jj P Y y ===∑,故3111{}1623P Y y ==--=. 同理23{}.4P X x == 从而23313111{,}{}{,}.3124P X x Y y P Y y P X x Y y ====-===-=故1y2y3y{}i i P X x P ==1x 124 18 112 14 2x18 38 14 34{}j jP Y y p == 16121311.设随机变量X 的分布律为X -1 0 1 2 P1/8 1/2 1/8 1/4求E (X ),E (X 2),E (2X +3). 【解】(1) 11111()(1)012;82842E X =-⨯+⨯+⨯+⨯= (2) 2222211115()(1)012;82844E X =-⨯+⨯+⨯+⨯=(3) 1(23)2()32342E X E X +=+=⨯+=5.设随机变量X 的概率密度为YXf (x )=⎪⎩⎪⎨⎧≤≤-<≤.,0,21,2,10,其他x x x x求E (X ),D (X ). 【解】12201()()d d (2)d E X xf x x x x x x x +∞-∞==+-⎰⎰⎰21332011 1.33x x x ⎡⎤⎡⎤=+-=⎢⎥⎢⎥⎣⎦⎣⎦122232017()()d d (2)d 6E X x f x x x x x x x +∞-∞==+-=⎰⎰⎰ 故 221()()[()].6D XE X E X =-=6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.(1) U =2X +3Y +1; (2) V =YZ -4X .【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=⨯+⨯+=(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -因独立1184568.=⨯-⨯= 7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X -2Y ),D (2X -3Y ). 【解】(1) (32)3()2()3323 3.E X Y E X E Y -=-=⨯-⨯=(2) 22(23)2()(3)412916192.D X Y D X DY -=+-=⨯+⨯= 9.设X ,Y 是相互独立的随机变量,其概率密度分别为f X (x )=⎩⎨⎧≤≤;,0,10,2其他x x f Y (y )=(5)e ,5,0,.y y --⎧>⎨⎩其他求E (XY ).【解】方法一:先求X 与Y 的均值 12()2d ,3E X x x x==⎰5(5)5()ed5e d e d 51 6.z y y zzE Y y y z zz +∞+∞+∞=-----=+=+=⎰⎰⎰令由X 与Y 的独立性,得2()()()6 4.3E XY E X E Y ==⨯=方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为(5)2e ,01,5,(,)()()0,,y X Y x x y f x y f x f y --⎧≤≤>==⎨⎩其他于是11(5)2(5)552()2e d d 2d e d 6 4.3y y E XY xy x x y x xy y +∞+∞----===⨯=⎰⎰⎰⎰34.设随机变量X 和Y 的联合概率分布为-1 0 10 10.07 0.18 0.15 0.08 0.32 0.20试求X 和Y 的相关系数ρ.【解】由已知知E (X )=0.6,E (Y )=0.2,而XY 的概率分布为YX -1 0 1 P0.08 0.720.2所以E (XY )= -Cov(X ,Y )=E (XY ) -E (X )·E (Y )=0.12 -从而XYρ1.一颗骰子连续掷4次,点数总和记为X .估计P {10<X <18}. 【解】设i X 表每次掷的点数,则41ii X X==∑22222221111117()123456,666666211111191()123456,6666666i i E X E X =⨯+⨯+⨯+⨯+⨯+⨯==⨯+⨯+⨯+⨯+⨯+⨯=从而 22291735()()[()].6212i ii D X E X E X ⎛⎫=-=-= ⎪⎝⎭又X 1,X 2,X 3,X 4独立同分布.从而44117()()()414,2i ii i E X E X E X =====⨯=∑∑ Y X44113535()()()4.123iii i D X D X D X =====⨯=∑∑ 所以 235/3{1018}{|14|4}10.271,4P X P X <<=-<≥-≈14. 设随机变量X 和Y 的数学期望都是2,方差分别为1和4,而相关系数为0.5试根据契比雪夫不等式给出P {|X -Y |≥6}的估计. (2001研考) 【解】令Z =X -Y ,有()0,()()()()2()() 3.XP E Z D Z D X Y D X D Y D X D Y ρ==-=+-=所以2()31{|()|6}{||6}.63612D X Y P ZE Z P X Y --≥=-≥≤==5. 有一批建筑房屋用的木柱,其中80%的长度不小于3m.现从这批木柱中随机地取出100根,问其中至少有30根短于3m 的概率是多少?【解】设100根中有X 根短于3m ,则X ~B (100,0.2)从而301000.2{30}1{30}11000.20.8P X P X -⨯⎛⎫≥=-<≈-Φ ⎪⨯⨯⎝⎭1(2.5)10.99380.0062.=-Φ=-=11. 设男孩出生率为0.515,求在10000个新生婴儿中女孩不少于男孩的概率?【解】用X 表10000个婴儿中男孩的个数,则X ~B (10000,0.515)要求女孩个数不少于男孩个数的概率,即求P {X ≤5000}. 由中心极限定理有5000100000.515{5000}(3)1(3)0.00135.100000.5150.485P X -⨯⎛⎫≤≈Φ=Φ-=-Φ= ⎪⨯⨯⎝⎭。
概率论参考答案
一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。
A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。
A .B .C .D .3.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。
A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。
A .nk k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= C A .8B .16C .20D .246.设n X X X Λ21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。
A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量),(Y X 的联合分布函数为),(y x F ,其联合分布律为则(0,1)F = C 。
A .B .C .D .8.设k X X X ,,,21Λ是来自正态总体)1,0(N 的样本,则统计量22221k X X X Λ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。
A .21)0(=≤+Y X P B .21)1(=≤+Y X PC .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x Λ21,检验00:μμ=H 时,需要用统计量( C )。
概率论第二版范大茵--课后习题答案习题答案
习题一1--4 5--10 11--19 20--10h写出下列试验的样本空间:(1)随机抽查10户居民勺记录已安装空调机的户娄(2)记录某一车站某一时间区间内的候车人数;⑶同时掷10个钱币,记录正面朝上的钱币的个娄(4)从某工厂生产的产品中依次抽取3件进行检査. 次品的情况;在单位球内随机地取一点争记录其直角坐标:(6)某人进行射击,射击进行到命中目标为止,记情况;(7)对某工厂的产品进行检查,每次抽查1个产百的次品数达到2个就停止检查或总的检査数达到4个查,记录检查情况.2.设厶5 C为三个事件,用A9民C的运算表示一(IM,民c都发生;(2X5发生,C不发生;解发生,C不发生表示为人胚二仙-C.解"C都不发生表示为[肥(4>4, B中至少有一个发生而C不发生;(5>4, 5 C中至少有一个发生;(6>4, 5 C中至多有一个发生;(7>4, 5 C中至多有两个发生;(8M, 5 C中恰有两个发生.3・将一颗骰子投掷两次,依次记录所得点数.记,之和为5冷E为“两数之差的绝对值为3笃C为^两数之于俨.试用样本点的集合表示事件4 B, C.A^B.AC,.解样本空间为d{(l,l), (1,2), (1,3), (1,4), (1,5), (1,6),(2,1), (2, 2),(2, 3), (2, 4), (2, 5), (2,6), (6, 1),(6, 2),(6, 3), (6,4), (6, 5), (6,6)}.4二{(1,4), (2, 3), (3,2), (4,1)};5=((1, 4), (2, 5), (3, 6), (4,1), (5, 2), (6, 3)};C二{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1), (4, 1)};^={(1, 4), (2, 3), (2, 5), (3, 2), (3, 6), (4, 1), (5, 2), (6, 3)};AC={(29 3), (3, 2)};BC={(1.4), (4, 1)}.4・(1)设厶乙67为三个事件,已知:PQ4>0.3, P@)=0・8, P(C>0・6,P⑷)=0.2, P(AC)=09 P(BC)=Q.6.试求①企4 zB); (ii)P(AB); (in)P(A<jB<jC).解(1)巩45)二F3)+P(B)—二0.3+0.8—0.2二0.9; (ii)P(A劝二二0.3-0.2二0.1;(111)卩(乩夙丿0二尸⑷+P(B)+HG-P(A^-P(ACyP{BC)+P(ABC)—0.3+0.8+0.6-0.2-0-0.6+0=0.9.注:因为ABCuAC,所以(KPC4BC)<P3C)二0,即P(ABC^0.(2)设卩⑷试问Pg5)的所有可能取值、最小值各是多少?习题一1--4 5--10 11--19 20--10®将一郭段子投掷两次欄依次记录所得点轨试】(1)两骰子点数相同的概率;解用占表示“两数之差的绝对值为以则〃二{(1 歩2), (2,1), (2, 3), (35 2), (3, 4)5(4, 3), (4, 5), (5,4), (5,6), (6? 5)}・因为样本空间的样本点数为36, B的样本点数为insG)两数之乘积小于等于12的概率.P(C)= 23(1)恰好取到1只红球.2只解用C表示"两数之乘积小于等于12丁则G{(1, 1),(1, 2),(1,3), (1,4), (1,5), (1,6),(2.1), (2, 2), (2, 3), (2,4), (2, 5), (2, 6),(3, 1), (3, 2), (3, 3), (3,4),(4, 1), (4, 2), (4, 3),(5, 1), (5, 2),(6.1), (6, 2)}.因为样本空间的样本点数为36, C的样本点数为23,所以6. 一袋中装有红球5只、黄球6只、蓝球7只,任取6只球,试求:(2)P(B (18用,4解 用鸟表示“恰好取到Z 只红球和Z 只黄球;用B 表示^取 到红球只数与黄球只数相等订则 』二6-27丿 P(B)二 P (冏 uS 1 i)—P{B^)+P(B \ }+P(B2)+P(Bi)7・设一袋中有编号为1, 2厶・・・,9的球共9只, 任取3只球,试求:⑴取到1号球的概率;(2)最小号码为5的概率;中解用B表示最小号码为5二因为〃发生表示号码为5,其它两个球的号码为6 7, & 9.因此⑶所取号码从小到大排序中间一只恰为5的概率解用C表示“所取号码从小到大排序中间一只恰为5二因为c发生表示其中一球的号码为5,其它两个球的号码分别为1,2,3,4 和6,7,&9・因此(4)2号球或3号球中至少有一只没有取到的概率. 解用刀表示乜号球没有取到爲E表示T号球没有取到笃则2号球或3号球中至少有一只没有取到可表示为ME,于是P3E)二 P(D)十P(E)- P(DE)&从数字0, 1, 2,・・・,9十个数字中不放回地依次数字,组成一个三位数(或二位数)'试问:(1)此数个位是5的概率是多少?(2)此数能被5整除的概率是多少?解用貝表示^所得数的个位是5笃用B表示斯得数的个位是0”,则表示所得数的个位或为0或为5,于是所得数能被5整除的概率为巴5)二巴)+P(B)二#令斗⑶依次所取三数怡为从小到大排列的概率是多少解用C表示“所得三数恰为从小到大排列",则率:(1)解用/表示山至解9.从一副扑克牌(52张冲任取13张牌.试求下列P(B)(Hl(3广方块”或^红桃"中至少缺一种花色的概率;26 P(ABC)解A 表示“缺红桃"显表示“缺方块冷故“方块诫“红桃" 中至少缺一种花色可表示为“故所求概率为P(AuB)=P(A)+P(B)-P(AB)⑷缺「方块"且缺梅花冷旦不缺红桃^的概率解 用C 表示“缺梅花”,而怎表示“缺红桃”,B 表示“缺方 块”,故缺“方块”且缺梅花”但不缺“红桃"可表示为ABC=BC-ABC\故所求概率为J3丿10.已知 P(A)=0.39 P(£)=0A 9 P(AB)=0.2,试求⑵ 2W);(4)尸(尿J片_]H现45)]二]F(.4〃)二]0.2 二3 ■■一巴5) 0.3+0」-02一§习题一1--4 5--10 11--19 20--101L已知巩4)=0亿F@)=06尸3方)=05 求(1)凡4心);(2)恥陀5);(3)P(A\AuB\12.设甲地下雨的概率是0.5,乙地下雨的概率是乙两地同时下雨的概率是0.10,试求:(1)已知甲地下雨的条件下,乙地下雨的概率;解用且表示“甲地下雨訂B表示“乙地下雨笃C表示^丙地下雨:则P ⑷二0.5, P(B)二0.3, P(45)=0.10, 所求概率为P(B ⑷二警^=皿=0.2.v 1 ' P(A) 0.5解P(A\A<J B)P(AuB) (2)已知甲、乙两地中至少有一地下雨的条件下, 的概率.尸3)二0・5,尸3)二 0.3, p(40)二O ・io,所求概率为 5 713. 设有甲、乙、丙三个小朋友,甲得病的概率韦 甲得病的条乙得病的概率是o.4o,在甲、乙两人 条件下丙得病的条件概率是0.80,试求甲、乙、丙三 的概率.解 用表示“甲得病:B 表示Z 得病:凡4)二 0.05, P (旳4)二 0.4, P(CRB)二 0・ &HQ解 用卫表示”点数之和为B 表示“点数相等',则 4)},14. 丢两骰子,观察所得数对,试计算下列条件的(1)已知两颗骰子点数之和为8的条件下,两颗段 等的概率;心2, 6), (6, 21 (3, 5), (5, 3), (4, 4)},曲二{(4,所求概率为(2)已知两颗锻子点数之差的绝对值为1的条件I 子点数之和大于等于5的概率.C={(152)9 (2, 1), (2, 3)? (3, 2), (3,4),(4, 3), (4, 5), (5, 4), (5,6), (6, 5)},CD={(2, 3), (3, 2), (3, 4), (4, 3),(4, 5), (5, 4)9 (5, 6), (6, 5)}, 所求概率为=解用C表示“差的绝对值为1?5?D - 和大于等3615.设某人按如下原则决定某日的活动:如该天0.2的概率外岀购物,以0.8的概率去探访朋友;如该: 则以0.9的概率外出购物,以0.1的概率去探访朋友. 雨的概率是0・3・(1)试求那天他外出购物的概率;⑵若已知他那天外岀购物.试求那天下雨的概率.16.设在某一男、女人数相等的从群中,已知5% 0.25%的女人患有色盲.今从该人群中随机地选择一人(1)该人患有色盲的概率是多少?解用」表示"选到男:用鸟表示"所选的人是色盲二则PC4>P(X>|,巴⑷二需池丽牆.所求概率为P(B)二 P⑷ F®A)+P(a(B ⑷1 5 . 1 025 n2100 2 100(2)若已知该人患有色盲,那么他是男性的概率是17.设某地区间应届初中毕业生有70%报考普通]报考中专,10%报考职业高中,录取率分别为90%, 7.试求:(1)随机调查一名学生,他如愿以偿的概率;解用丄表示報考普髙,异表示漲考中专冷c 5职髙笃Q表示"被录取笃则P ⑷二0.7, P(B)二0.2, P(C)二0.1,卩(刀円)二0.9, F(Q0)二0.75, P(D\C)=O 85.所求概率为F(刀)二F3)P(刀H)+P(B)P(Z)|B)+P(C)P(QC)二0.7x0・9+0・2x0・75+0,1x0,85=0.865.(2)若某位学生按志愿被录取了,那么他报考普通率.1&设有甲、乙两个旅行团*旅行团甲有中国旅萌外国旅游者m人;旅行团乙有中国旅游者a人,外匡人.今从旅行团甲中随机地挑选两人编入旅行团乙,旅行团乙中随机地选择一人,试问他是中国人的概率丿n m1 +、2a+20+用鸟表示柱甲团中所选的两个人中有2芥中国人"a二o」2)9A表示^在乙团中所选的人是中国人3则P ⑷二聘Bo)+P3b)+P ⑷ 2)二玖BjPQi |耳)+卩(5)凡4血)+只艮)卩3血) 迪19.有两箱同种类的零件「第一箱装50个,其中品;第二箱装30个,其中18个一等品.今从两箱中, 然后从该箱中取零件两次,每次任取1个厂作不放回丸(1)第一次取到的零件是一等品的概率;解用乙表示“选中第一箱笃场表示'选中第二箱笃A表示“第一次取到的零件是一等品”',则卩3)二卩3团)+卩3场) 二理1血)+卩厲)凡4艮)-1.10+1.18_2_0 4_______________ 2J5(L2 30L^_+I m+n I(2)第一次取到的零件是一等品的条件下,第二次是一等品的概率・0」解用C 表示“第二次取到的零件是一等品二则D//-q P (AC ) P (ACB )+P (ACB^))巩出攻)F (C|HBJ+戶厲辺)P(A)1 10 9 丄1 18 17• ■ ---.2 50 49 2 30 29^4856^ 习题一 1--4 5--10 11--19 20--1030.设4 B 是相互独立的事件” P ⑷=05尸3)=0」 ⑴H(2)电 3):⑶疋一 £);(4侃4禺〃)・21.试证明:若凡4)二1,则/与任何事件独立.证因为P0)=1,所以4是必然事件•设〃是任意事件,则AB=B,卩他冲⑻二卩⑷P(B),因此/与B相互独立.即且与任何事件独立.22.甲、乙、丙三门大炮对某敌机进行独立射击,的命中率依次为0.7, 0.8, 0.9.若敌机被命中两弹或两被击落,设三门炮同时射击一次,试求敌机被击落的相解用A表示用命片;B表示Z命中二C表示Z命中冷刀表示“敌机被击落",则P ⑷二0.7, P(B)=0. & P(C)=0.9.所求概率为P(D)=P(ABC<J ABC U ABC U ABC)二P(ABC)+P(ABC)+P(ABC)+P(ABC)=0.7x0.8x0.1+07x0.2x0.9+0.3x0.8x0.9+0.7x0.8x0.9 二0.902.各继电器闭合也分别用& 5 C, D 、E 表示 23.如图1-11所示,人表示继电器接#一个继电器闭合的概率均为P 且继电器闭合与否相上求Z 到7?是通路的概率.通路可表示为[(A 5) C] 三4 C AJ B C U DE,所求概率为P{ [(4u5)C]u(Z)£)}=P(ACu5CuZ)£) =P(AC)+P(BC)+P(DE)-PQBC)-P(4CDE)-P(BCDE)+P®BCDE) =p+p+p-p-p-p+p24.设甲、乙、丙三人在某地钓鱼.每人能钓到鱼别为0.4, 0.6, 0.9,且三人之间能否钓到鱼相互独立,方 Z 到人是(1)三人中恰有一人钓到鱼的枇率;解用A表示“甲钓到鱼笃B表示“乙钓到鱼笃C表示^丙钓到鱼;则P ⑷二0.4, P(B)二0.6, P©二09三人中恰有一人钓到鱼用刀表示,则所求概率为P(D)二 P(应 C)+P(ABC)+P(A BC)=0.4x0.4x0.1+0.6x0.6x0.1+0.6x0.4x0.9=0.268.(2)三人中至少有一人钓到鱼的概率.解三人中至少有一人钓到鱼用£表示,则所求概率为P(£)=1-P(£)=1-P05Q=1-0.6x0.4x0.1=0.976.。
概率论与数理统计习题参考答案
概率论与数理统计参考答案(附习题)第一章 随机事件及其概率1. 写出下列随机试验的样本空间:(1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标;(3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度.解: 所求的样本空间如下(1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x 2+y 2<1}(3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0}2. 设A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示下列事件: (1)A 发生,B 和C 不发生;(2)A 与B 都发生,而C 不发生; (3)A 、B 、C 都发生; (4)A 、B 、C 都不发生; (5)A 、B 、C 不都发生;(6)A 、B 、C 至少有一个发生; (7)A 、B 、C 不多于一个发生; (8)A 、B 、C 至少有两个发生. 解: 所求的事件表示如下(1)(2)(3)(4)(5)(6)(7)(8)A B CA B C A B C A B CA B C AB CA B B C A CA BB CC A3.在某小学的学生中任选一名,若事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该学生是运动员,则 (1)事件AB 表示什么?(2)在什么条件下ABC =C 成立? (3)在什么条件下关系式C B ⊂是正确的? (4)在什么条件下A B =成立?解: 所求的事件表示如下(1)事件AB 表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC =C 成立.(3)当全校运动员都是三年级学生时,关系式C B ⊂是正确的. (4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=0.7,P (A -B )=0.3,试求()P AB解 由于 A -B = A – AB , P (A )=0.7 所以P (A -B ) = P (A -AB ) = P (A ) -P (AB ) = 0.3, 所以 P (AB )=0.4, 故 ()P AB = 1-0.4 = 0.6.5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=14,P(AB) = P(CB) = 0, P(AC)=18求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,⊂=ABC AB P AB 故P(ABC) = 0则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 1111500044488=++---+=6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率:A ={两球颜色相同},B ={两球颜色不同}.解 由题意,基本事件总数为2a b A +,有利于A 的事件数为22a b A A +,有利于B的事件数为1111112ab b a a b A A A A A A +=, 则 2211222()()a b a ba b a bA A A A P A PB A A +++==7. 若10件产品中有件正品,3件次品,(1)不放回地每次从中任取一件,共取三次,求取到三件次品的概率; (2)每次从中任取一件,有放回地取三次,求取到三次次品的概率. 解 (1)设A={取得三件次品} 则333333101016()()120720或者====C A P A P A C A . (2)设B={取到三个次品}, 则33327()101000==P A .8. 某旅行社100名导游中有43人会讲英语,35人会讲日语,32人会讲日语和英语,9人会讲法语、英语和日语,且每人至少会讲英、日、法三种语言中的一种,求:(1)此人会讲英语和日语,但不会讲法语的概率; (2)此人只会讲法语的概率.解 设 A={此人会讲英语}, B={此人会讲日语}, C={此人会讲法语}根据题意, 可得(1) 32923()()()100100100=-=-=P ABC P AB P ABC(2) ()()()P ABC P AB P ABC =-()01()P A B P A B =+-=-+ 1()()()P A P B P AB =--+433532541100100100100=--+=9. 罐中有12颗围棋子,其中8颗白子4颗黑子,若从中任取3颗,求: (1) 取到的都是白子的概率;(2) 取到两颗白子,一颗黑子的概率;(3) 取到三颗棋子中至少有一颗黑子的概率; (4) 取到三颗棋子颜色相同的概率. 解(1) 设A={取到的都是白子} 则3831214()0.25555===C P A C .(2) 设B={取到两颗白子, 一颗黑子}2184312()0.509==C C P B C . (3) 设C={取三颗子中至少的一颗黑子} ()1()0.74=-=P C P A . (4) 设D={取到三颗子颜色相同}3384312()0.273+==C C P D C .10. (1)500人中,至少有一个的生日是7月1日的概率是多少(1年按365日计算)?(2)6个人中,恰好有个人的生日在同一个月的概率是多少? 解(1) 设A = {至少有一个人生日在7月1日}, 则500500364()1()10.746365=-=-=P A P A (2)设所求的概率为P(B)412612611()0.007312⨯⨯==C C P B11. 将C ,C ,E ,E ,I ,N ,S 7个字母随意排成一行,试求恰好排成SCIENCE的概率p.解 由于两个C ,两个E 共有2222A A 种排法,而基本事件总数为77A ,因此有2222770.000794A A p A ==12. 从5副不同的手套中任取款4只,求这4只都不配对的概率.解 要4只都不配对,我们先取出4双,再从每一双中任取一只,共有⋅4452C 中取法. 设A={4只手套都不配对},则有⋅==445410280()210C P A C13. 一实习生用一台机器接连独立地制造三只同种零件,第i 只零件是不合格的概率为=+11i p i,i=1,2,3,若以x 表示零件中合格品的个数,则P(x =2)为多少?解 设A i = {第i 个零件不合格},i=1,2,3, 则1()1i i P A p i==+ 所以 ()11i i i P A p i=-=+ 123123123(2)()()()P x P A A A P A A A P A A A ==++由于零件制造相互独立,有:123123()()()()P A A A P A P A P A =,123123()()()()P A A A P A P A P A = 123123()()()()P A A A P A P A P A =11112111311,(2)23423423424P x ==⨯⨯+⨯⨯+⨯⨯=所以14. 假设目标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,试求两次独立射击至少有一次命中目标的概率p.解 设A={目标出现在射程内},B={射击击中目标},B i ={第i 次击中目标}, i=1,2.则 P(A)=0.7, P(B i|A)=0.6 另外 B=B 1+B 2,由全概率公式12()()()()()(|)()(()|)P B P AB P AB P AB P A P B A P A P B B A =+===+ 另外, 由于两次射击是独立的, 故P(B 1B 2|A)= P(B 1|A) P(B 2|A) = 0.36 由加法公式P((B 1+B 2)|A)= P(B 1|A)+ P(B 2|A)-P(B 1B 2|A)=0.6+0.6-0.36=0.84因此P(B)= P(A)P((B 1+B 2)|A)=0.7×0.84 = 0.58815. 设某种产品50件为一批,如果每批产品中没有次品的概率为0.35,有1,2,3,4件次品的概率分别为0.25, 0.2, 0.18, 0.02,今从某批产品中抽取10件,检查出一件次品,求该批产品中次品不超过两件的概率.解 设A i ={一批产品中有i 件次品},i=0, 1, 2, 3, 4, B={任取10件检查出一件次品},C={产品中次品不超两件}, 由题意01914911050192482105019347310501944611050(|)01(|)516(|)4939(|)98988(|)2303=========P B A C C P B A C C C P B A CC C P B A C C C P B A C由于 A 0, A 1, A 2, A 3, A 4构成了一个完备的事件组, 由全概率公式 40()()(|)0.196===∑i i i P B P A P B A 由Bayes 公式000111222()(|)(|)0()()(|)(|)0.255()()(|)(|)0.333()======P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B 故20()(|)0.588===∑i i P C P A B16. 由以往记录的数据分析,某船只运输某种物品损坏2%,10%和90%的概率分别为0.8,0.15,0.05,现在从中随机地取三件,发现三件全是好的,试分析这批物品的损坏率是多少(这里设物品件数很多,取出一件后不影响下一件的概率).解 设B={三件都是好的},A 1={损坏2%}, A 2={损坏10%}, A 1={损坏90%},则A 1, A 2, A 3是两两互斥, 且A 1+ A 2 +A 3=Ω, P(A 1)=0.8, P(A 2)=0.15, P(A 2)=0.05.因此有 P(B| A 1) = 0.983, P(B| A 2) = 0.903, P(B| A 3) = 0.13, 由全概率公式31333()()(|)0.80.980.150.900.050.100.8624===⨯+⨯+⨯=∑i i i P B P A P B A由Bayes 公式, 这批货物的损坏率为2%, 10%, 90%的概率分别为313233()(|)0.80.98(|)0.8731()0.8624()(|)0.150.90(|)0.1268()0.8624()(|)0.050.10(|)0.0001()0.8624⨯===⨯===⨯===i i i i i i P A P B A P A B P B P A P B A P A B P B P A P B A P A B P B 由于P( A 1|B) 远大于P( A 3|B), P( A 2|B), 因此可以认为这批货物的损坏率为0.2.17. 验收成箱包装的玻璃器皿,每箱24只装,统计资料表明,每箱最多有两只残次品,且含0,1和2件残次品的箱各占80%,15%和5%,现在随意抽取一箱,随意检查其中4只;若未发现残次品,则通过验收,否则要逐一检验并更换残次品,试求: (1)一次通过验收的概率α;(2)通过验收的箱中确定无残次品的概率β. 解 设H i ={箱中实际有的次品数}, 0,1,2=i , A={通过验收}则 P(H 0)=0.8, P(H 1)=0.15, P(H 2)=0.05, 那么有:042314244222424(|)1,5(|),695(|)138P A H C P A H C C P A H C =====(1)由全概率公式20()()(|)0.96α====∑i i i P A P H P A H(2)由Bayes 公式 得00()(|)0.81(|)0.83()0.96β⨯====i P H P A H P H A P A18. 一建筑物内装有5台同类型的空调设备,调查表明,在任一时刻,每台设备被 使用的概率为0.1,问在同一时刻 (1)恰有两台设备被使用的概率是多少? (2)至少有三台设备被使用的概率是多少?解 设5台设备在同一时刻是否工作是相互独立的, 因此本题可以看作是5重伯努利试验. 由题意,有p=0.1, q=1-p=0.9, 故(1) 223155(2)(0.1)(0.9)0.0729===P P C (2) 2555(3)(4)(5)P P P P =++332441550555(0.1)(0.9)(0.1)(0.9)(0.1)(0.9)0.00856C C C =++=19. 甲、乙两个乒乓球运动员进行乒乓球单打比赛,如果每一局甲胜的概率为0.6,乙胜的概率为0.4,比赛时可以采用三局二胜制或五局三胜制,问在哪一种比赛制度下甲获胜的可能性较大? 解 在三局两胜时, 甲队获胜的概率为332213333(2)(3)(0.6)(0.4)(0.6)(0.4)0.648=+=+=A P P P C C在五局三胜的情况下, 甲队获胜的概率为55533244155555(3)(4)(5)(0.6)(0.4)(0.6)(0.4)(0.6)(0.4)0.682=++=++=B P P P P C C C因此,采用五局三胜制的情况下,甲获胜的可能性较大.20. 4次重复独立试验中事件A 至少出现一次的概率为6581,求在一次试验中A出现的概率.解 设在一次独立试验中A 出现一次的概率为p, 则由题意00444465(0)(1)181==-=-P C p q p 解得p=1/3.21.(87,2分)三个箱子,第一个箱子中有4只黑球1只白球,第二个箱子中有3只黑球3只白球,第三个箱子有3只黑球5只白球. 现随机地取一个箱子,再从这个箱子中取出一个球,这个球为白球的概率等于 . 已知取出的球是白球,此球属于第二个箱子的概率为解 设=B “取出白球”,=i A “球取自第i 个箱子”,.3,2,1=i 321,,A A A 是一个完全事件组,.3,2,1,3/1)(==i A P i 5/1)|(1=A B P ,2/1)|(2=A B P ,8/5)|(3=A B P ,应用全概率公式与贝叶斯公式,12053)852151(31)|()()(31=++==∑=i i i A B P A P B P.5320)()|()()|(222==B P A B P A P B A P22.(89,2分)已知随机事件A 的概率5.0)(=A P ,随机事件B 的概率6.0)(=B P 及条件概率8.0)|(=A B P ,则和事件B A ⋃的概率=⋃)(B A P 解 7.0)|()()()()()()()(=-+=-+=⋃A B P A P B P A P AB P B P A P B A P .23.(90,2分)设随机事件A ,B 及其和事件B A ⋃的概率分别是4.0,3.0和6.0. 若B 表示B 的对立事件,那么积事件B A 的概率=)(B A P解 B A 与B 互不相容,且.B B A B A ⋃=⋃ 于是.3.0)()()(=-⋃=B P B A P B A P24.(92,3分)已知41)()()(===C P B P A P ,0)(=AB P ,161)()(==BC P AC P ,则事件A ,B ,C 全不发生的概率为 解 从0)(=AB P 可知,0)(=ABC P .)()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +--++=⋃⋃.8501611*********=+---++=25.(93,3分)一批产品共有10件正品和两件次品,任意抽取两次,每次抽一件,抽出后不再放回,则第二次抽出的是次品的概率为解 设事件=i B “第i 次抽出次品”,.2,1=i 则,12/2)(1=B P 12/10)(1=B P ,.11/2)|(,11/1)|(1212==B B P B B P 应用全概率公式)|()()|()()(1211212B B P B P B B P B P B P +=.611121210111122=⨯+⨯=26.(94,3分)已知A ,B 两个事件满足条件)()(B A P AB P =,且p A P =)(,则=)(B P解 ).()()(1)()(AB P B P A P B A P B A P +--=⋃=因)()(B A P AB P =,故有.1)(1)(,1)()(p A P B P B P A P -=-==+27.(06,4分)设A ,B 为随机事件,且0)(>B P ,1)|(=B A P ,则必有( ) A .)()(A P B A P >⋃ B .)()(B P B A P >⋃ C .)()(A P B A P =⋃ D .)()(B P B A P =⋃解 选(C )28.(05,4分)从数1,2,3,4中任取一个数,记为X ,再从1,2,…,X 中任取一个数,记为Y ,则==)2(Y P 解 填.481329.(96,3分)设工厂A 和工厂B 的产品的次品率分别为%1和%2,现从由A 和B 的产品分别占%60和%40的一批产品中随机抽取一件,发现是次品,则该产品属A 生产的概率是解 设事件=C “抽取的产品是次品”,事件=D “抽取的产品是A 生产的”,则D 表示“抽取的产品是工厂B 生产的”. 依题意有.02.0)|(,01.0)|(,40.0)(,60.0)(====D C P D C P D P D P应用贝叶斯可以求得条件概率.7302.04.001.06.001.06.0)|()()|()()|()()|(=⨯+⨯⨯=+=D C P D P D C P D P D C P D P C D P30.(97,3分)袋中有50只乒乓球,其中20只是黄球,30只是白球,今有两人依次随机地从袋中各取一球,取后不放回,则第二个人取得黄球的概率是 解 设事件=i A “第i 个人取得黄球”,2,1=i . 根据题设条件可知.4920)|(,4919)|(,5030)(,5020)(121211====A A P A A P A P A P 应用全概率公式.524920503049195020)|()()|()()(1211212=⋅+⋅=+=A A P A P A A P A P A P31.(87,2分)设在一次试验中,事件A 发生的概率为p 。
概率论-题和答案
《概率论》练习题一、 填空题:(请将正确答案直接填在横线上,每小题3分)1.设A 、B 、C 是三个事件,则A 、B 、C 中至多有2个事件发生可表示为 ABC 。
2.设A 、B 、C 是三个事件,则A 不发生但 B 、C 中至少有1个事件发生可表示为。
3.设随机变量X 服从泊松分布,且P (X=1)=P (X=2),E (3X-1)= 5 。
4.把三个不同的球随机地放入三个不同的盒中,则出现两个空盒的概率为__1/9________。
5.一批零件的次品率为0.2,连取三次,每次一件(有放回),则三次中至少有一次取到次品的概率为 0.488 。
6.设随机变量X 服从U(0, 2)分布,则2X Y =在(0, 4 )内的概率分布密度为 p Y )(y =⎪⎩⎪⎨⎧其它,0,40,41 y y 。
7设A, B, C 是三个随机事件,则A, B, C 至少发生两个可表示为 AC BC AB ⋃⋃或BC A C B A C AB ABC ⋃⋃⋃ 。
.8、设P (A ) = 0.7, P (A - B ) = 0.3 , 则 )(AB P 0.6 。
9、设随机变量X 的概率分布为{},1,2,3,4,5P X k Ck k ===()则C = 151。
10、设随机变量X 服从区间(2,6)上的均匀分布(2,6)U , 则(31)E X += 13 。
11、设X 服从正态分布(1,6)N -,则D(-2X+1)= 24 。
12. 设随机变量X和Y 相互独立,其概率分布分别为:则P {X=Y }= 21 。
13、设A 、B 、C 是三个事件, 则A 、B 、C 中至少有1个事件发生可表示为 A B C 。
14、设事件A 、B 、C 相互独立,()()()13P A P B P C ===,则)(C B A P ⋃⋃ 1927 。
15、设随机变量X 的概率分布为:P{X=k}=Ck(k=1,2,3,),则C= 6C = 。
概率论与数理统计第四版- 课后习题答案
完全版概率论与数理统计习题答案第四版盛骤(浙江大学)浙大第四版(高等教育出版社)第一章概率论的基本概念1.[一] 写出下列随机试验的样本空间(1)记录一个小班一次数学考试的平均分数(充以百分制记分)([一] 1),n表小班人数(3)生产产品直到得到10件正品,记录生产产品的总件数。
([一] 2)S={10,11,12,………,n,………}(4)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。
查出合格品记为“1”,查出次品记为“0”,连续出现两个“0”就停止检查,或查满4次才停止检查。
([一] (3))S={00,100,0100,0101,1010,0110,1100,0111,1011,1101,1110,1111,} 2.[二] 设A,B,C为三事件,用A,B,C的运算关系表示下列事件。
(1)A发生,B与C不发生。
表示为:A或A-(AB+AC)或A-(B∪C)(2)A,B都发生,而C不发生。
表示为:AB或AB-ABC或AB-C(3)A,B,C中至少有一个发生(4)A,B,C都发生,表示为:A+B+C 表示为:ABC表示为:或S-(A+B+C)或(5)A,B,C都不发生,(6)A,B,C中不多于一个发生,即A,B,C中至少有两个同时不发生相当于,,中至少有一个发生。
故表示为:。
(7)A,B,C中不多于二个发生。
相当于:,,中至少有一个发生。
故表示为:(8)A,B,C中至少有二个发生。
相当于:AB,BC,AC中至少有一个发生。
故表示为:AB+BC+AC6.[三] 设A,B是两事件且P (A)=0.6,P (B)=0.7. 问(1)在什么条件下P (AB)取到最大值,最大值是多少?(2)在什么条件下P (AB)取到最小值,最小值是多少?解:由P (A) = 0.6,P (B) = 0.7即知AB≠φ,(否则AB = φ依互斥事件加法定理,P(A∪B)=P (A)+P (B)=0.6+0.7=1.3>1与P (A∪B)≤1矛盾).从而由加法定理得P (AB)=P (A)+P (B)-P (A∪B) (*)(1)从0≤P(AB)≤P(A)知,当AB=A,即A∩B时P(AB)取到最大值,最大值为P(AB)=P(A)=0.6,(2)从(*)式知,当A∪B=S时,P(AB)取最小值,最小值为P(AB)=0.6+0.7-1=0.3 。
《概率论与数理统计》习题及答案
概率论与数理统计第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 .2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率 为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 .8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率 为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A {}Y X B >=,则=)|(A B P .11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P .14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P .17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P .18、设21)(,41)(,31)(===B A P B P A P ,则=)(B A P 。
22年数一第19题
22年数一第19题
22年数一第19题要求解答一个概率问题:
题目描述:某游乐场有两个相同的转盘。
一轮游戏中,玩家同时旋转两个转盘。
转盘上分别有6个奖励选项:A、B、C、D、E和F。
两个转盘停下后,玩家会得到停留在两个转盘上的奖励。
问题:玩家在一轮游戏中,不论奖励选项如何分布,获得的两个奖励是否相同的概率是多少?
解答:首先,计算获得两个相同奖励的可能性。
每个转盘上有6个选项,所以获得相同奖励的方式有6种:AA、BB、CC、DD、EE和FF。
因此,获得两个相同奖励的概率为6/36,即1/6。
计算获得两个不同奖励的可能性。
由于每个转盘上有6个选项,所以获得两个不同奖励的方式为A与B、A与C...F与E、F与F,共有30种组合。
因此,获得两个不同奖励的概率为30/36,即5/6。
玩家在一轮游戏中,获得的两个奖励相同的概率为1/6,而获得的两个奖励不同的概率为5/6。
这个概率问题可以通过理论计算得出准确的结果,提供了一种思维方式来解决类似问题。
在实际问题中,了解概率的计算方法和原理可以帮助我们做出更加准确的判断和决策。
概率论考试题
单选题可供选择答案:2. d(x+y)=dx+dy3. X 与Y 独立第2题:(.5分)可供选择答案:1.3/5第3题:(.5分)2.3. 1/2第4题:(.5分)可供选择答案:4.a=l/2, b=-3/2第5题:(.5分)/3、2 1 (一)x - 4 4 /1 \2 3 (一)X- 4 44.6:(.5可供选择答案:2. 16/453. 6/144. 8/45第7题:(.5分)甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6. 0.5,现己知目标 被击中,则它是甲击中的概率为()。
可供选择答案:2. 3.第8题:(.5分)对于任意概率不为零的事件A和B,下列命题肯定正确的是()。
可供选择答案:1.如果工和8互不相容,则力与耳也互不相容4.如果工和8相互独立,则N与m也相互独立。
第9题:(.5分)己知产(工)=0.4, P(B)= 0,6 ,尸(叫4)= 0.5,则尸(4|3)=()。
可供选择答案:3.3/10第10题:(.5分),己知产⑷= 0.5, P(B) = 0,6 , P(5|^) = 0.8,则尸(HYB)=( 可供选择答案:1.0.63.0.84.0.9第11题:(.5分)已知某种型号的宙管在一定刺激下发火率为1/5 ,今独立重复地作刺激试验,直到发火为止,则消耗的雷管数为3的概率为可供选择答案:2. 4/1253.16/1254.64/125第12题:(.5分)设了〜/),则随着的增大,概率口以一“力可供选择答案:第13题:(.5分)设x与y独立同分布,记u = 则以/必然()。
可供选择答案:1.不独立2.独立3.相关系数为零4.相关系数不为零第14题:(.5分)可供选择答案:2.p(x+y W 1) = 1/23.p(x-y W 0)=l/2第15题:(.5分)设DX=5 , DY=45 , C。
吠X,Y) = 15,则 =可供选择答案:1.1/33.1/154.1第16题:(.5分)设X〜曾3 相),则随着b的增大,概率产{区-“<b}()o 可供选择答案:2.单调减少3.单调增加4.增减不定第17题:(.5分)可供选择答案:A B,2.如果工和B相容,则为与耳也相容;第18题:(,5分)可供选择答案:2.163.28第19题:(.5分)可供选择答案:1.尸⑷ > P(AB)2.尸⑷ < 尸(幽q P(A) = P(AB)4.尸⑷ > 尸(幽第20题:(.5分)设x和y相互独立,且分别服从N(O, 1)和阳1, 1),则()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 .6
(4)P{至多3分钟或至少4分钟之间}=P{(X≤3)U(X≥4)} =P{X≤3}+P{X≥4} =1- e e (5)P{恰好2.5分钟}=P{X=2.5}=0
1 .2 1 .6
x
概率密度f(x)的性质
(1) f ( x ) 0 ;
( 2)
f ( x ) d x 1;
x( x,
1
2
1
可判别f(x)是否为某随机 变量的密度函数对于任意实数x Nhomakorabeax2
)
x2 x1
( 3) P{ x1 X x2 } F ( x2 ) F ( x1 )
f ( x)d x ;
(4) 若 f ( x ) 在点 x 处连续, 则有 F ( x ) f ( x ).
三、典型例题 P57
19.以X表示某商店从早晨开始营业起直到第一个顾客到 达的等待时间(以分计),X的分布函数是
0.4 x 1 , x 0 e F x ( x) 0 ,x0
(1)P{至多3分钟} (3)P{3分钟至4分钟之间} (2)P{至少4分钟} (4)P{至多3分钟或至少4分钟之间} (5)P{恰好2.5分钟}
解: 1 .2 (1)P{至多3分钟} = P{X≤3}= F( x 3)=1- e (2)P{至少4分钟} = P{X≥4}= 1- P{X<4} =1-P{X≤4} 1 .6 =1- F( x 4)= e (因为F x 是指数分布随机变量X的分布函数,X是连 续型随机变量,所以P{X=4}=0,P{X<4}=P{X≤4}) (3)P{3分钟至4分钟之间} = P{3≤X≤4} =P{3<X<4}= e =F ( ( x 4)-F x 3)= e
第二章
随机变量及其分布 习 题 课
一、重点与难点 二、主要内容
三、典型例题
第四节 连续型随机变量及其概率密度 一、重点与难点
理解并运用概率密度f(x)的性质
二、主要内容
设随机变量 X 的分布函数为F ( x ) , 若存在 非负可积函数f ( x ), 使对于任意实数 x 有 F ( x ) f ( t ) d t , 则称 X 为连续型随机变量 , 其中 f ( x ) 称为 X 的概率 密度函数, 简称概率密度 .