第一积分中值定理中值点ξ的分析性质

合集下载

积分中值定理与推广积分中值定理区间问题

积分中值定理与推广积分中值定理区间问题

积分中值定理与推广积分中值定理区间问题一、积分中值定理的基本概念1.1 积分中值定理的定义积分中值定理是微积分中的重要定理之一,它是对函数在闭区间上的平均值与极限值之间的关系进行了精确的描述。

积分中值定理的内容主要包括了两个部分:第一部分是零点定理,即如果函数在闭区间上连续,并且在该闭区间上取得了最大值和最小值,那么在该闭区间上一定存在至少一个点使得函数的导数等于零;第二部分是平均值定理,即如果一个函数在一个闭区间上连续,那么一定存在至少一个点,使得该点的导数等于函数在该区间上的平均增量。

积分中值定理的内容简单而深刻,它为我们理解函数在闭区间上的性质提供了重要的依据。

1.2 积分中值定理的应用积分中值定理在实际问题中有着广泛的应用,它不仅可以帮助我们理解函数的性质,还可以为我们提供在实际问题中对函数的特定取值进行估计的依据。

比如在物理学中,积分中值定理可以用来描述物体在某一时刻的速度与位移之间的关系;在经济学中,积分中值定理可以用来解释市场上产品的供求关系;在生物学中,积分中值定理可以用来分析生物体在生长过程中的变化规律等等。

积分中值定理是微积分中的基础定理之一,它在我们的日常生活和各个学科领域中都有着重要的地位。

二、推广积分中值定理区间问题2.1 区间问题的提出在积分中值定理的基础上,我们可以进一步进行推广,即考虑函数在开区间上的性质。

具体来说,我们可以考虑以下问题:如果一个函数在一个开区间上连续,那么它在该开区间上是否一定存在着一个点,使得该点的导数等于函数在该开区间上的平均增量呢?这个问题就是推广积分中值定理区间问题。

2.2 区间问题的解决针对区间问题,我们可以通过微积分中的基本原理进行研究。

我们可以利用函数的连续性和导数的存在性来证明函数在开区间上的平均增量一定存在,然后利用积分中值定理的零点定理和平均值定理来证明在该开区间上一定存在着一个点,使得该点的导数等于函数在该开区间上的平均增量。

积分形式的中值定理

积分形式的中值定理

积分形式的中值定理积分形式的中值定理引言:积分形式的中值定理是微积分中的重要定理之一,它建立了积分和导数之间的联系,并在许多数学和科学领域中发挥着重要的作用。

在本文中,我们将深入探讨积分形式的中值定理以及它的应用,帮助读者更好地理解这一概念。

我们将按照从简到繁、由浅入深的方式介绍该定理,并结合实例进行说明。

一、中值定理的基本概念1. 定义:积分形式的中值定理是指对于任意函数f(x),存在某个c∈[a,b],使得∫[a,b]f(x)dx=f(c)(b-a)。

2. 中值定理与导数关系:中值定理的关键在于导数。

通过导数的定义和积分的反函数关系,我们可以推导出中值定理的积分形式。

二、中值定理的几何意义1. 几何解释:中值定理可以解释为在曲线上存在某个点,该点的斜率等于曲线上所有点的平均斜率。

2. 图像说明:通过绘制函数图像,我们可以很直观地理解中值定理的几何意义,并且可以通过观察图像来预测可能的c值。

三、中值定理的应用1. 求积分:中值定理在求积分中有广泛应用。

通过将积分形式的中值定理转化为导数形式的中值定理,我们可以更方便地计算各种积分。

2. 估计函数值:中值定理的一个重要应用是用于估计函数在某一区间内的取值。

通过找到合适的区间和对应的c值,我们可以推断出函数在该区间内的性质。

四、个人观点和理解中值定理在数学和科学研究中具有重要的作用。

它不仅为我们提供了一种求积分和估计函数值的方法,还帮助我们更深入地理解函数的性质和变化规律。

我个人认为,掌握中值定理可以使我们在解决实际问题时更加灵活和准确。

总结:积分形式的中值定理是微积分中的重要定理,它建立了积分和导数之间的联系。

通过中值定理,我们可以更好地理解函数的性质和变化规律,同时也为我们提供了一种求积分和估计函数值的方法。

掌握中值定理可以使我们在数学和科学研究中更加灵活、准确地应用它的原理和方法。

致谢:感谢您阅读本文,我希望您能通过本文对积分形式的中值定理有更深入的理解。

积分中值定理在数学分析中的应用

积分中值定理在数学分析中的应用

5.2 估计定积分的值 例 3 估计

1
x 19 1+ x
6
0 3
dx 的值.
解 由推广的积分第一中值定理:

因为
1
x 19 1 + x6
0 3
=
1
3
1+ ξ 6

1
0
x19 dx =
1 1 , 其中 ξ ∈ [0,1] 6 20 3 1 + ξ
1 2 1
3
0 ≤ ξ ≤ 1, ∴ 3


1+ ξ
0
x dx < ∫
9
1
x9 1+ x
0
dx < ∫ x 9 dx =
0
1
1 10
注 由于积分具有许多特殊的运算性质,故积分不等式的证明往往富有很强的技巧性.在 证明含有定积分的不等式时,也常考虑用积分中值定理,以便去掉积分符号,若被积函数是两 个函数之积时,可考虑用广义积分中值定理.如果在证明如 6 和 7 例题时,可以根据估计定积 分的值在证明比较简单方便.
所以
1 dx 2 1 <∫ < . 0 2 3 2 2+ x− x
例 10 证明
1 10 2
<∫
1
x9 1+ x
0
dx <
1 . 10
证明
估计积分
∫ f (x )g (x )dx 的一般的方法是:求 f (x ) 在 [a, b] 的最大值 M 和最小
b a
值 m ,又若 g ( x ) ≥ 0 ,则
∫ f (x )dx 的一般的方法是求 f (x ) 在 [a, b] 的最大值 M

积分中值定理及应用

积分中值定理及应用

毕业论文题目:积分中值定理及应用学号:姓名:年级:系别:数学系专业:数学与应用数学指导教师:完成日期:年月日积分中值定理及应用摘要本论文的主要内容是积分中值定理及其应用,全文分为以下几个方面:积分中值定理及推广、积分中值定理中值点ξ的渐进性、积分中值定理的应用。

首先讨论了定积分中值定理、第一积分中值定理、第二中值定理以及它们的推广,而且还给出了这些定理的详细证明过程。

其次研究了中值定理中值点ξ的渐进性,对第一积分中值定理的ξ点做了详细讨论,给出了详细清楚的证明过程。

而第二积分中值定理的渐进性问题只证明了其中的一种情形,其他证明过程只作简要说明。

最后归纳了积分中值定理的应用,给出了一些较简单的情形如估计积分值,求含有定积分的极限,确定积分号、比较积分大小,证明函数单调性还有阿贝尔判别法和狄理克莱判别法这两个定理的证明。

关键词:积分中值定理;推广;应用;渐进性INTEGRAL MEAN V ALUE THEOREM AND APPLICATIONAbstractThe main content of this paper is integral mean value theorem and its application ,the letter divides into the following respects :Integral mean value theorem and promotion 、Integral mean value theorem point in the progressive 、The application of integral mean value theorem .First discuss the definite integral mean value theorem 、the first integral mean value theorem 、the first second mean value theorem and their promotion ,and it gives the theorem of the detailed process of proof .Secondly the mean value theorem point in the progressive ,the first integral mean value theorem to do a detailed discussion of the points ,gives the detailed processclear evidence .And the second integral mean-value theorem proved, the only problem with one of the case ,other identification process only briefly .Finally summarizes the integral mean value theorem of applications ,to give some simple situation such as estimated integral value ,calculation of the definite integral contains limit ,sure integral symbols ,contrast integral size ,prove functional monotonicity and the theorems proof of Abel discriminant method and DiLi klein discriminant method .Key words: integral mean-value; theorem promotion ;apply;progressive目录1 前言 (3)2积分中值定理 (4)2.1定积分中值定理及推广 (4)2.1.1定积分中值定理 (4)2.1.2定积分中值定理的推广 (6)2.2积分第一中值定理及推广 (6)2.2.1积分第一中值定理 (6)2.2.2积分第一中值定理的推广 (6)2.3积分第一中值定理及推广 (9)2.3.1积分第二中值定理 (9)2.3.2积分第二中值定理的推广 (12)2.4重积分的中值定理 (12)2.4.1二重积分的中值定理 (12)2.4.2三重积分的中值定理 (13)2.5曲线积分中值定理 (14)2.5.1第一曲线积分中值定理 (14)2.5.2第二曲线积分中值定理 (14)2.6曲面积分中值定理 (16)2.6.1第一曲面积分中值定理 (16)2.6.2第二曲面积分中值定理 (16)3 积分中值定理中值点的渐进性 (18)3.1 第一积分中值定理中值点的渐进性 (18)3.2 第二积分中值定理中值点的渐进性 (22)4 积分中值定理的应用 (24)4.1 估计积分值 (2424)4.2 求含定积分的极限 (25)4.3 确定积分号 (27)4.4 比较积分大小 (27)4.5 证明中值点的存在性 (2827)4.6 证明函数的单调性 (28)4.7 证明定理 (29)结论 (32)参考文献 (33)致谢 (34)1前言随着时代的发展,数学也跟着时代步伐大迈步前进。

定积分的性质中值定理

定积分的性质中值定理

VS
详细描述
设函数f(x)和g(x)在区间[a, b]上可积,则有 ∫(f(x)±g(x))dx=∫f(x)dx±∫g(x)dx。
区间可加性
总结词
定积分的区间可加性是指,对于任意两个子区间[a, c]和[c, b],其上的积分值等于整个区间[a, b]上的积分值。
详细描述
设函数f(x)在区间[a, b]上可积,则对于任意c∈[a,b],有∫(a,b)f(x)dx=∫(a,c)f(x)dx+∫(c,b)f(x)dx。
重要性及应用领域
在微积分学中,定积分的性质中值定理是理解积分概念和性质的关键,它为解决定积分问题提供了一 种有效的方法。
在应用领域,定积分的性质中值定理广泛应用于物理学、工程学、经济学等领域,例如在计算面积、 解决物理问题、预测经济趋势等方面都有重要的应用。
02 定积分的性质
线性性质
总结词
定积分的线性性质是指,对于两个函数 的积分和或差,其积分值等于各自积分 值的和或差。
可以用来研究函数的单调性、极值等问题, 并且在解决一些复杂的数学问题时也很有用。
04 定积分与中值定理的关系
定积分与连续函数的关系
01
定积分是研究连续函数的一种工具,它能够计算连 续函数在一定区间上的积分值。
02
连续函数在一定区间上的定积分等于该函数在区间 端点上取值的差与该区间长度乘积的一半。
拉格朗日中值定理是微分学中的基本定理之一,它说 明了一个函数在开区间上可导时,其导函数在区间内 至少存在一个中值点。
详细描述
拉格朗日中值定理是由法国数学家拉格朗日提出的,定 理表述为:如果一个函数f(x)在闭区间[a, b]上连续,在 开区间(a, b)上可导,那么在开区间(a, b)内至少存在一 点ξ,使得f'(ξ)=(f(b)-f(a))/(b-a)。这个定理说明了函数 在某区间的变化率与该区间两端函数值之差成正比,这 在研究函数的单调性、极值等问题时非常有用。

《积分中值定理》课件

《积分中值定理》课件
积分中值定理在实数理论中有重要应用, 如证明实数的连续性、稠密性等性质。
在其他数学领域的应用实例
复变函数
积分中值定理在复变函数中有广泛的应用, 如在解决柯西积分公式、留数定理等问题时 起到关键作用。
概率论与数理统计
积分中值定理在概率论与数理统计中有重要 应用,如在计算期望、方差等统计量时起到 关键作用。
03
综上所述,积分中值定理是一个具有 重要性和意义的数学定理。在未来的 研究中,我们需要进一步深入探索其 应用范围和条件,并尝试将其应用于 更广泛的领域,以推动数学和其他学 科的发展。
THANKS
感谢观看
利用微积分基本定理证明积分中值定理
总结词
通过利用微积分基本定理和函数的单调性,证明积分中值定理。
详细描述
首先,我们选取一个连续函数$f(x)$,并设其在区间$[a, b]$上非负且不恒为零。然后 ,我们证明函数$F(x) = int_{a}^{x}f(t)dt$在$[a, b]$上单调增加。由于$F(x)$单调增加 ,存在一个点$c in (a, b)$使得$frac{F(b) - F(a)}{b - a} = f(c)$。最后,我们得出结论
对积分中值定理未来的研究方向和展望
01
积分中值定理的研究已经取得了丰硕 的成果,但仍有许多值得探索的问题 。例如,对于更一般的函数空间和更 复杂的积分问题,如何应用积分中值 定理进行有效的处理?这需要我们进 一步深入研究积分中值定理的适用范 围和条件。
02
随着数学和其他学科的不断发展,积 分中值定理的应用领域也在不断扩大 。未来,我们可以尝试将积分中值定 理应用于更广泛的领域,如金融、经 济、生物等,以解决实际问题。同时 ,我们也可以探索积分中值定理与其 他数学理论的交叉应用,以推动数学 的发展。

第一积分中值定理“中值点”ξ的分析性质

第一积分中值定理“中值点”ξ的分析性质
1 63. o o em
75
维普资讯
J t ( d = () J ( d, ) £ t ) g£ t g) ) J
两 式相 减得
£ ()t ( Ax) gt t ) t = + ) f ( d g d )
J (g) = (+ 一 ( ) g) + ( ) g ), l t(d ( △) ) (d J (d f) tt ) ) 上 tt )[ tt
由结论 1 可知 , ( )=1 , 当g 时 即为第一积分 中值定理的形式 , 此时的 不仅连续而且可导 , 且其导 数为

3 小 结
在第一积分中值定理 中, ) 当 存在一阶导, 且一阶导在( ,) a 上不变号 , 其他 的条件保持不变时 ,
其“ 中值点” = 是连续 的和可导的。 ( )
[ 考文献 ] 参
[ ]严 平 , 1 储茂权. 于积分第一 中值定理 中 ∈的变化趋 势 [ ] 安 徽师 范大学学 报 ( 关 J. 自然科 学版 ) 2 0 ,4 3 : ,0 1 2 ( )
第 一积 分 中值定 理 是 积分 学最 重要 的基本 定理 之 一 , 证 明 一些 结论 的重要工 具 , 是 但是 第 一 积分 中 值 定理 只是 肯定 了“ 中值 点 ”的存 在 性 , 有 论 述 “ 没 中值 点 ”的 其 他 性 质 。 近几 年 , 些 文 章 开始 讨 论 一 “ 中值 点 ”的渐进 性 , 到 了一些 有 意义 的结论 … 。本 文 试 图利 用 文献 [ ] 得 2 的研 究方 法 讨论 中值 点 考的
由拉格 朗 日中值定理知 ( +Ax )一 ) ( ) = ( ( +Ax ( ) ) ) ( )一 ) , 其 中 叼位于 ( ) 和 ( +Ax )之间, 则有

关于积分第一中值定理中ξ的变化趋势再讨论

关于积分第一中值定理中ξ的变化趋势再讨论

论 及 的 , 以下结 论 : 有
() 刁 4 当 =6时 , 一0 则 : ,
; =:



卢 南1 z < +++ +一+<7 ) 1南1 1卢 、1 、 。 一 ( p
由 £的任 意性 , 明 ( ) 2个式 子 也成 立. 证 4第
[1 (
r 6



对 于区 间[ , 中 某 一 点 , 口 ≤ 6 为 了叙 口 即 ≤ ,
通 信 作 者 ; 建 华 (9 5 )男 , 教 授 , 士 , 要 研 究 方 向为 数 学 教 学 、 法 分析 . — ij uwu 16 cr 伍 15 ~ , 副 硕 主 算 E mal h a @ 2 .o : n
10 0
三 峡 大 学 学 报 ( 然 科 学 版) 自
21 0 1年 1 2月
关 键词 : 积分 第 一 中值 定理 ; 渐 近 性 ; 扩 展性
中图 分类 号 : 1 22 O 7 . 文 献标 识码 : A 文 章 编 号 :6 29 8 2 1 ) 60 9 —3 1 7 —4 X(0 1 0 —0 90
Re s u s o n Ch n e Tr nd o i r tM e n Va u die s i n o a g e f n Fi s a l e The r m o n e r to o e frI tg ain
6 + —
r 6
r6
的结论 . 但选 择 刁 , 是 目前 众 多这 类 文 献 中很 少 一b 这

,拿I ()x ( I () ( xd 一,1 xd )g 7g x ) lm i
. . .. . . . . . . .

数学分析第六章中值定理

数学分析第六章中值定理

在求函数零点中的应用
总结词
中值定理在求函数零点的问题中也有应用,通过分析函数的单调性和中值定理的关系, 可以找到函数的零点。
详细描述
在寻找函数的零点时,中值定理可以提供一些有用的线索。通过分析函数的单调性和中 值定理的关系,我们可以确定函数在某一点的导数是否为零,进而判断该点是否为函数
的零点。这种方法在一些数学问题中非常有用,例如求解微分方程和积分方程的根。
总结词
柯西中值定理是数学分析中的一个定理,它指出如果两个函数在同一个点处的导数相等,那么在这两个函数之间 至少存在一点,该点的中值等于该点的导数值。
详细描述
柯西中值定理的表述如下:如果两个连续函数$f(x)$和$g(x)$在闭区间$[a, b]$上可导,且$g'(x) neq 0$,那么 在开区间$(a, b)$内至少存在一点$xi$,使得$frac{f'(xi)}{g'(xi)} = frac{f(b) - f(a)}{g(b) - g(a)}$。这个定理的证 明可以通过构造辅助函数并利用零点定理来完成。
柯西中值定理的证明
要点一
总结词
利用拉格朗日中值定理证明柯西中值定理。
要点二
详细描述
首先,根据拉格朗日中值定理,如果函数$f(x)$和$g(x)$在 闭区间$[a, b]$上连续,且在开区间$(a, b)$上可导,且$g'(x) neq 0$,则存在至少一点$xi in (a, b)$使得$frac{f'(x)}{g'(x)} = frac{f(b) - f(a)}{g(b) - g(a)}$。然后,由于函数$f(x)$和 $g(x)$在开区间$(a, b)$上可导,根据可导函数的性质,我们 知道存在至少一点$eta in (a, b)$使得$frac{f'(x)}{g'(x)} = frac{f(b) - f(a)}{g(b) - g(a)}$。因此,根据柯西中值定理, 存在至少一点$xi in (a, eta)$和至少一点$eta in (xi, b)$满足 $frac{f'(x)}{g'(x)} = frac{f(b) - f(a)}{g(b) - g(a)}$。

数学分析9.4定积分的性质

数学分析9.4定积分的性质

第九章 定积分 4 定积分的性质一、定积分的基本性质性质1:若f 在[a,b]上可积,k 为常数,则kf 在[a,b]上也可积,且⎰bakf(x )dx=k ⎰baf(x )dx.证:当k=0时结论成立. 当k ≠0时,∵f 在[a,b]上可积,记J=⎰ba f(x )dx , ∴任给ε>0,存在δ>0,当║T ║<δ时,|i n1i i x △)ξ(f ∑=-J|<|k |ε; 又|i n 1i i x △)ξ(kf ∑=-kJ|=|k|·|i n1i i x △)ξ(f ∑=-J|<|k|·|k |ε=ε,∴kf 在[a,b]上可积, 且⎰b a kf(x )dx=k ⎰ba f(x )dx.性质2:若f,g 都在[a,b]上可积,则f ±g 在[a,b]上也可积,且⎰±bag(x )][f(x )dx=⎰b af(x )dx ±⎰bag(x )dx.证:∵f,g 都在[a,b]上可积,记J 1=⎰ba f(x )dx ,J 2=⎰ba g(x )dx. ∴任给ε>0,存在δ>0,当║T ║<δ时,有|i n1i i x △)ξ(f ∑=-J 1|<2ε,|i n1i i x △)ξ(g ∑=-J 2|<2ε.又|i n1i i i x △)]ξ(g )ξ([f ∑=+-(J 1+J 2) |=|(i n1i i x △)ξ(f ∑=-J 1)+(i n1i i x △)ξ(g ∑=-J 2)|≤|i n1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε;|i n 1i i i x △)]ξ(g )ξ([f ∑=--(J 1-J 2) |=|(i n 1i i x △)ξ(f ∑=-J 1)+( J 2-i n1i i x △)ξ(g ∑=)|≤|i n 1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε.∴f ±g 在[a,b]上也可积,且⎰±b a g(x )][f(x )dx=⎰b a f(x )dx ±⎰ba g(x )dx.注:综合性质1与性质2得:⎰±ba βg(x )]αf(x ) [dx=α⎰b a f(x )dx ±β⎰ba g(x )dx.性质3:若f,g 都在[a,b]上可积,则f ·g 在[a,b]上也可积.证:由f,g 都在[a,b]上可积,从而都有界,设A=]b ,a [x sup ∈|f(x)|,B=]b ,a [x sup ∈|g(x)|,当AB=0时,结论成立;当A>0,B>0时,任给ε>0,则存在分割T ’,T ”, 使得∑'T i i f x △ω<B 2ε,∑''T i i g x △ω<A 2ε. 令T=T ’+T ”,则对[a,b]上T 所属的每一个△i ,有 ωi f ·g =]b ,a [x ,x sup ∈'''|f(x ’)g(x ’)-f(x ”)g(x ”)|≤]b ,a [x ,x sup ∈'''[|g(x ’)|·|f(x ’)-f(x ”)|+|f(x ”)|·|g(x ’)-g(x ”)|]≤B ωi f +A ωi g .又∑⋅Ti g f i x △ω≤B ∑Ti f i x △ω+A ∑Ti g i x △ω≤B ∑'T i f i x △ω+A ∑''T i g i x △ω<B ·B 2ε+A ·A2ε=ε. ∴f ·g 在[a,b]上可积.注:一般情形下,⎰ba f(x )g(x )dx ≠⎰b af(x )dx ·⎰bag(x )dx.性质4:f 在[a,b]上可积的充要条件是:任给c ∈(a,b),f 在[a,c]与[c,b]上都可积. 此时又有等式:⎰ba f(x )dx=⎰c a f(x )dx+⎰bc f(x )dx. 证:[充分性]∵f 在[a,c]与[c,b]上都可积.∴任给ε>0,分别存在对[a,c]与[c,b]的分割T ’,T ”,使得∑'''T i i x △ω<2ε,∑''''''T i i x △ω<2ε. 令[a,b]上的分割T=T ’+T ”,则有∑Tiix△ω=∑'''Tiix△ω+∑''''''Tiix△ω<2ε+2ε=ε,∴f在[a,b]上可积.[必要性]∵f在[a,b]上可积,∴任给ε>0,存在[a,b]上的某分割T,使∑Tiix△ω<ε. 在T上增加分点c,得分割T⁰,有∑︒︒︒Tiix△ω≤∑Tiix△ω<ε.分割T⁰在[a,c]和[c,b]上的部分,分别构成它们的分割T’和T”,则有∑'' 'Tiix△ω≤∑︒︒︒Tiix△ω<ε,∑''''''Tiix△ω≤∑︒︒︒Tiix△ω<ε,∴f在[a,c]与[c,b]上都可积.又有∑︒︒︒Tiix)△f(ξ=∑'''Tiix)△ξf(+∑''''''Tiix)△ξf(,当║T⁰║→0时,同时有║T’║→0,║T”║→0,对上式取极限,得⎰b a f(x)dx=⎰c a f(x)dx+⎰b c f(x)dx. (关于积分区间的可加性)规定1:当a=b时,⎰baf(x)dx=0;规定2:当a>b时,⎰baf(x)dx=-⎰a b f(x)dx;以上规定,使公式⎰baf(x)dx=⎰c a f(x)dx+⎰b c f(x)dx对于a,b,c的任何大小顺都能成立.性质5:设f在[a,b]上可积. 若f(x)≥0, x∈[a,b],则⎰baf(x)dx≥0. 证:∵在[a,b]上f(x)≥0,∴f的任一积分和都为非负.又f在[a,b]上可积,∴⎰ba f(x)dx=in1iiTx△)f(ξlim∑=→≥0.推论:(积分不等式性)若f,g在[a,b]上都可积,且f(x)≤g(x), x∈[a,b],则有⎰baf(x)dx≤⎰b a g(x)dx.证:记F(x)=g(x)-f(x)≥0, x ∈[a,b],∵f,g 在[a,b]上都可积,∴F 在[a,b]上也可积.∴⎰b a F(x )dx=⎰b a g(x )dx-⎰b a f(x )dx ≥0,即⎰b a f(x )dx ≤⎰ba g(x )dx.性质5:若f 在[a,b]上可积,则|f|在[a,b]上也可积,且 |⎰b a f(x )dx|≤⎰ba |f(x )|dx.证:∵f 在[a,b]上可积,∴任给ε>0,存在分割T ,使∑Ti i f x △ω<ε,由不等式||f(x 1)|-|f(x 2)||≤|f(x 1)-f(x 2)|可得i ||f ω≤i f ω, ∴∑Ti i ||f x △ω≤∑Ti i f x △ω<ε,∴|f|在[a,b]上可积.又-|f(x)|≤f(x)≤|f(x)|,∴|⎰b a f(x )dx|≤⎰ba |f(x )|dx.例1:求⎰11-f(x )dx ,其中f(x)= ⎩⎨⎧<≤<≤.1x 0 ,e ,0x 1-1-2x x-, 解:⎰11-f(x )dx=⎰01-f(x )dx+⎰10f(x )dx=(x 2-x)01-+(-e -x )10=-2-e -1+1=-e -1-1.例2:证明:若f 在[a,b]上连续,且f(x)≥0,⎰ba f(x )dx =0,则 f(x)≡0, x ∈[a,b].证:若有x 0∈[a,b], 使f(x 0)>0,则由连续函数的局部保号性, 存在的x 0某邻域U(x 0,δ)(当x 0=a 或x 0=b 时,则为右邻域或左邻域), 使f(x)≥21f(x 0)>0,从而有⎰baf(x )dx =⎰δ-x a0f(x )dx+⎰+δx δ-x 00f(x)dx+⎰+bδx 0f(x)dx ≥0+⎰+δx δ-x 0002)f(x dx+0=δf(x 0)>0, 与⎰ba f(x )dx =0矛盾,∴f(x)≡0, x ∈[a,b].二、积分中值定理定理:(积分第一中值定理)若f 在[a,b]上连续,则至少存在一点 ξ∈[a,b],使得⎰ba f(x )dx =f(ξ)(b-a).证:∵f 在[a,b]上连续,∴存在最大值M 和最小值m ,由 m ≤f(x)≤M, x ∈[a,b],得m(b-a)≤⎰ba f(x )dx ≤M(b-a),即m ≤⎰baf(x)a -b 1dx ≤M. 又由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=⎰baf(x)a -b 1dx ,即⎰b a f(x )dx =f(ξ)(b-a).积分第一中值定理的几何意义:(如图)若f 在[a,b]上非负连续,则y=f(x)在[a,b]上的曲边梯形面积等于以f(ξ)为高,[a,b]为底的矩形面积.⎰ba f(x)a-b 1dx 可理解为f(x)在[a,b]上所有函数值的平均值.例3:试求f(x)=sinx 在[0,π]上的平均值. 解:所求平均值f(ξ)=⎰π0f(x)π1dx=π1(-cosx)π0|=π2.定理:(推广的积分第一中值定理)若f 与g 在[a,b]上连续,且g(x)在[a,b]上不变号,则至少存在一点ξ∈[a,b],使得g(x )f(x )ba⎰dx =f(ξ)⎰bag(x )dx.证:不妨设g(x)≥0, x ∈[a,b],M,m 分别为f 在[a,b]上的最大,最小值. 则有mg(x)≤f(x)g(x)≤Mg(x), x ∈[a,b],由定积分的不等式性质,有 m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰b a g(x )dx. 若⎰ba g(x )dx=0,结论成立.若⎰bag(x )dx>0,则有m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=dxg(x )g(x )dxf(x )b aba⎰⎰,即g(x )f(x )b a ⎰dx =f(ξ)⎰ba g(x )dx.习题1、证明:若f 与g 在[a,b]上可积,则i n1i i i 0T x △))g(ηf(ξlim ∑=→=⎰⋅ba g f , 其中ξi , ηi 是△i 内的任意两点. T={△i }, i=1,2,…,n.证:f 与g 在[a,b]上都可积,从而都有界,且fg 在[a,b]上可积. 设|f(x)|<M, x ∈[a,b],则对[a,b]上任意分割T ,有in 1i iix △))g(ηf(ξ∑==in1i iiiix△)]g(ξ-)g(η))[g(ξf(ξ∑=+=i n1i i i x △))g(ξf(ξ∑=+i g in1i i x △ω)f(ξ∑=≤i n1i i i x △))g(ξf(ξ∑=+M i n1i g i x △ω∑=.∴|i n 1i i i x △))g(ηf(ξ∑=-i n 1i i i x △))g(ξf(ξ∑=|≤M i n1i g i x △ω∑=.∴|i n 1i i i 0T x △))g(ηf(ξlim ∑=→-i n 1i i i 0T x △))g(ξf(ξlim ∑=→|≤0T lim →M i n1i g i x △ω∑==0 ∴i n 1i i i 0T x △))g(ηf(ξlim ∑=→=i n1i i i 0T x △))g(ξf(ξlim ∑=→=⎰⋅ba g f .2、不求出定积分的值,比较下列各对定积分的大小.(1)⎰10x dx 与⎰102x dx ;(2)⎰2π0x dx 与⎰2π0sinx dx.解:(1)∵x>x 2, x ∈(0,1),∴⎰10x dx>⎰102x dx.(2)∵x>sinx, x ∈(0,2π],∴⎰2π0x dx>⎰2π0sinx dx.3、证明下列不等式:(1)2π<⎰2π02x sin 21-1dx <2π;(2)1<⎰10x 2e dx<e ;(3)1<⎰2π0x sinx dx<2π;(4)3e <⎰4e e xlnx dx<6. 证:(1)∵1<x sin 21-112<21-11=2, x ∈(0,2π);∴⎰2π0dx <⎰2π02x sin 21-1dx <⎰2π02dx ,又⎰2π0dx =2π;⎰2π02dx=2π; ∴2π<⎰2π2x sin 21-1dx<2π.(2)∵1<2x e <e, x ∈(0,1);∴1=⎰10dx <⎰10x 2e dx<⎰10edx =e.(3)∵π2<x sinx <1,x ∈(0,2π);∴1=⎰2π0dx π2<⎰10x2e dx<⎰2π0dx =2π.(4)令'⎪⎭⎫ ⎝⎛x lnx =x 2lnx -2=0,得x lnx 在[e,4e]上的驻点x=e 2,又e x x lnx ==e 1,e 4x x lnx ==e 2ln4e ,∴在[e,4e]上e 1<x lnx <22elne =e 2;∴3e =⎰4eee1dx <⎰4eexlnx dx<⎰4eee2dx =6.4、设f 在[a,b]上连续,且f(x)不恒等于0. 证明:⎰ba 2[f(x )]dx>0. 证:∵f(x)不恒等于0;∴必有x 0∈[a,b],使f(x 0)≠0. 又由f 在[a,b]上连续,必有x ∈(x 0-δ, x 0+δ),使f(x)≠0,则⎰+δx δ-x 200f >0,∴⎰ba 2[f(x )]dx=⎰δ-x a20f +⎰+δx δ-x 200f +⎰+b δx 20f =⎰+δx δ-x 200f +0>0.注:当x 0为a 或b 时,取单侧邻域.5、若f 与g 都在[a,b]上可积,证明:M(x)=b][a,x max ∈{f(x),g(x)},m(x)=b][a,x min ∈{f(x),g(x)}在[a,b]上也都可积.证:M(x)=21(f(x)+g(x)+|f(x)-g(x)|);m(x)=21(f(x)+g(x)-|f(x)-g(x)|). ∵f 与g 在[a,b]上都可积,根据可积函数的和、差仍可积,得证.6、试求心形线r=a(1+cos θ), 0≤θ≤2π上各点极径的平均值.解:所求平均值为:f(ξ)=⎰2π0a 2π1(1+cos θ)d θ=2πa(θ+sin θ)2π=a.7、设f 在[a,b]上可积,且在[a,b]上满足|f(x)|≥m>0. 证明:f1在[a,b]上也可积. 证:∵f 在[a,b]上可积,∴任给ε>0,有∑Ti i x △ω<m 2ε.任取x ’,x ”∈△i ,则)x f(1''-)x f(1'=)x )f(x f()x f(-)x f(''''''≤2i mω.设f1在△i 上的振幅为ωi -,则ωi -≤2imω. ∴∑Ti -i x △ω≤∑Ti i 2x △ωm 1<2m1·m 2ε=ε,∴f 1在[a,b]上也可积.8、证明积分第一中值定理(包括定理和中的中值点ξ∈(a,b). 证:设f 在[a,b]的最大值f(x M )=M, 最小值为f(x m )=m , (1)对定理:当m=M 时,有f(x)≡m, x ∈[a,b],则ξ∈[a,b]. 当m<M 时,若m(b-a)=⎰b a f(x )dx ,则⎰ba m]-[f(x )dx=0,即f(x)=m , 而f(x)≥m ,∴必有f(x)≡m ,矛盾. ∴⎰ba f(x )dx >m(b-a). 同理可证:⎰ba f(x )dx <M(b-a).(2)对定理:不失一般性,设g(x)≥0, x ∈[a,b]. 当m=M 或g(x)≡0, x ∈[a,b]时,则ξ∈[a,b].当m<M 且g(x)>0, x ∈[a,b]时,若M ⎰ba g dx-⎰ba fg dx=⎰ba f)g -(M dx=0, 由(M-f)g ≥0,得(M-f)g=0. 又g(x)>0,∴f(x)≡M ,矛盾. ∴⎰ba fg dx <M ⎰ba g dx. 同理可证:⎰ba fg dx>m ⎰ba g dx. ∴不论对定理还是定理,都有ξ≠x M 且ξ≠x m .由连续函数介值定理,知ξ∈(x m ,x M )⊂(a,b)或ξ∈(x M ,x m )⊂(a,b),得证.9、证明:若f 与g 都在[a,b]上可积,且g(x)在[a,b]上不变号,M,m 分别为f(x)在[a,b]上的上、下确界,则必存在某实数μ∈[m,M],使得g(x )f(x )ba⎰dx =μ⎰bag(x )dx.证:当g(x)≡0, x ∈[a,b]时,g(x )f(x )ba ⎰dx =μ⎰bag(x )dx=0.当g(x)≠0时,不妨设g(x)>0,∵m ≤f(x)≤M, x ∈[a,b], ∴m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰bag(x )dx ,即m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.∴必存在μ∈[m,M],使g(x )f(x )b a ⎰dx =μ⎰ba g(x )dx.10、证明:若f 在[a,b]上连续,且⎰b a f(x )dx=⎰ba x f(x )dx=0,则在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0. 又若⎰ba 2f(x )x dx=0,则f 在(a,b)内是否至少有三个零点证:由⎰ba f =0知,f 在(a,b)内存在零点,设f 在(a,b)内只有一个零点f(x 1), 则由⎰ba f =⎰1x a f +⎰b x 1f 可得:⎰1x a f =-⎰bx 1f ≠0. 又f 在[a,x 1]与[x 1,b]不变号,∴⎰ba x f =⎰1x a x f +⎰b x 1xf =ξ1⎰1x a f +ξ2⎰b x 1f =(ξ2-ξ1)⎰bx 1f ≠0, (a<ξ1<x 1<ξ2<b),矛盾.∴f 在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0.记函数g=xf(x),则g 在[a,b]上连续,且⎰b a g(x )dx=⎰ba x f(x )dx=0, 又⎰ba x g(x )dx=⎰ba 2f(x )x dx=0,即有⎰b a g(x )dx=⎰ba x g(x )dx=0,∴g=xf(x)在(a,b)内至少存在两个零点,若f 在(a,b)内至少存在三个零点f(x 1)=f(x 2)=f(x 3)=0,则 g(x 1)=x 1f(x 1)=g(x 2)=x 2f(x 2)=g(x 3)=x 3f(x 3)=0,即g=xf(x)在(a,b)内至少存在三个零点g(x 1)=g(x 2)=g(x 3)=0,矛盾, ∴f 在[a,b]上连续,且⎰ba f(x )dx=⎰b a x f(x )dx=⎰ba 2f(x )x dx=0,则 f 在(a,b)内至少存在两个零点.11、设f 在[a,b]上二阶可导,且f ”(x)>0. 证明:(1)f ⎪⎭⎫⎝⎛+2b a ≤⎰-b a f(x)a b 1dx ; (2)又若f(x)≤0, x ∈[a,b],则有f(x)≥⎰-baf(x)a b 2dx, x ∈[a,b].证:(1)令x=a+λ(b-a), λ∈(0,1),则⎰-baf(x)a b 1dx=⎰+10a)]-λ(b f[a d λ, 同理,令x=b-λ(b-a),也有⎰-ba f(x)ab 1dx=⎰-10a)]-λ(b f[b d λ,则 ⎰-b a f(x)a b 1dx=⎰-++10a)]}-λ(b f[b a)]-λ(b {f[a 21d λ. 又f 在[a,b]上二阶可导,且f ”(x)>0,∴f 在[a,b]上凹,从而有21{f[a+λ(b-a)]+f[b-λ(b-a)]}≥f{21[a+λ(b-a)]+21f[b-λ(b-a)]}=f ⎪⎭⎫ ⎝⎛+2b a . ∴⎰-b a f(x)a b 1dx ≥⎰⎪⎭⎫ ⎝⎛+102b a f d λ=f ⎪⎭⎫⎝⎛+2b a . (2)令x=λb+(1-λ)a ,由f 的凹性得⎰-ba f(x)ab 1dx=⎰+10λ)a]}-f[(1b) {f(λd λ≤⎰+10λ)f(a)]-(1f(b) [λd λ =f(b)1022λ+ f(a)1022λ)-(1-=2f(b)f(a)+. 不妨设f(a)≤f(b),则f(a)≤f(x)≤0, x ∈[a,b],又f(b)≤0, ∴⎰-ba f(x)ab 2dx ≤f(a) +f(b)≤f(x).12、证明:(1)ln(1+n)<1+21+…+n1<1+lnn ;(2)lnnn 1211limn +⋯++∞→=1. 证:(1)对函数f(x)=x1在[1,n+1]上取△i =1作分割,并取△i 的左端点为ξi ,则和数∑=n1i i 1是一个上和,∴⎰+1n 1x 1dx<∑=n 1i i1,即ln(n+1)< 1+21+…+n1;同理,取△i 的右端点为ξi ,则和数∑=+1-n 1i 1i 1是一个下和,∴∑=+1-n 1i 1i 1<⎰n 1x 1dx , 即21+…+n 1<lnn ,∴1+21+…+n1<1+lnn. 得证.(2)由(1)知ln(1+n)<1+21+…+n 1<1+lnn ,∴lnn 1)ln(n +<lnnn 1211+⋯++<1+lnn 1; 又lnn 1)ln(n lim n +∞→=1n n lim n +∞→=1;∞→n lim (1+lnn 1)=1;∴lnnn 1211lim n +⋯++∞→=1.。

中值的定理

中值的定理

中值的定理中值定理是微积分中的一个重要定理,用于描述函数的平均变化率与函数的增减情况之间的关系。

它是由数学家罗尔斯提出的,也被称为罗尔定理。

中值定理是微积分中的一个基本概念和理论工具,常用于证明其他的定理和推导其他的公式。

它的核心思想是在一个区间上存在某个点,使得函数在这个点的瞬时变化率等于平均变化率。

具体而言,中值定理分为洛必达中值定理和拉格朗日中值定理两种形式。

洛必达中值定理是指,如果一个函数在[a,b]上连续,在(a,b)上可导,并且在(a,b)内取得两个不同的值f(a)和f(b),那么在(a,b)内至少存在一点c,使得f'(c)=[f(b)-f(a)]/[b-a]。

这个定理说明了一个函数有两个不同的值,那么它在这个区间内一定存在一个切线。

拉格朗日中值定理是指,如果一个函数在[a,b]上连续,在(a,b)内可导,那么在(a,b)内至少存在一点c,使得f'(c)=[f(b)-f(a)]/[b-a]。

这个定理说明了一个函数在某个区间内的平均变化率等于这个区间内某一点的瞬时变化率。

中值定理的几何意义是,如果一个函数在某个区间内具有连续性和可导性,那么必然存在一条导数对应着该函数在该区间上的切线。

也就是说,函数在某个区间上的平均变化率和瞬时变化率之间存在着一个等价关系。

中值定理在实际问题中有着广泛的应用。

比如,我们可以利用中值定理来证明函数的单调性,寻找函数的最大值和最小值,判断函数的凹凸性,研究函数的增长趋势等。

这些应用都是基于中值定理所提供的函数变化率的信息。

总而言之,中值定理是微积分中重要的概念和定理,它通过平均变化率和瞬时变化率之间的关系,描述了函数在一个区间内存在切线的性质。

它不仅在理论推导中具有重要的作用,也在实际问题的分析和求解中发挥着关键的作用。

因此,中值定理是微积分学习的基础,对于理解函数的变化规律和解决实际问题有着重要的意义。

中值定理是微积分中的基本定理之一,它可以将函数的平均变化率与瞬时变化率联系起来,从而帮助我们更好地理解函数的性质和求解实际问题。

积分中值定理及其应用

积分中值定理及其应用

积分中值定理及其应用学号:*************师范大学学士学位论文题目积分中值定理及其应用学生&&&&指导教师****** 副教授年级2009级专业数学与应用数学系别数学系学院数学科学学院***师范大学2013年4月学士学位论文题目积分中值定理及其应用学生******指导教师****** 副教授年级2009级专业数学与应用数学专业系别数学系学院数学科学学院***师范大学2013年4月积分中值定理及其应用摘要:本论文主要内容是积分中值定理及其应用,主要从以下几个方面论述:积分中值定理、积分中值定理的推广、积分中值定理中值点ξ的渐进性,积分中值定理的应用.关键词:积分中值定理;推广; 应用一、引言随着科技时代的发展,数学也随之大步前进.其中,微积分的创立,为数学的发展奠定了不可磨灭的基础.积分中值定理是作为微积分中的一个重要性质,而且在数学分析的学习过程占有很重要的地位,对于后续课程的学习也起着较大作用,在此我就把积分中值定理及其应用简单清晰论述一下.通常情况下,积分中值定理包含第一积分中值定理、第二积分中值定理.而在此我们既讨论了在特殊情况下的积分中值定理,即在一个区间上的情形.还讨论了在几何形体上二重、三重积分的情形的积分中值定理.并且这两个定理在各个方面的应用都较为广泛,比如物理学和数学.我们将积分中值定理加以应用,把微积分体系中比较基础的东西找出更为简单的解决方式:数学中一些定理的证明,数学定理、命题,几何应用,含定积分的极限应用,确定积分符号,比较积分大小,证明函数单调性,估计积分值.虽然有时第一积分中值定理在处理一些积分极限问题上显得很繁琐,但是我们任然可以把它当作一个基础定理,解决一些现实问题.本课题的研究过程为:讨论和分析积分中值定理,然后将其加以推广,讨论各个积分中值定理中的中间点的渐进性质,最后论述了积分中值定理在各方面的应用问题.课题研究的主要目标则是通过研究和分析积分中值定理、推广、渐进性,将各方面的应用如:估计积分值,求含有定积分的极限,确定积分号,比较积分大小,证明函数的单调性还有对阿贝尔判别法和狄理克莱判别法这两个定理的证明总结出积分中值定理并把其以论文的形式整理出来.二、 积分中值定理的证明 1、 定积分中值定理引理:假设M 和m 分别为函数()f x 在区间[,]a b 上的最大值和最小值,则有()()(),()bam b a f x dx M b a a b -≤≤-<⎰成立.证明:因为M 和m 分别为函数()f x 在区间[,]a b 上的最大值和最小值,即()m f x M ≤≤,我们对不等式进行积分可得()bb baaamdx f x dx Mdx≤≤⎰⎰⎰,由积分性质可知()()()bam b a f x dx M b a -≤≤-⎰ (1)成立,命题得证.定理1(定积分中值定理):如果函数()f x 在闭区间[,]a b 上连续,则在区间[,]a b 上至少存在一个点ξ,使下式()()(),()baf x dx f b a a b ξξ=-≤≤⎰成立.证明:由于0b a ->,将(1)同时除以b a -可得1()ba m f x dx Mb a ≤≤-⎰.此式表明1()ba f x dxb a -⎰介于函数()f x 的最大值M 和最小值m 之间.由闭区间上连续函数的介值定理,在闭区间[,]a b 上至少存在一点ξ,使得函数()f x 在点ξ处的值与这个数相等,即应该有1()()ba f x dx fb a ξ=-⎰,成立,将上式两端乘以b a -即可得到()()(),()baf x dx f b a a b ξξ=-≤≤⎰,命题得证.备注1:很显然,积分中值定理中公式()()()baf x dx f b a ξ=-⎰(ξ在a 与b 之间)不论a b <或a b >都是成立的.2、 积分第一中值定理定理2(第一积分中值定理):如果函数()f x 在闭区间[,]a b 上连续,()g x 在(,)a b 上不变号,并且()g x 在[,]a b 上是可积的,则在[,]a b 上至少存在一点ξ,使得()()()(),()bbaaf xg x dx f g x dx a b ξξ=≤≤⎰⎰成立.证明:由于()g x 在[,]a b 上不变号,我们不妨假设()0g x ≥,并且记()f x 在[,]a b 上的最大值和最小值为M 和m ,即()m f x M ≤≤,将不等式两边同乘以()g x 可知,此时对于任意的[,]x a b ∈都有()()()()mg x f x g x Mg x ≤≤成立.对上式在[,]a b 上进行积分,可得()()()()b b baaam g x dx f x g x dx M g x dx≤≤⎰⎰⎰.此时在,m M 之间必存在数值μ,使得m M μ≤≤,即有()()()bbaaf xg x dx g x dxμ=⎰⎰成立.由于()f x 在区间[,]a b 上是连续的,则在[,]a b 上必定存在一点ξ,使()f ξμ=成立.此时即可得到()()()()bbaaf xg x dx f g x dxξ=⎰⎰,命题得证.3、 积分第二中值定理定理3(积分第二中值定理):如果函数()f x 在闭区间[,]a b 上可积,而()g x 在区间(,)a b 上单调,则在[,]a b 上至少存在一点ξ,使下式成立()()()()()()bbaaf xg x dx g a f x dx g b f x dxξξ=+⎰⎰⎰ (2)特别地,如果()g x 在区间(,)a b 上单调上升且()0g a ≥ ,那么存在ξ,使下式成立()()()()bbaf xg x dx g b f x dxξ=⎰⎰ (3)如果()g x 在区间(,)a b 上单调下降且()0g b ≥,那么存在ξ,使下式成立()()()()b aaf xg x dx g a f x dxξ=⎰⎰ (4)证明:由题设条件知(),()f x g x 在区间[,]a b 上都是可积的,由积分性质可知()()f x g x ⋅也是可积的.我们先证明(3)式,即在()g x 非负、且在区间(,)a b 上单调上升的情形下加以证明. 对于(4)式证明是类似的,最后我们再将其推导到一般情形,即可证明(2)式.在区间[,]a b 上取一系列分点使011i i n a x x x x x b -=<<<<<<=,记1i i i x x x -∆=-,其中i ω为()g x 在i x ∆上的幅度,即11[][]sup {()}inf {()}i i i i i x x x x g x g x ω----=-,再将所讨论的积分作如下改变:将积分限等分为如下n 等份,并且记11()[()()]ii nx i x i f x g x g x dx ρ-=-=∑⎰,11()()ii nx i x i g x f x dx σ-==∑⎰.则11()()()()ii nbx ax i f x g x dx f x g x dx-==∑⎰⎰1111()()()[()()]i ii i nnx x i i x x i i g x f x dx f x g x g x dx σρ--===+-≡+∑∑⎰⎰,因为()f x 在[,]a b 上可积,且区间[,]a b 是有限的,所以()f x 在[,]a b 上有界,此时我们不妨假设()f x L≤.估计ρ如下:11()[()()]ii nx i x i f x g x g x dxρ-==-∑⎰11()()()ii n x i x i f x g x g x dx-=≤-∑⎰11()()()ii nx i i x i f x g x g x dx-=≤-∑⎰111ii nnx i i ix i i L dx L x ωω-==≤=∆∑∑⎰由于()g x 可积,所以当max 0i x λ=∆→时,有1ni i i x ω=∆→∑,从而有0lim 0λρ→=,从而可知()()lim()lim lim baf xg x dx λλλσρσρ→→→=+=+⎰11lim lim ()()ii nx i x i g x f x dxλλσ-→→===∑⎰我们记()()bxF x f x dx=⎰,由于函数()f x 在闭区间[,]a b 上可积,那么函数()F x 是[,]a b 上的连续函数,并且有最大值和最小值M 和m ,记为()i m F x M ≤≤,很显然11()()()ii x i i x f x dx F x F x --=-⎰,0()()0F x F b ==,从而11()()ii nx i x i g x f x dxσ-==∑⎰[]11()()()ni i i i g x F x F x -==-∑111()()()()nni i i i i i g x F x g x F x -===-∑∑110121()()()()()()nn i i i i i i g x F x g x F x g x F x --===+-∑∑11011()()[()()]()n i i i i g x F x g x g x F x -+==+-∑因为()g x 是非负的,并且在区间(,)a b 上单调上升,即有10()()()0g x g x g a ≥=≥、1()()0i i g x g x +-≥成立,所以有下式成立()()11111111{()()()}{()()()}n n i i i i i i m g x g x g x M g x g x g x σ--++==+-≤≤+-∑∑.即有()()mg b Mg b σ≤≤成立.从而可以得到lim ()g b σμ=,其中μ满足m M μ<<.由于函数()F x 连续,则在[,]a b 之间存在一点ξ,使()()bF f x dxξμξ==⎰成立,从而有公式(2-3)成立,即()()()()bbaf xg x dx g b f x dxξ=⎰⎰成立,(3)式得证.对于()g x 单调下降且()0g b ≥的情形即公式(4)的证明过程是类似的,证明略.对于()g x 是一般单调上升情形,我们作辅助函数()()()x g x g a ψ=-,其中ψ为单调上升且()0a ψ≥,此时公式(3)对于()x ψ是成立的,即存在ξ使[][]()()()()()()bbaf xg x g a dx g b g a f x dxξ-=-⎰⎰成立,这就证明了公式(2)()()()()()()b baaf xg x dx g a f x dx g b f x dxξξ=+⎰⎰⎰.对于()g x 是一般单调下降的情形,此时应用公式(4),同样可得到(2)式,此命题得证.三、 积分中值定理的推广 1、定积分中值定理的推广定理7(推广的定积分中值定理) :如果函数()f x 在闭区间[,]a b 连续,则在开区间(,)a b 至少存在一个点ξ,使得下式()()(),()baf x dx f b a a b ξξ=-<<⎰成立.证明:作辅助函数()F x 如下:()(),[,]xaF x f t dt x a b =∈⎰.由于()f x 在闭区间[,]a b 连续,则()F x 在[,]a b 上可微,且有()()F x f x '=成立.由微分中值定理可知:至少存在一点(,)a b ξ∈,使得()()()()F b F a F b a ξ'-=-成立.并且有()()baF b f t dt=⎰,()0F a =,此时即可得到下式()()(),(,)baf t dt f b a a b ξξ=-∈⎰,命题得证.2、定积分第一中值定理的推广定理8(推广的定积分第一中值定理): 若函数()f x 是闭区间[,]a b 上可积函数,()g x 在[,]a b 上可积且不变号,则在开区间(,)a b 上至少存在一点ξ,使得()()()(),(,)bbaaf xg x dx f g x dx a b ξξ=∈⎰⎰成立.证法1:由于函数()f x 在闭区间[,]a b 上是可积的,()g x 在[,]a b 上可积且不变号,令()()()xaF x f t g t dt=⎰,()()xaG x g t dt=⎰,很显然(),()F x G x 在[,]a b 上连续.并且()0,()()()baF a F b f t g t dt==⎰,()0,()()b aG a G b g t dt==⎰,()()()F f g ξξξ'=,()()G g ξξ'= .由柯西中值定理即可得到()()(),(,)()()()F b F a F a b G b G a G ξξξ'-=∈'-,即()()()()()()babaf tg t dtf g g g t dtξξξ=⎰⎰,()()()(),(,)bbaaf tg t dt f g t dt a b ξξ=∈⎰⎰,命题得证.证法2:由于函数()g x 在[,]a b 上可积且不变号,我们不妨假设()0g x ≥.而函数()f x 在闭区间[,]a b 上可积,我们令{}inf ()|[,]m f x x a b =∈,{}sup ()|[,]M f x x a b =∈.假设()F x 是()f x 在闭区间[,]a b 上的一个原函数,即()(),[,]F x f x x a b '=∈.此时我们有下式成立()()()()bbb aaam g x dx f x g x dx M g x dx≤≤⎰⎰⎰(1)由于()0g x ≥,则有()0bag x dx ≥⎰,以下我们分两种情形来进行讨论:[1]如果()0bag x dx =⎰,由(3-1)式可知()()0baf xg x dx =⎰,则此时对于(,)a b ξ∀∈有()()0()()bbaaf xg x dx f g x dxξ==⎰⎰成立.[2]如果()0b ag x dx >⎰,将(3-1)式除以()bag x dx⎰可得()()()babaf xg x dxm Mg x dx≤≤⎰⎰,(2)我们记()()()babaf xg x dxg x dxμ=⎰⎰,(3)此时我们又分两种情形继续进行讨论:i 如果(2)式中的等号不成立,即有()()()babaf xg x dxm Mg x dx<<⎰⎰成立,则此时存在m M μ<<,使得12(),()m f x f x M μμ<≤<≤,我们不妨假设12x x <,其中12,[,]x x a b ∈.因为()()F x f x '=,[,]x a b ∈,则有1122()()()()F x f x f x F x μ''=<<=.此时至少存在一点12(,)x x ξ∈,使得()()F f ξξμ'==,即有12()()()(),(,)[,]bbaaf xg x dx f g x dx x x a b ξξ=⋅∈∈⎰⎰成立,从而结论成立.ii 如果(2)式中仅有一个等号成立,不妨假设M μ=,因为()0ba g x dx >⎰,此时必存在11[,](,)a b a b ∈(其中11a b <),使得11[,]x a b ∀∈,恒有()0g x >成立,我们则可将(3)式可改写为()()()b baag x dx f x g x dxμ⋅=⎰⎰,因为M μ=,则有[()]()0baM f x g x dx -=⎰(4)又注意到[()]()0M f x g x -≥,必有110[()]()[()]0b ba aM f x g x dx M f x dx ≤-≤-=⎰⎰.于是11[()]()0b a M f x g x dx -=⎰(5)下证必存在11[,](,)a b a b ξ∈⊂,使()f M ξμ==.若不然,则在11[,]a b 上恒有()0M f x ->及()0g x >成立,从而[()]()0M f x g x ->.如果11[()]()0b a M f x g x dx -=⎰,由达布定理在11[,]a b 上有[()]()0M f x g x -,这与[()]()0M f x g x ->矛盾.如果11[()]()0b a M f x g x dx ->⎰,这与(5)式矛盾.所以存在[,]a b ξ∈,使()()()(),(,)bbaaf xg x dx f g x dx a b ξξ=∈⎰⎰,定理证毕.3、 推广定积分第二中值定理定理9(推广定积分第二中值定理): 如果函数()f x 在闭区间[,]a b 可积,()g x 在区间[,]a b 上可积且不变号,则在(,)a b 上必存在一点ξ,使得()()()()()(),(,)bc baacf xg x dx g a f x dx g b f x dx a b ξ=+∈⎰⎰⎰成立.证明过程详见参考文献[9].4、 第一曲线积分中值定理定理10(第一型曲线积分中值定理): 如果函数(,)f x y 在光滑有界闭曲线C 上连续,则在曲线C 上至少存在一点(,)ξη,使(,)(,)Cf x y ds f Sξη=⎰成立,其中S 为曲线C 的弧长.证明:因为函数(,)f x y 在光滑有界闭曲线C 上连续,所以存在,m M R ∈,其中(,)m f x y M ≤≤,对不等式在闭曲线C 上进行第一类曲线积分可得(,)CCCm ds f x y ds M ds⋅≤≤⋅⎰⎰⎰,其中Cds⎰为曲线C 的弧长,并且Cds S=⎰,由于0S >,将上式同除以常数S ,即可得到1(,)C m f x y ds M S ≤≤⎰,由于函数(,)f x y 在曲线C 上连续,故由闭区间上连续函数的介值定理,在曲线C 上至少存在一点(,)ξη,使1(,)(,)C f f x y ds S ξη=⎰成立,左右两边同除以常数S ,即可得到结论,从而命题得证.5、 第二曲线积分中值定理定理11(第二型曲线积分中值定理):如果函数(,)f x y 在光滑有向曲线C 上连续,则在曲线C 上至少存在一点(,)ξη,使得(,)(,)Cf x y dx f Iξη=±⋅⎰成立.其中I 为光滑有向曲线C 在x 轴正向上的投影,其中符号“±”是由曲线C 的方向确定的.证明:因为函数(,)f x y 在有界闭曲线C 上连续,所以存在,m M R ∈,其中(,)m f x y M ≤≤,对上式进行第二型曲线积分可得(,)cCcm dx f x y dx M dx≤≤⎰⎰⎰(6)其中cdx ⎰为有向光滑曲线C 在x 轴上的投影,此时我们不妨记cdx I =±⎰,并且分以下两种情况进行讨论:[1]假设cdx I =⎰,将(3-6)式除以I 可得1(,)C m f x y dx M I ≤≤⎰.因为(,)f x y 在C 上连续,故由介值定理,则在曲线C 上至少存在一点(,)ξη,使1(,)(,)C f x y dx f I ξη=⎰成立,即有(,)(,)Cf x y dx f Iξη=⋅⎰成立.[2]同理当cdx I =-⎰,式左右两边同时除以I -可得1(,)C M f x y dx m I -≤-≤-⎰,因为(,)f x y 在C 上连续,故由介值定理,则在曲线C 上至少存在一点(,)ξη,使1(,)(,)C f x y dx f I ξη-=⎰ 成立,即有(,)(,)Cf x y dx f Iξη=-⋅⎰成立,由上面证明过程可得(,)(,)Cf x y dx f Iξη=±⋅⎰,命题得证.6、 第一曲面积分中值定理定理12(第一型曲面积分中值定理):设D 为xoy 平面上的有界闭区域,其中(,)z z x y =为光滑曲面S ,并且函数(,,)f x y z 在S 上连续,则在曲面S 上至少存在一点(,,)ξηζ,使(,,)(,,)Sf x y z d f Aσξηζ=⋅⎰⎰成立,其中A 是曲面S 的面积.证明:因为(,,)f x y z 在曲面S 上连续,所以存在,m M R ∈且使得(,,)m f x y z M ≤≤成立,我们对上式在S 上进行第一类曲面积分可得(,,)SSSm d f x y z d M d σσσ⋅≤≤⎰⎰⎰⎰⎰⎰,其中Sd σ⎰⎰为曲面的面积,且Sd Aσ=⎰⎰,因为0A ≠,两边同除以A 有1(,,)Sm f x y z d M A σ≤≤⎰⎰,由于(,,)f x y z 在曲面S 上连续,故由介值定理,在曲面S 上至少存在一点(,,)ξηζ,使1(,,)(,,)Sf f x y z d A ξηζσ=⎰⎰,成立,两边同时乘以A 可得(,,)(,,)Sf x y z d f Aσξηζ=⋅⎰⎰,命题得证.7、 第二曲面积分中值定理定理13(第二型曲面积分中值定理):若有光滑曲面:(,),(,)xyS z x y x y D ∈,其中xyD 是有界闭区域,函数(,,)f x y z 在S 上连续,由此在曲面S 上至少存在一点(,,)ξηζ,使(,,)(,,)Sf x y z dxdy f Aξηζ=±⋅⎰成立,其中A 是S 的投影xyD 的面积.证明:因为函数(,,)f x y z 在曲面S 上连续,所以存在,m M R ∈使得(,,)m f x y z M ≤≤,对上式在曲面S 上进行第二类曲面积分可得(,,)SSSm dxdy f x y z dxdy M dxdy⋅≤≤⎰⎰⎰⎰⎰⎰,其中Sdxdy⎰⎰为(,,)f x y z 投影在曲面xy D上的面积,并且我们记Sdxdy A=±⎰⎰.[1]若Sdxdy A=⎰⎰,则上式除以A 有1(,,)Sm f x y z dxdy M A ≤≤⎰⎰,由于(,,)f x y z 在曲面S 上连续,故由介值定理,在曲面S 上至少存在一点(,,)ξηζ,使1(,,)(,,)S f f x y z dxdy A ξηζ=⎰⎰,两边同时乘以A 有(,,)(,,)Sf x y z dxdy Af ξηζ=⎰⎰,[2]同理,若Sdxdy A=-⎰⎰,则上式除以A -有1(,,)SM f x y z dxdy m A -≤-≤-⎰⎰,由于(,,)f x y z 在曲面S 上连续,故由介值定理,在曲面S 上至少存在一点(,,)ξηζ,使1(,,)(,,)S f f x y z dxdy A ξηζ=-⎰⎰,两边同时乘以A -有(,,)(,,)SAf f x y z dxdyξηζ-=⎰⎰.由以上证明过程可得(,,)(,,)Sf x y z dxdy f Aξηζ=±⋅⎰,从而结论成立.四、 第一积分中值定理中值点的渐进性定理14 :假设函数()f x 在[,]a b 上n 阶可导,其中()f x 在a 点的直到1n -阶右导数为0,而n 不为0,即(1)()()()0n f a f a f a -+++'''====,()()0n f a +≠,并且有()()n f x 在a 点连续;函数()g x 在[,]a b 可积且不变号,并且对于充分小的0()a b δδ>+<, ()g x 在[,]a a δ+上连续,且()0g a ≠,则第一积分中值定理中的中值点ξ满足lim(,)x a ax a b x aξ→+-=∈-.证明:对任意(,)x a b ∈,我们做一个辅助函数()F x 如下:1()()()()()()xxaan f t g t dt f a g t dtF x x a +-=-⎰⎰一方面,当0x a →+时,分子分母同时趋于零,满足洛比达法则条件,由洛比达法则()()()()lim ()lim(1)()nx a x a f x g x f a g x F x n x a →+→+-=+-()()()lim ()1n x a f x f a g x x a n →+-=-+001()()lim ()lim1()n x a x a f x f a g x n x a →+→+-=⋅⋅+-由积分中值定理和洛比达法则可以得到()0()()()lim ()!n n x a f a f x f a x a n +→+-=-,从而()0()()lim ()(1)!n x a g a f a F x n +→+=+. (1)且有()0()()()lim ,()()!n n x a f a f f a a x a n ξξξ+→+-=<<-成立.另一方面,由积分中值定理和洛比达法则可得1()()()()lim ()lim()x xaan x a x a f g t dt f a g t dtF x x a ξ+→+→+-=-⎰⎰=0()()()lim ()xna n x a g t dt f f a a a x a x a ξξξ→+⎡⎤--⎛⎫⎢⎥⋅⋅ ⎪⎢⎥---⎝⎭⎢⎥⎣⎦⎰ 000()()()lim lim lim ()a na n x a x a g t dtf f a a a x a δδξξξδ+→+→+→+--⎛⎫=⋅⋅ ⎪--⎝⎭⎰由洛比达法则,则有()lim()a ag t dtg a δδδ+→+=⎰,因此可得()0()()lim ,()!nn x a f a g a a a x n x a ξξ+→+-⎛⎫=⋅<< ⎪-⎝⎭. (2)比较(4-1)式与(4-2)式可以得到lim(,)x a ax a b x aξ→+-=∈-.定理15:假设函数()f x 在[,]a b 上连续,()f a +'存在并且有()0f a +'≠,()[,]g x a b 在上有m 阶导数,有(1)()()()()0m g a g a g a g a -+++'''=====, ()()0m g a +≠成立,并且()()m g x 在a 点连续,()g x 不变号,则第一积分中值定理中的点ξ满足1lim,(,)2x a am x a b x am ξ→+-+=∈-+.证明:对任意的(,)x a b ∈,构造辅助函数()H x 如下2()()()()()()xxaam f t g t dt f a g t dtH x x a +-=-⎰⎰ .一方面,当0x a →+时,分子分母同时趋于零,满足洛比达法则条件,由洛比达法则,有10()()()()lim ()lim (2)()m x a x a f x g x f a g x H x m x a +→+→+-=+-=()()()1lim()2m x a f x f a g x x a x a m →+-⋅⋅--+由于0x a →+,则0()()lim()x a f x f a f a x a +→+-'=-,且函数()[,]g x a b 在上有m 阶导数,则上式等于()0()1()1()lim ()2()2!m m x a g x g x f a f a m x a m m +++→+''⋅⋅=⋅⋅+-+(3)另一方面,由积分中值定理()()()()xxaaf tg t dt f g t dtξ=⎰⎰.则2[()()]()lim ()lim()()xam x a x a f f a g t dtH x a x x a ξξ+→+→+-⋅=<<-⎰=10()[()()]lim ()xa m x a g t dt f f a a a x a x a ξξξ+→+--⋅⋅---⎰=1000()[()()]lim lim lim ()xam x a x a x a g t dt f f a a a x a x a ξξξ+→+→+→+--⋅⋅---⎰对()H x 使用洛比达法则可得=()0()()lim(1)!m x a g a a f a m x a ξ++→+-'⋅⋅+-(4) 比较(3),(4)式我们可以得到1lim,(,)2x a am x a b x am ξ→+-+=∈-+.定理16:设函数()f x 在[,]a b 上n 阶可导,(1)()()()0n f a f a f a -+++'''====,()()0n f x ≠,()()n f x 在a点连续;函数()[,]g x a b 在上有m阶导数,且(1)()()()()0m g a g a g a g a -+++'''=====,()()0m g a ≠,并且()()m g x 在a 点连续,()g x 不变号,则第一积分中值定理中的ξ满足lim(,)x a ax a b x aξ→+-=∈-.证明:对任意的(,)x a b ∈,我们构造辅助函数()L x 如下1()()()()()()xxaam n f t g t dt f a g t dtL x x a ++-=-⎰⎰一方面,由于0x a →+时,分子分母同时趋于零,满足洛比达法则条件,由洛比达法则,有()()()()lim ()lim (1)()m n x a x a f x g x f a g x L x m n x a +→+→+-=++-=()()()1lim()()1n m x a f x f a g x x a x a m n →+-⋅⋅--++001()()()lim lim1()()nm x a x a f x f a g x m n x a x a →+→+-=⋅⋅++--由于函数()f x 在[,]a b 上n 阶可导,且函数()g x 在[,]a b 上m 阶可导,则上式等于()()()()11!!n m f a g x m n n m ++=⋅⋅++ (5)另一方面,由积分中值定理()()()()xxaaf tg t dt f g t dtξ=⎰⎰.则1[()()]()lim ()lim()()xa m n x a x a f f a g t dtL x a x x a ξξ++→+→+-⋅=<<-⎰=10()[()()]()lim ()()()xna n m m x a g t dt f f a a a x a x a ξξξ+→+--⋅⋅---⎰=1000()[()()]()lim lim lim ()()()xnan m m x a x a x a g t dt f f a a a x a x a ξξξ+→+→+→+--⋅⋅---⎰对()L x 使用洛比达法则可得()()0()()lim ,()!(1)!nn m x a f a g a a a x n x a m ξξ++→+-⎛⎫=⋅⋅<< ⎪-+⎝⎭ (6)比较(5)、(6)式我们可以得到0lim(,)x a ax a b x aξ→+-=∈-.五、 第二积分中值定理中值点的渐进性定理17 :假设函数()[,]f x a b 在上单调,并且在a 点的右导数存在,且有(0)0f a '+≠;()g x 在[,]a b 上可积,在a 点的右极限存在,且(0)0g a +≠.则第二积分中值定理中的ξ满足01lim,(,)2x a ax a b x a ξ→+-=∈-.证明:对于任意的(,)x a b ∈,构造辅助函数()F x 如下2()()()()()()xxaaf tg t dt f a g t dtF x x a -=-⎰⎰.一方面,当0x a →+时,分子分母同时趋于零,满足洛比达法则条件,由洛比达法则可得()()()()lim ()lim2()x a x a f x g x f a g x F x x a →+→+-=-001()()1lim lim ()(0)(0)02()2x a x a f x f a g x f a g a x a →+→+-'==++≠-(1)另一方面,由第二积分中值定理,有2()()()()()()lim ()lim()x xaax a x a f a g t dt f x g t dt f a g t dtF x x a ξξ→+→++-=-⎰⎰⎰20()()()()()()()lim()x xa a a a x a f a g t dt f x g t dt g t dt f a g t dtx a ξξ→+⎡⎤+--⎢⎥⎣⎦=-⎰⎰⎰⎰[][]2()()()()()()lim()x aax a f x f a g t dt f x f a g t dtx a ξ→+---=-⎰⎰00()()()()lim lim x aa x a x a g t dt g t dt f x f a x a x aξ→+→+⎡⎤--⎢⎥=⎢⎥--⎢⎥⎣⎦⎰⎰ 00()()()()lim lim x a a x a x a g t dt g t dt f x f a a x a x a a x a ξξξ→+→+⎡⎤--⎢⎥=-⋅⎢⎥----⎢⎥⎣⎦⎰⎰0(0)(0)(0)limx a a f a g a g a x a ξ→+-⎡⎤'=++-+⎢⎥-⎣⎦ 0(0)(0)1limx a a f a g a x a ξ→+-⎡⎤'=++-⎢⎥-⎣⎦(5-2)比较(5-1)、(5-2)式知011lim2x a ax aξ→+--=-,即可得到01lim 2x a a x a ξ→+-=-. 将此定理推广,即可得到以下定理定理18:假设函数()f x 在[,]a b 上单调,在[,]a b 内有直到n 阶导数,()()n f x 在a 点连续,()f x 在a 点的右导数满足(1)(0)(0)(0)0n f a f a f a -'''+=+==+=,()(0)0;n f a +≠()g x 在[,]a b 上可积,在a 点的右极限存在,且(0)0g a '+≠,则第二积分中值定理中的ξ满足lim,(,)1x a anx a b x an ξ→+-=∈-+.定理19:假设函数()f x 在[,]a b 上单调,函数()f x 在a 点的右导数存在,并且有(0)0f a '+≠;()g x 在[,]a b 上存在直到m 阶导数,且有()()m g x 在a 点连续,并且满足(1)()(0)(0)0m g a g a g a -'=+==+=,()(0)0m g a +≠,则第二积分中值定理中的点ξ满足lim(,)x a ax a b x aξ→+-=∈-.定理20:假设函数()f x 在[,]a b 上单调,在[,]a b 上有直到n 阶的导数,()()n f x 在a 点连续,并且在a 点的右导数满足(1)(0)(0)(0)0n f a f a f a -'''+=+==+=,()(0)0n f a +≠;()g x 在[,]a b上存在直到m 阶导数,()()m g x 在a 点连续,且满足(1)()(0)(0)0m g a g a g a -'=+==+=,()(0)0m g a +≠,则第二积分中值定理中的点ξ满足0lim(,)x a ax a b x aξ→+-=∈-.6 积分中值定理的应用 6.1 估计积分值例1 估计2010.5sin xdxx +⎰的积分解:由于11110.510.5sin 10.5x ≤≤++-,即212310.5sin x ≤≤+.于是2044310.5sin x dx x ππ≤≤+⎰此时可得到估计的积分值为2084(1)10.5sin 33xdx x ππθθ=±≤+⎰.例2 估计2sin ,(0)bax dx a b <<⎰的积分解:设x =.则2221sin 2bb a a x dx =⎰⎰,其次,假设()sin f t t =和12()t tϕ-=,则()t ϕ单调下降,并且有()0t ϕ>.于是,2222111sin (cos cos )222b a a tdx a a a ξξ==-⎰⎰2211sin sin 22a a a a ξξθ+-==其中22a b ξ≤≤,1θ≤.因此2sin (1)bax dx aθθ=≤⎰.例3 证明等式sin lim 0n pnn xdx x +→∞=⎰.证法1:由第一积分中值定理可知sin sin lim lim 0n pn nn n n xdx p x ξξ+→∞→∞==⎰,其中n ξ位于n 和n p +之间的某个值.证法2:由第二积分中值定理可知得sin 1sin nn pnnx dx xdxx nξ'+=⎰⎰11cos cos 0()nn n n n ξ'=-≤→→∞,其中n ξ位于n 和n p +之间的某个值,于是sin lim 0n p nn xdx x +→∞=⎰.2、求含定积分的极限例4 求极限120lim 1nn x x →∞+⎰解:利用广义积分中值定理1122001lim 11n n n x dx x dxx ξ→∞=++⎰⎰1102211[],(01)11(1)(1)n x n n ξξξ+==≤≤++++则12201lim lim 01(1)(1)n n n x dx x n ξ→∞→∞==+++⎰3、 确定积分号例5确定积分131x x e dx-⎰的符号解:11133333111()()xxxtx x e dx x e dx x e dxx t t e d t x e dx----=+=---+⎰⎰⎰⎰⎰1113333311()txtxx x t e dt x e dx t e dt x e dx x e e dx--=+=-+=+⎰⎰⎰⎰⎰由积分中值定理可知1331()0x x e dx e e ξξξ--=-≥⎰其中(01)ξ≤≤.又3xx e 在[1,1]-上不恒为0,则有1310xx e dx ->⎰,即131xx e dx -⎰的符号为正号.4、 比较积分大小例6 比较积分34sin xπ⎰和240sin xπ⎰的大小解:当(0,)4x π∈时,0sin 1x <<,从而有320sin sin 1x x <<<,于是我们有32440sin sin x xππ≤⎰⎰,即340sin xπ⎰小于等于240sin xπ⎰.5、 证明函数的单调性例7设函数()f x 在(0,)+∞上连续,其中0()(2)()xF x x t f t dt=-⎰,试证:在(0,)+∞内,若()f x 为非减函数,则()F x 必为非增函数.证明:利用分歩积分法,将()F x 化为()(2)()()2()x x xF x x t f t dt x f t dt tf t dt=-=-⎰⎰⎰对上式求导,可以得到:()()()2()()()x xF x f t dt xf x xf x f t dt xf x '=+-=-⎰⎰.由积分中值定理,可得:()()()(()()),(0)F x xf xf x x f f x x ξξξ'=-=-≤≤.若()f x 为非减函数,则有()()0f f x ξ-≤成立,因此可以得到()0F x '≤,故()F x 为非增函数,命题得证.6、 证明定理例8 证明(阿贝尔判别法)如果()f x 在[,)a +∞上可积,()g x 单调有界,那么()()a f x g x dx+∞⎰收敛.证明:由假设条件,利用第二中值定理,在任何一个区间[,]A A '上(其中,A A a '>),存在[,]A A ξ'∈,使得()()()()()()A A AAf xg x dx g A f x dx g A f x dxξξ'''=+⎰⎰⎰.因为()f x 在[,)a +∞上可积,则()af x dx+∞⎰收敛,所以对于任何0ε>,存在0A a ≥,使得当0,A A A '≥时,成立(),()A Af x dx f x dx ξξεε'<<⎰⎰.又由0(),,g x L A A A '<≥所以当时,有()()()()()()A A AAf xg x dx g A f x dx g A f x dxξξ'''=+⎰⎰⎰()()()()2A Ag A f x dx g A f x dx L ξξε''≤+≤⎰⎰,根据柯西收敛原理可推知积分()()af xg x dx+∞⎰收敛.备注2: 当讨论无界函数广义积分时,可将阿贝尔判别法可改写为: 假设()f x 在x a =有奇点,()baf x dx⎰收敛,()g x 单调有界,那么积分()()baf xg x dx⎰收敛.证明:对()()a a f x g x dxηη'++⎰应用第二积分中值定理,证明过程略.备注3:当讨论二元函数的积分限为含有参变量时,则含参变量的广义积分的阿贝尔判别法可写为:假设(,)af x y dx+∞⎰关于[,]y c d ∈为一致收敛,(,)g x y 关于x 单调(即对每个固定的[,]y c d ∈,(,)g x y 作为x 的函数是单调的),并且关于y 是一致有界的,即存在正数L ,对所讨论范围内的一切,x y 成立:(,)g x y L <.那么积分(,)(,)af x yg x y dx+∞⎰关于y 在[,]c d 上是一致收敛的.证明:由于(,)af x y dx+∞⎰关于[,]y c d ∈是一致收敛的,则对于任意正数0ε>,存在0A a ≥,当0,A A A '≥时,成立(,)A Af x y dx ε'<⎰.因此,当0,A A A '≥时,将y 看成给定常数,则由积分第二中值定理中的公式(,)(,)A Af x yg x y dx '⎰()()(,)(,)(,)(,)y A Ay g A y f x y dx g A y f x y dxεε''=+⎰⎰因为对任意的,x y 都有(,)g x y L<,则(,)(,)2A Af x yg x y dx L ε'≤⎰.因此,(,)(,)af x yg x y dx+∞⎰关于y 在[,]c d 上是一致收敛的,命题得证.例9 证明(狄里克莱判别法)如果()()AaF A f x dx=⎰有界,即存在0K >,使得(),()Aaf x dx Kg x ≤⎰单调且当x →+∞时趋向于零,那么积分()()af xg x dx+∞⎰收敛.证明:因为()0()g x x →→+∞,所以对任意的0ε>,存在0A ,当0,A A A '≥时,()g A ε<,()g A ε'<.又因()Aaf x dx K≤⎰,所以()()()2AAaaf x dx f x dx f x dx Kξξ=-≤⎰⎰⎰,同样我们有()2A f x dx Kξ'≤⎰.由第二积分中值定理,只要0,A A A '≥,就有()()()()()()4A A AAf xg x dx g A f x dx g A f x dx K ξξε'''≤+≤⎰⎰⎰所以积分()()af xg x dx+∞⎰收敛,命题得证.备注4:当讨论无界函数广义积分时,我们可将狄立克莱判别法写为:设()f x 在x a =有奇点,()ba f x dx η+⎰是η的有界函数,()g x 单调且当x a →时趋于零,那么积分()()baf xg x dx⎰收敛.证明:对()()a a f x g x dxηη'++⎰应用第二积分中值定理,证明过程略.备注5: 当讨论二元函数的积分限为含有参变量时,则含参变量的广义积分的狄立克莱判别法写为:设积分(,)A af x y dx⎰对于A a ≥和[,]y c d ∈是一致有界的,即存在正数K ,使对上述,A y 成立(,)Aaf x y dx K≤⎰又因为(,)g x y 关于x 是单调的,并且当x →+∞时,(,)g x y 关于[,]c d 上的y 一致趋于零,即对于任意给定的正数ε,有0A ,当0x A ≥时,对一切[,]y c d ∈成立(,)g x y ε<,那么积分(,)(,)af x yg x y dx+∞⎰关于y 在[,]c d 上是一致收敛的.证明:由所假设的条件可推知对任何,A A a '≥,有(,)(,)(,)A AA Aaaf x y dx f x y dx f x y dx''=-⎰⎰⎰(,)(,)2AA aaf x y dx f x y dx K'≤+≤⎰⎰而由(,)g x y ε<和上式可推知,当,A A a '≥时()(,)(,)(,)(,)A y AAf x yg x y dx g A y f x y dxε'≤⎰⎰()(,)(,)224A y g A y f x y dx K K K εεεε''+<⋅+⋅=⎰,因此,(,)(,)af x yg x y dx+∞⎰关于y 在[,]c d 上是一致收敛的,命题得证.参考文献:[1] 陈纪修、於崇华、金路.数学分析(第二版上册).北京:高等教育出版社,2004.294-310 [2] 陈纪修、於崇华、金路.数学分析(第二版下册).北京:高等教育出版社,2004.165-170 [3] 陈传璋、金福林等编.数学分析(下册).北京:高等教育出版社,1983. 286-288 [4] 陈传璋、金福林等编.数学分析(上册).北京:高等教育出版社,1983. 51-56, 252 [5] 同济大学应用数学系.高等数学(第五版上册).北京:高等教育出版社,1996. 232THE MEAN-VALUE THEOREM AND ITS APPLICATIONAbstract:The main content of this paper are the mean-value theorem and its application, it will be mainly divided into the following respects: integral mean-value theorem, the generalation of integral mean-value theorem, the asymptotic property of the “intermediate point”of integral median point, the application of integral mean-value theorem.Key words:integral mean-value; theorem promotion ;apply指导教师评语页本科毕业论文(设计)答辩过程记录院系数学科学学院专业数学与应用数学年级2009 级答辩人姓名**** 学号**********毕业论文(设计)题目积分中值定理及其应用毕业论文(设计)答辩过程记录:答辩是否通过:通过()未通过()记录员答辩小组组长签字年月日年月日=本科毕业论文(设计)答辩登记表。

推广的积分第一中分定理

推广的积分第一中分定理

推广的积分第一中分定理
答案:
推广的积分第一中值定理的定义
推广的积分第一中值定理表述如下:若函数f和g在闭区间[a,b]上连续,且g(x)在[a,b]上不变号,则存在至少一点ξ∈[a,b],使得[\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx]。

这个定理是积分中值定理的推广,将复杂函数的积分转化为简单函数的积分。

推广的积分第一中值定理的证明过程
证明过程如下:
.不妨设g(x)≥0,∀x∈[a,b]。

.如果g(x)≡0,则两边都为0,对于任意的ξ∈[a,b],式子都成立。

.如果g(x)在[a,b]上不恒等于0,由闭区间连续函数的最值性,f在区间[a,b]上有最大值和最小值,分别记为M和m。

.由积分的保序性,得到m≤f(x)g(x)≤Mg(x),进而有m∫abg(x)dx≤∫abf(x)g(x)dx≤M∫abg(x)dx。

.如果∫abg(x)dx=0,则两边都为0,对于任意的ξ∈[a,b],式子都成立。

.如果∫abg(x)dx>0,则存在某个区间内的函数值大于最小值m或小于最大值M,通过反证法可以证明存在某个ξ∈[a,b]使得式子成立。

推广的积分第一中值定理的应用实例
推广的积分第一中值定理在数学分析和实际应用中有广泛的应用。

例如,在求极限、判定某些性质点、估计积分值等方面都有重要应用。

通过将复杂函数的积分转化为简单函数的积分,可以简化计算过程,提高计算效率。

积分第一中值定理中的ξ在数值积分上的应用

积分第一中值定理中的ξ在数值积分上的应用

积分第一中值定理中的ξ在数值积分上的应用数值积分是数学中重要的一部分,它在实际问题的求解中发挥着重要的作用。

积分第一中值定理提供了一种有效的方法来计算积分,其中的ξ是一个关键的变量。

本文将探讨积分第一中值定理中的ξ在数值积分上的应用,以及它对于实际问题的意义。

让我们回顾一下积分第一中值定理的表达式:若函数f(x)在闭区间[a, b]上连续且可导,那么存在一点ξ∈(a, b),使得积分的值等于函数在ξ处的导数乘以区间的长度,即∫[a, b]f(x)dx = f(ξ)(b-a)。

在数值积分中,我们通常不知道函数f(x)的解析表达式,只能通过一些离散的数据点来近似计算积分的值。

这时,积分第一中值定理中的ξ就派上了用场。

我们可以通过选择合适的ξ来估计积分的值,从而得到更准确的结果。

例如,考虑计算函数f(x)=x^2在区间[0, 1]上的定积分。

我们可以将区间[0, 1]分成若干小段,然后在每一小段上选择一个ξ来计算该小段上的积分值。

通过对所有小段上的积分值求和,我们可以得到函数f(x)在整个区间上的积分近似值。

在实际问题中,数值积分的应用非常广泛。

例如,在物理学中,我们经常需要计算物体的质量、体积等。

这些量通常可以通过积分来计算,而数值积分提供了一种有效的方法来近似计算这些量的值。

通过选择合适的ξ,我们可以得到更准确的结果,从而提高计算的精确度。

另一个重要的应用是在金融领域。

例如,在期权定价中,我们需要计算随机过程的期望值。

这些期望值可以通过积分来计算,而数值积分可以帮助我们近似计算这些期望值。

选择合适的ξ可以提高计算的准确性,从而更好地评估期权的价格。

除了在实际问题中的应用,积分第一中值定理中的ξ还有一些理论上的意义。

它提供了一个桥梁,将积分与导数联系起来。

通过选择合适的ξ,我们可以将积分转化为导数的乘积,从而更好地理解积分的几何意义。

积分第一中值定理中的ξ在数值积分上有着重要的应用。

通过选择合适的ξ,我们可以提高数值积分的准确性,并在实际问题的求解中发挥重要的作用。

积分第一中值定理中间点的一般渐近性质与求积公式

积分第一中值定理中间点的一般渐近性质与求积公式
第 !"卷 第 #期
大学数学
$%&’!"() ’#
!""*年 +!月
,-../0/1234/1235,6
789’!""*
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
积分第一中值定理中间点的 一般渐近性质与求积公式
郑权
1 QB)*+,
6 BS
*
-)B5 6+)T+)*/ T+B3T;

%
%
1 1 @-)*+/PB)*+A)*/’+43*,@-).+/PB).+A )*/’+43*;


)V+
我 们注意到 B为非负整数和 4为大于/6的实数!因此本文利用上述推论 6可以比@WA中 用定 理 6
更自然地根据中间点 .的渐近性质得到@WA中的广义单节点数值积分公式;令推论 6中的 -)*+和 2)*+
62= ,
>564?@
4
5
4
C C C 特别地6借助 5和 4的中点 G得到 /0B1DB"$ /0B1DB( /0B1DB6对此式右端两项分别利用
5
G
G
推 论 ,的 公 式 0&:16当
)" &时 6+"
& 6;&6," <*
5(,4H
4$ ,<
5@注 *







定积分的概念,性质与中值定理

定积分的概念,性质与中值定理
b a
(2 ) a > b, ∫ f ( x )dx = - ∫ f ( x )dx
b a a b
性质1 性质1 性质2 性质2 性质3 性质3
∫ [ f ( x ) ± g ( x )]dx = ∫ f ( x )dx ± ∫ g ( x )dx
b b b a a a

b
a
cf ( x )dx =c ∫a f ( x )dx
∫ v (t )dt .
T2 T1
二.定积分的定义(和式的极限) 定积分的定义(和式的极限) 上有界, 设函数 f(x)在[a,b]上有界, 在[a,b]中任意插入若干个分点 在 上有界 中任意插入若干个分点 a = x0 < x1 < x2 < L< xi −1 < xi < Lxn = b, 把区间[ 个小区间: 把区间[a,b] 分成 n个小区间: [ x 0 , x 1 ], [ x 1 , x 2 ], L , [ x n −1 , x n ], 个小区间 各小区间的长度依次为: 各小区间的长度依次为: ∆x1 = x1 − x0 , ∆x2 = x2 − x1 ,L, ∆xn = xn − xn−1 , 任取一点 任取一点 ξ i ∈ [ x i − 1 , x i ], 作乘积 f (ξ i )∆x i ( i = 1,2,L , n), 并作出和
v(τ i )
∆t i = t i − t i −1
( i = 1,2, L , n)
T1
τi
T2
(2) 近似代替 ∆ s i ≈ v (τ i ) ∆ t i (3) 求和 (4) 取极限
t0 t1 t 2 ti −1 ti t n −1 t n
v (τ i ) ∆ t i

微积分中值定理中值点的性质

微积分中值定理中值点的性质

微积分中值定理中值点的性质
冯爱兵
【期刊名称】《南京农专学报》
【年(卷),期】1997(013)002
【摘要】微积分中值定理是研究函数在区间上整体性质的有力共具,尽管其形式
各具形态,但其都有1个共同性质,即在闭区间「a,b」上满足一定条件的函数,在开区间(a,b)内至少存在1点ζ使某个等式成立。

将微积分中值定理用统一的处理手法给出中值点ζ所处位置的性质,由此得出一系列比较满意的结果。

【总页数】6页(P44-49)
【作者】冯爱兵
【作者单位】江苏省淮阴商校
【正文语种】中文
【中图分类】O172
【相关文献】
1.第二型曲线积分中值定理“中值点”的分析性质 [J], 杜刚
2.第一积分中值定理"中值点"ξ的分析性质 [J], 刘华
3.微分中值定理"中值点"性质在复数域的推广 [J], 张海芳
4.关于中值定理中值点的渐进性质 [J], 高志锋;白洪远;薛京东
5.二元函数微分中值定理中值点的分析性质 [J], 程希旺
因版权原因,仅展示原文概要,查看原文内容请购买。

积分第一中值定理

积分第一中值定理

积分第一中值定理《积分第一中值定理》是微积分学中最重要的定理之一。

它由拉格朗日在他的1786年的著作《ATreatiseontheIntegralCalculus》中首次提出。

它说明了微积分中积分的几何性质,在很多应用中都有着极为重要的地位。

首先,让我们来看一下《积分第一中值定理》及它的定义。

积分第一中值定理说明,一个定义在区间[a, b]上的函数f(x),假设f(x)非负,那么在这个区间上其积分值的中值与其积分的零点的x值是完全相等的。

也就是说,如果存在x1, x2和x3使得f(x1) = f(x2) = f(x3),那么有:∫a bf(x) dx = (x1 + x2 + x3)f(x1)其次,积分第一中值定理在实际应用中有着重要意义。

它可以帮助我们更好地分析函数的性质,从而更精确地计算积分。

它也可以作为函数曲线和能量曲线上的圆点或线的计算方式,以识别函数曲线上局部或全局的最大值或最小值点。

此外,它也可以被应用于分析空间的对称性,这体现在可以计算任意2维和3维图形的表面积以及体积的计算。

最后,积分第一中值定理也可以作为发展更复杂积分计算方法的基础。

它可以激发更多更复杂的数学推理技巧,例如根据变量和求和函数来计算椭圆面积,或者使用面积有两个变量的变形来计算面积。

这些新的方法填补了积分第一中值定理本身所欠缺的不足,使得积分更加精确、高效,对于求解复杂函数也具有极大的应用价值。

无论如何,积分第一中值定理作为微积分学中的重要理论,已经广泛应用于很多计算和实际应用中,并产生了不可估量的影响。

它不仅有助于我们更准确地计算积分,而且还为发展更复杂积分方法提供了基础。

可以预期,未来随着科学技术的发展,《积分第一中值定理》将继续发挥其重要作用,为我们提供更高效的积分计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一积分中值定理"中值点"ξ的分析性质
作者:刘华, LIU Hua
作者单位:荆楚理工学院,数理学院,湖北,荆门,448000
刊名:
荆门职业技术学院学报
英文刊名:JOURNAL OF JINGMEN TECHNICAL COLLEGE
年,卷(期):2008,23(6)
被引用次数:0次
1.严平.储茂权关于积分第一中值定理中ξ的变化趋势[期刊论文]-安徽师范大学学报(自然科学版) 2001(03)
2.刘龙章.戴立辉.杨志辉再论微分中值定理"中间点"ξ的性质[期刊论文]-大学数学 2007(04)
3.华东师范大学数学系数学分析 1998
1.期刊论文俞兰芳.Yu Lanfang关于积分中值定理的一些见解-皖西学院学报2006,22(2)
本文给出了第一积分中值定理以及第二中值定理,并从较强的条件和较繁的证明给出了第一积分中值定理的推广以及从中值点所存在的范围推广积分第二中值定理,并在较强条件下给出了一个简单的证明,得到推广后的第一、第二积分中值定理的结果是原来的[a,b]改为(a,b),其余结果不变.最后同样给出了积分中值定理的一个相关问题,然后给出了较为复杂的证明过程.
2.期刊论文彭培让.李冬辉.PENG Peirang.LI Donghui中值定理中值点的渐进性-河南教育学院学报(自然科学版)2007,16(4)
给出了拉格朗日微分中值定理和第一积分中值定理中值点的渐进性的更一般性的结果及其简洁证明.
3.期刊论文张占亮.苏垣来.詹成华.ZHANG Zhan-liang.SU Yuan-lai.ZHAN Cheng-hua积分中值ξ=ξ(χ)的渐近性-数学的实践与认识2008,38(23)
对一类不满足g(a)≠0的函数g讨论了第一积分中值定理中ξ=ξ(χ)在χ→+∞时的渐近性质,并对第二积分中值定理的中值ξ=ξ(χ)的渐近性进行了探讨,给出一些相关的结果.
本文链接:/Periodical_jmzyjsxyxb200806021.aspx
授权使用:中共汕尾市委党校(zgsw),授权号:12399d32-810a-4962-9c36-9dcd011a36da
下载时间:2010年8月9日。

相关文档
最新文档