公路桥涵设计通用规范-JTG-D60-2004
公路桥涵设计通用规范-JTG-D60-2004
1 总则1.0.1 为使公路桥涵的设计符合技术先进、安全可靠、耐久适用、经济合理的要求,制定本规范。
1.0.2 本规范适用于公路桥涵的一般钢筋混凝土及预应力混凝土结构构件的设计,不适用于轻骨料混凝土及其他特种混凝土桥涵结构构件的设计。
1.0.3 本规范按照国家标准《公路工程结构可靠度设计统一标准》GB/T 50283规定的设计原则编制。
基本术语、符号按照国家标准《工程结构设计基本术语和通用符号》GBJ 132和国家标准《道路工程术语标准》GBJ 124的规定采用。
1.0.4 本规范采用以概率理论为基础的极限状态设计方法,按分项系数的设计表达式进行设计。
本规范采用的设计基准期为100年。
1.0.5 公路桥涵应进行以下两类极限状态设计:1 承载能力极限状态:对应于桥涵及其构件达到最大承载能力或出现不适于继续承载的变形或变位的状态;2 正常使用极限状态:对应于桥涵及其构件达到正常使用或耐久性的某项限值的状态。
1.0.6 公路桥涵应考虑以下三种设计状况及其相应的极限状态设计:1 持久状况:桥涵建成后承受自重、车辆荷载等持续时间很长的状况。
该状况桥涵应作承载能力极限状态和正常使用极限状态设计;2 短暂状况:桥涵施工过程中承受临时性作用(或荷载)的状况。
该状况桥涵应作承载能力极限状态设计,必要时才作正常使用极限状态设计;3 偶然状况:在桥涵使用过程中偶然出现的如罕遇地震的状况。
该状况桥涵仅作承载能力极限状态设计。
1.0.7 公路桥涵应根据其所处环境条件进行耐久性设计。
结构混凝土耐久性的基本要求应符合表1.0.7的规定。
表1.0.7 结构混凝土耐久性的基本要求环境类别环境条件最大水灰比最小水泥用量最低混凝土强度等级最大氯离子含量(%)最大碱含量Ⅰ温暖或寒冷地区的大气环境;与无侵蚀性的水或土接触的环境0.55 275 C25 0.30 3.0 Ⅱ严寒地区的大气环境、使用除冰盐环境;滨海环境0.50 300 C30 0.15 3.0Ⅲ海水环境0.45 300 C35 0.10 3.0Ⅳ受侵蚀性物质影响的环境0.40 325 C35 0.10 3.0注:1 有关现行规范对海水环境结构混凝土中最大水灰比和最小水泥用量有更详细规定时,可参照执行;2 表中氯离子含量系指其与水泥用量的百分率;3 当有实际工程经验时,处于Ⅰ类环境中结构混凝土的最低强度等级可比表中降低一个等级;4 预应力混凝土构件中的最大氯离子含量为0.06%,最小水泥用量为350kg/m3,最低混凝土强度等级为C40或按表中规定Ⅰ类环境提高三个等级,其他环境类别提高二个等级;5 特大桥和大桥混凝土中的最大碱含量宜降至1.8kg/m3,当处于Ⅲ类、Ⅳ类或使用除冰盐和滨海环境时,宜使用非碱活性骨料。
3米净跨径明涵盖板计算
3米净跨径明涵盖板计算1.设计资料汽车荷载等级:公路-I级;环境类别:I类环境;净跨径:L=3m;单侧搁置长度:0.20m;计算跨径:L=3.2m;盖板板端厚d1=26cm;盖板板中厚d2=26cm;盖板宽b=0.99m;保护层厚度c=3cm;混凝土强度等级为C30;轴心抗压强度fcd =13.8Mpa;轴心抗拉强度ftd=1.39Mpa;主拉钢筋等级为HRB335;抗拉强度设计值fsd=280Mpa;主筋直径为16mm,外径为17.5mm,共12根,选用钢筋总面积As=0.002413m2涵顶铺装厚H1=10cm;涵顶表处厚H2=20cm;盖板容重γ1=25kN/m3;涵顶铺装容重γ2=25kN/m3;涵顶铺装容重γ3=23kN/m3根据《公路圬工桥涵设计规范》(JTG D61-2005)中7.0.6关于涵洞结构的计算假定:盖板按两端简支的板计算,可不考虑涵台传来的水平力2.外力计算1) 永久作用(1) 涵顶铺装及涵顶表处自重q=(γ2·H1+γ3·H2)·b=(25×0.10+23×0.20)×0.99=7.03kN/m(2) 盖板自重g=γ1·(d1+d2)·b/2/100=25×(26+26)×0.99/2 /100=6.44kN/m2) 由车辆荷载引起的垂直压力(可变作用)根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.1关于车辆荷载的规定:车辆荷载顺板跨长La=0.2m车轮重P=70kN根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.2关于汽车荷载冲击力的规定:汽车荷载的局部加载,冲击系数采用1.3车轮重压强p=1.3·P/La=1.3×70/0.20=455.00kN/m3.内力计算及荷载组合1) 由永久作用引起的内力跨中弯矩M1=(q+g)·L2/8=(7.03+6.44)×3.22/8=17.23kNm边墙内侧边缘处剪力V1=(q+g)·L/2=(7.03+6.44)×3/2=20.20kN2) 由车辆荷载引起的内力跨中弯矩M2=p·La·(L/2-0.7)=455.00×0.20×(3.20/2-0.7)=81.90kNm边墙内侧边缘处剪力V2=p·La·(L-La/2)/L+p·La·(L-1.5)/L=455.00×0.20×(3.00-0.20/2)/3.00+455.00×0.20×(3.00-1.5)/3.00 =133.47kN3) 作用效应组合根据《公路桥涵设计通用规范》(JTG D60-2004)中4.1.6关于作用效应组合的规定:跨中弯矩γ0Md=0.9(1.2M1+1.4M2)=0.9×(1.2×17.23+1.4×81.90)=121.81kNm 边墙内侧边缘处剪力γ0Vd=0.9(1.2V1+1.4V2)=0.9×(1.2×20.20+1.4×133.47)=189.98kN 4.持久状况承载能力极限状态计算截面有效高度 h0=d1-c-1.75/2=26-3-0.875=22.1cm=0.221m1) 砼受压区高度x=fsd ·As/fcd/b=280×0.002413/13.8/0.99=0.049m根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)中5.2.1关于相对界限受压区高度ξb的规定:HRB335钢筋的相对界限受压区高度ξb=0.56。
桥梁施工组织要求
长深右线2号桥为分离式桥梁。起点桩号为YK210+160,终点桩号为YK210+391.5,桥长231.5米。桥型布置为3×20+3×25+3×30m预应力混凝土连续箱梁(现浇)。标准桥面宽度为12.25米,其横向布置为0.5米(防撞栏杆)+11.25米(行车道)+ 0.5米(防撞栏杆)。桥梁各分跨线均沿道路设计线的法线方向布置,桥墩采用柱式墩,基础采用钻孔灌注桩;0号桥台采用板凳台,9号桥台采用肋板台,基础均采用钻孔灌注桩。在3号墩及两桥台处均设置一道D80型伸缩缝,在5号连接墩处设置一道D160型伸缩缝。
C匝道2号桥起点桩号为CK0+987.26,终点桩号为CK1+185.76,桥长198.5米。桥型布置为4×30+3×25预应力混凝土连续箱梁(现浇)。标准桥面宽度为10.5米,其横向布置为0.5米(防撞栏杆)+9.5米(行车道)+ 0.5米(防撞栏杆)。桥梁7号墩垂直于B匝道桥轴线布置,其余各分跨线均沿道路设计线的法线方向布置,桥墩采用柱式墩,基础采用钻孔灌注桩;0号桥台采用肋板台,基础均采用钻孔灌注桩。0号桥台处设置一道D80型伸缩缝,在4号、7号连接墩处各设置一道D160型伸缩缝。
长深右线3号桥为整体式桥梁。起点桩号为YK210+613.5,终点桩号为YK210+751.5,桥长138米。桥型布置为40+50+40m预应力混凝土变高连续箱梁(现浇)。标准桥面宽度为12.25米,其横向布置为0.5米(防撞栏杆)+11.25米(行车道)+ 0.5米(防撞栏杆)。桥梁各分跨线均沿道路设计线的法线方向布置,桥墩采用柱式墩,基础采用钻孔灌注桩;桥台采用板凳台,基础采用钻孔灌注桩。两桥台处各设置一道D80型伸缩缝。
公路桥涵设计通用规范 [附条文说明] JTGD60
华中科技大学曾利用反应谱理论及随机过程理论来分析计算桥梁受车辆冲击作用的影响,用动力放大系数描述车辆的动力特性、桥梁的结构形式及其动力特性对冲击系数的影响,用桥面状况系数描述桥面平整度、车辆动力特性、行车速度等因素对冲击系数的影响,利用大量实测数据进行分析,得到了与本规范规定相吻合的曲线。其较加拿大的方法所考虑的因素更为全面。
自2009年起,我国各省(自治区、直辖市)开始陆续取消二级公路收费,部分二级公路的交通量和荷载水平有了较大增长。因此,本次修订调整了二级公路的汽车荷载等级:一般情况下,二级公路桥涵的设计应采用公路—Ⅰ级汽车荷载;二级公路为非干线公路且重型车辆不多时,其桥涵的设计可采用公路—Ⅱ级汽车荷载。
6 汽车荷载横向分布系数。桥梁设计时,为取得主梁的最大受力,汽车荷载在桥面上需要偏心加载,其方法仍可用车辆荷载偏心加载确定。
桥梁结构的基频反映了结构的尺寸、类型、建筑材料等动力特性内容,它直接反映了冲击系数与桥梁结构之间的关系。不管桥梁的建筑材料、结构类型是否有差别,也不管结构尺寸与跨径是否有差别,只要桥梁结构的基频相同,在同样条件的汽车荷载下,就能得到基本相同的冲击系数。本规范采用的冲击系数曲线与美国、加拿大、日本、法国等国家的相关标准规定的曲线相比,变化规律是一致的。
7 横桥向设计车道布置及多车道横向布载系数。对多车道进行横向折减的含义是,在桥梁多车道上行驶的汽车荷载使桥梁构件的某一截面产生最大效应时,其同时处于最不利位置的可能性显然随车道数的增加而减小,而桥梁设计时各个车道上的汽车荷载都是按最不利位置布置的,因此,计算结果应根据上述可能性的大小进行折减。这是个概率事件,可以认为各车道上的汽车荷载加载是互不相关的,按重复独立试验随机事件的概率理论,建立多车道横向折减系数与相关变量的关系式,得到折减系数的具体数值。“桥梁设计荷载与安全鉴定荷载的研究”项目中,针对原规范的横向折减系数进行了专项研究,在国内外对比的基础上,根据实测数据进行了多车道重车相遇概率研究。研究表明,虽然目前车流量较以往有了较大提高,但在实际运营过程中多车道重载车辆相遇仍属小概率事件,即仍需考虑多车道的横向折减问题。进而根据我国当前高速公路和一般公路的实际交通流数据进行了横向折减系数计算。结果显示,在实测最大重车交通量条件下,4车道内基本和原规范相同,4车道以上的略小于现行规范值。总体而言,原规范多车道横向折减系数取值在当前及今后一个时期内的交通状况下是适用的。因此,本次修订维持原规范的规定。根据研究增列了单车道的横向车道布载系数。
路桥涵设计通用规范解读
1. 混凝土(3.1.1~3.1.6)
与旧规范标号相差2(30号=C(30-2)=C28) 试件: 新---150立方体标准试件 旧---200立方体标准试件 材料分项系数: 新---1.45(国标为1.4) 旧---约1.5(设计强度为标准强度的0.83,安全系数1.25) 预应力混凝土构件:新---不小于C40 旧---不小于30号 剪变模量:新---0.4E 旧---0.43E 泊松比: 新---0.2 旧---1/6
5. 活荷载(4.3.1条)
取消了原来的汽车荷载等级,采用公路-I级和公路-II级标准汽车荷载 公路I级: 相当于旧规范的汽车-超20 公路II级: 相当于旧规范的汽车-20 特点: 均布荷载不变,集中力---计算剪力时将集中力放大1.2。 问题: 需要确认计算主应时,剪应力的取值是否按调整的值?
状况---主要针对荷载作用情况而言 状态---主要针对设计而言(荷载组合等)
2. 增加了安全等级及重要性系数(1.0.9条)
三个设计安全等级: 1.1, 1.0, 0.9 注意: 1. 桥梁抗震设计不考虑结构的重要性系数(钢筋混凝土预应力规范5.1.5条) 2. 预应力钢筋混凝土超静定结构中预加力引起的次效应不考虑结构的重要性 系数(钢筋混凝土预应力规范5.1.5条)
桥梁新规范简介
公路桥涵设计通用规范
JTG D60-2004
1. 进行两个极限状态设计,考虑三个设计状况(1.0.7条,1.0.8条)
两个极限状态---承载能力(弯矩、轴力、剪力、稳定、倾覆等) 正常使用(变形、裂缝、耐久性)
三个设计状况---持久状况(自重、汽车荷载作用状况等) 短暂状况(施工荷载作用状况等) 偶然状况(地震作用状况等)
公路桥梁板式橡胶支座尺寸表
板式橡胶支座一、公路桥梁板式橡胶支座规格系列1、范围本标准规定了板式橡胶支座的要求、规格系列及选用。
本标准适用于承载力小于5000kN 的公路桥梁用矩形、圆形平板式橡胶支座。
2、规范性引用文件下列文中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
JT/T4 一2004 公路桥梁板式橡胶支座JTG D60 一2004 公路桥涵设计通用规范JTG D62 一2004 公路钢筋混凝土及预应力混凝土桥涵设计规范3、支座要求3 . 1支座产品分类、代号、结构、技术要求、试验方法、检验规则及标志、包装、贮存、运输、安装和养护均应满足JT/T4 一2004的要求.3. 2 支座使用阶段平均压应力бC=10M Pa ( S <7时бC=8M Pa);橡胶硬度60 ( IRHD )时,其常温下剪变模量G = 1.OMpa 。
剪变模量随温度下降而递增,当累年最冷月平均温度的平均值O ~-10℃时为寒冷地区,G = 1 . 2MPa ;当低于-10 ℃时为严寒地区,G = 1.5MPa ;当低于-25 ℃时,G = 2 . 0 MPa 。
全国气温分区图见JTG D60 一2004附录B。
3.3支座橡胶弹性体体积模量Eb= 2000 MPa。
支座与混凝土接触时,摩擦系数μ= 0 . 3 ,与钢板接触时,摩擦系数μ=0 .2 。
聚四氟乙烯板与不锈钢板接触(加硅脂)时,μf=0 . 06 ,当温度低于-25 ℃时,μf值增大30 % ,当不加硅脂时,μf应加倍。
若有实测资料时,也可按实测资料采用。
3.4 橡胶支座剪切角α 正切值,当不计制动力时,tan α不大于0 .5 ,当计入制动力时,tan α不大于0 .7.3.5 橡胶支座的计算和验算均应满足JTG D62 一2004的要求。
公路桥梁设计规范答疑汇编--问题举例
公路桥梁设计规范答疑汇编--问题举例1、在条文说明中的第3.3.1中的第3款:“应首先考虑与桥涵相连的公路路段的路基宽度,保持桥面净宽与路肩同宽。
”主要疑惑是:路肩指的是硬路肩还是土路肩?2、规范第3.3.2条中规定:“在不通航和无流筏的水库中区域内,梁底面或拱顶底面离开水面的不应小于计算浪高的0.75倍加上0.25m。
”问题如下:(1)以上条款中的0.25m指的是在浪高的0.75倍上加的一个安全值,还是指高于支承垫石顶面高度0.25m?(2)在水库区域内的通航桥的不通航孔,以上条款是否适用?(3)此处的水面是指计算水位还是最高洪水位?(4)最终梁底净空是否需要满足第 3.3.2条中的所有条款?即是否需满足该条最后一段所要求的并同时满足表3.3.2的要求?3、(1)规范第3.3.6条规定天然气管道不是顺桥过。
是所有的天然气管道不得过,还是对直径和压力有限制?在城市桥梁及城市郊区公路桥梁的设计中,此条经常不能满足。
(2)煤气管道是否等同于天然气条文取用?管道与桥梁的交叉如何考虑?高压线的定义是多少电压?4、(1)规范第3.5.8条中纵坡大于1%的桥梁非常普通,对于空心板等大规模工厂化制作的上部结构,梁底水平如何操作(每根梁的纵坡可能都不同)?(2)规范第3.5.8条中“某一规定坡度”具体数值是多少?对于纵、横坡较大的空心板桥,如果不能使用球冠支座,梁底只能做垫块,空心板预制比较困难,景观较差,如何处理?5、规范第3.6.4条规定水泥混凝土桥面铺装面层(不含整平层和垫层)的厚度不宜小于80mm,混凝土强度等级不应低于C40。
条文中,关于“不含整平层和垫层”的含义,如采用沥青混凝土桥面,有两种不同的理解,一是沥青混凝土下的混凝土铺装,只算是“整平层和垫层”,可不按第3.6.4条的厚度及强度要求;二是沥青混凝土下的混凝土铺装,不是整平层和垫层,是桥面铺装(根据条文解释,似这样理解也是符合精神的),应符合第3.6.4条的厚度及强度要求。
新、旧《公路桥涵设计通用规范》中汽车荷载作用的比较分析
新、旧《公路桥涵设计通用规范》中汽车荷载作用的比较分析刘兵;潘芳【摘要】2015年实施的《公路桥涵设计通用规范》(JTG D60-2015)将各等级公路的设计荷载及安全等级等进行重新修订.修订后原有部颁空心板通用图在新标准下适用度及已建的各等级公路中小跨度桥梁安全度,一直被设计者和桥梁管养部门所关心.文章以部颁的10m、13m、16m、20 m标准跨径的部分预应力混凝土空心板为研究对象,通过对比空心板跨中承载能力的变化,评价已建成的中、小跨径空心板安全度.研究表明10m、13m跨径空心板的部分中、边板通用图已不能适应新规范的变化;已建成的二、三、四级公路上的中桥及二级公路上的小桥的承载能力已无法满足新规范的要求.【期刊名称】《现代交通技术》【年(卷),期】2017(014)003【总页数】5页(P57-61)【关键词】桥梁工程;设计规范;车道荷载;承载能力【作者】刘兵;潘芳【作者单位】中设设计集团股份有限公司,江苏南京210004;江苏东交工程设计顾问有限公司,江苏南京210002【正文语种】中文【中图分类】U441+.2随着公路桥梁的大规模建设,已使用了11年的《公路桥涵设计通用规范》(JTGD60—2004)(以下简称《老规范》)进行了修订,新规范(JTG D60—2015)于2015-12正式实施[1-2],《新规范》从以下几个方面对《老规范》进行了补充和修改:(1)增加了桥涵结构的设计使用年限规定,有利于提升公路桥涵耐久性,促进行业可持续发展;(2)明确了各类公路桥涵结构设计安全等级,对除特大桥外的其他公路桥涵设计安全等级的要求加以提高;(3)改进了作用组合分类及计算方法;(4)调整了公路桥梁设计汽车荷载标准。
设计使用年限是体现桥涵结构耐久性的重要指标,美国、英国、新西兰和日本等多国的桥梁设计规范对桥梁设计使用年限均有明确的规定[3]。
日本提出桥梁的设计使用年限大约为100年;英国规定桥梁的设计年限为120年;美国要求对桥梁的设计使用年限不少于75~100年;欧洲共同体在桥梁设计规范中规定桥梁的设计使用年限为100年。
《中华人民共和国行业标准:公路桥涵设计通用规范(JTG D60-2004)》(中交公路规划设计院)
媒体评论
目录 1 总则2 术语3 设计要求3.1 桥涵布置3.2 桥涵孔径3.3 桥涵净空3.4 桥上线形及桥头引道3.5 构造要求3.6 桥面 铺装、排水和防水层3.7 养护及其他附属设施4 作用4.1 作用分类、代表值和作用效应组合4.2 永久作用4.3 可变 作用4.4 偶然作用附录A 全国基本风速图及全国各气象台站基本风速和基本风压值附录B 全国气温分区图本规范用 词说明附件《公路桥涵设计通用规范》(JTG D60-2004)条文说明
内容简介 本规范修订,结合10余年来我国公路桥梁的发展和要求,对原规范进行了较为全面的改进。主要的修订内容有:
1、明确了公路桥涵结构应进行承载能力极限状态和正常使用极限状态设计,并引入了结构设计的持久状况、短 暂状况和偶然状况三个设计状况; 2、修改了公路桥涵结构设计的作用效应的组合方式及其组合系数,引入了 作用的短期效应组合和长期效应组合,并提出了各种可变作用短期效应组合时的频遇值系数和长期效应组合时的准 永久值系数; 3、引入了公路桥涵设计的安全等级及其重要性系数,以桥涵结构破坏可能产生的后果严重程度 的不同采用不同的重要性系数,使结构的设计更趋合理, 4、开展了“公路桥涵分类标准”专题研究,根据研 究成果,适当调整了公路桥涵的分类标准; 5、进行了“高速公路和一级公路桥涵设计洪水频离标准”专题研 究,分析比较了原标准与国内外相关标准间的关系,比较分析了设计洪水的计算分析方法,经综全分析比较,认为 可维持原规范的规定; 6、取消了原标准汽车荷载等级,改为采用公路-Ⅰ级和公路-Ⅱ级标准汽车荷载,取消 了挂车和履带车验算荷载,将验算荷载的影响间接反映在汽车荷载中; 7、将汽车冲击系数以跨径为主要影响 因素的计算方法,改为以结构基频为主要9、调 整了荷载的计算公式及各影响系数,给出了全国基本风速图及全国各气象台站的基本风速和风压值表; 10、补 充了冰压力的计算方法和计算工式; 11、改善了温度作用的规定,完善了体系温度的规定,调整了温度梯度曲 线的规定; 12、增加了汽车撞击荷载的计算和设计要求; 13、补充了通航海轮船舶撞击作用的规定。
5米净跨径明盖板涵整体计算
5米净跨径明盖板涵整体计算一.盖板计算1.设计资料汽车荷载等级:公路-I级;环境类别:I类环境;净跨径:L0=5m;单侧搁置长度:0.30m;计算跨径:L=5.3m;盖板板端厚d1=35cm;盖板板中厚d2=35cm;盖板宽b=0.99m;保护层厚度c=5cm;混凝土强度等级为C30;轴心抗压强度f cd=13.8Mpa;轴心抗拉强度f td=1.39Mpa;主拉钢筋等级为HRB335;抗拉强度设计值f sd=280Mpa;主筋直径为28mm,外径为30mm,共10根,选用钢筋总面积A s=0.006158m2涵顶铺装厚H1=10cm;涵顶表处厚H2=100cm;盖板容重γ1=25kN/m3;涵顶铺装容重γ2=25kN/m3;涵顶铺装容重γ3=18kN/m3根据《公路圬工桥涵设计规范》(JTG D61-2005)中7.0.6关于涵洞结构的计算假定:盖板按两端简支的板计算,可不考虑涵台传来的水平力2.外力计算1) 永久作用(1) 涵顶铺装及涵顶表处自重q=(γ2·H1+γ3·H2)·b=(25×0.10+18×1.00)×0.99=20.30kN/m(2) 盖板自重g=γ1·(d1+d2)·b/2/100=25×(35+35)×0.99/2 /100=8.66kN/m2) 由车辆荷载引起的垂直压力(可变作用)根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.1关于车辆荷载的规定:车辆荷载顺板跨长L a=0.2m车轮重P=70kN根据《公路桥涵设计通用规范》(JTG D60-2004)中4.3.2关于汽车荷载冲击力的规定:汽车荷载的局部加载,冲击系数采用1.3车轮重压强p=1.3·P/L a=1.3×70/0.20=455.00kN/m3.内力计算及荷载组合1) 由永久作用引起的内力跨中弯矩M1=(q+g)·L2/8=(20.30+8.66)×5.32/8=101.68kNm边墙内侧边缘处剪力V1=(q+g)·L0/2=(20.30+8.66)×5/2=72.39kN2) 由车辆荷载引起的内力跨中弯矩M2=p·L a·(L/2-0.7)=455.00×0.20×(5.30/2-0.7)=177.45kNm边墙内侧边缘处剪力V2=p·L a·(L0-L a/2)/L0+p·L a·(L0-1.5)/L0=455.00×0.20×(5.00-0.20/2)/5.00+455.00×0.20×(5.00-1.5)/5.00=152.88kN3) 作用效应组合根据《公路桥涵设计通用规范》(JTG D60-2004)中4.1.6关于作用效应组合的规定:跨中弯矩γ0M d=0.9(1.2M1+1.4M2)=0.9×(1.2×101.68+1.4×177.45)=333.40kNm边墙内侧边缘处剪力γ0V d=0.9(1.2V1+1.4V2)=0.9×(1.2×72.39+1.4×152.88)=270.81kN4.持久状况承载能力极限状态计算截面有效高度h0=d1-c-3/2=35-5-1.500=28.5cm=0.285m1) 砼受压区高度x=f sd·A s/f cd/b=280×0.006158/13.8/0.99=0.126m根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)中5.2.1关于相对界限受压区高度ξb的规定:HRB335钢筋的相对界限受压区高度ξb=0.56。
公路桥涵地基与基础设计规范
1个一般1.0.1为了满足公路桥梁和涵洞基础设计的需要,并使设计满足先进技术,安全可靠,适用性和耐久性,经济合理性和环境保护的要求。
1.0.2本规范适用于公路桥梁和涵洞的基础设计。
其他道路,桥梁和涵洞的基础设计也可以参考。
1.0.3基础设计必须坚持因地制宜,使用当地材料,节约资源的原则。
基础类型应根据水文,地质,地势,荷载,材料条件,上下构造形式和施工条件进行合理选择。
1.0.4应在桥梁现场进行工程地质勘测,所提供的勘测数据应能正确反映地形,地貌,地层结构,影响桥梁和涵洞稳定性的不利地质,岩石的物理力学性能以及土壤和地下水的埋葬。
1.0.5基础结构设计的功能和效果的结合应按下列规定:1.根据极限承载力状态的要求,应通过作用效果和偶然结合的基本组合来检查结构构件的承载力和稳定性。
1)基本组合:在计算承载力时,应按总则第4.1.6条第1款的规定执行作用效果的组合表达式,结构重要性系数,各作用的局部系数和作用的组合系数。
公路桥涵设计规范(JTG d60-2004);在稳定性检查计算中,上述系数取1.0。
2)意外组合(不包括地震活动)动作效果的组合可以表示为:2.当基础结构需要在使用寿命极限状态下设计时,应根据通用规范第4.1.7条确定短期效果组合和长期效果组合,频繁值系数和准永久值系数的表示形式。
用于公路桥梁和涵洞的设计(JTG d60-2004)。
1.0.6基础结构的稳定性可以通过以下公式检查:1.0.7应对基础结构进行耐久性设计。
1.0.8在检查地基的竖向承载力时,应根据正常使用极限状态的短期效应和作用效应的偶然组合(地震除外),将传递到基座或承载平台底部的效应进行组合。
行动)。
作用效果的总和应小于或等于基础承载力或单桩承载力的相应阻力允许值。
采用短期效果组合时,可变作用的频率系数取1.0,冲击系数应包括车辆载荷。
对于填料厚度(包括路面厚度)等于或大于0.5m的拱桥,涵洞和重力墩,在基础计算中可以忽略车辆的冲击系数。
公路桥涵设计通用规说明
公路桥涵设计通用规范JTG D60主要修订内容介绍现行公路桥涵设计通用规范JTG D60-2004于2004年颁布实施.近几年的实践应用表明,规范总体上能够满足我国公路桥涵建设的需要,但随着我国公路运营状况、桥涵设计理念和方法的发展和变化,也有一些需要完善的内容:公路桥梁设计汽车荷载标准的适应性问题日渐突出;设计使用年限、耐久性设计、全寿命设计、风险评估、桥梁运营期结构安全监测等新方法、新理念逐渐得到广泛应用和发展;环境保护和可持续发展也成为工程设计中需考虑的重要因素.为了吸纳近年来的成熟经验和科研成果,提高规范的适应性,促进公路桥梁科学健康发展,交通运输部2009年下达了公路桥涵设计规范的修编任务.在规范修订过程中,编写组进行了大量的科研工作,吸取了已有的成熟科研成果和实际工程设计经验,并且参考、借鉴国内外相关的标准规范.在规范条文初稿编写完成以后,通过多种方式广泛征求设计、施工、建设、管理等有关单位和个人的意见,并经过反复讨论、修改后定稿.总体而言,本规范主要做了如下几个方面的修订:1 增加了桥涵结构的设计使用年限和耐久性要求;2 完善了极限状态的设计理论和方法;3 改进了作用组合分类及计算方法;4 调整了公路桥梁设计汽车荷载标准;5 增加、完善了各种作用标准值的计算规定;6 完善了有关桥涵总体设计、环境保护、交通安全保障工程等的相关规定;7 增加了桥涵风险评估和安全监测的相关规定.为了清晰地说明本规范的具体修订内容,现将主要修订内容的确定理由及作用和影响分章节论述如下.1 第1章总则1公路桥涵的设计原则修改为“安全、耐久、适用、环保、经济和美观”.长期以来,公路桥涵设计都遵循着“技术先进、安全可靠、适用耐久、经济合理”的基本原则,这是与我国当时的经济条件和技术水平相适应的.安全、耐久、适用是公路桥涵结构最基本的要求.随着社会的发展和进步,环境保护日益引起重视.环保问题关系到社会的可持续发展,必须在交通基础设施建设中贯彻落实.在满足上述要求的前提下,还要注重桥涵设计的经济性,不能一味追求“新”、“最”、“第一”等,造成严重的浪费.另外,随着我国社会经济的发展,公众对于桥涵结构的要求也逐步提高,美观成为桥涵设计考虑的一个重要因素.因此,本次修订将公路桥涵的设计原则调整为“安全、耐久、适用、环保、经济和美观”,这也是与公路工程技术标准JTG B01-2014保持一致.2增加桥涵设计使用年限的规定.可持续发展已成为本世纪主要课题之一,作为工程结构而言,其使用年限的长短是工程可持续发展的重要指标.随着我国对可持续发展的重视,工程结构的设计使用年限的规定也逐步具体化.1997年4月1日颁布的中华人民共和国建筑法的第六十条规定:“建筑物在合理使用寿命内,必须确保地基基础工程和主体结构的质量”.国务院2000年279号令建设工程质量管理条例第21条明确规定:“设计文件应当符合国家规定的设计深度要求、注明工程合理使用年限.工程合理使用年限是指从工程竣工验收合格之日起,工程的地基基础、主体结构能保证在正常情况下安全使用的年限”.为了响应国家政策,适应工程设计理念的发展,2009年7月1日颁布实施的工程结构可靠性统一标准GB 50153-2008给出了设计使用年限的定义以及设计使用年限的有关规定,并在附录中给出了各类桥涵结构的设计使用年限.相应地,公路行业也根据相关要求在公路工程结构可靠性设计统一标准中给出了桥涵结构的设计使用年限,总体原则是遵循国标的规定.公路工程技术标准JTG B01-2014编写时综合考虑了国标的规定、公路功能、技术等级和桥涵重要性等因素,规定了桥涵主体结构和可更换部件设计使用年限的最低值.本规范作为桥涵设计规范的统领性规范,需根据上位规范的规定给出桥涵结构的设计使用年限,在具体规定方面与公路工程技术标准JTG B01-2014保持一致.2 第2章术语和符号本章的术语和符合均来自各章节的内容,主要根据新修订的公路工程结构可靠性设计统一标准进行修改并补充个别术语,这里不再赘述.3 第3章设计要求1增加了地震设计状况.地震作用是一种特殊的偶然作用,与撞击等偶然作用相比,地震作用能够统计并有统计资料,可以根据地震的重现期确定其标准值,而其它偶然作用无法通过概率的方法确定其标准值,两者的设计表达式在本质上是不同的.鉴于此,工程结构可靠性设计统一标准GB 50153-2008和正在修编的公路工程结构可靠性设计统一标准在原有三种设计状况的基础上,增加了地震设计状况.按照上述上位规范的规定,本次修订也增加了地震设计状况.2增加了桥梁钢结构的抗疲劳设计要求.在重复车辆荷载、风等交变荷载的作用下,公路桥梁钢结构可能会产生疲劳裂纹,疲劳裂纹不断扩展,将影响钢结构的使用,甚至导致断裂破坏.近几十年来,钢结构在我国的公路桥梁建设中得到了广泛应用,实践中发现钢结构的疲劳问题也比较突出.疲劳已成为影响公路桥梁钢结构安全和耐久的主要因素之一.在相关的钢结构设计规范中,对抗疲劳设计均有具体的规定,但公路桥涵设计通用规范JTG D60-2004中没有抗疲劳设计的要求.因此,本次修订增加了公路桥梁钢结构部分应根据需要进行抗疲劳设计的要求.3增加了设计阶段风险评估要求.2010年4月,为了加强公路桥梁和隧道工程安全管理,增强安全风险意识,优化工程建设方案,提高工程建设和运营安全性,交通运输部发布了在初步设计阶段实行公路桥梁和隧道工程安全风险评估制度的通知交公路发〔2010〕175号,桥梁和隧道设计阶段风险评估工作开始正式实施.目前,桥梁、隧道等结构均已在设计阶段实施了安全风险评估,有效地降低和规避了可预见的工程风险,提高了结构安全和防范风险能力,这是一项非常有效并应长期坚持的工作.作为指导公路桥涵设计的基础性规范,公路桥涵设计通用规范中应相应增加风险评估相关要求.4增加了耐久性设计要求.如前所述,耐久是公路桥涵结构设计最基本的要求之一.耐久性直接影响结构的安全性和适用性,也关系到桥涵的实际寿命是否能达到其设计使用年限要求.耐久性设计已经成为结构设计的一个重要组成部分.在现行公路工程规范体系中,也设立了耐久性设计规范,并且在各本结构设计规范中都包含耐久性设计的有关规定.本规范增加耐久性设计要求,主要目的是保证规范内容的完整性,同时,协调现行规范体系,从内容上体现规范之间的一致性和继承性.5增加了公路桥涵进行“可到达、可检查、可维修和可更换设计”的要求.养护是公路桥涵安全性和耐久性的重要保障.实践发现,在我国的公路桥涵设计中,存在对桥梁结构未来养护需求考虑不充分的情况.主要表现在某些桥梁构件难以到达,例如缆索承重体系桥梁的梁底、变高度箱梁的根部区域等;某些桥梁构件难以检查,例如悬索桥大缆底部、埋置于混凝土中的拉索锚头、桥塔外表面等.不可到达、不可检查导致了桥梁部分病害的不可预知,造成了安全隐患.因此,本次修订增加了可到达、可检查的设计要求.公路桥涵结构中,可更换构件的设计使用年限低于桥涵主体结构的设计使用年限,在设计使用年限内需要进行维修和更换,比较典型的构件包括斜拉索、吊杆、伸缩装置、支座等.在桥梁设计中,应考虑未来维修、更换的需要.因此,本次修订增加了可维修、可更换的设计要求.6从桥墩防撞方面考虑,增加了通航水域中桥梁及跨线桥桥墩设置的相关规定.桥墩是桥梁上部结构的支撑,对结构的安全至关重要.近年来,由于船舶或车辆撞击桥墩导致桥梁损坏甚至倒塌的事故时有发生.考虑撞击因素进行设计时,桥墩的安全主要从“防”和“抗”两个方面考虑.在桥跨布置时,就应该充分考虑桥墩防撞的问题.随着桥梁建筑材料、结构形式、设计水平的提高和发展,桥梁的跨越能力越来越大,因此,对于通航水域中的桥梁,建议尽量减少在通航水域中设置桥墩;对于跨线桥,则不宜在中央分隔带内设墩.如果无法避免,可能遭受撞击的桥墩应设置必要的防撞设施和警示标志.7规定路侧危险情况下桥梁路缘石高度应取0.25~0.35m的较高值.在目前的桥梁设计中,一般不考虑路缘石对车辆的防撞作用,设置路缘石仅是为了起到视线诱导、排水和警示的作用.但是,如果路缘石能够对失控车辆起到第一道防护作用,则能更有效的降低事故严重程度,保护行人和车辆安全,减少事故损失.“山区公路网安全保障技术体系研究与示范工程”项目从路缘石对车辆所起的拦护作用方面考虑,基于车辆动态仿真实验对公路桥梁路缘石合理高度进行了研究.根据不同车速、不同碰撞角度、不同路缘石高度条件的路缘石碰撞仿真实验结果,路缘石对偏驶车辆的拦护效果优劣程度为35cm > 30cm > 25cm > 40cm > 15cm > 20cm,这与现行规范路缘石高度可取用25cm~35cm的规定基本吻合.考虑到35cm高路缘石的拦护效果最佳,本次修订建议路侧环境危险时,桥梁路缘石高度取用较大值.8提高了冰雪环境下桥梁纵坡的限值.作为公路的一个组成部分,桥梁纵坡首先应满足路线相关技术指标的要求.桥梁上纵坡的设置应有利于排水,但同时还应考虑桥梁纵坡对桥梁自身结构安全和行车安全的影响.对于冬季结冰地区的桥梁,由于结构特点和材料与道路不同,桥梁往往较其他路段更容易结冰、冰雪更难消融.恶劣气象条件下,桥面结冰导致交通安全事故的风险更大,事故后果更严重.因此,从保障行车安全、桥梁结构安全使用等的角度,本次修订规定对于易结冰、积雪的桥梁,桥上纵坡不宜大于3%.9增加了桥梁护栏与桥面板可靠连接的规定.设置路侧桥梁护栏对保护桥上车辆和行人的安全极为重要,而桥梁护栏与桥面板的牢固连接则是保证桥梁护栏有效发挥作用的前提条件.桥梁护栏与桥面板连接的构造设计和计算应在桥梁设计阶段进行统一考虑.因此,本次修订增加了桥梁护栏与桥面板可靠连接的要求,给出了可选的连接方式.10细化了桥头搭板的设计要求.桥头跳车是行车中常见的问题,且危害性较大.桥头跳车一方面对桥梁结构的工作状况和路面使用品质产生不利的影响,导致公路和桥梁养护费用增加,另一方面将增加行车风险甚至造成交通事故,影响行车的高速、舒适和经济性,而且也增加了车辆对桥头的冲击力,对桥和路具有较大的破坏力.在路桥过渡段设置桥头搭板是目前常用的一种处理桥头跳车的方法.国家科技支撑计划项目“山区公路网安全保障技术体系研究与示范工程”项目为了有效解决桥头跳车的问题,从搭板长度、宽度、厚度等方面对桥头搭板设计进行了研究.本次修订采用了该项目的研究成果.①桥头搭板长度的确定主要从两个方面来考虑:保证搭板的工后沉降坡差小于容许值;保证搭板长度稍大于台背后填土缺口的上口宽度.综合考虑这两种因素的估算结果及我国桥梁设计的常规做法,本次修订规定搭板长度不宜小于5m,当桥台高度不小于5m时,搭板长度不宜小于8m.②搭板宽度影响因素较少.从搭板的受力看,当车轮直接压在搭板的纵向边缘时,对搭板的受力是不利的,因此搭板做宽点对受力有利.同时,为避免行车道范围内由于搭板宽度不足导致差异沉降、影响行车安全,规定搭板宽度不应小于行车道宽度.实践中,一般将搭板宽度做到两侧与路缘石边缘相齐,并用柔性材料隔离.③搭板的厚度主要根据受力要求来确定.搭板的受力要求可分为强度要求和变形要求.但是,由于搭板受力复杂,很难简单的确定搭板的受力状况,因而通常采用的处理方法是将搭板换算为等效简支板,找出搭板长度与计算跨径之间的关系,大致研究出各种板长的相应计算跨径,从而按简支板的方法确定搭板的厚度.根据研究结果,搭板厚度一般取搭板长度的 .我国近年来的桥梁设计中,搭板厚度根据具体情况一般取25、30或35cm.综合考虑理论分析结果和我国的工程实践经验,本次修订规定搭板厚度不宜小于0.25m,当搭板长度不小于6m时,其厚度不宜小于0.30m.11增加了大型桥梁工程设置必要的结构监测设施的要求. 随着技术的进步,桥梁安全监测系统技术已经日臻成熟,在公众对工程结构安全性日益关注的背景下,根据桥梁的结构特点、地理环境及系统目标,结合国内外的最新研究成果和经验,开展桥梁结构安全监测已成为行业发展到一定阶段的内在需求,为此,近年来从不同层面均对桥梁结构的安全监测给出了指导性的意见,公路桥梁养护管理工作制度交公路发〔2007〕336号、2013年交通运输部交通运输部进一步加强公路桥梁养护管理的若干意见、交通运输部建立公路桥梁安全运行长效机制的若干意见中均要求“特大、特殊结构和特别重要桥梁的养管单位,要利用现代信息和物联网技术,建立符合自身特点的养护管理系统和健康监测系统”.开展结构安全监测一方面可以促进大型桥梁养护技术、结构可靠性评定及相关技术的进步,也是桥梁学科贯彻落实国家、行业有关要求的重要举措.大型桥梁是国家或地区的交通命脉,耗资巨大,一旦发生桥梁坍塌事故,将造成重大的人员伤亡和巨大的经济损失,并且带来恶劣的社会影响.为了及时掌握大桥的性能表现,防止突发性的坍塌事故的发生,采用科学的方法对大桥进行运营期安全监测是极为必要的,目前这一点已逐渐得到了学术界、工程界以及政府部门的广泛认同,桥梁运营期结构安全监测技术也逐渐在我国新建大桥中得到推广应用.据不完全统计,我国已有四十余座桥梁布设了结构安全监测系统.从发展趋势来看,桥梁结构安全监测与安全评价系统已成为大桥建设工程的一部分,目前国内外新建大跨桥梁结构安全监测系统大多与主体工程一同招标,要在设计阶段统筹考虑,因此,本次修订增加了设置桥梁结构监测设施的要求.4 第4章作用1以“作用组合”取代“作用效应组合”,修改完善了作用组合的设计表达式.原规范在术语上都是沿用作用效应组合,在概念上主要强调的是在设计时将不同作用在桥涵结构上所产生的效应进行叠加的过程.实际上在桥涵结构设计中,当作用与作用效应间为非线性关系时,采用简单的线性叠加就不再有效,因此,在采用效应叠加时,还必须强调作用与作用效应“可按线性关系考虑”的条件.公路桥梁特别是大型桥梁的非线性特征显着,设计中需考虑合理的成桥状态、合理的施工状态,一般情况下会呈现明显的几何非线性特征,此时,原规范作用效应组合的概念就不再适用.为此,工程结构可靠性设计统一标准GB 50153-2008和正在修编的公路工程结构可靠性设计统一标准以作用组合取代作用效应组合,并以此为基础给出了作用与作用效应为线性关系和非线性关系都普遍适用的作用效应设计表达式.本规范根据上位规范的规定作了调整.2改进了作用组合分类及计算方法.现行工程结构可靠性设计统一标准GB 50153-2008和正在修编的公路工程结构可靠性设计统一标准改进了作用组合分类及计算方法,本规范与上位规范一致,相应进行了修改.修改后,承载能力极限状态包括基本组合、偶然组合和地震组合;正常使用极限状态包括频遇组合和准永久组合.3将原规范组合系数改为组合值系数,并统一取为0.75. 根据Turkstra 组合规则,按设计值法确定的组合值系数与可变荷载的数目无关.而现行规范的组合系数随可变荷载数目的增多而减小,计算发现按现行规范作用效应的组合系数计算的可靠指标随可变荷载数目的增加而减小,不符合其定义的初衷.现行工程结构可靠性设计统一标准GB 50153-2008、正在修编的公路工程结构可靠性设计统一标准以及国内外相关规范均采用作用的组合值系数,并取为固定值.试算表明,当2、3、4和5个可变荷载组合的组合系数均取0.74时,随可变荷载数目的增加,所有钢筋混凝土构件的可靠指标增大,但变化不大.因此,为了保持不同可变荷载组合数目时构件的可靠指标不变,并与上位规范一致,本次修订将现行规范中“作用效应的组合系数”改为“作用的组合值系数”,并统一取为0.75,这样可保证结构可靠指标不会随可变荷载数目的增加而降低,保证桥梁结构构件在多重荷载作用下具有比较一致的可靠度.4完善了汽车荷载标准:调整了二级公路的汽车荷载等级;提高了中小跨径桥梁的车道荷载标准;修改了车辆荷载的分项系数.1 自2009年起,我国各省市开始陆续取消二级公路收费,部分二级公路的交通量和荷载水平有了较大增长.因此,本次修订调整了二级公路的汽车荷载等级:一般情况下,二级公路桥涵的设计应采用公路—I级汽车荷载;二级公路为非干线公路且重型车辆不多时,其桥涵的设计可采用公路—Ⅱ级汽车荷载.2 2008~2011年,本规范编写组结合交通运输部西部交通建设科技项目桥梁设计荷载与安全鉴定荷载的研究,开展了全国汽车荷载现状调查和统计分析.利用全国23个省、市、自治区的汽车荷载数据、针对5米~60米标准跨径桥梁的效应分析结果表明,小跨径桥梁汽车荷载效应0.95分位值较规范标准值效应最大提高了30%.实际中我国近年来出现的重载车辆压垮桥梁的事故,也多为中小跨径桥梁.鉴于此,本次修订提高了跨径在50m 以下桥梁的车道荷载集中载标准值,对50m跨径以内的桥梁设计汽车荷载效应有所增加.3 全国汽车荷载研究中,轴组重的研究结果显示,三联轴数量多且超载非常严重,并且这类轴型对于桥梁结构的局部和小跨径桥涵的整体安全影响很大,因此,规范应当予以考虑.为了探讨三联轴重量的确定标准,轴组重研究中,项目组对全国数据的轴重限值保证率进行了研究,各种方案中,在现行规范双轴组的基础上增加一个后轴42t的三轴组模型其保证率达到了98.6%以上.为了既能反映实际情况中三联轴居多且偏重的实际,又能维持规范的延续性,本次修订仍采用现行规范的车辆荷载,只是在利用车辆荷载计算时,将1.4的分项系数提高至1.8,提高的比率是按照42t的三联轴效应与双联轴效应等效的原则确定的.5增加了汽车疲劳荷载以及计算方法.汽车疲劳荷载是桥梁钢结构抗疲劳设计的重要依据,而现行规范中没有相关规定,使得我国公路桥梁钢结构抗疲劳设计中没有统一的荷载标准.公路钢结构桥梁设计规范修订过程中,项目组参考欧洲规范并结合我国公路交通运输的实际情况建立了疲劳设计标准车辆荷载模型,并选取南京三桥为研究对象进行了验证,最终确定了疲劳设计标准车辆荷载模型,并规定了详细的计算要求、疲劳强度曲线及疲劳细节分级.本次,修订采纳了公路钢结构桥梁设计规范对疲劳设计荷载的研究成果.6完善了温度作用计算规定.1 根据规范答疑和修编意见征集情况,技术人员对竖向梯度温度曲线T1起算点的选择疑问较多.为了解决规范应用过程中的疑问,本次修订增加了竖向温度梯度曲线使用的相关说明与要求.2 考虑到公路桥梁都带有较长的悬臂,两侧腹板受太阳直接辐射较少,所以我国现行规范设计时认为只有梁顶全天日照,不计横向梯度温度的作用.根据已有的科研成果及工程设计经验,对于无悬臂的宽幅箱梁,横向温度梯度效应不宜忽略.本次修订时,参考“超大跨混合梁斜拉桥建设关键技术”项目的研究成果,增加了横向温度梯度作用的相关规定.3 近年来高等级公路桥面铺装已广泛采用沥青混凝土铺装.沥青混凝土摊铺时要求高温操作,施工时摊铺温度往往可高达150℃左右,如此高的温度将在主梁内引起较大的温差分布.对于采用混凝土桥面板的桥梁,沥青高温摊铺可能会导致主梁混凝土原有裂缝的扩展及新裂缝的产生,影响桥梁结构的耐久性,必要时设计须考虑沥青摊铺温度作用影响.因此,本次修订增加了相关要求.7增加了波浪力作用.近年来,我国修建了一批近海和跨越海湾、海峡的桥梁工程,其下部结构在波浪和海流共同作用下,受到较大强度的波浪力作用,波浪力的效应不能忽略.因此,本次修订增加了波浪力作用.各海域的水文条件不同,波浪和海流的影响因素复杂,且桥梁墩台的结构形式多样,难以规定统一的波浪力标准值.我国几座大桥都是在设计前期,开展专门的波浪水流数学模型或物理模型试验来确定桥梁下部结构所受的波浪力,并通过现场波浪力观测,对试验研究成果的准确性、正确性进。
新旧规范中的汽车荷载比较
新旧规范中的汽车荷载比较前言:我国公路桥梁结构设计采用的汽车荷载标准长期以来采用汽车车队的形式,计算荷载和验算荷载相结合的模式。
原规范将汽车荷载划分为汽车—超20级、汽车—20级、汽车—15级、汽车—10级共四个等级,并且每个等级规定了验算荷载——挂车和履带车荷载;而新规范只将汽车荷载分为公路—I级和公路—II级两个等级,取消了原规范规定的汽车—15级和汽车—10级汽车荷载,并且不考虑验算荷载。
公路—I级相当于原规范的汽车—超20,公路—II级相当于原规范的汽车—20级。
两者对简支梁的内力有什么区别,我们接下来就来分析这个问题。
正文:新旧规范汽车荷载对简支梁产生的内力主要体现在两个方面:1.汽车荷载的计算图式不同。
原规范汽车荷载的计算图式是以一辆加重车和具有规定间距的若干辆标准车组成的车队表示的。
新规范采用车道荷载即由均布荷载和集中荷载组成的图式。
2.冲击系数不同。
旧规范近似地认为冲击力与计算跨径成反比,并与桥梁的结构形式有关。
而新规范采用了结构基频来计算桥梁结构的冲击系数。
一.跨径20米的简支梁的内力分析。
下面以混凝土简支梁为研究对象,分析新旧规范标准汽车荷载效应的差别。
该桥标准跨径20m,主梁全长19.96m,计算跨径19.50m,桥面净空为净—7m+2×1.75m。
主梁结构尺寸如下图示。
设计荷载分别采用《公路桥涵设计通用规范》(JTG D60-2004)采用的公路—I级、公路—II级与《公路桥涵设计通用规范》(JTJ 021-85)采用的汽车—超20级、汽车—20级进行对比分析。
(一).新桥规计算的荷载效应根据上节中主梁结构纵、横截面的布置,取用其的一根主梁计算其各控制截面的汽车荷载效应。
汽车荷载效应计算按《公路桥涵通用设计规范》(JTG D60-2004)4.3.2条规定,简支梁结构的冲击系数由下式计算:介于1.5HZ和14HZ之间,冲击系数按下式计算:汽车荷载效应计算结果见下表:汽车一级荷载:汽车二级荷载:(二).按照旧桥规计算的荷载效应汽车荷载效应计算:在汽车荷载效应计算中,直接用规范中采用的标准汽车荷载在主梁上加载,从而计算出主梁各控制截面(支点、四分点和跨中截面)的最大弯矩和剪力效应。
公路桥梁设计施工及验收规范(常用)2015.1.1
公路桥梁设计施工及验收规范(常用)2015.1.1
1、《公路工程技术标准》JTG B01-2014
2、《公路桥涵设计通用规范》JTG D60-2004
3、《公路圬工桥涵设计规范》JTG D61-2005
4、《公路钢筋混凝土及预应力混凝土桥涵设计规范》
JTG D62-2004
5、《公路桥涵地基与基础设计规范》JTG D63-2007
6、《公路工程抗震规范》(JTG B02-2013)
7、《公路桥梁抗震设计细则》JTG/T B02-01-2008
8、《公路交通安全设施设计规范》JTG D81-2006
9、《公路交通安全设施设计细则》JTG/T D81-2006
10、《工程结构可靠性设计统一标准》 GB 50153-2008
11、《混凝土结构耐久性设计规范》GB/T 50476-2008
12、《公路工程混凝土结构防腐蚀技术规范》JTG/T B07-01-2007
13、《公路工程基桩动测技术规程》JTG/T F81-01-2004
14、《公路桥涵施工技术规范》JTG/T F50-2011
15、《公路工程质量检验评定标准(第一册)土建工程》
JTG F80/1-2004
宋庆华。
(整理)公路桥涵设计通用规范-JTG-D60-2004
1 总则1.0.1 为使公路桥涵的设计符合技术先进、安全可靠、耐久适用、经济合理的要求,制定本规范。
1.0.2 本规范适用于公路桥涵的一般钢筋混凝土及预应力混凝土结构构件的设计,不适用于轻骨料混凝土及其他特种混凝土桥涵结构构件的设计。
1.0.3 本规范按照国家标准《公路工程结构可靠度设计统一标准》GB/T 50283规定的设计原则编制。
基本术语、符号按照国家标准《工程结构设计基本术语和通用符号》GBJ 132和国家标准《道路工程术语标准》GBJ 124的规定采用。
1.0.4 本规范采用以概率理论为基础的极限状态设计方法,按分项系数的设计表达式进行设计。
本规范采用的设计基准期为100年。
1.0.5 公路桥涵应进行以下两类极限状态设计:1 承载能力极限状态:对应于桥涵及其构件达到最大承载能力或出现不适于继续承载的变形或变位的状态;2 正常使用极限状态:对应于桥涵及其构件达到正常使用或耐久性的某项限值的状态。
1.0.6 公路桥涵应考虑以下三种设计状况及其相应的极限状态设计:1 持久状况:桥涵建成后承受自重、车辆荷载等持续时间很长的状况。
该状况桥涵应作承载能力极限状态和正常使用极限状态设计;2 短暂状况:桥涵施工过程中承受临时性作用(或荷载)的状况。
该状况桥涵应作承载能力极限状态设计,必要时才作正常使用极限状态设计;3 偶然状况:在桥涵使用过程中偶然出现的如罕遇地震的状况。
该状况桥涵仅作承载能力极限状态设计。
1.0.7 公路桥涵应根据其所处环境条件进行耐久性设计。
结构混凝土耐久性的基本要求应符合表1.0.7的规定。
表1.0.7 结构混凝土耐久性的基本要求环境类别环境条件最大水灰比最小水泥用量最低混凝土强度等级最大氯离子含量(%)最大碱含量Ⅰ温暖或寒冷地区的大气环境;与无侵蚀性的水或土接触的环境0.55 275 C25 0.30 3.0 Ⅱ严寒地区的大气环境、使用除冰盐环境;滨海环境0.50 300 C30 0.15 3.0Ⅲ海水环境0.45 300 C35 0.10 3.0Ⅳ受侵蚀性物质影响的环境0.40 325 C35 0.10 3.0注:1 有关现行规范对海水环境结构混凝土中最大水灰比和最小水泥用量有更详细规定时,可参照执行;2 表中氯离子含量系指其与水泥用量的百分率;3 当有实际工程经验时,处于Ⅰ类环境中结构混凝土的最低强度等级可比表中降低一个等级;4 预应力混凝土构件中的最大氯离子含量为0.06%,最小水泥用量为350kg/m3,最低混凝土强度等级为C40或按表中规定Ⅰ类环境提高三个等级,其他环境类别提高二个等级;5 特大桥和大桥混凝土中的最大碱含量宜降至1.8kg/m3,当处于Ⅲ类、Ⅳ类或使用除冰盐和滨海环境时,宜使用非碱活性骨料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2可靠度degree of reliaБайду номын сангаасility
结构在规定的时间内,在规定的条件下,完成预定功能的概率。
2.1.3设计基准期design reference period
在进行结构可靠性分析时,考虑持久设计状况下各项基本变量与时间关系所采用的基准时间参数。
——承台计算中撑杆混凝土轴心抗压强度设计值;
——混凝土弹性模量;
——混凝土剪变模量;
、——普通钢筋、预应力钢筋的弹性模量;
2.2.2作用和作用效应有关符号
——弯矩组合设计值;
、——按作用短期效应组合、长期效应组合计算的弯矩值;
——弯矩组合标准值;
——受弯构件正截面的开裂弯矩值;
——组合式受弯构件第一阶段结构自重产生的弯矩设计值;
1.0.12按本规范进行设计时,有关作用(或荷载)及其组合应符合《公路桥涵设计通用规范》JTGD60的规定;材料和工程质量应符合《公路工程质量检验评定标准》JTJ071、《公路桥涵施工技术规范》JTJ041的要求;结构抗震设计应符合《公路工程抗震设计规范》JTJ004的规定。
2术语和符号
2.1术语
2.1.1极限状态limitstates
2.1.17作用短期效应组合combinationforshort-termactioneffects
结构或构件按正常使用极限状态设计时,永久作用效应与可变作用频遇值效应的组合。
2.1.18作用长期效应组合combinationforlong-termactioneffects
结构或构件按正常使用极限状态设计时,永久作用效应与可变作用准永久值效应的组合。
受冻地区(最冷月月平均气温在-4~-8℃之间)F300F200
微冻地区(最冷月月平均气温在0~-4℃之间)F250F150
注:1混凝土抗冻性试验方法应符合现行标准《公路工程水泥混凝土试验规程》JTJ053的规定;
2墩、台身混凝土应选用比表列值高一级的抗冻等级。
抗冻混凝土应掺入适量引气剂,其伴合物的含气量按现行的《公路桥涵施工技术规范》JTJ041规定的采用。
2.1.4设计状况designsituation
结构从施工到使用的全过程中,代表一定时段的一组物理条件,设计时必须做到使结构在该时段内不超越有关的极限状态。
2.1.5材料强度标准值characteristicvalueofmaterialstrength
设计结构或构件时采用的材料强度的基本代表值。该值可根据符合规定标准的材料,其强度概率分布的0.05分位值确定。
1
1.0.1为使公路桥涵的设计符合技术先进、安全可靠、耐久适用、经济合理的要求,制定本规范。
1.0.2本规范适用于公路桥涵的一般钢筋混凝土及预应力混凝土结构构件的设计,不适用于轻骨料混凝土及其他特种混凝土桥涵结构构件的设计。
1.0.3本规范按照国家标准《公路工程结构可靠度设计统一标准》GB/T50283规定的设计原则编制。基本术语、符号按照国家标准《工程结构设计基本术语和通用符号》GBJ 132和国家标准《道路工程术语标准》GBJ 124的规定采用。
Ⅰ温暖或寒冷地区的大气环境;与无侵蚀性的水或土接触的环境0.55 275C25 0.30 3.0Ⅱ严寒地区的大气环境、使用除冰盐环境;滨海环境0.50 300C30 0.15 3.0Ⅲ海水环境0.45 300C35 0.10 3.0
Ⅳ受侵蚀性物质影响的环境0.40 325C35 0.10 3.0
注:1有关现行规范对海水环境结构混凝土中最大水灰比和最小水泥用量有更详细规定时,可参照执行;
2.1.19开裂弯矩crackingmoment
构件出现裂缝时的理论临界弯矩。
2.1.20作用频遇值frequentvalueofanaction
结构或构件按正常使用极限状态短期效应组合设计时,采用的一种可变作用代表值,其值可根据任意时点(截口)作用概率分布的0.95分位值确定。
2.1.21分项系数partialsafetyfactor
——计算的受弯构件特征裂缝宽度。
2.2.3几何参数有关符号
、——构件受拉区、受压区普通钢筋和预应力钢筋合力点至截面近边的
距离;
、——构件受拉区普通钢筋合力点、预应力钢筋合力点至受拉区边缘的
距离;
、——构件受压区普通钢筋合力点、预应力钢筋合力点至受压区边缘的
距离;
——矩形截面宽度,T形或I形截面腹板宽度;
力点的距离;
、——轴向力作用点至受压区纵向普通钢筋合力点、预应力钢筋合
力点的距离;
、——预应力钢筋与普通钢筋的合力对换算截面、净截面重心轴的
、——T形或I形截面受拉区、受压区的翼缘宽度;
、——T形或I形截面受拉区、受压区的翼缘厚度;
——钢筋直径或圆形板式橡胶支座的直径;
——构件截面的核芯直径;
——混凝土保护层厚度;
——圆形截面半径;
——轴向力对截面重心轴的偏心距;
、——轴向力作用点至受拉区纵向钢筋合力点、受压区纵向钢筋合
力点的距离;
、——轴向力作用点至受拉区纵向普通钢筋合力点、预应力钢筋合
、——截面受拉区、受压区纵向预应力钢筋合力点处混凝土法向应力等
于零时预应力钢筋的应力;
——由预加力产生的混凝土法向预压应力;
、——截面受拉区、受压区纵向预应力钢筋的有效预应力;
、——在作用(或荷载)短期效应组合、长期效应组合下,构件抗裂边
缘混凝土的法向拉应力;
、—?—构件混凝土中的主拉应力、主压应力;
——第i根桩单桩竖向力设计值;
——基桩承台撑杆压力设计值;
——扭矩组合设计值或基桩承台系杆拉力设计值;
——剪力组合设计值;
——构件斜截面内混凝土和箍筋共同的抗剪承载力设计值;
——与构件斜截面相交的普通弯起钢筋抗剪承载力设计值;
——与构件斜截面相交的预应力弯起钢筋抗剪承载力设计值;
、——正截面承载力计算中纵向普通钢筋、预应力钢筋的应力或应力增量;
1.0.8位处Ⅲ类或Ⅳ类环境的桥梁,当耐久性确实需要时,其主要受拉钢筋宜采用环氧树脂涂层钢筋;预应力钢筋、锚具及连接器应采取专门防护措施。
1.0.9水位变动区有抗冻要求的结构混凝土,其抗冻等级不应低于表1.0.9的规定。
表1.0.9水位变动区混凝土抗冻等级选用标准
桥梁所在地区海水环境淡水环境
严重受冻地区(最冷月月平均气温低于-8℃)F350F250
1.0.10有抗渗要求的结构混凝土,其抗渗等级应符合表1.0.10的规定。
表1.0.10结构混凝土抗渗等级选用标准
最大作用水头与混凝土壁厚之比抗渗等级
<5
5~10
11~15
16~20
>20
注:混凝土抗渗试验方法应符合现行标准《公路工程水泥混凝土试验规
程》JTJ053。
1.0.11桥梁结构的设计和施工质量应分阶段实行严格管理和控制;桥梁的使用应符合设计给定的使用条件,禁止超限车辆通行;使用过程中必须进行定期检查和维护。
1.0.6公路桥涵应考虑以下三种设计状况及其相应的极限状态设计:
1持久状况:桥涵建成后承受自重、车辆荷载等持续时间很长的状况。该状况桥涵应作承载能力极限状态和正常使用极限状态设计;
2短暂状况:桥涵施工过程中承受临时性作用(或荷载)的状况。该状况桥涵应作承载能力极限状态设计,必要时才作正常使用极限状态设计;
——由作用短期效应组合产生的开裂截面纵向受拉钢筋的应力;
、——构件受拉区、受压区预应力钢筋张拉控制应力;
、——构件受拉区、受压区预应力钢筋相应阶段的预应力损失;
——构件混凝土的剪应力;
——由预加应力产生的混凝土法向拉应力;
、——由作用(或荷载)标准值产生的混凝土法向压应力、拉应力;
——构件开裂截面按使用阶段计算的混凝土法向压应力;
——边长为的施工阶段混凝土立方体抗压强度;
——边长为的混凝土立方体抗压强度标准值;
、——混凝土轴心抗压强度标准值、设计值;
、——混凝土轴心抗拉强度标准值、设计值;
、——短暂状况施工阶段的混凝土轴心抗压、抗拉强度标准值;
、——普通钢筋抗拉强度标准值、设计值;
、——预应力钢筋抗拉强度标准值、设计值;
、——普通钢筋、预应力钢筋抗压强度设计值;
1.0.4本规范采用以概率理论为基础的极限状态设计方法,按分项系数的设计表达式进行设计。
本规范采用的设计基准期为100年。
1.0.5公路桥涵应进行以下两类极限状态设计:
1承载能力极限状态:对应于桥涵及其构件达到最大承载能力或出现不适于继续承载的变形或变位的状态;
2正常使用极限状态:对应于桥涵及其构件达到正常使用或耐久性的某项限值的状态。
3偶然状况:在桥涵使用过程中偶然出现的如罕遇地震的状况。该状况桥涵仅作承载能力极限状态设计。
1.0.7公路桥涵应根据其所处环境条件进行耐久性设计。结构混凝土耐久性的基本要求应符合表1.0.7的规定。
表1.0.7结构混凝土耐久性的基本要求
环境
类别环境条件最大
水灰比最小水泥用量
最低混凝土强度等级最大氯离子含量(%)最大碱含量
2.1.15承载力设计值designvalueofultimatebearingcapacity
结构或构件按承载能力极限状态设计时,用材料强度设计值计算的结构或构件极限承载能力。
2.1.16作用效应组合设计值designvalueofcombinationfor action effects设计结构或构件时,由几种作用设计值分别引起的效应的组合。
2.1.8作用效应effectsofactions
结构对所受作用的反应,称为作用效应。如由作用产生的结构或构件的轴向力、弯矩、剪力、应力、裂缝、变形等。