六年级奥数蝴蝶模型

合集下载

六年级数学奥数培优教案(下册)图形问题之蝴蝶模型

六年级数学奥数培优教案(下册)图形问题之蝴蝶模型

蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

类型 1:任意四边形中的蝴蝶模型① S 1 ⨯ S 3 = S 2 ⨯ S 4 (上、下两部分面积的积等于左、右两部分面积的积);② S 1 : S 4 = S 2 : S 3 = (S 1 + S 2 ): (S 4 + S 3 )= AO : OC (左:右 = 左和:右和)类型 2:梯形中的蝴蝶模型① S 2 = S 4 ;② S 1 ⨯ S 3 = S 2 ⨯ S 4 ;③OC AO s s s s s s s s :)(:)(::34213241=++==④)(::::::224231ab ab ab b a s s s s 上下平方,左右=⑤梯形 S 的对应份数为 (a + b )2【例1】如图,某公园的外轮廓是四边形 ABCD ,被对角线 AC 、BD 分成四个部分,△ AOB面积为 1 平方千米,△BOC 面积为 2 平方千米,△COD 的面积为 3 平方千米,公园由陆地面积是 6.92 平方千米和人工湖组成,求人工湖的面积是多少平方千米?【例2】如图,边长为 1 的正方形 ABCD 中,BE=2EC ,CF=FD ,求△AEG 的面积.【例3】梯形 ABCD 的对角线 AC 与 BD 交于点 O ,已知梯形上底为 2,且△ABO 的面积等于△BOC 面积的32 ,求△AOD 与△BOC 的面积之比. 专题:图形问题之蝴蝶模型【例4】正方形 ABCD 的面积是 120 平方厘米, BE =31AB , BF = 21BC ,四边形 BGHF 的面积是多少平方厘米?1、如图,四边形被两条对角线分成4个三角形,则△BGC 的面积为 ;AG:GC=2、如图,四边形ABCD 的对角线AC 与BD 交于点O 若△ABD的面积等于△BCD 的面积的31,且AO=2,DO=3,那么CO 的 长度是DO 的 倍。

小学奥数几何篇 五大模型——蝴蝶定理(附答案)

小学奥数几何篇 五大模型——蝴蝶定理(附答案)

五大模型——蝴蝶模型例1. 四边形ABCD的对角线AC与BD交于点O,如果三角形ABD1,且AO=2,DO=3,那么CO的长的面积等于三角形BCD的面积3度是DO的长度的倍例2. 如图,平行四边形ABCD的对角线交与点O点,△CEF、△OEF、△ODF、△BOE的面积依次是2、4、4和6 求:(1)△OCF 的面积;(2)求△GCE的面积例3.如图,边长为1的正方形ABCD中,BE=3EC,CF=FD,求三角形AEG的面积。

例4. 如图,边长为1的正方形ABCD的边长为10厘米,E为AD 中点,F为CE中点,G为BF中点,求三角形BDG的面积例5. 如下图,梯形ABCD的AB平行于CD,对角线AC,BD交于O,已知AOB于BOC的面积分别为25平方厘米于35平方厘米,那么梯形ABCD的面积是平方厘米例6.梯形ABCD的对角线AC与BD交与点O,已知梯形上底为2,2,求三角形AOD与且三角形ABO的面积等于三角形BOC面积的3三角形BOC的面积之比。

例7. 如下图,一个长方形一些直线分成了若干个小块,已知三角形ADG的面积是11,三角形BCH的面积是23,求四边形EGFH 的面积。

例8. 右图中ABCD是梯形,ABED是平行四边形,已知三角形面积如图所示(单位:平方厘米),阴影部分的面积是平方厘米例9. 如图,长方形ABCD被CE、DF分成四块,已知期中3块的面积分别为2、5、8平方厘米,那么余下的四边形OFBC的面积为平方厘米例10. 如图,正六边形面积为6,那么阴影部分面积为多少?蝴蝶模型习题1、如图,长方形ABCD中,BE:EC=2:3,DF:FC=1:2,三角形DFC面积为2平方厘米,求长方形ABCD的面积.2、梯形的下底是上底的1.5倍,三角形OBC的面积是9cm2,问三角形AOD的面积是多少?3、如图,长方形中,若三角形1的面积与三角形3的面积比为4:5,四边形2的面积为36,则三角形1的面积为4、如图,长方形ABCD中,阴影部分是直角三角形且面积为54,OD的长是16,OB的长是9,那么四边形OECD的面积是多少?5、如图,△ABC是等腰三角形,DEFG是正方形,线段AB与CD相较于K点,已知正方形DEFG的面积48,AK:KB=1:3,则△BKD的面积是多少?答案【例1】因为AO : OC =S∆ABD : S∆BDC= 1: 3 ,所以OC = 2⨯3 = 6 ,所以OC : OD = 6: 3 = 2:1.解法二:作AH ⊥BD于H ,CG ⊥BD 于G .因为S所以S ∆ABD=1S3=1S∆BCD,所以AH =1 CG ,3,∆AOD 3 ∆DOCAO =1CO ,3OC = 2⨯3 = 6 ,OC : OD = 6: 3 = 2:1.C【例2】⑴⑴BCD 的面积为2 + 4 + 4 + 6 =16 ,⑴BCO 和∆CDO 的面积都是16 ÷ 2 = 8 ,所以⑴OCF 的面积为8 - 4 = 4 ;⑴由于⑴BCO 的面积为8,⑴BOE 的面积为6,所以⑴OCE 的面积为8 - 6 = 2 ,根据蝴蝶定理,EG : FG =S∆COE : S∆COF= 2 : 4 = 1: 2所以S∆GCE : S∆GCF=EG : FG = 1: 2 ,S∆GCE =11+ 2S∆CEF=1⨯ 2 =2 .33【例3】A DFB EC 连接EF .因为BE = 2EC ,CF =FD ,所以S∆DEF = (1⨯1⨯1)S2 3 2ABCD=1S12ABCD.因为S∆AED =1S2ABCD,由蝴蝶定理,AG : GF =1 : 12 12= 6 :1 ,所以S∆AGD = 6S∆GDF=6S7∆ADF=6⨯1S74ABCD=3S14ABCD.所以S∆AGE =S∆AED-S∆AGD=1S2ABCD-3 S14ABCD=2S7ABCD=2,7【例4】A E DB C设BD 与CE 的交点为O ,连接BE 、DF .由蝴蝶定理EO : OC =S BED : S BCD ,而SBED =1S4ABCD,SBCD=1S2ABCD,所以EO : OC =SBED : SBCD= 1: 2 ,故EO =1EC .3F 为CE 中点,所以EF =1 EC ,2故EO: EF = 2: 3,FO : EO =1: 2 .由蝴蝶定理SBFD : SBED=FO : EO = 1: 2 ,所以SBFD =1S2BED=1S8ABCD,SBGD =1S2BFD=1S16ABCD=1⨯10⨯10 = 6.2516AOB BOC AOB DOC 梯形蝴蝶定理B① S 1 : S 3 C= a 2 : b 2② S : S : S : S = a 2 : b 2 : ab : ab ; 1 3 2 4 ③ S 的对应份数为(a + b )2【例 5】由梯形蝴蝶定理, S : S = a 2 : ab = 25 : 35 , 可得 a : b = 5: 7 ,再根据梯形蝴蝶定理, S : S = a 2 :b 2 = 52 : 72 = 25 : 49 , 所以S DOC = 49梯形 ABCD 的面积为25 + 35 + 35 + 49 =144【例 6】由蝴蝶定理, S AOB : S BOC = ab : b 2 = 2 : 3得a : b = 2: 3,S AOD : S BOC = a 2 : b 2 = 22 : 32 = 4 : 9O∆OCD ∆OCD【例 7】AF BDE C如图,连结 EF ,显然 ADEF 和 BCEF 都是梯形, 于是 EFG 的面积等于三角形 ADG 的面积三角形 BCH 的面积等于三角形 EFH 的面积所以四边形 EGFH 的面积是11+ 23 = 34.【例 8】A DB C连接 AE .由于 AD 与 BC 平行,所以 AECD 也是梯形,那么S ∆OCD = S ∆OAE .据蝴蝶定理, S ∆OCD ⨯ S ∆OAE = S ∆OCE ⨯ S ∆OAD = 2 ⨯ 8 = 16 故 S 2 = 16 ,所以S = 4另解:在平行四边形 ABED 中, S ∆ADE =1 S2 ABED = 1 ⨯(16 + 8) = 12 2 所以S ∆AOE = S ∆ADE - S ∆AOD = 12 - 8 = 4根据蝴蝶定理,阴影部分的面积为8⨯ 2 ÷ 4 = 4【例 9】A EBD连接 DE 、CF . EDCF 为梯形,所以S ∆EOD = S FOC , 又根据蝴蝶定理, S ∆EOD ⋅ S ∆FOC = S ∆EOF ⋅ S ∆COD 所以S ∆EOD = 4 , S ∆ECD = 4 + 8 = 12ABCD 面积为12⨯2 = 24S ∆EOD ⋅ S ∆FOC = S ∆EOF ⋅ S ∆COD = 2 ⨯ 8 = 16 ,四边形OFBC 的面积为24 - 5 - 2 -8 = 9 (平方厘米).【例 10】连接阴影图形的长对角线,此时六边形被平分为两半根据六边形的特殊性质,和梯形蝴蝶定理把六边形分为 18 份 阴影部分占了其中 8 份,所以阴影部分的面积 8 ⨯ 6 = 8 .183∆ AOD ∆ AOD ∆BOC123作业题答案1.AD FBEC连接 AE , FE .因为 BE : EC = 2: 3 , DF : FC =1: 2 ,所以S = (3 ⨯ 1 ⨯ 1)S = 1S. DEF 5 3 2长方形ABCD10 长方形ABCD 因为S= 1 S , A G : GF = 1 : 1= 5 :1,所以S = 5S = 10 平方厘米,所AED2 长方形ABCD 2 10AGD GDF 以 S = 12 平方厘米.因为S = 1S ,所以长方形 ABCD 的面积是72 平方 AFD厘米.2.AFDA D6 长方形ABCDBC根据梯形蝴蝶定理, a : b =1:1.5 = 2: 3 , S : S = a 2:b 2 = 22 : 32 = 4 : 9 , 所以S = 4(cm 2 ) .3.O 做辅助线如下:利用梯形模型,这样发现四边形 2 分成左右两边,其面积正好等于三角形 1 和三角形 3,所以 1 的面积就是36 ⨯44 + 5= 16 ,3 的面积就是 36 ⨯54 + 5= 20 .4.ADBEC因为连接 ED 知道⑴ABO 和⑴EDO 的面积相等即为54 ,又因为OD ⑴OB =16⑴9 ,所以 ⑴AOD 的面积为54 ÷ 9⨯16 = 96 ,根据四边形的对角线性质知道:⑴BEO 的面积为:54⨯54 ÷ 96 = 30.375 ,所以四边形OECD 的面积为: 54 + 96 - 30.375 =119.625 (平方厘米).5.BM C由于 DEFG 是正方形,所以 DA 与 BC 平行,那么四边形 ADBC 是梯形.在梯形ADBC 中,∆BDK 和∆ACK 的面积是相等的.而 AK : KB =1: 3 ,所以∆ACK 的面积是∆ABC 面积的 1 = 1 ,那么∆BDK 的面积也是∆ABC 面积的 1.1+ 3 4 4由于∆ABC 是等腰直角三角形,如果过 A 作 BC 的垂线,M 为垂足,那么 M 是BC 的中点,而且 AM = DE ,可见∆ABM 和∆ACM 的面积都等于正方形 DEFG 面积的一半,所以∆ABC 的面积与正方形 DEFG 的面积相等,为 48. 那么∆BDK 的面积为48⨯ 1= 12 .4。

小学奥数-几何五大模型(蝴蝶模型)..

小学奥数-几何五大模型(蝴蝶模型)..

模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?任意四边形、梯形与相似模型B【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。

如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。

AB C DOH GA BC D O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。

六年级下册小学奥数几何模块蝴蝶模型全国通用

六年级下册小学奥数几何模块蝴蝶模型全国通用

例6:如图,正方形ABCD的面积是1,E、F、G、H分别是AB、BC、CD、AD的中点,求图中阴影部分的面积.
练一练5:如图,正六边形ABCDEF的面积是1,边上各点均为中点,求图中阴影部分的面积.
例1:如图,四边形ABCD是平行四边形,E在BC的延长线上,已知三角形ADF和三角形CEF的面积,求平行四边形ABCD的面积.
练一练5:如图,正六边形ABCDEF的面积是1,边上各点均为中点,求图中阴影部分的面积. 作业2:如图,正方形ABCD中,E、F分别是BC的三等分点,已知正方形的边长是1厘米,求图中阴影部分的面积. 练一练5:如图,正六边形ABCDEF的面积是1,边上各点均为中点,求图中阴影部分的面积. 连接梯形的两条对角线,构造成蝴蝶模型的一般形式,可以得到如下几条结论. 主讲老师:癸酉0311 连接梯形的两条对角线,构造成蝴蝶模型的一般形式,可以得到如下几条结论. 例1:如图,四边形ABCD是平行四边形,E在BC的延长线上,已知三角形ADF和三角形CEF的面积,求平行四边形ABCD的面积. 作业2:如图,正方形ABCD中,E、F分别是BC的三等分点,已知正方形的边长是1厘米,求图中阴影部分的面积. 蝴蝶模型作为梯形中的基础模型,可以看做是特殊的风筝模型,可以通过等高模型和相似模型进行推导,其主要研究的是梯形中三角形的面积之间的关系. 例2:如图,正方形ABCD中,E是BC的中点,已知三角形BEF的面积是1平方厘米,求正方形ABCD的面积. 例7:如图,梯形ABCD中,E、F分别是AB、CD的中点,BC=2AD,已知梯形的面积是1,求阴影部分的面积. 练一练4:如图,正方形ABCD的面积是1,E、F分别是BC、CD的中点,求图中两个阴影部分的面积. 作业3:如图,梯形ABCD中,AE//DF,已知三角形ABI、三角形ADH、三角形CDG的面积分别是17、15、16,求图中阴影部分的面积. 练一练1:长方形ABCD中,E、F是BC、AD上两点,已知三角形ABG和三角形CDH的面积都是10,求图中阴影部分的面积. 例6:如图,正方形ABCD的面积是1,E、F、G、H分别是AB、BC、CD、AD的中点,求图中阴影部分的面积. 练一练5:如图,正六边形ABCDEF的面积是1,边上各点均为中点,求图中阴影部分的面积. 练一练6:如图,长方形ABCD的面积是12,边上各点均为中点,求图中阴影部分的面积. 连接梯形的两条对角线,构造成蝴蝶模型的一般形式,可以得到如下几条结论.

小学奥数-几何五大模型(蝴蝶模型)知识讲解

小学奥数-几何五大模型(蝴蝶模型)知识讲解

小学奥数-几何五大模型(蝴蝶模型)模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?任意四边形、梯形与相似模型B【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。

如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。

ABCDOH GA BCD O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。

六年级奥数蝴蝶模型(供参考)

六年级奥数蝴蝶模型(供参考)

蝴蝶模型一、蝴蝶模型与任意四边形在任意四边形中,两对角线将四边形分成四个三角形,两组相对三角形面积之积相等。

推导:由等积变形模型可知:二、蝴蝶模型与梯形①②推导:① 同上② 过点A 作三角形ABC 的高1h ,过点D 作△BCD 的高2h21h h =∴(两平行线之间高相等)三、蝴蝶模型与平行四边形(一) ①②推导:① 同上② BCD ABC S S ∆∆= ACD BCD S S ∆∆= (同底等高)即:对角平行四边形面积乘积相等(在平行四边形ABCD 内作两条分别平行于两组相对边的线段GH 、EF ) 推导:连接GE 、EH 、HF 、FG ,过点E 作EM 垂直于GH 于点M同理可得:321S S OGF =∴∆ 221S S OFH =∆ 421S S EOH =∆ 由蝴蝶定理可知:EOH OGF OFH OGE S S S S ∆∆∆∆⨯=⨯四、蝴蝶模型与长方形(一) ①②即:对角长方形面积乘积相等五、蝴蝶模型与正方形“子母图”——两共线相邻的正方形在上面两个图形中,每组正方形的对角线均互相平行,即a//b 、c//d重要结论:两共线相邻的正方形对角线互相平行。

例1:如下图所示,在梯形ABCD 中,对角线BD ,AC 相交于点O ,△AOD 的面积是6,△AOB 的面积是4,那么梯形ABCD 的面积是多少?分析:梯形ABCD 是四个三角形面积的总和,现已经知道两个三角形的面积,由蝴蝶定理容易求出三角形BOC 和三角形DOC 的面积,进而可以求出梯形ABCD 的面积。

解:由蝴蝶定理可知:S ∆BOC =S ∆AOD =6∴S ∆DOC =6×6÷4=9∴梯形ABCD 的面积是9+6+4+6=25答:梯形ABCD 的面积是25。

例2:如图,求阴影部分的面积。

(单位cm 2)分析:由长方形中的蝴蝶定理“对角长方形面积乘积相等”,可直接求出阴影部分的面积。

解:S 阴影=28×6÷12=14(cm 2)答:阴影部分的面积为14平方厘米。

六年级奥数蝴蝶模型

六年级奥数蝴蝶模型

型蝶模蝴一、蝴蝶模型与任意四边形两组相对三角形面积之积相等。

在任意四边形中,两对角线将四边形分成四个三角形,由等积变形模型可知:推导:二、蝴蝶模型与梯形SS??S?S①4123SS?②21同上推导:①h DABC的高作,过点②过点A作三角形1h的高△BCD2hh??相等)(两平行线之间高21三、蝴蝶模型与平行四边形S?S?S?S(一)①4321S?SS??S②4213:①同上推导SS? S?S②(同底等高)ACD?BCDBCD?ABC??SS?S?S?即:对角平行四边形面积乘积相等(二)4231)内作两条分别平行于两组相对边的线段GH、EF(在平行四边形ABCD M垂直于GH于点HF、FG,过点E作EMGE推导:连接、EH、111SS???S?SSS同理可得:4EOH?OGF?OFH?32222S??S?SS由蝴蝶定理可知:SS??SS?①(一)4213 EOH?OFHOGE??OGF?四、蝴蝶模型与长方形S?S?SS?②4132?S?S?SS即:对角长方形面积(二)4123乘积相等五、蝴蝶模型与正方形“子母图”——两共线相邻的正方形在上面两个图形中,每组正方形的对角线均互相平行,即a//b、c//d重要结论:两共线相邻的正方形对角线互相平行。

例1:如下图所示,在梯形ABCD中,对角线BD,AC相交于点O,△AOD的面积是6,△AOB的面积是4,那么梯形ABCD的面积是多少?分析:梯形ABCD是四个三角形面积的总和,现已经知道两个三角形的面积,由蝴蝶定理容易求出三角形BOC和三角形DOC的面积,进而可以求出梯形ABCD的面积。

解:由蝴蝶定理可知:6BA O 4CD的面积是梯形答:梯形ABCD的面积是25。

2cm)2:如图,求阴影部分的面积。

(单位例,可直接求出阴影部分的分析:由长方形中的蝴蝶定理“对角长方形面积乘积相等”面积。

12 28cm(2)解:阴影6答:阴影部分的面积为14平方厘米。

求图中阴影部分的面积。

小学的奥数-几何五大模型(蝴蝶模型)

小学的奥数-几何五大模型(蝴蝶模型)

模型三 蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):S 4S 3S 2S 1O DCBA①1243::S S S S =或者1324S S S S ⨯=⨯②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

【例 1】 (小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?ODCBA【分析】 根据蝴蝶定理求得312 1.5AOD S =⨯÷=△平方千米,公园四边形ABCD 的面积是123 1.57.5+++=平方千米,所以人工湖的面积是7.5 6.920.58-=平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵:AG GC =?任意四边形、梯形与相似模型B【解析】 ⑴根据蝴蝶定理,123BGC S ⨯=⨯V ,那么6BGC S =V ;⑵根据蝴蝶定理,()():12:361:3AG GC =++=. (???)【例 2】 四边形ABCD 的对角线AC 与BD 交于点O (如图所示)。

如果三角形ABD 的面积等于三角形BCD 的面积的13,且2AO =,3DO =,那么CO 的长度是DO 的长度的_________倍。

AB C DOH GA BC D O【解析】 在本题中,四边形ABCD 为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。

小学六年级奥数 五大模型——蝴蝶模型、燕尾模型

小学六年级奥数 五大模型——蝴蝶模型、燕尾模型

1
【例2】(★★★)
如图,长方形ABCD被CE、DF分成四块,已知其中3块的面积分别 为2、5、8平方厘米,那么余下的四边形OFBC的面积为 ___________平方厘米。
【例3】 (★★★)
如图,ABCD长方形中,阴影部分是直角三角形且面积为54,OD 的长是16,OB的长是9。那么四边形OECD的面积是多少?
五大模型——蝴蝶模型、燕尾模型
1.蝴蝶模型
任意四边形中的比例关系:

S :S =S :S
12
43
或者S1
S 3
=
S 2
S 4
② AO:OC = S +S : S +S






1
2


4
3




BO:OD= S +S : S +S





ቤተ መጻሕፍቲ ባይዱ

2
3


Aa D S1
S2 O S4
S3
B
C
b
二、本讲经典例题 例1,例4,例6,例7,例8
3.燕尾模型 在三角形ABC中,AD,BE,CF相交于同一点O,那么 SABO : SACO BD : DC 。
4
1
4




3.燕尾模型
在三角形ABC中,AD,BE,CF相交于同一点O,那 么SABO : SACO BD : DC 。
2.梯形蝴蝶模型 梯形中比例关系: ① S2=S4 ② S1 : S3 : S2 : S4 a2 : b2 : ab : ab

最新六年级奥数——蝴蝶模型-燕尾定理练习题-教案

最新六年级奥数——蝴蝶模型-燕尾定理练习题-教案

蝴蝶模型和燕尾定理练习题1、如图,已知BD DC =,2EC AE =,三角形ABC 的面积是30,求阴影部分面积.D EFC B AD EF C B AD EF CB A【解析】 题中条件只有三角形面积给出具体数值,其他条件给出的实际上是比例的关系,由此我们可以初步判断这道题不应该通过面积公式求面积. 又因为阴影部分是一个不规则四边形,所以我们需要对它进行改造,那么我们需要连一条辅助线,(法一)连接CF ,因为,2EC AE =,三角形ABC 的面积是30,所以1103ABE ABC S S ==△△,1152ABD ABC S S ==△△.根据燕尾定理,12ABF CBF S AE S EC ==△△,BD DC =1ABF ACF S BDS CD==△△,所以17.54ABF ABC S S ==△△,157.57.5BFD S =-=△,所以阴影部分面积是30107.512.5--=.(法二)连接DE ,由题目条件可得到1103ABE ABC S S ==△△,11210223BDE BEC ABC S S S ==⨯=△△△,所以11ABE BDE S AF FD S ==△△, 1111112.5223232DEF DEA ADC ABC S S S S =⨯=⨯⨯=⨯⨯⨯=△△△△,而211032CDE ABC S S =⨯⨯=△△.所以阴影部分的面积为12.5.2、(2007年香港圣公会数学竞赛)如图所示,在ABC △中,12CP CB =,13CQ CA =,BQ 与AP 相交于点X ,若ABC △的面积为6,则ABX △的面积等于 .XQPABC XQPAB C4411XQPCBA【解析】 方法一:连接PQ .由于12CP CB =,13CQ CA =,所以23ABQ ABC SS =,1126BPQ BCQABCS S S ==.由蝴蝶定理知,21:::4:136ABQ BPQ ABC ABC AX XP S S S S ===,所以441226 2.455255ABX ABP ABC ABC S S S S ==⨯==⨯=.方法二:连接CX 设1CPX S =△份,根据燕尾定理标出其他部分面积, 所以6(1144)4 2.4ABX S =÷+++⨯=△3、如图所示,在四边形ABCD 中,3AB BE =,3AD AF =,四边形AEOF 的面积是12,那么平行四边形BODC 的面积为________.OFEDCBA684621O F EDCBA【解析】 连接,AO BD ,根据燕尾定理::1:2ABO BDO S S AF FD ==△△,::2:1AOD BOD S S AE BE ==△△,设1BEO S =△,则其他图形面积,如图所标,所以221224BODC AEOF S S ==⨯=.4、ABCD 是边长为12厘米的正方形,E 、F 分别是AB 、BC 边的中点,AF 与CE 交于G ,则四边形AGCD 的面积是_________平方厘米.GFE DCBAGFE D CBA【解析】 连接AC 、GB ,设1A G C S =△份,根据燕尾定理得1AGB S =△份,1B G C S =△份,则11126S =++⨯=正方形()份,314ADCG S =+=份,所以22126496(cm )ADCG S =÷⨯=5、(2009年清华附中入学测试题)如图,四边形ABCD 是矩形,E 、F 分别是AB 、BC 上的点,且13AE AB =,14CF BC =,AF 与CE 相交于G ,若矩形ABCD 的面积为120,则AEG ∆与CGF ∆的面积之和为 .A BC DEFGH A BCDE FGA BCDEF G【解析】 (法1)如图,过F 做CE 的平行线交AB 于H ,则::1:3EH HB CF FB ==,所以122AE EB EH ==,::2AG GF AE EH ==,即2AG GF =,所以122311033942AEG ABF ABCD S S S ∆∆=⨯⨯=⨯⨯=.且22313342EG HF EC EC ==⨯=,故CG GE =,则1152CGF AEG S S ∆∆=⨯⨯=.所以两三角形面积之和为10515+=. (法2)如上右图,连接AC 、BG .根据燕尾定理,::3:1ABG ACG S S BF CF ∆∆==,::2:1BCG ACG S S BE AE ∆∆==,而1602ABC ABCD S S ∆==,所以3321ABG S ∆=++,160302ABC S ∆=⨯=,2321BCG S ∆=++,160203ABC S ∆=⨯=,则1103AEG ABG S S ∆∆==,154CFG BCG S S ∆∆==,所以两个三角形的面积之和为15.6、两条线段把三角形分为三个三角形和一个四边形,如图所示, 三个三角形的面积 分别是3,7,7,则阴影四边形的面积是多少?773773FEDCBAx+3x 773FED CBA【解析】 方法一:遇到没有标注字母的图形,我们第一步要做的就是给图形各点标注字母,方便后面的计算.再看这道题,出现两个面积相等且共底的三角形.设三角形为ABC ,BE 和CD 交于F ,则BF FE =,再连结DE . 所以三角形DEF 的面积为3.设三角形ADE 的面积为x ,则()():33:10:10x AD DB x +==+,所以15x =,四边形的面积为18.方法二:设ADF S x =△,根据燕尾定理::ABF BFC AFE EFC S S S S =△△△△,得到3AEF S x =+△,再根据向右下飞的燕子,有(37):7:3x x ++=,解得7.5x =四边形的面积为7.57.5318++=7、如下图,正方形 ABCD 的面积是a ,正三角形BPC 的面积是 b ,求阴影三角形BPD 的面积.【分析】 连接 AC 交 BD 于O 点,并连接PO .如图所示,可得P O / / DC ,所以三角形DPO 与三角形 CPO 面积相等(同底等高),所以有:8、已知四边形ABCD 和CEFG 都是正方形,且正方形ABCD 的边长为10厘米,那么图中阴影三角形BFD 的面积为多少平方厘米?【分析】 连接FC ,有FC 平行BD ,设BF 与DC 连接于O ,那么在梯形蝴蝶中有1===502DFO BCODCB ABCD S S S S S ∆∆∆=阴影9、如图,已知在平行四边形ABCD 中,AB=16,AD=10,BE=4,那么FC 的F GED CBA长度是多少?【分析】图中有一个沙漏,也有金字塔,但我们用沙漏就能解决问题,因为AB 平行于CD ,所以::4:16B F F C B E C D ===,所以410814FC =⨯=+. 10、四边形ABCD 和四边形CEFG 是两个正方形,BF 与CD 相交于H ,已知CH:DH=1:2, 6BCH S ∆=,求五边形ABEFD 的面积。

六年级奥数蝴蝶模型

六年级奥数蝴蝶模型

蝴蝶模型一、蝴蝶模型与任意四边形在任意四边形中,两对角线将四边形分成四个三角形,两组相对三角形面积之积相等。

推导:由等积变形模型可知:OC AOS S BOC AOB =∆∆ OC AOS S COD AOD =∆∆ COD AODBOC AOB S S S S ∆∆∆∆=∴2431S S S S =即4321S S S S ⨯=⨯∴二、蝴蝶模型与梯形①②推导:① 同上② 过点A 作三角形ABC 的高1h ,过点D 作△BCD 的高2h BC AD //Θ21h h =∴(两平行线之间高相等)121h BC S ABC ⨯⨯=∆Θ221h BC S BDC ⨯⨯=∆BDC ABC S S ∆∆=∴3231S S S S +=+∴ 21S S =∴三、蝴蝶模型与平行四边形(一) ①②推导:① 同上② BCD ABC S S ∆∆=Θ ACD BCD S S ∆∆= (同底等高) 4241S S S S +=+∴ 2324S S S S +=+ 21S S =∴ 43S S = OD OB =Θ OC OA = 31S S =∴ 42S S =即:对角平行四边形面积乘积相等(在平行四边形ABCD 内作两条分别平行于两组相对边的线段GH 、EF )推导:连接GE 、EH 、HF 、FG ,过点E 作EM 垂直于GH 于点MEM OG S OGE ⨯⨯=∴∆21EM OG S S ⨯==∴1平行四边形121S S OGE =∴∆同理可得:321S S OGF =∴∆ 221S S OFH =∆ 421S S EOH =∆ 由蝴蝶定理可知:EOH OGF OFH OGE S S S S ∆∆∆∆⨯=⨯432121212121S S S S ⨯=⨯∴4321S S S S ⨯=⨯∴ 四、蝴蝶模型与长方形(一) ①②即:对角长方形面积乘积相等五、蝴蝶模型与正方形“子母图”——两共线相邻的正方形在上面两个图形中,每组正方形的对角线均互相平行,即a//b、c//d重要结论:两共线相邻的正方形对角线互相平行。

小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理一、蝴蝶定理的定义与公式蝴蝶定理是小学奥数几何篇中的一个重要模型,它描述了在等腰三角形中,一条平行于底边的线段将底边平分,并且这条线段与等腰三角形的两腰相交于同一点时,该线段的中点与等腰三角形的顶点、底边的中点以及两腰上的交点形成一个等腰三角形。

蝴蝶定理的公式如下:设等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,则AG=BG=CG。

二、蝴蝶定理的应用1. 在等腰三角形中求边长:通过蝴蝶定理,可以快速求出等腰三角形中未知边的长度。

例如,已知等腰三角形ABC中,AB=AC,底边BC 的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求AG的长度。

解答:根据蝴蝶定理,AG=BG=CG,又因为AB=AC,所以AG=AB/2=a。

2. 在等腰三角形中求角度:通过蝴蝶定理,可以求出等腰三角形中未知角的度数。

例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求∠AGB的度数。

解答:由于AG=BG=CG,所以△AGB是等边三角形,∠AGB=60°。

3. 在等腰三角形中求面积:通过蝴蝶定理,可以求出等腰三角形中未知部分的面积。

例如,已知等腰三角形ABC中,AB=AC,底边BC的长度为2a,点D在BC上,且BD=DC=a,点E在AB上,点F在AC上,DE平行于BC,交AB于点E,交AC于点F,点G为DE的中点,连接AG、BG、CG,求△AGB的面积。

解答:由于△AGB是等边三角形,所以△AGB的面积=(a^2 √3)/ 4。

小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理(附答案)

小学奥数几何篇五大模型蝴蝶定理(附答案)在小学奥数的几何部分,蝴蝶定理是一个非常有用的工具,它可以帮助我们解决一些复杂的几何问题。

蝴蝶定理主要描述了在四边形中,当两条对角线互相垂直时,四边形被分成四个小三角形,而这四个小三角形的面积之间存在一定的关系。

蝴蝶定理的内容如下:设四边形ABCD中,AC和BD是互相垂直的对角线,交于点O。

设四个小三角形的面积分别为S1、S2、S3、S4。

那么,蝴蝶定理可以表述为:S1 + S2 = S3 + S4。

这个定理听起来可能有些抽象,但实际上它的应用非常广泛。

我们可以通过蝴蝶定理来解决一些看似复杂的问题。

下面,我将通过一些例子来展示蝴蝶定理的应用。

例1:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC =8cm,BD = 6cm。

如果三角形ABC的面积是24cm²,那么三角形ADC的面积是多少?解答:根据蝴蝶定理,我们有S1 + S2 = S3 + S4。

由于三角形ABC的面积是24cm²,所以S1 = 24cm²。

又因为AC = 8cm,BD = 6cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 8cm6cm = 24cm²。

因此,三角形ADC的面积也是24cm²。

例2:在四边形ABCD中,AC和BD是互相垂直的对角线,且AC = 10cm,BD = 5cm。

如果三角形ABC的面积是20cm²,那么三角形ADC的面积是多少?解答:同样地,根据蝴蝶定理,我们有S1 + S2 = S3 + S4。

由于三角形ABC的面积是20cm²,所以S1 = 20cm²。

又因为AC = 10cm,BD = 5cm,我们可以计算出三角形ADC的面积S3 = 1/2 AC BD = 1/2 10cm 5cm = 25cm²。

因此,三角形ADC的面积是25cm²。

六年级奥数蝴蝶模型

六年级奥数蝴蝶模型

S ABCBDCS ABC1 BC h 2BC h 22S BDCS i S 3S 2 S 3S S 2S AOBAOS BOCOC S AOD AO S CODOCS AOBS AOD S BOCS COD、蝴蝶模型与梯形②过点A 作三角形ABC 的高h i ,过点D、蝴蝶模型与任意四边形S| S 2 S 3 S 4在任意四边形中,两对角线将四边形分成四个三角形,两组相对三角形面 积之积相等。

推导:由等积变形模型可知:S1S2S3S4AD // BCh i(两平行线之间高相等)蝴蝶模型S i S 4 S 3S 2三、蝴蝶模型与平行四边形S BCDS ACD(同底等高)S 1 S 4 S 2 S 4S 4S 2 S 3 S 2()Si S 2 S 3 S 4即:对角平行四边形面积乘积相等3 S 2S 3S 4OB OD OA OCS-i S 3 S 2 S 4(在平行四边形ABCD 内作两条分别平行于两组相对边的线段 GH EF )②S ABC S BCD推导:连接GE EH HF FG 过点E作EM垂直于GH于点M1S OGE OG EM2S平行四边形S i OG EMS OGE — S21 1 1同理可得:S OGF S3 S OFH S2 S EOH S42 2 2由蝴蝶定理可知:S O GE S O FH S OGF S EOH1 c 1 c 1 c 1 cS1 S2 S3 S42 2 2 2四、蝴蝶模型与长方形I(二)S1 S2 S3 S4 即:对角长方形面积乘积相等五、蝴蝶模型与正方形“子母图”一一两共线相邻的正方形在上面两个图形中,每组正方形的对角线均互相平行,即a//b、c//d 重要结论:两共线相邻的正方形对角线互相平行。

答:阴影部分的面积为14平方厘米。

例1:如下图所示,在梯形 ABCD 中,对角线BD AC 相交于点0, △ A0D 勺面积 是6,A A0B 的面积是4,那么梯形ABCD 勺面积是多少?分析:梯形ABCD1四个三角形面积的总和,现已经知道两个三角形的面积, 由蝴蝶定理容易求出三角形B0C 和三角形D0C 的面积,进而可以求出梯形ABCD 的面积。

六年级下册小学奥数几何模块蝴蝶模型(29页PPT)全国通用

六年级下册小学奥数几何模块蝴蝶模型(29页PPT)全国通用
主讲老师:癸酉0311
目 录
专题解析 例题讲解 总结归纳 巩固提升
专题解析
专题解析
蝴蝶模型 蝴蝶模型作为梯形中的基础模型,可以看做是特殊的风筝模型,可以通过等高模型和相似模型进 行推导,其主要研究的是梯形中三角形的面积之间的关系.
基本要求 连接梯形的两条对角线,构造成蝴蝶模型的一般形式,可以得到如下几条结论.
例题讲解
例5:如图,正六边形的面积是6,求图中阴影部分的面积.
例题讲解
练一练5:如图,正六边形ABCDEF的面积是1,边上各点均为中点,求图中阴影部分的面积.
例题讲解
例6:如图,正方形ABCD的面积是1,E、F、G、H分别是AB、BC、CD、AD的中点,求图中阴 影部分的面积.
例题讲解
练一练6:如图,长方形ABCD的面积是12,边上各点均为中点,求图中阴影部分的面积.
例题讲解
例题讲解
例1:如图,四边形ABCD是平行四边形,E在BC的延长线上,已知三角形ADF和三角形CEF的面 积,求平行四边形ABCD的面积.
例题讲解
练一练1:长方形ABCD中,E、F是BC、AD上两点,已知三角形ABG和三角形CDH的面积都是10,
求图中阴影部分的面积.
3. 利用丰富的学习资源激发学生学习兴趣,帮助学生认识珍惜时间的重要性.培养学生遵守和爱惜时间的意识和习惯。 情境:动物趣味运动 (2)老师有2元钱最多可以买几种商品? 难点:应用人民币的知识和100以内数的组成的知识,解决一些简单的数字问题。 《义务教育数学课程标准(2011年版)》在“学段目标”的“第二学段”中提出“体验随机事件和事件发生的等可能性”。 三、教学对象分析: 二、学习新知 四、总结: ②选择方程 A. 香蕉的重量+苹果的重量=480 3.通过解决具体的问题,逐步培养学生积极思考的习惯,使学生体验学习数学的乐趣,积累活动经验。 (2)师:你知道10-6.8=3.2(元),他是怎样算出来的吗? 小结:三面国旗的大小不同,但是它们的长与宽的比值是相等的,是按照一定的比例制作的。 那么,你能用自己的语言说一说什么叫面积吗?

六年级下册数学小学奥数几何模块蝴蝶模型ppt(29页PPT)全国通用标准课件

六年级下册数学小学奥数几何模块蝴蝶模型ppt(29页PPT)全国通用标准课件
作业1:如图,长方形ABCD被分成4块,已知其中3块的面积,求图中阴影部分的面积.
S S , 则S S S S ; 作业1:如图,长方形ABCD被分成4块,已知其中3块的面积,求图中阴影部分的面积.
例1:如图,四边形ABCD是平行四边形,E在BC的延长线上,已知A三B角C形ADF和三BC角D形CEF的面积A,B求C平行四边B形CAEBCD的面积B.CD
S :S a :b( 相 似 模 型 的 结 论 ) ; 作业1:如图,长方形ABCD被分成4块,已知其中3块的面积,求图中阴影部分的面积. 2
2
例6:如图,正方形ABCD的面积是1,E、F、G、H分别是AB、BC、ACDDE、AD的中B点C,E 求图中阴影部分的面积.
S S S S a b ; 练一练1:长方形ABCD中,E、F是BC、AD上两点,已知三角形ABG和三角形CDH的面积都是10,求图中阴影部分的面积2 . 2
练一练5:如求图,梯正形六边A形BACBCDDE的F的面面积积是.1,边上各点均为中点,求图中阴影部分的面积.
例5:如图,正六边形的面积是6,求图中阴影部分的面积. 例1:如图,四边形ABCD是平行四边形,E在BC的延长线上,已知三角形ADF和三角形CEF的面积,求平行四边形ABCD的面积. 作业3:如图,梯形ABCD中,AE//DF,已知三角形ABI、三角形ADH、三角形CDG的面积分别是17、15、16,求图中阴影部分的面积. 练一练3:将边长为2厘米的正方形放置在边长为6厘米的正方形里面,求图中阴影部分的面积. 作业3:如图,梯形ABCD中,AE//DF,已知三角形ABI、三角形ADH、三角形CDG的面积分别是17、15、16,求图中阴影部分的面积. 作业4:如图,将边长为1的正六边形放置在边长为2的正六边形里面,对应边相互平行,求图中阴影部分的面积是正六边形ABCDEF面积的几分之几. 主讲老师:癸酉0311 作业1:如图,长方形ABCD被分成4块,已知其中3块的面积,求图中阴影部分的面积. 练一练5:如图,正六边形ABCDEF的面积是1,边上各点均为中点,求图中阴影部分的面积. 例5:如图,正六边形的面积是6,求图中阴影部分的面积. 主讲老师:癸酉0311 练一练5:如图,正六边形ABCDEF的面积是1,边上各点均为中点,求图中阴影部分的面积. 连接梯形的两条对角线,构造成蝴蝶模型的一般形式,可以得到如下几条结论. 练一练5:如图,正六边形ABCDEF的面积是1,边上各点均为中点,求图中阴影部分的面积. 例4:如图,正方形ABCD中,E、F分别是BC、CD的三等分点,求图中两个阴影正方形的面积比. 例6:如图,正方形ABCD的面积是1,E、F、G、H分别是AB、BC、CD、AD的中点,求图中阴影部分的面积. 例1:如图,四边形ABCD是平行四边形,E在BC的延长线上,已知三角形ADF和三角形CEF的面积,求平行四边形ABCD的面积.

六年级奥数蝴蝶模型

六年级奥数蝴蝶模型

蝴蝶模型一、蝴蝶模型与任意四边形在任意四边形中,两对角线将四边形分成四个三角形,两组相对三角形面积之积相等。

推导:由等积变形模型可知:OC AOS S BOC AOB =∆∆ OC AOS S COD AOD =∆∆ COD AODBOC AOB S S S S ∆∆∆∆=∴2431S S S S =即4321S S S S ⨯=⨯∴二、蝴蝶模型与梯形①②推导:① 同上② 过点A 作三角形ABC 的高1h ,过点D 作△BCD 的高2h BC AD //21h h =∴(两平行线之间高相等)121h BC S ABC ⨯⨯=∆221h BC S BDC ⨯⨯=∆B DC A B C S S ∆∆=∴ 3231S S S S +=+∴ 21S S =∴三、蝴蝶模型与平行四边形(一) ①②推导:① 同上② BCD ABC S S ∆∆= A C D B C D S S ∆∆= (同底等高) 4241S S S S +=+∴ 2324S S S S +=+ 21S S =∴ 43S S = OD OB = OC OA = 31S S =∴ 42S S =即:对角平行四边形面积乘积相等(在平行四边形ABCD 内作两条分别平行于两组相对边的线段GH 、EF )推导:连接GE 、EH 、HF 、FG ,过点E 作EM 垂直于GH 于点MEM OG S OGE ⨯⨯=∴∆21EM OG S S ⨯==∴1平行四边形121S S O G E=∴∆同理可得:321S S OGF =∴∆ 221S S O F H =∆ 421S S E O H =∆ 由蝴蝶定理可知:EOH OGF OFH OGE S S S S ∆∆∆∆⨯=⨯432121212121S S S S ⨯=⨯∴4321S S S S ⨯=⨯∴ 四、蝴蝶模型与长方形(一)①②即:对角长方形面积乘积相等五、蝴蝶模型与正方形“子母图”——两共线相邻的正方形在上面两个图形中,每组正方形的对角线均互相平行,即a//b、c//d 重要结论:两共线相邻的正方形对角线互相平行。

小学奥数-几何五大模型(蝴蝶模型)整理版

小学奥数-几何五大模型(蝴蝶模型)整理版

小学奥数-几何五大模型(蝴蝶模型)整理版任意四边形、梯形与相似模型卜亠\模型三蝴蝶模型(任意四边形模型)任意四边形中的比例关系(“蝴蝶定理”):DS1: S2 = S4: S3或者S S3 =S2 S4② AO : OC =[S S2 : S4 S3蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

【例1】(小数报竞赛活动试题)如图,某公园的外轮廓是四边形ABCD被对角线AC BD分成四个部分,△ AOB面积为1平方千米,△ BOC面积为2平方千米,△ COD勺面积为3平方千米,公园由陆地面积是6. 92平方千米和人工湖组成,求人工湖的面积是多少平方千米?【分析】根据蝴蝶定理求得S^AOD=3 1-'2=1.5平方千米,公园四边形ABCD的面积是12 3 45 = 7.5平方千米,所以人工湖的面积是7.5-6.92=0.58平方千米【巩固】如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC的面积:⑵AG:GC= ?【解析】⑴根据蝴蝶定理,S BGC 1=2 3,那么S BGC=6 ;⑵根据蝴蝶定理,AG:G^ 1 2 : 3 6 =1:3 . (? ??)【例2】四边形ABCD的对角线AC与BD交于点0(如图所示)。

如果三角形ABD的面积等于三角形BCD的面积的1,且AO =2 , DO =3,那么CO的长度是DO的长度的_____________ 倍。

3【解析】在本题中,四边形ABCD为任意四边形,对于这种”不良四边形”,无外乎两种处理方法:⑴利用已知条件,向已有模型靠拢,从而快速解决;⑵通过画辅助线来改造不良四边形。

看到题目中给出条件S A BD : S BCD =1:3,这可以向模型一蝴蝶定理靠拢,于是得出一种解法。

又观察题目中给出的已知条件是面积的关系,转化为边的关系,可以得到第二种解法,但是第二种解法需要一个中介来改造这个”不良四边形”,于是可以作AH垂直BD于H , CG垂直BD 于G,面积比转化为高之比。

关于数学的知识--蝴蝶模型

关于数学的知识--蝴蝶模型

蝴蝶模型☺知识总览一、蝴蝶模型1、任意四边形中的比例关系(“蝴蝶定理”):①S S S S 3421::=或者1324S S S S ⨯=⨯ ②()()1243::AO OC S S S S =++蝴蝶定理为我们提供了解决不规则四边形的面积问题的一个途径。

通过构造模型,一方面可以使不规则四边形的面积关系与四边形内的三角形相联系;另一方面,也可以得到与面积对应的对角线的比例关系。

2、梯形中比例关系(“梯形蝴蝶定理”): ①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.O DCBA s 4s 3s 2s 1A BCDO baS 3S 2S 1S 41、图中的四边形土地的总面积是52公顷,两条对角线把它分成了4个小三角形,其中2个小三角形的面积分别是6公顷和7公顷.那么最大的一个三角形的面积是多少公顷?☺典例精讲2、如图,某公园的外轮廓是四边形ABCD ,被对角线AC 、BD 分成四个部分,△AOB 面积为1平方千米,△BOC 面积为2平方千米,△COD 的面积为3平方千米,公园由陆地面积是6.92平方千米和人工湖组成,求人工湖的面积是多少平方千米?EDCB A76OCDBA3、如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC 的面积;⑵AG:GC=?☺跟踪练习3、如图,平行四边形ABCD 的对角线交于O 点,CEF △、OEF △、ODF △、BOE △的面积依次是2、4、4和6.求:⑴求OCF △的面积;⑵求GCE △的面积.CBOGF EDC BA4、如图,22S =,34S =,求梯形的面积。

随堂练习:如下图,梯形ABCD 的AB 平行于CD ,对角线AC ,BD 交于O ,已知AOB △与BOC △的面积分别为25 平方厘米与35平方厘米,那么梯形ABCD 的面积是________平方厘米.☺典例精讲5、梯形ABCD 的对角线AC 与BD 交于点O ,已知梯形上底为2,且三角形ABO 的面积等于三角形BOC 面积的23,求三角形AOD 与三角形BOC 的面积之比.3525OABCDO ABCD6、如图,正方形ABCD 面积为3平方厘米,M 是AD 边上的中点.求图中阴影部分的面积.☺跟踪练习6、如图所示,在梯形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点O 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蝴蝶模型
一、蝴蝶模型与任意四边形
在任意四边形中,两对角线将四边形分成四个三角形,两组相对三角形面积之积相等。

推导:由等积变形模型可知:
OC AO
S S BOC AOB =∆∆ OC AO
S S COD AOD =∆∆ COD AOD
BOC AOB S S S S ∆∆∆∆=∴
2
4
31S S S S =即
4321S S S S ⨯=⨯∴
二、蝴蝶模型与梯形


推导:① 同上
② 过点A 作三角形ABC 的高1h ,过点D 作
△BCD 的高2h BC AD //
21h h =∴(两平行线之间高相等)
121
h BC S ABC ⨯⨯=∆
22
1
h BC S BDC ⨯⨯=∆
BDC ABC S S ∆∆=∴ 3231S S S S +=+∴ 21S S =∴
三、蝴蝶模型与平行四边形
(一) ①

推导:① 同上
② BCD ABC S S ∆∆= ACD BCD S S ∆∆= (同底等高) 4241S S S S +=+∴ 2324S S S S +=+ 21S S =∴ 43S S = OD OB = OC OA = 31S S =∴ 42S S =
即:对角平行四边形面积乘积相等
(在平行四边形ABCD 内作两条分别平行于两组相对边的线段GH 、EF )
推导:连接GE 、EH 、HF 、FG ,过点E 作EM 垂直于GH 于点M
EM OG S OGE ⨯⨯=∴∆21
EM OG S S ⨯==∴1平行四边形 12
1S S OGE =
∴∆
同理可得:321S S OGF =
∴∆ 221S S OFH =∆ 42
1S S EOH =∆ 由蝴蝶定理可知:EOH OGF OFH OGE S S S S ∆∆∆∆⨯=⨯
432121
212121S S S S ⨯=⨯∴
4321S S S S ⨯=⨯∴ 四、蝴蝶模型与长方形
(一)①

即:对角长方形面积乘积相等
五、蝴蝶模型与正方形
“子母图”——两共线相邻的正方形
在上面两个图形中,每组正方形的对角线均互相平行,即a//b、c//d 重要结论:两共线相邻的正方形对角线互相平行。

例1:如下图所示,在梯形ABCD中,对角线BD,AC相交于点O,△AOD的面积是6,△AOB的面积是4,那么梯形ABCD的面积是多少?
分析:梯形ABCD是四个三角形面积的总和,现已经知道两个三角形的面积,由蝴蝶定理容易求出三角形BOC和三角形DOC的面积,进而可以求出梯形ABCD 的面积。

解:由蝴蝶定理可知:S∆BOC=S∆AOD=6
∴S∆DOC=6×6÷4=9
∴梯形ABCD的面积是9+6+4+6=25
答:梯形ABCD的面积是25。

例2:如图,求阴影部分的面积。

(单位cm2)
分析:由长方形中的蝴蝶定理“对角长方形面积乘积相等”,可直接求出阴影部分的面积。

解:S
阴影
=28×6÷12=14(cm2)
答:阴影部分的面积为14平方厘米。

例3:下图是两个正方形,大正方形边长是8,小正方形边长是6,求图中阴影部分的面积。

(单位:厘米)
分析:图中阴影部分的面积不能通过面积公式直接得出,因此要将其转化为容易算的部分。

由“子母图中对角线互相平行”这一重要结论可知,连接AC,所以AC平行于GE,由梯形的蝴蝶定理可知,三角形AOG和三角形COE面积相等,因此,阴影部分的面积就等于三角形GCE的面积,即小正方形面积的一半。

解:连接AC
∵AC∥GE
∴由梯形的蝴蝶定理可知:S∆AOG=S∆COE
∴S
阴=S∆COE+S∆GOE=S∆GCE=1
2
×6×6=18(cm2)
答:阴影部分的面积为18平方厘米。

D F
练习题
1.如图,某公园的外轮廓是四边形ABCD,被对角线AC,BD分成四个部分,△
AOB面积为1平方千米,△BOC面积为2平方千米,△COD的面积为3平方千米。

公园由6.92平方千米的陆地和人工湖组成,则人工湖的面积是多少平方千米?
2.如图,长方形ABCD被CE、DF分成四块,已知其中3块的面积分别为2、5、
8平方厘米,求余下的四边形OFBC的面积。

3.如图,在长方形ABCD中,△ABP的面积为30 cm2,△CDQ的面积为80 cm2,
求阴影部分的面积。

4.如图,四边形ABCG和CDEF都是正方形,DC等于12厘米,CB等于10厘米,
求阴影部分的面积。

相关文档
最新文档