《21.2.2 公式法》教案、导学案、同步练习
21.2.2公式法(第1课时).2.2(1)
课 题 21.2.2 公式法(第 1 课时) 学导练 李慧 课 型 审核人
年级
学科
姓名
学科模 主备人
新授课 李慧 薛晓林
二次备课 (学习笔记)
【重点难点】 重点:求根公式的推导和公式法的应用. 难点:一元二次方程求根公式法的推导. 【学法指导】 认真阅读课本 【导入明标】 1、 体验用配方法推导一元二次方程求根公式的过程, 明确运用公式求根的前提条件 2 是 b -4ac≥0; 2、会用公式法解简单系数的一元二次方程。 【引学独学】 用配方法解方程 4x2 -6x -3=0
2
(2)x - 3 x2
1 =0; 4
阳光“学-导-练”导学案
年级
学科
姓名
(3)3x2-6x-2=0;
(4)4x2-6x=0 ;
(5) x(2x-4)=5-8x.;
(6)(x-2) (x+5)=8;
(7)x2+4x+8=4x+11
(8) x(2x-4)=5-8x
【课后反思】பைடு நூலகம்
(3) (x-2) (3x-5)=0
(4)4x -3x+1=0
2
【导学点拨】 (1)公式法是解一元二次方程的一般方法. (2)配方法是公式法的基础,通过配方法得出了求根公式;公式法是直接利用求根 公式,它省略了具体的配方过程。 (3)用公式法解一元二次方程时,必须注意两点:将 a、b、c 的值代入公式时,一 定要注意符号不能出错;式子 b2-4ac≥0 是公式的一部分。 【达标训练】 用公式法解下列方程: (1)x +x-6=0;
2
2.由上可知,一元二次方程 ax +bx+c=0(a≠0)的根由方程的系数 a、b、c 而定,
人教版数学九年级上册导学案:21.2.2公式法
【导课】1、用配方法解一元二次方程的步骤有哪些?2、用配方法解方程3x 2-6x-8=0;3、你能用配方法解下列方程吗?请你和同桌讨论一下. ax 2+bx +c =0(a ≠0).【自主探究】一、探究新知 (引导学生讨论)用配方法解一元二次方程ax 2+bx +c =0(a ≠0).解:因为a ≠0,方程两边都除以a ,得 _____________________=0.移项,得 x 2+a b x =________, 配方,得 x 2+ab x +______=______-ac , 即 (____________) 2=___________。
因为a ≠0,所以4 a 2>0,当b 2-4 ac ≥0时,直接开平方,得 _____________________________.所以 x =_______________________即 x =_________________________二、总结归纳:(a ≠0)的求根公式.用此公式解一元二次方程的方法叫做公式法.应用求根公式解一元二次方程的关键在于:(1)将方程化为一般形式ax 2+bx+c=0(a ≠0);(2)将各项的系数a ,b ,c 代入求根公式.三、合作交流:b 2-4 ac 为什么一定要强调它不小于0呢?如果它小于0会出现什么情况呢?四、展示反馈 (学生在合作交流后展示小组学习成果) 学习课题:《21.2.2公式法》教学目标:1、使学生掌握一般一元二次方程的求根公式的推导过程,并由此培养学生的分析、综合和计算能力.2、使学生掌握公式法解一元二次方程的方法.重点知识:用公式法解简单系数的一元二次方程难点问题:求根公式的推导过程【补充思考】①当b2-4ac>0时,方程有__个____的实数根;(填相等或不相等)②当b2-4ac=0时,方程有___个___的实数根x1=x2=_____;③当b2-4ac<0时,方程______实数根.例1 解方程x2-3x+2=0. 例2 解方程2x2+7x=4.【多元互动合作探究】利用配方法推导一元二次方程的求根公式,若给出一个一元二次方程ax2+bx+c=0(a≠0)你觉得应如何利用配方法求解?(1)ax2+bx+c=0(a≠0)方程的两边同时除以a可得到:。
九年级数学上册21.2.2公式法导学案新版新人教版
21.2.2解一元二次方程——公式法预习案一、预习目标及范围1.掌握公式法解一元二次方程的推导过程;2.掌握公式法解一元二次方程的公式并能够使用公式法解一元二次方程。
范围:自学课本P9-P12,完成练习.二、预习要点1.掌握公式法解一元二次方程的推导过程;2.掌握公式法解一元二次方程的公式并能够使用公式法解一元二次方程。
三、预习检测1.什么是配方法?配方法解一元二次方程的一般步骤是什么?2.怎样用配方法解形如一般形式ax 2+bx +c =0(a ≠0)的一元二次方程?探究案一、合作探究活动内容1:小组合作问题1:用配方法解方程24630x x --=问题2:用配方法解方程20ax bx c ++=活动内容2:典例解析问题1:用配方法解方程:222033x x --=解: a=2, b=5, c= -3,∴ b 2-4ac=52-4×2×(-3)=49∴522-±⨯=574-±X 1 =-3 X 2 =12问题2:用公式法解方程 222033x x --=解:方程两边同乘以3,得 2 x 2 -3x-2=0a=2,b= -3,c= -2.∴b 2-4ac=(-3) 2-4×2×(-2)=25.∴(3)22--±⨯=354±X 1 =-2 X 2 =-12问题3: 用公式法解方程:x 2a=2,,c= 3.∴b 2) 2-4×1×3=0∴ x =2b a -±X 1 = X 2例4 解方程:(2)(13)6x x --=解:去括号,化简为一般式: 23780x x -+= a=3,b= -7,c= 8.∴b 2-4ac=(-7) 2-4×3×8=-47<0.∴方程没有实数解。
活动内容3:知识归纳:24b ac -叫做一元二次方程ax 2+bx +c =0(a ≠0)根的判别式,通常用希腊字母∆表示它,即24b ac ∆=-.一元二次方程根的情况与判别式的关系(1)240b ac ∆=->⇔方程有两个不相等的实数根;(2)240b ac ∆=-=⇔方程有两个相等的实数根;(3)240b ac ∆=-<⇔方程没有实数根.公式法解一元二次方程一般地,对于一般形式的一元二次方程ax 2+bx +c =0(a ≠0),当240b ac -≥时,它的两个根分别是12b x a -+=,22b x a-=,这里,)240x b ac =-≥叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.公式法解一元二次方程的一般步骤把方程化成一般形式:ax 2+bx +c =0(a ≠0);确定a ,b ,c 的值;求出24b ac -的值,并判断方程根的情况:当240b ac ->时,方程有两个不相等的实数根;当240b ac -=时,方程有两个相等的实数根;当240b ac -<时,方程没有实数根.当240b ac -≥时,将a ,b ,c 和24b ac -的值代入公式2b x a -±=(注意符号).二、随堂检测1.一元二次方程x2+2x+4=0的根的情况是()A.有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根2.方程x2-3x+1=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C. 没有实数根D.只有一个实数根3.下列一元一次方程中,有实数根的是 ( )A.x2-x+1=0B.x2-2x+3=0C.x2+x-1=0D.x2+4=04.关于x的方程k2x2+(2k-1)x+1=0有实数根,则下列结论正确的是( )A.当k=1/2时,方程两根互为相反数B.当k=0时,方程的根是x=-1C.当k=±1时,方程两根互为倒数D.当k≤1/4时,方程有实数根5.若关于x的一元二次方程mx2-2x+1=0有实数根,则m的取值范围是( )A.m<1B. m<1且m≠0C.m≤1D. m≤1且m≠06.用公式法解下列方程:参考答案预习检测:1.配方法:通过配方,先把方程的左边配成一个含有未知数的完全平方式,右边是一个非负数,然后运用直接开平方法求解,这种解一元二次方程的方法叫做配方法.配方法解一元二次方程的一般步骤:(1)移常数项到方程右边;(2)化二次项系数为1;(3)方程两边同时加上一次项系数一半的平方;(4)化方程左边为完全平方式;(5)若方程右边为非负数,则利用直接开平方法解得方程的根.2.解:移项,得2,ax bx c +=-二次项系数化为1,得2,bcx x a a +=- 配方,得222()(),22bbcbx x a a a a ++=-+ 即:222424b b acx a a -⎛⎫+= ⎪⎝⎭因为0,a ≠所以当240b ac ->时,;2b x a -±= 当240;2bb ac a -==-12时,x =x 当240;2bb ac a -==-12时,x =x随堂检测:。
2024年人教版九年级数学上册教案及教学反思第21章21.2.2 公式法
21.2 解一元二次方程21.2.2 公式法一、教学目标【知识与技能】1.理解并掌握求根公式的推导过程;2.能熟练应用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度与价值观】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.二、课型新授课三、课时1课时四、教学重难点【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.五、课前准备课件六、教学过程 (一)导入新课1.利用配方法解一元二次方程2704x x --=.(出示课件2)学生板演如下:解:移项,得274x x -=,配方222171242xx ⎛⎫⎛⎫-+=+ ⎪⎪⎝⎭⎝⎭, 2122x ⎛⎫-= ⎪⎝⎭由此可得12x -=,112x =+212x =-2. 用配方法解一元二次方程的步骤?(出示课件3) 学生口答:化:把原方程化成 x 2+px +q = 0 的形式. 移项:把常数项移到方程的右边,如x 2+px =-q. 配方:方程两边都加上一次项系数一半的平方. x 2+px +(2p )2=-q +(2p)2 开方:根据平方根的意义,方程两边开平方. (x+2p )2=-q +(2p )2 求解:解一元一次方程. 定解:写出原方程的解.我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax 2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?(二)探索新知 探究一 公式法的概念教师问:一元二次方程的一般形式是什么?(出示课件5) 学生答:ax 2+bx +c=0(a ≠0).教师问:如果使用配方法解出一元二次方程一般形式的根,那么这个根是不是可以普遍适用呢?师生共同探究:用配方法解一般形式的一元二次方程20ax bx c ++=)0(≠a (出示课件6)解:移项,得ax 2+bx=-c. 二次项系数化为1,得x 2+b a x=-ca. 配方,得x 2+b a x+2()2b a =-ca+2()2b a ,即2224(42)b a a a b x c-+=.教师问:(1)两边能直接开平方吗?为什么? (2)你认为下一步该怎么办?谈谈你的看法. 师生共同完善认知:(出示课件7)20,40,≠>a a当240,-b ac ≥.2b x a +=±x 1=-b+√b 2-4ac 2a , x 2=-b -√b 2-4ac 2a.出示课件8:由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a ,b ,c 确定.因此,解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0(a≠0).当b 2-4ac ≥0时,将a ,b ,c 代入式子x=2b a-±,就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.例1用公式法解方程:(1)x 2-4x-7=0; (出示课件9) 学生思考后,共同解答如下: 解:∵a=1,b=-4,c=-7, ∴b 2-4ac=(-4)2-4×1×(-7)=44>0.=x∴12=+x 22=-x(2)2x 2x+1=0;(出示课件10) 教师问:这里的a 、b 、c 的值分别是什么?解:2, 1.==-=a b c224(4210.△=-=--⨯⨯=b ac则方程有两个相等的实数根:122==-=-=b x x a(3)5x 2-3x=x+1;(出示课件11)解:原方程可化为25410x x --= 1,4,5-=-==c b a ,224(4)45(1)36>0△b =-=--⨯⨯-=ac则方程有两个不相等的实数根46.10±===x12464611,.10105+-====-x x(4)x 2+17=8x.(出示课件12)解:原方程可化为28170x x -+=,17c 8,1,=-==b a ,,0<41714)8(422-=⨯⨯--=-=ac b △方程无实数根.教师归纳:(出示课件13)⑴当∆=b 2-4ac >0时,一元二次方程有两个不相等的实数根; ⑵当∆=b 2-4ac=0时,一元二次方程有两个相等的实数根; ⑶当∆=b 2-4ac <0时,一元二次方程没有的实数根. 教师问:用公式法解一元二次方程的步骤是什么? 学生思考后,共同总结如下:(出示课件14) 用公式法解一元二次方程的一般步骤: 1.将方程化成一般形式,并写出a ,b ,c 的值. 2.求出 ∆ 的值.3. (1)当 ∆ >0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(2)当∆=0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(3)当∆<0时,方程无实数根.出示课件15:用公式法解方程:23620x x --= 学生自主思考并解答. 解:a=3, b=-6, c=-2,∆=b 2-4ac=(-6)2-4×3×(-2)=60.=x1=x 2=x探究二 一元二次方程的根的情况 出示课件16:用公式法解下列方程:(1)x 2+x -1=0;(2)x 2-+3=0;(3)2x 2-2x +1=0.学生板演后,教师问:观察上面解一元二次方程的过程,一元二次方程的根的情况与一元二次方程中二次项系数、一次项系数及常数项有关吗?能否根据这个关系不解方程得出方程的解的情况呢?教师进一步问:(出示课件17)不解方程,你能判断下列方程根的情况吗? ⑴x 2+2x -8=0; ⑵x 2=4x -4; ⑶x 2-3x=-3.学生思考后回答:(1)有两个不相等的实数根; (2)有两个相等的实数根; (3)没有实数根. 教师问:你有什么发现?学生答:b 2-4ac 的符号决定着方程的解. 师生共同总结如下:(出示课件18) 一元二次方程)(0 02≠=++a c bx ax的根的情况⑴当b 2-4ac >0 时,有两个不等的实数根:12,;x x ==(2)当b 2-4ac=0时,有两个相等的实数根:12;2bx x a -== (3)当b 2-4ac<0时,没有实数根.一般的,式子 b 2-4ac 叫做一元二次方程根的判别式,通常用希腊字母“∆”来表示,即∆=b 2-4ac.出示课件20,21:例1 不解方程,判断下列方程根的情况: (1) 06622=-+-x x ;(2)x 2+4x=2.(3)4x 2+1=-3x;(4)x ²-2mx+4(m-1)=0. 师生共同讨论解答如下: 解:⑴a =﹣1,b=,c =﹣6, ∵△= b 2-4ac=24-4×(﹣1)×(-6)=0. ∴该方程有两个相等的实数根.⑵移项,得x2+4x-2=0,a=1,b=4 ,c=﹣2,∵△=b2-4ac=16-4×1×(-2)=24>0.∴该方程有两个不相等的实数根.⑶移项,得4x2+3x+1=0,a=4,b=3 ,c=1,∵△= b2-4ac=9-4×4×1=-7<0.∴该方程没有实数根.⑷a=1,b=-2m ,c=4(m-1),∵△= b2-4ac=(-2m)²-4×1×4(m-1)=4m2-16(m-1)=4m2-16m+16=(2m-4)2≥0.∴该方程有两个实数根.选一选:(出示课件22)(1)下列方程中,没有实数根的方程是()A.x²=9B.4x²=3(4x-1)C.x(x+1)=1D.2y²+6y+7=0(2)方程ax2+bx+c=0(a≠0)有实数根,那么总成立的式子是()A.b²-4ac>0B.b²-4ac<0C.b²-4ac≤0D.b²-4ac≥0学生口答:⑴D ⑵D出示课件23:例2 m 为何值时,关于x 的一元二次方程 2x 2-(4m+1)x+2m 2-1=0:(1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?学生思考后,教师板演解题过程: 解:a=2,b=-(4m+1),c=2m 2-1,b 2-4ac=〔-(4m+1)〕2-4×2(2m 2-1)=8m+9.(1)若方程有两个不相等的实数根,则b 2-4ac >0,即8m+9>0,∴m >98-;(2)若方程有两个相等的实数根,则b2-4ac=0即8m+9=0,∴m=98-;(3)若方程没有实数根,则b2-4ac <0即8m+9<0, ∴m <98-.∴当m >98-时,方程有两个不相等的实数根;当m=98-时,方程有两个相等的实数根;当m <98-时,方程没有实数根.出示课件24:m 为任意实数,试说明关于x 的方程x 2-(m-1)x-3(m+3)=0恒有两个不相等的实数根.学生自主思考并解答.解:b 2−4ac=[−(m −1)]2−4[−3(m+3)] =m 2+10m+37 =m 2+10m+52−52+37 =(m+5)2+12.∵不论m 取任何实数,总有(m+5)2≥0, ∴b 2-4ac=(m+5)2+12≥12>0,∴不论m 取任何实数,上述方程总有两个不相等的实数根. (三)课堂练习(出示课件25-29)1.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是( )A .m ≥1B .m ≤1C .m >1D .m <12.解方程x 2﹣2x ﹣1=0.3.方程x 2-4x +4=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4.关于x 的一元二次方程kx2-2x-1=0有两个不等 的实根,则k 的取值范围是( )A.k>-1B.k>-1且k ≠ 0C.k<1D.k<1且k ≠05.已知x 2+2x =m -1没有实数根,求证:x 2+mx =1-2m 必有两个不相等的实数根.参考答案: 1.D2.解:a=1,b=﹣2,c=﹣1, △=b 2﹣4ac=4+4=8>0, 所以方程有两个不相等的实数根,2x 12±===±1211x x ==-3.B4.B5.证明:∵没有实数根,∴ 4-4(1-m)<0, ∴m<0.对于方程 x 2+mx =1-2m ,即. ,∵,∴△>0.∴x 2+mx =1-2m 必有两个不相等的实数根.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(21.2.3)的相关内容。
人教版九年级数学上册《21公式法》导学案
九年级数学上册《21.2.2 公式法》导学案1、理解并学会判断一个一元二次方程根的情况2、理解一元二次方程求根公式的推导过程3、学会用公式法解一元二次方程重点:先把方程化为一般式,再用根的判别式对方程的根的情况进行分析,最后用求根公式进行解答难点:理解一元二次方程求根公式的推导过程,并学会运用求根公式去解方程1、根的判别式2=4b ac ∆-① 当 时,方程有两个实数根,其中, 当 时,方程有两个不相等的实数根; 当 时,方程有两个相等的实数根; ②当 时,方程无实数根。
2、求根公式把 (b 2﹣4ac ≥0)叫做一元二次方程ax 2+bx+c=0(a ≠0)的求根公式.3、用公式法解一元二次方程的一般步骤:①把方程化成一般形式,进而确定 , , 的值(注意符号); ②求出 的值(若 ,方程无实数根); ③在 的前提下,把a 、b 、c 的值代入求根公式进行计算,求出方程的根.注意:用公式法解一元二次方程的前提条件有两个:①a ≠0;②b 2﹣4ac ≥0.1、(2022·营口)关于x 的一元二次方程240x x m +-=有两个实数根,则实数m 的取值范围为( )A.4m <B.4m >-C.4m ≤D.4m ≥-2、(2021·溧阳市期末)若一元二次方程2420x x k -++=有两个不相等的实数根,则k 的取值范围是_______________3、(2020·浙江自主招生)若1x =是一元二次方程()200ax bx c a ++=≠的根,则判别式24b ac ∆=-和完全平方式()22M a b =+的关系是:∆_____M4、一元二次方程210x x +-=的解是___________5、(2021·滕州市校级月考)已知关于x 的一元二次方程()223290a x x a --+-=的常数项是0,则a =________,方程的根是____________。
人教版数学九年级上册导学案:21.2.2公式法
21.2解一元二次方程----21.2.2公式法教学目标:1.(知识与技能):理解一元二次方程求根公式的推导过程,了解公式法的概念;会熟练应用公式法解一元二次方程;2.(过程与方法):经历掌握公式法和推导过程,能使用公式法解一元二次方程;3.(情感、态度与价值观):培养思维的批判性、严密性和初步解决问题的愿望与能力.教学重点:求根公式的推导和公式法的应用.教学难点:一元二次方程求根公式的推导.教学过程:一、展示目标:二、自学指导:1.回顾复习:用配方法解方程:(1)x2+3x+2=0;(2)2x2-3x+5=0.2.自学指导问题:如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得: ,二次项系数化为1,得 ,配方,得:即,∵a≠0,∴4a2>0,式子b2-4ac的值有以下三种情况:(1)b2-4ac>0,则2244b aca-0, 直接开平方,得 , x= ,方程有两个的实根,即x1= ,x2= .(2)b2-4ac=0,则2244b aca-0,此时方程有两个的实根,即 .(3)b2-4ac<0,则2244b aca-0,此时(x+2ba)2 0,而x取任何实数都不能使1 / 3(x+2b a)2 0,因此方程 实数根. 由上可知,一元二次方程ax 2+bx +c =0(a≠0)的根由方程的系数 、 、 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac≥0时,将a,b,c 代入式子x = 就得到方程的根,当b 2-4ac <0时,方程没有实数根.(2)x = 叫做一元二次方程ax 2+bx +c =0(a≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫做公式法.(4)一般地,式子 叫做方程ax 2+bx +c =0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ= .(5)由根的判别式可知,当Δ=b 2-4ac 0,一元二次方程有__实数根;当Δ=b 2-4ac 0,一元二次方程有__ 实数根;当Δ=b 2-4ac 0,一元二次方程_ _实根.三、合作探究:1.不解方程,利用判别式判定下列方程的根的情况:(1)2x 2-3x =0; (2)3x 2-23x +1=0; (3)4x 2+x +1=0.2.用公式法解下列方程.(1)x 2-4x -7=0; (2)2x 2-22x +1=0; (3) 5x 2-3x =x+1; (4)x 2+17=8x.3.当m 为何值时,关于x 的方程(m +1)x 2-(2m -3)x +m +1=0,有两个不相等的实数根?3 / 3四、跟踪练习:1.利用判别式判定下列方程的根的情况:(1)2x 2-3x -32=0; (2)16x 2-24x +9=0; (3)x 2-42x +9=0 ; (4)3x 2+10x =2x 2+8x.2.方程x 2-4x +4=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根3.课本P 12练习五、课堂小结:总结本堂课的收获与困惑.1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定.a ,b ,c 的值,再算.出b 2-4ac 的值、最后代.入求根公式求解. 3.用判别式判定一元二次方程根的情况.六、布置作业:1.课本P 17习题第4、5题;2.预习下一课时学案.。
人教版数学九年级上册21.2.2公式法解方程教案
最后,我深感教学反思的重要性。通过反思,我可以更好地理解学生的需求,调整教学方法,让数学课堂变得更加生动有趣,也更具实效性。我会继续努力,让每一位学生都能在数学的学习中找到乐趣和成就感。
3.重点难点解析:在讲授过程中,我会特别强调求根公式的记忆与理解和判别式Δ的应用这两个重点。对于难点部分,我会通过实际例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用抛物线模型来演示求根公式的应用。
本章节的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力:通过一元二次方程求根公式的推导与应用,让学生理解数学知识之间的内在联系,提高逻辑推理与论证能力。
2.强化运算能力:引导学生运用求根公式解决实际问题,熟练掌握公式运算过程,提高数学运算速度和准确性。
3.增强数学建模能力:让学生在实际问题中运用一元二次方程求解,培养将现实问题抽象为数学模型的能力。
在案例分析环节,我尝试将实际问题引入课堂,让学生们看到数学知识在现实生活中的应用。从学生的反应来看,这种方法似乎能够激发他们的兴趣,但我也观察到,将问题转化为数学模型对他们来说并不容易。我考虑在接下来的课程中,增加一些关于如何建立数学模型的指导,帮助学生更好地理解这个过程。
实践活动和小组讨论的部分,学生们表现得相当积极。他们通过小组合作,不仅加深了对一元二次方程的理解,还学会了如何与他人合作解决问题。不过,我也注意到,有些小组在讨论时可能会偏离主题,我需要适时地引导他们回到主题上来。
新人教版九年级数学上册 21.2.2 公式法导学案1
公式法1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练应用公式法解一元二次方程.自学指导 阅读教材第9至12页的部分,完成以下问题.1.用配方法解下列方程:(1)6x 2-7x+1=0; (2)4x 2-3x=52.2.如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax 2+bx+c=0(a ≠0)试推导它的两个根x 1=2b a -,x 2=2b a -. 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.知识探究一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a 、b 、c 代入式子b2-4ac <0,方程没有实数根.ax 2+bx+c=0(a ≠0)的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程可能有两个不等的实数根,也可能有两个相等的实数根或没有实数根.(5)一般地,式子b 2-4ac 叫做方程ax 2+bx+c=0(a ≠0)的根的判别式,通常用希腊字母Δ表示它,即Δ=b =-4ac.自学反馈用公式法解下列方程:(1)2x2-4x-1=0; (2)5x+2=3x 2;(3)(x-2)(3x-5)=0; (4)4x 2-3x+1=0.解:(1)x 1=1+2,x 2=1-2(2)x 1=2,x 2=-13; (3)x 1=2,x 2=53; (4)无解.例1 在什么情况下,一元二次方程ax 2+bx+c=0(a ≠0)有两个不相等的实数根?有两个相等的实数根?没有实数根?解:Δ=b 2-4ac ,Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等实数根;Δ<0时,没有实数根.例2 写出一元二次方程ax 2+bx+c=0(a ≠0,b2-4ac ≥0)的求根公式:x=_2b a -_______. 例3 方程x 2-4x+4=0的根的情况是( B )A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根活动2 跟踪训练1.利用判别式判定下列方程的根的情况:(1)2x2-3x-32=0; (2)16x2-24x+9=0;(3)x2; (4)3x2+10x=2x2+8x.解:(1)有两个不相等的实数根; (2)有两个相等的实数根;(3)无实数根; (4)有两个不相等的实数根.2.用公式法解下列方程:(1)x2+x-12=0; (2)x214=0;(3)x2+4x+8=2x+11; (4)x(x-4)=2-8x;(5)x2+2x=0; (6)x2解:(1)x1=3,x2=-4; (2)x1,x2(3)x1=1,x2=-3; (4)x1x2(5)x1=0,x2=-2; (6)无解.用公式法解一元二次方程时,一定要先写对a,b,c值,再判断Δ的正负. 活动3 课堂小结1.求根公式的概念及其推导过程.2.公式法的概念.3.应用公式法解一元二次方程.4.一元二次方程根的情况.。
新人教版九年级数学上册21.2.2 公式法(1)导学案
新人教版九年级数学上册21.2.2 公式法(1)导学案学习目标1. 了解公式法的概念;2.熟练应用公式法解一元二次方程学习重点熟练应用公式法解一元二次方程学习难点熟练应用公式法解一元二次方程.学前准备1、用配方法解下列方程(1)6x 2-7x+1=0 (2)4x 2-3x=522、 总结用配方法解一元二次方程的步骤.合作探究1、 你能用配方法求一元二次方程)0(02≠=++a c bx ax 的根:解:二次项的系数化为1,得______________________________,移项,得 _______________________________,配方,得 ________________________________,即 ( )2=________________想一想:接下来能直接开方吗?若不能,又有几种情况?因为a≠0,所以042>a ,式子的ac b 42-值有三种情况: ① b 2-4ac >0; ② b 2-4ac =0; ③ b 2-4ac <0.(1)当ac b 42->0时,两边开平方,得_____________,所以=+a b x 2____________, 所以x=即x 1= ,x 2= ;(2)ac b 42-=0时,两边开平方,得________________,所以=+ab x 2 , 所以x=_____________,即x 1=_______________, x 2= _________________;(3) b 2-4ac <0时,方程____________________.归纳(1)一般地,式子 b 2-4ac 叫做方程ax 2+bx+c=0(a ≠0)根的判别式,通常用希腊字母∆表示,即∆=(2)对于一元二次方程)0(02≠=++a c bx ax ,当_______________________时,它的根是x=__________________,这个式子叫做一元二次方程)0(02≠=++a c bx ax 的 ,利用求根公式可以直接将一元二次方程一般形式的各项系数代入到求根公式中,求出一元二次方程的根,这种求一元二次方程根的方法叫 注意:用判别式判断根的情况时,一元二次方程必须化成 形式;例题用公式法解下列方程.(1)x 2-4x-7=0 (2)2x 2-22x+1=0 (3)5x 2-3x=x+1 (4)x 2+17=8x合作探究根据上节推导出的求根公式,想一想用公式法解一元二次方程的步骤有哪些?(1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0.(2)找出系数a,b,c,注意各项的系数包括符号。
21.2.2公式法教案
21.2.2 公式法教学目标1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道用公式前先将方程化为一般形式,会用判别式判断根的情况.3.会利用求根公式解简单数字系数的一元二次方程.重点难点1.会用根的判别式判断方程根的情况.2. 能用求根公式解一元二次方程.教学过程一、回顾:1.配方法解一元二次方程的步骤♦ 移项:把常数项移到方程的右边;♦ 化 1:把二次项系数化为1;♦ 配方:方程两边都加上一次项系数一半的平方;♦ 开方:根据平方根意义,方程两边开平方;♦ 求解:解一元一次方程;♦ 定解:写出原方程的解.2.用配方法解一元二次方程:3x ²+6x-4=0二、复习引入任何一元二次方程都可以写成一般形式ax ²+bx+c=0(a ≠0) 例:x ²+2x=5;5x ²-3x=2;4x ²=5x-3我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程ax²+bx+c=0(a≠0)?三、新课讲解配方法解一元二次方程的一般形式:ax²+bx+c=0(a≠0)1.移项,得ax²+bx=-c2.二次项系数化为1,得x²+ x=3.配方x²+ x+( )²= +( )² 即 (x+ )²= a b a c -a b a b 2a c -a b 2ab 2因为,a≠0,所以4a²>0,式子b²-4ac 的值有三种情况(1)b²-4ac >0则 >0,那么由(x+ )²=,可得 x+ =±所以,方程有两个不等的实数根x1= ,x2=(2)b²-4ac=0则 =0 ,那么由(x+ )²= 可得 (x+ )²=0 即x1=x2=-所以,方程有两个相等的实数根(3)b²-4ac <0则 <0 ,那么由(x+ )²=可得 (x+ )²<0因为任何数的平方都是非负数,所以无论x 取何值都不可能使方程成立 即,方程没有实数根注意:一元二次方程的根不可能多于两个,可能出现两个实数根,一个实数根,或者没有实数根一般的,式子b²-4ac 叫做方程ax²+bx+c=0(a≠0)的根的判别式,用希腊字母“Δ”表示,即Δ=b²-4ac 。
21.2.2解一元二次方程之公式法 同步练习(含答案)
21.2.2 解一元二次方程(公式法)一、 单选题(共10小题)1.已知关于x 的一元二次方程2x 2x m 0-+=没有实数根,则实数m 的取值范围是( )A . 1m >B .1mC .1m <-D .1m ≤-2.一元二次方程2210x x +-=根的情况为( )A .有两个相等的实数根B .有两个正实数根C .有两个不相等的实数根D .有两个负实数根3.(2019·娄底市娄星区小碧中学初三期末)关于x 的方程22x 2(1m)x m 0--+=有两实根α.β,则α+β的取值范围是( )A .α+β ≥12 B .α+β ≤12 C .α+β ≥1 D .α+β ≤14.关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围在数轴上可以表示为() A .B .C .D . 5.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是( )A .54k ≤B .54k > C .514k k ≠<且 D .514k k ≤≠且 6.(2019·河南中考真题)一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7. 关于x 的一元二次方程2x 2x m 0-+= 无实数根,则实数m 的取值范围是( )A .1m <B .m 1≥C .1mD .1m8.(2018·湖南广益实验中学初二期中)方程210x -+=的根的情况为( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定根的个数9.若关于x 的一元二次方程2420kx x --+=有两个不相等的实数根,则k 的取值范围是( )A .2k >-B .2k <-C .2k <且0k ≠D .2k >-且0k ≠10.(2019·河南省实验中学初二期末)下列一元二次方程中,有两个不相等实数根的是( )A . x 2+6x +9=0B .x 2=xC .x 2+3=2xD . (x −1)2+1=011.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,则下列说法正确的是( )A. 1一定不是方程x 2+bx+a=0的根B. 0一定不是方程x 2+bx+a=0的根C. -1可能是方程x 2+bx+a=0的根D. 1和-1都是方程x 2+bx+a=0的根二、填空题(共5小题)11.关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的最小整数值是 . 12.(2019·山东中考真题)一元二次方程2342x x =-的解是______.13.(2019·宁夏中考真题)已知一元二次方程2340x x k +-=有两个不相等的实数根,则k 的取值范围_____. 14. 若关于x 的一元二次方程()23x c +=有实数根,则c 的值可以为________(写出一个即可). 15. 已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是 .二、 解答题(共2小题)16.已知关于x 的一元二次方程2(1)(21)10m x m x m ---++=(m 为常数)有两个实数根,求m 的取值范围.17.已知 x = -2 是方程 2x + mx - 6 = 0 的一个根,求 m 的值及方程的另一根 x 的值。
人教版九年级数学上册21.2.2 公式法优质教案
21.2.2 公式法教学时间 课题21.2.2公式法课型新授教学媒体多媒体教学目 标知识 技能 1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.会利用求根公式解简单数字系数的一元二次方程.过程方法1.经历从用配方法解数字系数的一元二次方程到解字母系数的一元二次方程,探索求根公式,发展学生合情合理的推理能力,并认识到配方法是理解公式的基础.;2.通过对公式的推导,认识到一元二次方程的求根公式适用于所有的一元二次方程,操作简单.3.提高学生的运算能力,并养成良好的运算习惯.情感 态度 1.感受数学的严谨性和数学结论的确定性.2.提高学生运算能力,使学生获得成功体验,建立学习信心.教学重点 求根公式的推导,公式的正确使用 教学难点 求根公式的推导教学过程设计教学程序及教学内容 师生行为设计意图一、复习引入导语:我们学习了用配方法解数字系数的一元二次方程,能否用配方法解一般形式的一元二次方程()002≠=++a c bx ax ? 二、探究新知活动1.学生观察下面两个方程思考它们有何异同? ○1;6x 2-7x+1=0 ○2()002≠=++a c bx ax 活动2.按配方法一般步骤同时对两个方程求解: 1.移项得到6x 2-7x=-1,c bx ax -=+2教师提出问题,学生思考. 学生观察思考尝试回答学生对比进行配方,通过自主探究,合作交流,展开对求根公式的推导 让学生尝试对2244b ac a -的值进行分析为推导公式作铺垫,激发学生探索欲望 学生回顾配方法的解题思路,从数字系数过渡到字母系数进行配方,推导公式对比探究,结2.二次项系数化为1得到ac x ab x x x -=+-=-22,61673.配方得到 x 2-76x+(712)2=-16+(712)2x 2+b a x+(2b a )2=-c a+(2b a )24.写成(x+m )2=n 形式得到(x-712)2=25144,(x+2b a)2=2244b ac a -5.直接开平方得到x-712=±512,注意:(x+2b a)2=2244b aca -是否可以直接开平方?活动3.对(x+2b a)2=2244b ac a -观察,分析,在0≠a 时对2244b ac a -的值与0的关系进行讨论活动4.归纳出一元二次方程的根的判别式和求根公式,公式法.活动5.初步使用公式解方程6x 2-7x+1=0.活动6.总结使用公式法的一般步骤:○1把方程整理成一般形式,确定a,b,c 的值,注意符号○2求出ac b 42-的值,方程()002≠=++a c bx ax ,当Δ>0时,有两个不等实根;Δ=0时有两个相等实根;Δ<0时无实根.○3在ac b 42-≥0的前提下把a ,b ,c 的值带入公式x=242b b aca-±-进行计算,最后写出方程的根.三、课堂训练1.利用一元二次方程的根的判别式判断下列方程的根的情况 (1)2x 2-4x-1=0 (2)5x+2=3x2(3)(x-2)(3x-5)=0 (4)4x 2-3x+1=02.课本例2 四、小结归纳 本节课应掌握:1.用根的判别式判断一个一元二次方程是否有实数根学生尝试归纳,师生总结学生初步使用公式,教师规范板书。
新人教版九年级数学上册21.2.2公式法(2)导学案
新人教版九年级数学上册21.2.2公式法(2)导学案学习目标:1.熟练运用公式法解方程,理解根的判别式与一元二次方程根的关系.2.会利用判别式判断方程根的情况,并会根据它们的关系求字母系数的取值范围 学习重点、难点:利用根的情况求相关字母的取值范围.一、预习导学: 1.一元二次方程02=++c bx ax (a ≠0)的求根公式是: .2.解下列方程(1)2323x x += (2)22340x x -+= (3)221x x +=二、新知探究:思考:一元二次方程的根的情况有哪几种?取决于 .归纳:当判别式 时,一元二次方程有两个不相等的实数根; 当判别式 时,一元二次方程有两个相等的实数根; 当判别式 时,一元二次方程无实数根.例题:1. 不解方程,判断下列方程根的情况.(1)012222=+-x x (2)1352+=-x x x (3)x x 8172=+2.不解方程,判断关于x 的一元二次方程x 2-kx-2=0的根的情况.㈡利用根的判别式可以判断方程根的情况.反之,已知根的情况也可以求 相关字母的取值范围.已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,求m 的取 值范围.简记简记三、当堂达标:1. 不解方程,利用根的判别式判断下列方程根的情况(1)x x 352= (2) 02222=+-x x2.关于x 的方程kx 2+2x-1=0有两个不相等的实数根,求k 的取值范围.3.不解方程,判断关于x 的一元二次方程x 2-kx+k-2=0的根的情况.四、课堂小结:1.一元二次方程的求根公式是: .2.根的判别式的用途是:1. .2. .五、学后反思:。
21.2.2公式法导学案
1、 ;2、 ;
3、 ;4、
例2、解方程
解:这里 , , ,
因为负数不能开平方,所以原方程无实数根。
如:不解方程,判断下列方程根的情况:
(1) (2)
二次设计
1.若关于 的方程 有实数解,则 的取值范围是____
A. B.
C. D.
2.方程 的根是_____
A. B.
C.无实根D.
3.如果关于 的方程 有两个相等的实数根,那么 =______
当 时,方程实数根。
教学反思:
二、探索解法(15分)
问题1:能否用配方法把一般形式的一元二次方程 转化为 吗?
因为 ,方程两边都除以 ,得
移项,得
配方,得
即
问题2:当 ,且 时, 大于等于零吗?
得出结论:当 时,因为 ,所以 ,从而 。
问题3:在研究问题1和问题2中,你能得出什么结论?
得出结论,当 时,一般形式的一元二次方程 的根为 ,即 。
4.若关于 的方程 没有实数根,则 得取值范围是______
5.下列方程中,没有实数根的是_____
A. B.
C. D.
6.已知两数的积是12,两数的平方和是25,则这两个数的和为______
7.用公式法解一元二次方程。
(1) (2)
课堂小结:(5分)
当 时,方程有两个的实数根;
当 时,方程有两个的实数根;
重点
熟练地应用求根公式解一元二次方程
难点
探索求根公式的过程,培养学生抽象思维能力。
关键
掌握方法
教法
指导练习
学法
自主,合作探究,展示
导学过程设计
一、复习旧知,提出问题(5分)
人教版数学九年级上册21.2.2公式法(教案)
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“公式法在实际解题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
三、教学难点与重点
1.教学重点
-完全平方公式的记忆与运用:熟练掌握a²±2ab+b²=(a±b)²的公式及其变形,并能将其应用于因式分解。
-系数化1法求解一元二次方程:理解并掌握将一元二次方程ax²+bx+c=0化为(x+m)²=n的形式,进而求解出x的方法。
-解题过程中的数学语言表达:培养学生用数学语言描述解题步骤,清晰表达思路。
另外,在学生小组讨论环节,我发现同学们的参与度很高,大家积极发表自己的观点,进行交流。但在引导与启发方面,我觉得自己还可以做得更好。有时候,同学们在讨论过程中会遇到瓶颈,我需要更敏锐地捕捉到这些问题,及时给出有效的建议和指导,帮助他们突破思维困境。
在实践活动方面,我发现同学们在分组讨论和实验操作中,能够将所学的知识点应用到实际问题中,这让我感到很欣慰。但同时,我也注意到,有些小组在成果展示时,表达不够清晰,逻辑性不强。针对这一点,我计划在接下来的教学中加入一些关于如何清晰表达和逻辑思考的训练,帮助同学们提高这方面的能力。
最后,我深感教学反思的重要性。通过今天的反思,我更加明确了今后的教学方向和改进措施。在接下来的教学中,我会努力关注每一个同学的学习情况,不断调整教学方法,力求让每位同学都能在数学学习中有所收获,真正理解和掌握公式法这个知识点。同时,我也将鼓励同学们积极提问,勇于探索,共同提高我们的教学质量。
21.2.2公式法教案
21.2.2 公式法教学内容1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.教学目标理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx+c=0(a ≠0)•的求根公式的推导公式,并应用公式法解一元二次方程.重难点1.重点:求根公式的推导和公式法的应用.2.难点:一元二次方程求根公式法的推导.教学过程一、复习引入1.总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q 的形式,如果q ≥0,方程的根是x=-p ±√q ;如果q <0,方程无实根.2.用配方法解方程:3x2+6x-4=0二、探索新知1.用配方法解方程 ax 2+bx+c=0(a ≠0),分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c •也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+b a x+(2b a )2=-c a+(2b a )2 即(x+2b a)2=2244b ac a - ∵4a 2>0,当b 2-4ac ≥0时2244b ac a -≥0 ∴(x+2b a)2=(242b ac a -)2 直接开平方,得:x+2b a=±242b ac a - 即x=242b b ac a -±- ∴x 1=242b b ac a -+-,x 2=242b b ac a--- 归纳:由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,•将a 、b 、c 代入式子x=242b b ac a-±-就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。
21.2.2 公式法(课件+教案+练习+反思)-11
最大最全最精的教育资源网
全国中小学教育资源门户网站 | 天量课件、教案、试卷、学案 免费下载 | 《21.2.2公式法》教材分析
教材通过例题,进一步深化巩固用配方法求解一元二次方程,合理的选择适当的方法可以简化解题过程.
学生在利用因式分解法解方程式往往会在因式分解上存在着一定的困难,从而不能将方程化成两个一次式乘积为零的形式.另外在面对一元二次方程时,缺乏对方程结构的观察,从而在方法的选择上欠佳,缺乏解决问题的灵活性,增加了计算的难度,降低了计算的准确性.
基于以上分析,确定出本节课的教学重点:会用公式法解特殊的一元二次方程.
本节课的难点:学会观察方程特征,选用公式法解决一元二次方程.。
教学设计5:21. 2.2 解一元二次方程——公式法
21.2.2根公式法教学目的1.使学生掌握一般一元二次方程的求根公式的推导过程,并由此培养学生的分析、综合和计算能力.2.使学生掌握公式法解一元二次方程的方法.教学重点、难点重点:要求学生正确运用求根公式解一元二次方程.难点:1.求根公式的推导过程.2.含有字母参数的一元二次方程的公式解法.教学过程复习提问提问:当x2=c时,c≥0时方程才有解,为什么?练习:用配方法解下列一元二次方程(1)x2-8x=20; (2)2x2-6x-1=0.引入新课我们思考用配方法解一般形式的一元二次方程,应如何配方来进行求解?新课(引导学生讨论)用配方法解一元二次方程ax2+bx+c=0(a≠0)的步骤.解:∵a≠0,两边同除以a,得把常数项移到方程右边,并两边各加上一次项系数的一半的平方,得(a ≠0)的求根公式.用此公式解一元二次方程的方法叫做公式法.应用求根公式解一元二次方程的关键在于:(1)将方程化为一般形式ax 2+bx+c=0(a ≠0);(2)将各项的系数a ,b ,c 代入求根公式. 例1 解方程x 2-3x+2=0.例2 解方程2x 2+7x=4.例5 解关于x 的方程 x 2-m(3x-2m+n)-n 2=0.练习P37 1题归纳总结1.本节课我们推导出了一元二次方程ax 2+bx+c=0(a ≠0)的求根公式,即要重点让学生注意到应用公式的大前提,即b 2-4ac ≥0.2.应注意把方程化为一般形式后,再用公式法求解.达标测试1.若代数式4x 2-2x-5与2x 2+1的值互为相反数,则x 的值为A.1或23-B.1或32-C.-1或32D.1或23 2.对于一元二次方程ax 2+bx+c=0,下列叙述正确的是A.方程总有两个实数根B.只有当b 2-4ac ≥0时,才有两实根C.当b 2-4ac<0时,方程只有一个实根D.当b 2-4ac=0时,方程无实根3.已知三角形两边长分别是1和2,第三边的长为2x 2-5x+3=0的根,则这个三角形的周长是 A.4 B.214 C.4或214 D.不存在4.如果分式3322---x x x 的值为0,则x 值为 A.3或-1 B.3 C.-1 D.1或-35.把2)3(32x x +=+化成ax 2+bx+c=0(a ≠0)的形式后,则a= ,b= ,c=6.若分式222---x x x 的值为0,则x=7.已知x=-1是关于x 的一元二次方程ax 2+bx+c=0的根,则a c ab -=__________. 8.若a 2+b 2+2a-4b+5=0,则关于x 的方程ax 2-bx+5=0的根是___________.课后反思:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《21.2.2 公式法》教案【教学目标】1.知道一元二次方程根的判别式的概念.2.会用判别式判断一元二次方程的根的情况及根据一元二次方程的根的情况确定字母的取值范围.3.经历求根公式的推导过程并会用公式法解简单的一元二次方程.【教学过程】一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗?二、合作探究探究点一:一元二次方程的根的情况【类型一】判断一元二次方程根的情况不解方程,判断下列方程的根的情况.(1)2x2+3x-4=0;(2)x2-x+14=0;(3)x2-x+1=0.解析:根据根的判别式我们可以知道当b2-4ac≥0时,方程才有实数根,而b2-4ac<0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况.解:(1)2x2+3x-4=0,a=2,b=3,c=-4,∴b2-4ac=32-4×2×(-4)=41>0.∴方程有两个不相等的实数根.(2)x2-x+14=0,a=1,b=-1,c=14.∴b2-4ac=(-1)2-4×1×14=0.∴方程有两个相等的实数根.(3)x2-x+1=0,a=1,b=-1,c=1.∴b2-4ac=(-1)2-4×1×1=-3<0.∴方程没有实数根.方法总结:给出一个一元二次方程,不解方程,可由b2-4ac的值的符号来判断方程根的情况.当b2-4ac>0时,一元二次方程有两个不相等的实数根;当b2-4ac=0时,一元二次方程有两个相等的实数根;当b2-4ac<0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是( )A.a>2 B.a<2C.a<2且a≠1 D.a<-2解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a-1不为0.即4-4(a-1)>0且a-1≠0,解得a<2且a≠1.选C.方法总结:若方程有实数根,则b2-4ac≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题.【类型三】说明含有字母系数的一元二次方程根的情况已知:关于x的方程2x2+kx-1=0,求证:方程有两个不相等的实数根.证明:Δ=k2-4×2×(-1)=k2+8,无论k取何值,k2≥0,所以k2+8>0,即Δ>0,∴方程2x2+kx-1=0有两个不相等的实数根.方法总结:要说明一个含字母系数的一元二次方程的根的情况,只需求出该方程根的判别式,分析其正、负情况,即可得出结论.【类型四】一元二次方程的根的情况的实际应用小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.小峰对小林说:“这两个正方形的面积之和不可能等于48cm2”,他的说法对吗?请说明理由.解:假设能围成.设其中一个正方形的边长为x,则另一个正方形的边长是(10-x),由题可得,x2+(10-x)2=48.化简得x2-10x+26=0.因为b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根.所以小峰的说法是对的.探究点二:公式法解一元二次方程【类型一】用公式法解一元二次方程用公式法解下列方程:(1)2x2+x-6=0;(2)x2+4x=2;(3)5x2-4x+12=0;(4)4x2+4x+10=1-8x.解析:方程(1)(3)是一元二次方程的一般形式,可以直接确定a,b,c的值,并计算b2-4ac的值,然后代入求根公式,即可求出方程的根;方程(2)(4)则需要先化成一般形式,再求解.解:(1)这里a=2,b=1,c=-6,b2-4ac=12-4×2×(-6)=1+48=49.∴x=-b±b2-4ac2a=-1±492×2=-1±74,即原方程的解是x1=-2,x2=32.(2)将方程化为一般形式,得x2+4x-2=0.∵b2-4ac=24,∴x=-4±242=-2± 6.∴原方程的解是x1=-2+6,x2=-2- 6.(3)∵b2-4ac=-224<0,∴原方程没有实数根.(4)整理,得4x2+12x+9=0.∵b2-4ac=0,∴x1=x2=-3 2 .方法总结:用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a,b,c的值.【类型二】一元二次方程解法的综合运用三角形的两边分别为2和6,第三边是方程x2-10x+21=0的解,则第三边的长为( )A.7 B.3C.7或3 D.无法确定解析:解一元二次方程x2-10x+21=0,得x1=3,x2=7.根据三角形三边的关系,第三边还应满足4<x<8.所以第三边的长x=7.故选A.方法总结:解题的关键是正确求解一元二次方程,并会运用三角形三边的关系进行取舍.三、板书设计【教学反思】教学过程中,强调用判别式去判断方程根的情况,首先需把方程化为一般形式.同时公式法的得出是通过配方法来的,用公式法解方程∴前提是Δ≥0.《21.2.2 公式法》教案【教学内容】1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.【教学目标】理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程.【重难点关键】1.重点:求根公式的推导和公式法的应用.2.难点与关键:一元二次方程求根公式法的推导.【教学过程】一、复习引入(学生活动)用配方法解下列方程 (1)6x 2-7x+1=0 (2)4x 2-3x=52 (老师点评) (1)移项,得:6x 2-7x=-1二次项系数化为1,得:x 2-76x=-16配方,得:x 2-76x+(712)2=-16+(712)2(x-712)2=25144x-712=±512 x 1=512+712=7512+=1 x 2=-512+712=7512-=16(2)略总结用配方法解一元二次方程的步骤(学生总结,老师点评). (1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方; (4)原方程变形为(x+m )2=n 的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.二、探索新知如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1=2b a -x 2=2b a--分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx=-c 二次项系数化为1,得x 2+b a x=-ca配方,得:x 2+b a x+(2b a )2=-c a +(2b a)2即(x+2b a)2=2244b aca -∵b 2-4ac ≥0且4a 2>0∴2244b aca -≥0直接开平方,得:x+2ba =即x=2b a-±∴x 1=2b a -+,x 2=2b a-由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac≥0时,•将a 、b 、c 代入式子就得到方程的根.(2)这个式子叫做一元二次方程的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程.(1)2x 2-4x-1=0 (2)5x+2=3x 2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.解:(1)a=2,b=-4,c=-1 b 2-4ac=(-4)2-4×2×(-1)=24>0x=(4)422242--±±±==⨯∴x 1=22,x 2=22- (2)将方程化为一般形式 3x 2-5x-2=0 a=3,b=-5,c=-2b 2-4ac=(-5)2-4×3×(-2)=49>0576±=x 1=2,x 2=-13(3)将方程化为一般形式 3x 2-11x+9=0 a=3,b=-11,c=9b 2-4ac=(-11)2-4×3×9=13>0∴x=(11)11236--±±=⨯∴x 1=116+,x 2=116- (3)a=4,b=-3,c=1 b 2-4ac=(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根. 三、巩固练习教材P 42 练习1.(1)、(3)、(5) 四、应用拓展例2.某数学兴趣小组对关于x 的方程(m+1)22mx ++(m-2)x-1=0提出了下列问题.(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程. (2)若使方程为一元二次方程m 是否存在?若存在,请求出. 你能解决这个问题吗?分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0.(2)要使它为一元一次方程,必须满足:①211(1)(2)0m m m ⎧+=⎨++-≠⎩或②21020m m ⎧+=⎨-≠⎩或③1020m m +=⎧⎨-≠⎩解:(1)存在.根据题意,得:m 2+1=2 m 2=1 m=±1当m=1时,m+1=1+1=2≠0当m=-1时,m+1=-1+1=0(不合题意,舍去) ∴当m=1时,方程为2x 2-1-x=0 a=2,b=-1,c=-1b 2-4ac=(-1)2-4×2×(-1)=1+8=9x=(1)13224--±±=⨯x 1=,x 2=-12因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=-12. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0 因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0 所以m=0满足题意. ②当m 2+1=0,m 不存在.③当m+1=0,即m=-1时,m-2=-3≠0 所以m=-1也满足题意.当m=0时,一元一次方程是x-2x-1=0, 解得:x=-1当m=-1时,一元一次方程是-3x-1=0解得x=-13因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-•1时,其一元一次方程的根为x=-13.五、归纳小结本节课应掌握:(1)求根公式的概念及其推导过程; (2)公式法的概念;(3)应用公式法解一元二次方程; (4)初步了解一元二次方程根的情况. 六、布置作业1.教材P 45 复习巩固4. 2.选用作业设计:一、选择题1.用公式法解方程4x 2-12x=3,得到( ).A .x=32-± B .x=32±C .x=32-± D .x=32±2x 2=0的根是( ).A .x 1,x 2B .x 1=6,x 2C .x 1,x 2D .x 1=x 23.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ). A .4 B .-2 C .4或-2 D .-4或2 二、填空题1.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________. 2.当x=______时,代数式x 2-8x+12的值是-4.3.若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是_____.三、综合提高题1.用公式法解关于x 的方程:x 2-2ax-b 2+a 2=0.2.设x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根,(1)试推导x 1+x 2=-b a ,x 1·x 2=c a;(2)•求代数式a (x 13+x 23)+b (x 12+x 22)+c (x 1+x 2)的值. 3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按每千瓦时100A元收费. (1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)(2)下表是这户居民3月、4月的用电情况和交费情况根据上表数据,求电厂规定的A 值为多少? 答案:一、1.D 2.D 3.C二、1.x=2b a -b 2-4ac ≥0 2.4 3.-3三、1.=a ±│b │2.(1)∵x 1、x 2是ax 2+bx+c=0(a ≠0)的两根,∴x 1x 2=∴x 1+x 2=2b b a -ba ,x 1·x 2=2b a -2b a -=ca(2)∵x 1,x 2是ax 2+bx+c=0的两根,∴ax 12+bx 1+c=0,ax 22+bx 2+c=0 原式=ax 13+bx 12+c 1x 1+ax 23+bx 22+cx 2 =x 1(ax 12+bx 1+c )+x 2(ax 22+bx 2+c ) =03.(1)超过部分电费=(90-A )·100A =-1100A 2+910A (2)依题意,得:(80-A )·100A =15,A 1=30(舍去),A 2=50《21.2.2 公式法(1)》教案【教学内容】用b 2-4ac 大于、等于0、小于0判别ax 2+bx+c=0(a ≠0)的根的情况及其运用.【教学目标】掌握b 2-4ac>0,ax 2+bx+c=0(a ≠0)有两个不等的实根,反之也成立;b 2-4ac=0,ax 2+bx+c=0(a ≠0)有两个相等的实数根,反之也成立;b 2-4ac<0,ax 2+bx+c=0(a ≠0)没实根,反之也成立;及其它们关系的运用.通过复习用配方法解一元二次方程的b 2-4ac>0、b 2-4ac=0、b 2-4ac<0各一题,•分析它们根的情况,从具体到一般,给出三个结论并应用它们解决一些具体题目.【重难点关键】1.重点:b 2-4ac>0↔一元二次方程有两个不相等的实根;b 2-4ac=0↔一元二次方程有两个相等的实数;b 2-4ac<0↔一元二次方程没有实根.2.难点与关键从具体题目来推出一元二次方程ax 2+bx+c=0(a ≠0)的b 2-4ac 的情况与根的情况的关系.【教具、学具准备】小黑板【教学过程】一、复习引入(学生活动)用公式法解下列方程.(1)2x 2-3x=0 (2)3x 2x+1=0 (3)4x 2+x+1=0老师点评,(三位同学到黑板上作)老师只要点评(1)b 2-4ac=9>0,•有两个不相等的实根;(2)b 2-4ac=12-12=0,有两个相等的实根;(3)b 2-4ac=│-4×4×1│=<0,•方程没有实根二、探索新知从前面的具体问题,我们已经知道b 2-4ac>0(<0,=0)与根的情况,现在我们从求根公式的角度来分析:求根公式:x=2b a-±,当b 2-4ac>0时,等于一个具体数,所以一元一次方程的x 1=2b a -+≠x 1=2b a--,即有两个不相等的实根.当b 2-4ac=0时,•,所以x 1=x 2=2b a-,即有两个相等的实根;当b 2-4ac<0时,根据平方根的意义,负数没有平方根,所以没有实数解.因此,(结论)(1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)•有两个不相等实数根即x 1=2b a -x 2=2b a--. (2)当b-4ac=0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等实数根即x 1=x 2=2b a-. (3)当b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a ≠0)没有实数根.例1.不解方程,判定方程根的情况(1)16x 2+8x=-3 (2)9x 2+6x+1=0(3)2x 2-9x+8=0 (4)x 2-7x-18=0分析:不解方程,判定根的情况,只需用b-4ac 的值大于0、小于0、等于0•的情况进行分析即可.解:(1)化为16x 2+8x+3=0这里a=16,b=8,c=3,b 2-4ac=64-4×16×3=-128<0所以,方程没有实数根.(2)a=9,b=6,c=1,b2-4ac=36-36=0,∴方程有两个相等的实数根.(3)a=2,b=-9,c=8b2-4ac=(-9)2-4×2×8=81-64=17>0 ∴方程有两个不相等的实根.(4)a=1,b=-7,c=-18b2-4ac=(-7)2-4×1×(-18)=121>0 ∴方程有两个不相等的实根.三、巩固练习不解方程判定下列方程根的情况:(1)x2+10x+26=0 (2)x2-x-34=0(3)3x2+6x-5=0 (4)4x2-x+116=0(5)x214=0 (6)4x2-6x=0(7)x(2x-4)=5-8x四、应用拓展例2.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).分析:要求ax+3>0的解集,就是求ax>-3的解集,那么就转化为要判定a 的值是正、负或0.因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)<0就可求出a的取值范围.解:∵关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根.∴(-2a)2-4(a-2)(a+1)=4a2-4a2+4a+8<0a<-2∵ax+3>0即ax>-3∴x<-3 a∴所求不等式的解集为x<-3 a五、归纳小结本节课应掌握:b2-4ac>0↔一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2-4ac=0 ↔一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2-4ac<0↔一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用.六、布置作业1.教材P复习巩固6 综合运用9 拓广探索1、2.462.选用课时作业设计.第五课时作业设计一、选择题1.以下是方程3x2-2x=-1的解的情况,其中正确的有().A.∵b2-4ac=-8,∴方程有解B.∵b2-4ac=-8,∴方程无解C.∵b2-4ac=8,∴方程有解D.∵b2-4ac=8,∴方程无解2.一元二次方程x2-ax+1=0的两实数根相等,则a的值为().A.a=0 B.a=2或a=-2C.a=2 D.a=2或a=03.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是().A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数二、填空题1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.2.不解方程,判定2x2-3=4x的根的情况是______(•填“二个不等实根”或“二个相等实根或没有实根”).3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)•=0的根的情况是________.三、综合提高题1.不解方程,试判定下列方程根的情况.(1)2+5x=3x2(2)x2-()+4=02.当c<0时,判别方程x2+bx+c=0的根的情况.3.不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况.4.某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7.2亿元,求该集团2000年到2002年的年销售总额的平均增长率.答案:一、1.B 2.B 3.D二、1.p2-4q=0 2.有两个不等实根 3.有两个不等实根三、1.(1)化为3x2-5x-2=0 b2-4ac=(-5)2-4×3×(-2)=49>0,有两个不等实根.(2)b2,没有实根.2.∵c<0 ∴b2-4×1×c>0,方程有两个不等的实根.3.b2-4ac=4k2-4(2k-1)=4k2-8k+4=4(k-1)2≥0,•∴方程有两个不相等的实根或相等的实根.4.设平均增长率为x,400000008%(1+x)2=720000000,即50(1+x)2=72 解得x=20%,∴年销售总额的平均增长率是20%.《21.2.2 公式法》导学案学习目标1、经历推导求根公式的过程,加强推理技能训练,进一步发展逻辑思维能力;2、会用公式法解简单系数的一元二次方程;3进一步体验类比、转化、降次的数学思想方法。