美国大学数学研究生基础课程参考书目

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

美国大学数学研究生基础课程参考书目

去美国读数学研究生,就要对美国大学数学研究生的基础课程有所了解,下面给大家整理了有关美国本科以及研究生数学基础课程的参考书目,希望对大家有所帮助。

第一学年

几何与拓扑:

1、James R. Munkres, Topology:较新的拓扑学的教材适用于本科高年级或研究生一年级;

2、Basic Topology by Armstrong:本科生拓扑学教材;

3、Kelley, General Topology:一般拓扑学的经典教材,不过观点较老;

4、Willard, General Topology:一般拓扑学新的经典教材;

5、Glen Bredon, Topology and geometry:研究生一年级的拓扑、几何教材;

6、Introduction to Topological Manifolds by John M. Lee:研究生一年级的拓扑、几何教材,是一本新书;

7、From calculus to cohomology by Madsen:很好的本科生代数拓扑、微分流形教材。

代数:

1、Abstract Algebra Dummit:最好的本科代数学参考书,标准的研究生一年级代数教材;

2、Algebra Lang:标准的研究生一、二年级代数教材,难度很高,适合作参考书;

3、Algebra Hungerford:标准的研究生一年级代数教材,适合作参考书;

4、Algebra M,Artin:标准的本科生代数教材;

5、Advanced Modern Algebra by Rotman:较新的研究生代数教材,很全面;

6、Algebra:a graduate course by Isaacs:较新的研究生代数教材;

7、Basic algebra Vol I&II by Jacobson:经典的代数学全面参考书,适合研究生参考。

分析基础:

1、Walter Rudin, Principles of mathematical analysis:本科数学分析的标准参考书;

2、Walter Rudin, Real and complex analysis:标准的研究生一年级分析教材;

3、Lars V. Ahlfors, Complex analysis:本科高年级和研究生一年级经典的复分析教材;

4、Functions of One Complex Variable I,J.B.Conway:研究生级别的单变量复分析经典;

5、Lang, Complex analysis:研究生级别的单变量复分析参考书;

6、Complex Analysis by Elias M. Stein:较新的研究生级别的单变量复分析教材;

7、Lang, Real and Functional analysis:研究生级别的分析参考书;

8、Royden, Real analysis:标准的研究生一年级实分析教材;

9、Folland, Real analysis:标准的研究生一年级实分析教材。

第二学年

代数:

1、Commutative ring theory, by H. Matsumura:较新的研究生交换代数标准教材;

2、Commutative Algebra I&II by Oscar Zariski , Pierre Samuel:经典的交换代数参考书;

3、An introduction to Commutative Algebra by Atiyah:标准的交换代数入门教材;

4、An introduction to homological algebra ,by weibel:较新的研究生二年级同调代数教材;

5、A Course in Homological Algebra by P.J.Hilton,U.Stammbach:经典全面的同调代数参考书;

6、Homological Algebra by Cartan:经典的同调代数参考书;

7、Methods of Homological Algebra by Sergei I. Gelfand, Yuri I. Manin:高级、经典的同调代数参考书;

8、Homology by Saunders Mac Lane:经典的同调代数系统介绍;

9、Commutative Algebra with a view toward Algebraic Geometry by Eisenbud:高级的代数几何、交换代数的参考书,最新的交换代数全面参考。

代数拓扑:

1、Algebraic Topology, A. Hatcher:最新的研究生代数拓扑标准教材;

2、Spaniers “Algebraic Topology”:经典的代数拓扑参考书;

3、Differential forms in algebraic topology, by Raoul Bott and Loring W. Tu:研究生代数拓扑标准教材;

4、Massey, A basic course in Algebraic topology:经典的研究生代数拓扑教材;

5、Fulton , Algebraic topology:a first course:很好本科生高年级和研究生一年级的代数拓扑参考书;

6、Glen Bredon, Topology and geometry:标准的研究生代数拓扑教材,有相当篇幅讲述光滑流形;

7、Algebraic Topology Homology and Homotopy:高级、经典的代数拓扑参考书;

8、A Concise Course in Algebraic Topology by J.P.May:研究生代数拓扑的入门教材,覆盖范围较广;

9、Elements of Homotopy Theory by G.W. Whitehead:高级、经典的代数拓扑参考书。

实分析、泛函分析:

1、Royden, Real analysis:标准研究生分析教材;

2、Walter Rudin, Real and complex analysis:标准研究生分析教材;

3、Halmos,”Measure Theory”:经典的研究生实分析教材,适合作参考书;

4、Walter Rudin, Functional analysis:标准的研究生泛函分析教材;

5、Conway,A course of Functional analysis:标准的研究生泛函分析教材;

6、Folland, Real analysis:标准研究生实分析教材;

7、Functional Analysis by Lax:高级的研究生泛函分析教材;

8、Functional Analysis by Yoshida:高级的研究生泛函分析参考书;

9、Measure Theory, Donald L. Cohn:经典的测度论参考书。

相关文档
最新文档