2018-2019-1长郡集团七上期末数学试卷(含答案)1

合集下载

2018-2019 学年度第一学期七年级期末质量检测数学试卷参考答案

2018-2019 学年度第一学期七年级期末质量检测数学试卷参考答案
解得: m 22 ----------------------------------------------------------------------9 分 7
CED BCM 90 (已知) ∴ CED ACN (同角的余角相等)-----------8 分
∴AC∥DE(内错角相等,两直线平行)-----------9 分 ∵AC⊥BF(已知)
A
B
M
C
E
N
∴∠ACB=90°(垂直定义)---------------------10 分 又∵AC∥DE(已证)
解得:x=4,-----------------------------------------------------------------------------------------12 分
∴点 P 运动 4 秒时,追上点 Q.------------------------------------------------------------ 13 分
三、解答题
17. 解:原式= 4 1 ( 3) --------------------------------------4 分(绝对值计算 2 分,其他 1 分) 6
=2
------------------------------------------6 分
18. 解法一:原式= 2x 2 y 3x 3y 3x 3y 2x 2 y ---4 分(评分点:每去一个括号正确得 1 分)
2018-2019 学年第一学期七年级期末质量检测 数学试卷参考答案与评分说明
一.选择题(每小题 4 分,共 40 分)
题号
1
2
3
4
5
6

长沙市长郡双语实验学校人教版七年级上册数学期末试卷及答案-百度文库

长沙市长郡双语实验学校人教版七年级上册数学期末试卷及答案-百度文库

长沙市长郡双语实验学校人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .122.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒ 3.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( ) A .1个B .2个C .3个D .4个 4.互不相等的三个有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C 。

若:||||||a b b c a c -+-=-,则点B ( )A .在点 A, C 右边B .在点 A,C 左边 C .在点 A, C 之间D .以上都有可能5.方程3x +2=8的解是( )A .3B .103C .2D .126.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .7.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=6 8.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( )A .3.31×105B .33.1×105C .3.31×106D .3.31×107 9.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( )A .0mB .0.8mC .0.8m -D .0.5m -10.下列图形中,哪一个是正方体的展开图( )A .B .C .D .11.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .259.2元 12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题13.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.14.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.16.分解因式: 22xy xy +=_ ___________17.如果向东走60m 记为60m +,那么向西走80m 应记为______m.18.16的算术平方根是 .19.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.20.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.21.小颖按如图所示的程序输入一个正数x ,最后输出的结果为131.则满足条件的x 值为________.22.化简:2x+1﹣(x+1)=_____.23.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、压轴题25.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.26.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.27.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.28.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.29.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?30.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).31.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动.(1)求AC ,BC ;(2)当t 为何值时,AP PQ =;(3)当t 为何值时,P 与Q 第一次相遇;(4)当t 为何值时,1cm PQ =.32.已知数轴上三点A ,O ,B 表示的数分别为6,0,-4,动点P 从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P 到点A 的距离与点P 到点B 的距离相等时,点P 在数轴上表示的数是______;(2)另一动点R 从B 出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P 、R 同时出发,问点P 运动多少时间追上点R ?(3)若M 为AP 的中点,N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =,则可列出:()223x x +⨯=解得:4x =,12BC AB =, 28AB x ∴==.故答案为:C.【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.D解析:D【解析】【分析】由题意分两种情况过点O 作OE AB ⊥,利用垂直定义以及对顶角相等进行分析计算得出选项.【详解】解:过点O 作OE AB ⊥,如图:由40BOD ∠=︒可知40AOC ∠=︒,从而由垂直定义求得COE ∠=90°-40°或90°+40°,即有COE ∠的度数为50︒或130︒. 故选D.【点睛】本题考查了垂直定义以及对顶角的应用,主要考查学生的计算能力.3.D解析:D【解析】【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断;③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52+25x x a x x a =⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x a x a =⎧⎨-=-⎩,可得a=a-5,矛盾,故不存在一个实数a 使得x=y,本选项正确④方程组解得25-15x a y a =⎧⎨=-⎩由题意得:x-3a=5把25-15x a y a =⎧⎨=-⎩代入得 25-a-3a=5解得a=5本选项正确则正确的选项有四个故选D【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键4.C解析:C【解析】【分析】 根据a b b c -+-表示数b 的点到a 与c 两点的距离的和,a c -表示数a 与c 两点的距离即可求解.【详解】∵绝对值表示数轴上两点的距离a b -表示a 到b 的距离b c -表示b 到c 的距离a c -表示a 到c 的距离∵a b b c a c -+-=-丨丨丨丨丨丨∴B 在A 和C 之间故选:C【点睛】本题考查的是数轴的特点,熟知数轴上两点之间的距离公式是解答此题的关键.5.C解析:C【解析】【分析】移项、合并后,化系数为1,即可解方程.【详解】解:移项、合并得,36x =,化系数为1得:2x =,故选:C .【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解法是解题的关键.6.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A 选项为该立体图形的俯视图,不合题意;B 选项为该立体图形的主视图,不合题意;C 选项不是如图立体图形的视图,符合题意;D 选项为该立体图形的左视图,不合题意.故选:C .【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.7.C解析:C【解析】【分析】方程两边都乘以分母的最小公倍数即可.【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=,故选:C .【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.8.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:3310000=3.31×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】+,解∵水位升高0.6m时水位变化记作0.6m-,∴水位下降0.8m时水位变化记作0.8m故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.10.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键. 11.A解析:A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB 平分∠COD ,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C .【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.二、填空题13.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 14.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF -∠B′P 解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE ,∠CPF=∠C′PF ,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF -∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE =∠B ′PE ,∠CPF =∠C ′PF ,∴2∠B ′PE+2∠C ′PF ﹣∠B ′PC ′=180°,即2(∠B ′PE+∠C ′PF )﹣∠B ′PC ′=180°,又∵∠EPF =∠B ′PE+∠C ′PF ﹣∠B ′PC ′=85°,∴∠B ′PE+∠C ′PF =∠B ′PC ′+85°,∴2(∠B ′PC ′+85°)﹣∠B ′PC ′=180°,解得∠B ′PC ′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.15.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.16.【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本 解析:xy(2y 1)+【解析】【分析】原式提取公因式xy ,即可得到结果.【详解】解:原式=xy (2y +1),故答案为:xy (2y +1)【点睛】此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键.17.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.18.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 19.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2+2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C 表示的数为1+1+2=2+2,故答案为【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.20.4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:,设,,若点C 在线段AB 上,则,点O 为AB 的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =,∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 21.26,5,【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若解析:26,5,4 5【解析】【分析】根据经过一次输入结果得131,经过两次输入结果得131,…,分别求满足条件的正数x的值.【详解】若经过一次输入结果得131,则5x+1=131,解得x=26;若经过二次输入结果得131,则5(5x+1)+1=131,解得x=5;若经过三次输入结果得131,则5[5(5x+1)+1]+1=131,解得x=45;若经过四次输入结果得131,则5{5[5(5x+1)+1]+1}+1=131,解得x=−125(负数,舍去);故满足条件的正数x值为:26,5,45.【点睛】本题考查了代数式求值,解一元一次方程.解题的关键是根据所输入的次数,列方程求正数x的值.22.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.23.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.x+解析:416【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】()()()1771416x x x x x+++++++=+故答案为416x+.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、压轴题25.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n节点”的概念解答;(2)设点D表示的数为x,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E在BA延长线上时,②当点E在线段AB上时,③当点E在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.26.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10, ②当点P 运动到点B 的左侧时:MN=MP ﹣NP=12AP ﹣12BP=12(AP ﹣BP)=12AB=10, ∴线段MN 的长度不发生变化,其值为10.【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.28.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-,解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1,解得:4t 3=,综合上述,当P出发23秒或43秒时,P和点Q相距1个单位长度;(3)①若点P和点Q在相遇前相距1个单位长度,此时点P表示的数为-3+2×23=-53,Q点表示的数为1-(1+23)=-23,设此时数轴上存在-个点C,点C表示的数为a,由题意得AC+PC+QC=|a+3|+|a+53|+|a+23|,要使|a+3|+|a+53|+|a+23|最小,当点C与P重合时,即a=-53时,点C到点A、点P和点Q这三点的距离和最小;②若点P和点Q在相遇后相距1个单位长度,此时点P表示的数为-3+2×43=-13,Q点表示的数为1-(1+43)=-43,此时满足条件的点C即为Q点,所表示的数为43 ,综上所述,点C所表示的数分别为-53和-43.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想. 29.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5【解析】【分析】(1)先求出线段AB的长,然后根据线段中点的定义解答即可;(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.【详解】(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.【点睛】本题考查了一元一次方程的应用.解题的关键是分类讨论.30.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON 为为∠BOC 的平分线,∴∠BON =60°.∴旋转的角度=60°+180°=240°.∴t =240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.31.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,。

2018-2019学年度第一学期七年级期末数学试卷及答案

2018-2019学年度第一学期七年级期末数学试卷及答案

2018-2019第一学期七年级数学期末试卷及答案姓名__________ 分数______一、选择题(每小题3分,共30分) 1.一个数的相反数是2,这个数是( ) A .12 B .12- C .2 D .-2 2.如果四个有理数的积是负数,那么其中负因数有( )个 A .3 B .1 C .0或2 D .1或33.火星和地球的距离约为34 000 000千米,用科学记数法表示34 000 000的结果是( ) A .0. 34×108 B .3. 4×106 C .34×106 D .3. 4×107 4.关于x 的方程3x + 2m + 1 = x -3m -2的解为x = 0,则m 的值为( ) A .35-B .15-C .15D .255.某种商品每件的进价为190元,按标价的九折销售时,利润率为15. 2%。

设这种商品的标价为每件x 元,依题意列方程正确的是( )A .1900.91900.152x -=⨯B .0.91900.152x =⨯C .0.91901900.152x -=⨯D .0.1521900.9x =⨯6.足球比赛计分规则是:胜一场得3分,平一场得1分,负一场得0分。

今年武汉黄鹤楼队经过26轮激战,以42分获“中超”联赛第五名,其中负6场,那么胜场数为( ) A .9 B .10 C .11 D .127.下图是一个由6个相同的小立方体组成的几何体,从上面看得到的平面图形是( )A .B .C .D . 8.下面等式成立的是( )A .83. 5°= 83°50′B .37°12′36″=37. 48°C .24°24′24″= 24. 44°D .41. 25°= 41°15′9.某校为了解360名七年级学生体重情况,从中抽取了60名学生进行检测。

2018-2019学年度第一学期七年级数学上册期末教学质量检测(有答案解析)

2018-2019学年度第一学期七年级数学上册期末教学质量检测(有答案解析)

2018-2019学年度第一学期期末教学质量检测七年级数学试卷一、选择题(每题3分,共36分)1.(3分)﹣的相反数是( )A.B.﹣C.2D.﹣22.(3分)据统计,2017年双十一当天,天猫成交额1682亿,1682亿用科学记数法可表示为( )A.16.82×1010B.0.1682×1012C.1.682×1011D.1.682×10123.(3分)如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是( )A.雅B.教C.集D.团4.(3分)已知a x b2与ab y的和是a x b y,则(x﹣y)y等于( )A.2B.1C.﹣2D.﹣15.(3分)下列各式正确的是( )A.19a2b﹣9ab2=10a2b B.3x+3y=6xyC.16y2﹣7y2=9D.2x﹣5x=﹣3x6.(3分)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行7.(3分)如图,C是AB的中点,D是BC的中点,下列等式不正确的是( )A.CD=AD﹣BC B.CD=AC﹣DB C.CD=AB D.CD=AB﹣DB8.(3分)下列解方程步骤正确的是( )A.由2x+4=3x+1,得2x﹣3x=1+4B.由7(x﹣1)=3(x+3),得7x﹣1=3x+3C.由0.2x﹣0.3=2﹣1.3x,得2x﹣3=2﹣13xD.由,得2x﹣2﹣x﹣2=129.(3分)如图,AB∥CD,直线EF分别与直线AB,CD相交于点G,H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于( )A.60°B.80°C.50°D.130°10.(3分)在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是( )A.3(52﹣x)=38+x B.52+x=3(38﹣x)C.52﹣3x=38+x D.52﹣x=3(38﹣x)11.(3分)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为( )A.45°B.55°C.65°D.75°12.(3分)如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由( )个正方形叠成.A.86B.87C.85D.84二、填空题(每题3分,共18分)13.(3分)一个角的补角比这个角的余角的2倍大18°,则这个角的度数为 .14.(3分)若a的相反数是﹣3,b的绝对值是4,且|b|=﹣b,则a﹣b= .15.(3分)已知代数式x﹣3y﹣1的值为3,则代数式5+6y﹣2x的值为 .16.(3分)如果线段AB=5cm,BC=4cm,且A、B、C三点在同一条直线上,则AC= .17.(3分)如图,直线a∥b,直角三角形ABC的直角顶点C在直线b上,∠1=20°,∠2=2∠A,则∠A= .18.(3分)按照下列程序计算输出值为2018时,输入的x值为 .三、解答题(本大题有8个小题,共66分)19.(8分)计算:(1)(﹣+﹣)×(﹣12)(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2.20.(8分)解方程:(1)2x+3=12﹣3(x﹣3)(2)21.(6分)先化简,再求值,x2﹣3(2x2﹣4y)+2(x2﹣y),其中|x+2|+(5y﹣1)2=022.(8分)如图,在△ABC中,GD⊥AC于点D,∠AFE=∠ABC,∠1+∠2=180°,∠AEF=65°,求∠1的度数.解:∠AFE=∠ABC(已知)∴ (同位角相等,两直线平行)∴∠1=∠ (两直线平行,内错角相等)∠1+∠2=180°(已知)∴ (等量代换)∴EB∥DG ∴∠GDE=∠BEA GD⊥AC(已知)∴ (垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠ ﹣∠ =90°﹣65°=25°(等式的性质)23.(8分)如图:∠BCA=64°,CE平分∠ACB,CD平分∠ECB,DF∥BC交CE于点F,求∠CDF和∠DCF的度数.24.(8分)中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?25.(10分)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A 的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是 ;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C 就是M、N的幸福中心,则C所表示的数可以是 (填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?26.(10分)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之间的数量关系;(3)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.参考答案与试题解析一、选择题(每题3分,共36分)1.(3分)﹣的相反数是( )A.B.﹣C.2D.﹣2【分析】根据相反数的定义:只有符号不同的两个数叫相反数即可求解.【解答】解:根据概念得:﹣的相反数是.故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)据统计,2017年双十一当天,天猫成交额1682亿,1682亿用科学记数法可表示为( )A.16.82×1010B.0.1682×1012C.1.682×1011D.1.682×1012【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:1682亿=1.682×1011.故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3.(3分)如图,把下列图形折成一个正方体的盒子,折好后与“礼”相对的字是( )A.雅B.教C.集D.团【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“礼”与面“集”相对,面“雅”与面“教”相对,面“育”与面“团”相对.故选:C.【点评】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)已知a x b2与ab y的和是a x b y,则(x﹣y)y等于( )A.2B.1C.﹣2D.﹣1【分析】根据同类项的定义即可求出答案.【解答】解:由题意可知:a x b2与ab y是同类项,∴x=1,y=2,∴原式=(﹣1)2=1,故选:B.【点评】本题考查同类项的概念,解题的关键是熟练运用同类型的概念,本题属于基础题型.5.(3分)下列各式正确的是( )A.19a2b﹣9ab2=10a2b B.3x+3y=6xyC.16y2﹣7y2=9D.2x﹣5x=﹣3x【分析】根据合并同类项的法则进行计算即可.【解答】解:A、19a2b﹣9ab2,不能合并,故错误;B、3x+3y,不能合并,故错误;C、16y2﹣7y2=9y2,故错误;D、2x﹣5x=﹣3x,故正确;故选:D.【点评】本题考查了合并同类项,掌握合并同类项的法则是解题的关键.6.(3分)某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是( )A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【分析】根据两点之间,线段最短进行解答.【解答】解:某同学用剪刀沿直线将一片平整的银杏叶剪掉一部分(如图),发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.故选:A.【点评】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.7.(3分)如图,C是AB的中点,D是BC的中点,下列等式不正确的是( )A.CD=AD﹣BC B.CD=AC﹣DB C.CD=AB D.CD=AB﹣DB【分析】根据线段中点的定义可判断.【解答】解:∵C是AB的中点,D是BC的中点∴AC=BC=AB,CD=BD=BC∵CD=AD﹣AC∴CD=AD﹣BC故A正确∵CD=BC﹣DB∴CD=AC﹣DB故B正确∵AC=BC=AB,CD=BD=BC∴CD=AB故C错误∵CD=BC﹣DB∴CD=AB﹣DB故D正确故选:C.【点评】本题考查了两点之间的距离,熟练掌握线段中点的定义是本题的关键.8.(3分)下列解方程步骤正确的是( )A.由2x+4=3x+1,得2x﹣3x=1+4B.由7(x﹣1)=3(x+3),得7x﹣1=3x+3C.由0.2x﹣0.3=2﹣1.3x,得2x﹣3=2﹣13xD.由,得2x﹣2﹣x﹣2=12【分析】根据解一元一次方程的基本步骤逐一判断即可得.【解答】解:A、由2x+4=3x+1,得2x﹣3x=1﹣4,此选项错误;B、由7(x﹣1)=3(x+3),得7x﹣7=3x+9,此选项错误;C、由0.2x﹣0.3=2﹣1.3x,得2x﹣3=20﹣13x,此选项错误;D、由,得2x﹣2﹣x﹣2=12,此选项正确;故选:D.【点评】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤.9.(3分)如图,AB∥CD,直线EF分别与直线AB,CD相交于点G,H,已知∠3=50°,GM平分∠HGB交直线CD于点M,则∠1等于( )A.60°B.80°C.50°D.130°【分析】根据平行线的性质与∠3=50°,求得∠BGM=50°,由GM平分∠HGB交直线CD 于点M,得出∠BGF的度数,再根据邻补角的性质求得∠1的度数.【解答】解:∵AB∥CD,∴∠BGM=∠3=50°,∵GM平分∠HGB,∴∠BGF=100°,∴∠1=180°﹣100°=80°.故选:B.【点评】本题主要考查了平行线的性质,两直线平行,内错角相等;以及角平分线的定义.10.(3分)在雅礼社团年会上,各个社团大放光彩,其中话剧社52人,舞蹈社38人要外出表演,现根据演出需要,从舞蹈社中抽调了部分同学参加话剧社,使话剧社的人数恰好是舞蹈社的人数的3倍.设从舞蹈队中抽调了x人参加话剧社,可得正确的方程是( )A.3(52﹣x)=38+x B.52+x=3(38﹣x)C.52﹣3x=38+x D.52﹣x=3(38﹣x)【分析】设从舞蹈队中抽调了x人参加话剧社,由抽调后话剧社的人数恰好是舞蹈社的人数的3倍,即可得出关于x的一元一次方程,此题得解.【解答】解:设从舞蹈队中抽调了x人参加话剧社,根据题意得:52+x=3(38﹣x).故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.(3分)如图,在△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为( )A.45°B.55°C.65°D.75°【分析】先根据补角的定义求出∠CDE的度数,再由平行线的性质求出∠C的度数,根据余角的定义即可得出结论.【解答】解:∵∠1=155°,∴∠CDE=180°﹣155°=25°.∵DE∥BC,∴∠C=∠CDE=25°.∵∠A=90°,∴∠B=90°﹣25°=65°.故选:C.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.12.(3分)如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(7)个图形由( )个正方形叠成.A.86B.87C.85D.84【分析】根据图形的变换规律,可知第n个图形中的正方体的个数为1+3+6+…+,据此可得第(7)个图形中正方体的个数.【解答】解:由图可得:第(1)个图形中正方体的个数为1;第(2)个图形中正方体的个数为4=1+3;第(3)个图形中正方体的个数为10=1+3+6;第(4)个图形中正方体的个数为20=1+3+6+10;故第n个图形中的正方体的个数为1+3+6+…+,第(7)个图形中正方体的个数为1+3+6+10+15+21+28=84.故选:D.【点评】本题主要考查了图形变化类问题以及正方体,解决问题的关键是依据图形得到变换规律.解题时注意:第n个图形中的正方体的个数为1+3+6+…+.二、填空题(每题3分,共18分)13.(3分)一个角的补角比这个角的余角的2倍大18°,则这个角的度数为 18° .【分析】设这个角的度数为x,根据余角和补角的定义、结合题意列出方程,解方程即可.【解答】解:设这个角的度数为x,由题意得,180°﹣x=2(90°﹣x)+18°,解得,x=18°,故答案为:18°.【点评】本题考查的是余角和补角,如果两个角的和等于90°,就说这两个角互为余角;如果两个角的和等于180°,就说这两个角互为补角.14.(3分)若a的相反数是﹣3,b的绝对值是4,且|b|=﹣b,则a﹣b= 7 .【分析】利用相反数,绝对值的代数意义求出a与b的值,代入原式计算即可求出值.【解答】解:根据题意得:a=3,b=﹣4,则原式=3﹣(﹣4)=3+4=7,故答案为:7【点评】此题考查了有理数的减法,以及相反数,绝对值,熟练掌握各自的性质是解本题的关键.15.(3分)已知代数式x﹣3y﹣1的值为3,则代数式5+6y﹣2x的值为 ﹣3 .【分析】首先求出x﹣3y的值是多少,然后把它代入5+6y﹣2x,求出算式的值为多少即可.【解答】解:∵x﹣3y﹣1=3,∴x﹣3y=4,∴5+6y﹣2x=5﹣2(x﹣3y)=5﹣2×4=5﹣8=﹣3故答案为:﹣3.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.16.(3分)如果线段AB=5cm,BC=4cm,且A、B、C三点在同一条直线上,则AC= 1cm 或9cm .【分析】分类讨论:C在线段AB上,C在线段AB的延长线上,根据线段的和差,可得答案.【解答】解:当C在线段AB上时,由线段的和差,得AC=AB﹣BC=5﹣4=1(cm);当C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=5+4=9(cm),故答案为:1cm或9cm.【点评】本题考查了两点间的距离,分类讨论是解题关键,以防漏掉.17.(3分)如图,直线a∥b,直角三角形ABC的直角顶点C在直线b上,∠1=20°,∠2=2∠A,则∠A= 35° .【分析】根据平角等于180°列式计算得到∠3,根据两直线平行,同位角相等可得∠3=∠2,进而得到∠A的度数.【解答】解:∵∠1=20°,∠ACB=90°,∴∠3=90°﹣∠1=70°,∵直线a∥b,∴∠2=∠3=70°,又∵∠2=2∠A,∴∠A=35°,故答案是:35°.【点评】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.18.(3分)按照下列程序计算输出值为2018时,输入的x值为 202 .【分析】利用计算程序得到2(5x﹣1)=2018,然后解关于x的方程即可.【解答】解:根据题意得2(5x﹣1)=2018,5x﹣1=1009,所以x=202.故答案为202.【点评】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.也考查了一元一次方程的应用,三、解答题(本大题有8个小题,共66分)19.(8分)计算:(1)(﹣+﹣)×(﹣12)(2)﹣|﹣5|×(﹣12)﹣4÷(﹣)2.【分析】(1)运用乘法的分配律计算可得;(2)根据有理数的混合运算顺序和法则计算可得.【解答】解:(1)原式=(﹣)×(﹣12)+×(﹣12)+(﹣)×(﹣12)=2﹣9+5=﹣2;(2)原式=﹣5×(﹣1)﹣4×4=5﹣16=﹣11.【点评】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和法则.20.(8分)解方程:(1)2x+3=12﹣3(x﹣3)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x+3=12﹣3x+9,移项合并得:5x=18,解得:x=3.6;(2)去分母得:9x﹣6=24﹣8x+4,移项合并得:17x=34,解得:x=2.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.(6分)先化简,再求值,x2﹣3(2x2﹣4y)+2(x2﹣y),其中|x+2|+(5y﹣1)2=0【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=x2﹣6x2+12y+2x2﹣2y=﹣3x2+10y,∵|x+2|+(5y﹣1)2=0,∴x=﹣2,y=,则原式=﹣12+2=﹣10.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.(8分)如图,在△ABC中,GD⊥AC于点D,∠AFE=∠ABC,∠1+∠2=180°,∠AEF=65°,求∠1的度数.解:∠AFE=∠ABC(已知)∴ EF∥BC (同位角相等,两直线平行)∴∠1=∠ EBC (两直线平行,内错角相等)∠1+∠2=180°(已知)∴ ∠EBC+∠2=180° (等量代换)∴EB∥DG 同旁内角互补,两直线平行 ∴∠GDE=∠BEA 两直线平行,同位角相等 GD⊥AC(已知)∴ ∠GDE=90° (垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠ BEA ﹣∠ AEF =90°﹣65°=25°(等式的性质)【分析】根据平行线的性质和判定可填空.【解答】解:∠AFE=∠ABC(已知)∴EF∥BC(同位角相等,两直线平行)∴∠1=∠EBC(两直线平行,内错角相等)∠1+∠2=180°(已知)∴∠EBC+∠2=180°(等量代换)∴EB∥DG (同旁内角互补,两直线平行)∴∠GDE=∠BEA (两直线平行,同位角相等)GD⊥AC(已知)∴∠GDE=90°(垂直的定义)∴∠BEA=90°(等量代换)∠AEF=65°(已知)∴∠1=∠BEA﹣∠AEF=90°﹣65°=25°(等式的性质)故答案为:EF∥BC,∠EBC,∠EBC+∠2=180°,同旁内角互补,两直线平行,两直线平行,同位角相等,∠GDE,∠BEA,∠AEF.【点评】本题考查了平行线的判定和性质,灵活运用平行线的性质和判定解决问题是本题的关键.23.(8分)如图:∠BCA=64°,CE平分∠ACB,CD平分∠ECB,DF∥BC交CE于点F,求∠CDF和∠DCF的度数.【分析】根据角平分线的定义可求∠BCF的度数,再根据角平分线的定义可求∠BCD和∠DCF的度数,再根据平行线的性质可求∠CDF的度数.【解答】解:∵∠BCA=64°,CE平分∠ACB,∴∠BCF=32°,∵CD平分∠ECB,∴∠BCD=∠DCF=32°,∵DF∥BC,∴∠CDF=∠BCD=32°.【点评】考查了角平分线的定义,平行线的性质,关键是熟悉两直线平行,内错角相等的知识点.24.(8分)中雅七年级(1)班想买一些运动器材供班上同学阳光体育课件使用,班主任安排班长去商店买篮球和排球,下面是班长与售货员的对话:班长:阿姨,您好!售货员:同学,你好,想买点什么?(1)根据这段对话,你能算出篮球和排球的单价各是多少吗?(2)六一儿童节店里搞活动有两种套餐,1、套装打折:五个篮球和五个排球为一套装,套装打八折:2、满减活动:999减100,1999减200;两种活动不重复参与,学校打算买15个篮球,13个排球作为奖品,请问如何安排更划算?【分析】(1)设篮球的单价为x元/个,排球的单价为y元/个,根据每个排球比每个篮球便宜30元及570元购买3个篮球和5个排球,即可得出关于x、y的二元一次方程组,解之即可得出结论;(2)分别求出按套装打折购买及按满减活动购买所需费用,比较后即可得出结论.【解答】解:(1)设篮球的单价为x元/个,排球的单价为y元/个,根据题意得:,解得:.答:篮球的单价为90元/个,排球的单价为60元/个.(2)按套装打折购买需付费用为:10×(90+60)×0.8+5×90+3×60=1830(元),按满减活动购买需付费用为:15×90+13×60﹣200=1930(元).∵1830<1930,∴按套装打折购买更划算.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)分别求出按套装打折购买及按满减活动购买所需费用.25.(10分)“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A 的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为﹣1,则A的幸福点C所表示的数应该是 ﹣4或2 ;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2,点C 就是M、N的幸福中心,则C所表示的数可以是 ﹣2或﹣1或0或1或2或3或4 (填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为﹣1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A和B的幸福中心?【分析】(1)根据幸福点的定义即可求解;(2)根据幸福中心的定义即可求解;(3)分两种情况列式:①P在B的右边;②P在A的左边讨论;可以得出结论.【解答】解:(1)A的幸福点C所表示的数应该是﹣1﹣3=﹣4或﹣1+3=2;(2)4﹣(﹣2)=6,故C所表示的数可以是﹣2或﹣1或0或1或2或3或4;(3)设经过x秒时,电子蚂蚁是A和B的幸福中心,依题意有①8﹣2x﹣4+(8﹣2x+1)=6,解得x=1.75;②4﹣(8﹣2x)+[﹣1﹣(8﹣2x)]=6,解得x=4.75.故当经过1.75秒或4.75秒时,电子蚂蚁是A和B的幸福中心.【点评】本题考查了数轴及数轴上两点的距离、动点问题,熟练掌握动点中三个量的数量关系式:路程=时间×速度,认真理解新定义.26.(10分)已知AM∥CN,点B为平面内一点,AB⊥BC于B(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度数.【分析】(1)根据平行线的性质以及直角三角形的性质进行证明即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB ⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【解答】解:(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点评】本题主要考查了平行线的性质的运用,解决问题的关键是作平行线构造内错角,运用等角的余角(补角)相等进行推导.余角和补角计算的应用,常常与等式的性质、等量代换相关联.解题时注意方程思想的运用.。

2018-2019学年度第一学期七年级期末考试数学试卷参考答案

2018-2019学年度第一学期七年级期末考试数学试卷参考答案

2018-2019学年度第一学期七年级期末考试数学试卷参考答案二、填空题(本大题共 5 小题,每小题4分,满分20分)11. 两点确定一条直线 12. 百 13. 4232'︒ 14.1003xx += 15. 60°或120°三、解答题(本大题共8小题,满分90分)16.(6分)计算题: 232123(2)(6)()3-+⨯---÷-解:原式=143(8)(6)9-+⨯---÷ (4分)42454=--+=26 (6分)17.(12分)解方程或方程组:(1)解方程:2131168x x ---= (2)解方程组:633594x y x y -=-⎧⎨-=⎩解:4(21)3(31)24x x ---= (3分) 解:将①⨯3得1899x y -=- ③ 25x -= 将③-②得1313x =-,解得1x =- (3分) 25x = (6分) 将1x =-代入②解得1y =- (4分) 所以此方程组解为11x y =-⎧⎨=-⎩(6分) 注:其他方法也可18.(10分)先化简,再求值:解:原式=223[223]x y xy xy x y xy --++=xy - (6分)当13,3x y ==-时,原式=13()13-⨯-= (10分)19.(10分)解:(1)∵多项式222,6,A x xy B x xy =-=+-∴2244(2)(6)A B x xy x xy -=--+-22846x xy x xy =---+2756x xy =-+ (6分)(2)∵由(1)知,24756A B x xy -=-+∴当1,2x y ==-时,原式=27151(2)6⨯-⨯⨯-+=7106++=23 (10分)20.(12分)解:设购得茶壶x 只,则需茶杯(30-x )只,根据题意得: (1分) 153[(30)]171x x x +--= (6分) 解得 x =9答:小王买了茶壶9只。

2018-2019学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷(含解析)印刷版

2018-2019学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷(含解析)印刷版

2018-2019学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是()A.﹣3B.﹣1C.2D.42.(3分)下列各式中,正确的是()A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4D.a3+a2=a53.(3分)如图直线l1∥l2,则∠α的大小是()A.120°B.130°C.140°D.150°4.(3分)下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=55.(3分)下列结论中正确的是()A.单项式的系数是,次数是4B.单项式m的次数是1,没有系数C.多项式2x2+xy2+3是二次三项式D.在,2x+y,,,,0中整式有4个6.(3分)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A.B.C.D.7.(3分)若A为五次多项式,B为四次多项式,则A+B一定是()A.次数不高于九次多项式B.四次多项式C.五次多项式D.次数不定8.(3分)如图,OB是∠AOC内部的一条射线,把三角尺的角的顶点放在点O处,转动三角尺,当三角尺的边OD平分∠AOB时,三角尺的另一边OE也正好平分∠BOC,则∠AOC的度数为()A.100°B.110°C.120°D.130°9.(3分)猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a亥b=ab﹣b,则满足等式的x的值为()A.B.C.D.10.(3分)如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.3个B.4个C.5个D.6个11.(3分)有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④12.(3分)如图,点A在数轴上表示的数是﹣8,点B在数轴上表示的数是16.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒二、填空题(共6小题,18分)13.(3分)若∠α=31°42′,则∠α的补角的度数为.14.(3分)已知5x m+2y3与是同类项,则(﹣m)3+n等于.15.(3分)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值等于.16.(3分)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟,则他家距离学校km.17.(3分)如图,在平行线a,b之间放置一个直角三角形,三角形的顶点A,C分别在直线a,b上,∠ACB=90°,∠BAC=20°,则∠1+∠2=.18.(3分)已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON=.三、解答题(共10题,66分)19.(8分)解方程(1)7y﹣3(3y+2)=6 (2)+1=x﹣20.(6分)先化简,再求值:5﹣2(a2b﹣ab2+2)+(3ab2+a2b﹣1),其中a=2,b=﹣1.21.(6分)一元一次方程解答题:已知关于x的方程与x﹣1=2(2x﹣l)的解互为倒数,求m 的值.22.(6分)立体几何的三视图:若干个棱长为2cm的正方体摆放成如图所示的形状,回答下列问题:(1)画出该图形的三视图;(2)它的表面积是多少?23.(6分)角度计算题:如图,已知O为AD上一点,∠AOB与∠AOC互补,ON平分∠AOB,OM平分∠AOC,若是∠MON=42°,求∠AOB与∠AOC的度数.24.(6分)线段计算题:已知线段AB=6,在直线AB上取一点C,恰好使AC=2BC,点D为CB的中点,求线段AD的长.25.(6分)如图,AC,BD相交于点O,AC平分∠DCB,CD⊥AD,∠ACD=45°,∠BAC=60°.(1)证明:AD∥BC;(2)求∠EAD的度数;(3)求证:∠AOB=∠DAC+∠CBD.26.(6分)某水果经销商到水果批发市场采购苹果,他看中了甲、乙两家苹果的某种品质一样的苹果,零售价都为8元/千克,批发价各不相同.甲家规定:批发数量不超过100千克,全部按零售价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠.乙家的规定如下表:表格说明:批发价分段计算:如:某人批发200千克的苹果;则总费用=50×8×95%+100×8×85%+50×8×75%.(1)如果他批发240千克苹果选择哪家批发更优惠;(2)设他批发x千克苹果(x>100),当x取何值时选择两家批发所花费用一样多.27.(8分)如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即∠=∠()∴∠3=∠∴AD∥BE()28.(8分)综合应用题:如图,有一副直角三角板如图①放置(其中∠D=45°,∠C=30°),P A、PB 与直线MN重合,且三角板P AC,三角板PBD均可以绕点P逆时针旋转.(l)∠DPC=;(2)如图②,若三角板PBD保持不动,三角板∠P AC绕点P逆时针旋转,转速为10°/秒,转动一周三角板P AC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC∥DB成立;(3)如图③,在图①基础上,若三角板P AC的边P A从PN.处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当∠CPD=∠BPM,求旋转的时间是多少?2018-2019学年湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是()A.﹣3B.﹣1C.2D.4【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【解答】解:∵|﹣1|<|2|<|﹣3|<|4|,∴﹣1最接近标准,故选:B.2.(3分)下列各式中,正确的是()A.x2y﹣2x2y=﹣x2y B.2a+3b=5abC.7ab﹣3ab=4D.a3+a2=a5【分析】根据同类项的定义,合并同类项的法则.【解答】解:A、x2y﹣2x2y=﹣x2y,故A正确;B、不是同类项,不能进一步计算,故B错误;C、7ab﹣3ab=4ab,故C错误;D、a3+a2=a5,不是同类项,故D错误.故选:A.3.(3分)如图直线l1∥l2,则∠α的大小是()A.120°B.130°C.140°D.150°【分析】先根据平行线的性质求出∠BCD的度数,再由对顶角的性质即可得出结论.【解答】解:∵直线ll1∥l2,∴∠BCD=180°﹣130°=50°,∴∠α与∠ACD是对顶角,∴∠α=70°+50°=120°.故选:A.4.(3分)下列各题正确的是()A.由7x=4x﹣3移项得7x﹣4x=3B.由=1+去分母得2(2x﹣1)=1+3(x﹣3)C.由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x﹣9=1D.由2(x+1)=x+7去括号、移项、合并同类项得x=5【分析】根据解一元一次方程的步骤计算,并判断.【解答】解:A、由7x=4x﹣3移项得7x﹣4x=﹣3,故错误;B、由=1+去分母得2(2x﹣1)=6+3(x﹣3),故错误;C、由2(2x﹣1)﹣3(x﹣3)=1去括号得4x﹣2﹣3x+9=1,故错误;D、正确.故选:D.5.(3分)下列结论中正确的是()A.单项式的系数是,次数是4B.单项式m的次数是1,没有系数C.多项式2x2+xy2+3是二次三项式D.在,2x+y,,,,0中整式有4个【分析】根据单项式的系数、次数和多项式的定义以及整式的概念判断即可.【解答】解:A、单项式的系数是的系数是π,次数是3,不符合题意;B、单项式m的次数是1,系数是1,不符合题意;C、多项式2x2+xy2+3是三次三项式,不符合题意;D、在,2x+y,,,,0中整式有2x+y,,,0,一共4个,符合题意.故选:D.6.(3分)将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A.B.C.D.【分析】根据面动成体的原理:一个直角三角形绕它的最长边旋转一周,得到的是两个同底且相连的圆锥.【解答】解:A、圆柱是由一长方形绕其一边长旋转而成的;B、圆锥是由一直角三角形绕其直角边旋转而成的;C、该几何体是由直角梯形绕其下底旋转而成的;D、该几何体是由直角三角形绕其斜边旋转而成的.故选:D.7.(3分)若A为五次多项式,B为四次多项式,则A+B一定是()A.次数不高于九次多项式B.四次多项式C.五次多项式D.次数不定【分析】根据A与B的次数,确定出A+B的次数即可.【解答】解:∵A是五次多项式,B是四次多项式,∴A+B的次数是5.∴A+B一定是五次多项式,故选:C.8.(3分)如图,OB是∠AOC内部的一条射线,把三角尺的角的顶点放在点O处,转动三角尺,当三角尺的边OD平分∠AOB时,三角尺的另一边OE也正好平分∠BOC,则∠AOC的度数为()A.100°B.110°C.120°D.130°【分析】根据角平分线的定义得到∠BOD=∠AOB,∠BOE=∠BOC,则∠EOD=∠AOB+∠BOC=∠AOC,然后把∠EOD=60°代入计算即可.【解答】解:∵OD边平分∠AOB,OE平分∠BOC,∴∠BOD=∠AOB,∠BOE=∠BOC,∴∠EOD=∠AOB+∠BOC=∠AOC,∵∠EOD=60°,∴∠AOC=2×60°=120°.故选:C.9.(3分)猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a亥b=ab﹣b,则满足等式的x的值为()A.B.C.D.【分析】原式利用题中的新定义计算即可求出值.【解答】解:根据题中的新定义得:×6﹣6=﹣1,整理得:2(1﹣2x)﹣6=﹣1,去括号得:2﹣4x﹣6=﹣1,移项合并得:﹣4x=3,解得:x=﹣,故选:B.10.(3分)如图,DH∥EG∥BC,DC∥EF,那么与∠DCB相等的角的个数为()A.3个B.4个C.5个D.6个【分析】由DC∥EF可以得到∠DCB=∠EFB,再根据DH∥EG∥BC,可以推出∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.【解答】解:如图,∵DC∥EF,∴∠BCD=∠BFE,∵EG∥BC,∴∠EFB=∠GEF,∵DC∥EF,∴∠EMD=∠GEF=∠GMC,∵DH∥EG,∴∠EMD=∠CDH,∵DH∥EG∥BC,∴∠CDH=∠DCB.∴与∠DCB相等的角的个数为5.故选:C.11.(3分)有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【解答】解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选:D.12.(3分)如图,点A在数轴上表示的数是﹣8,点B在数轴上表示的数是16.若点A以6个单位长度/秒的速度向右匀速运动,同时点B以2个单位长度/秒的速度向左匀速运动.问:当AB=8时,运动时间为多少秒?()A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒【分析】设当AB=8时,运动时间为t秒,根据题意列方程即可得到结论.【解答】解:设当AB=8时,运动时间为t秒,由题意得,6t+2t+8=16﹣(﹣8)或6t+2t=16﹣(﹣8)+8,解得:t=2或t=4,故选:C.二、填空题(共6小题,18分)13.(3分)若∠α=31°42′,则∠α的补角的度数为148°18′.【分析】相加等于180°的两角称作互为补角,也称作两角互补,即一个角是另一个角的补角.因而求这个角的补角,就可以用180°减去这个角的度数.【解答】解:∵∠α=31°42′,∴∠α的补角的度数=180°﹣31°42′=148°18′.故答案为:148°18′.14.(3分)已知5x m+2y3与是同类项,则(﹣m)3+n等于﹣3.【分析】直接利用同类项的定义得出m,n的值进而得出答案.【解答】解:∵5x m+2y3与是同类项,∴m+2=3,3=﹣n+1,解得:m=1,n=﹣2,∴(﹣m)3+n=﹣1﹣2=﹣3.故答案为:﹣3.15.(3分)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值等于1.【分析】把x=1代入代数式求出a﹣3b的值,将x=﹣1代入计算即可得到结果.【解答】解:把x=1代入得:a﹣3b+4=7,即a﹣3b=3,则当x=﹣1时,原式=﹣a+3b+4=﹣3+4=1.故答案为:1.16.(3分)小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟,则他家距离学校15km.【分析】10分钟=小时,5分钟=小时,设他家距离学校xkm,根据“每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟”,得到关于x的一元一次方程,解之即可.【解答】解:10分钟=小时,5分钟=小时,设他家距离学校xkm,根据题意得:+=﹣,解得:x=15,即他家距离学校15km,故答案为:15.17.(3分)如图,在平行线a,b之间放置一个直角三角形,三角形的顶点A,C分别在直线a,b上,∠ACB=90°,∠BAC=20°,则∠1+∠2=70°.【分析】根据平行线的性质,得到∠DAC+∠ECA=180°,再根据∠BAC=30°,∠ACB=90°,即可得出∠1+∠2=180°﹣20°﹣90°=70°.【解答】解:∵a∥b,∴∠DAC+∠ECA=180°,又∵∠BAC=30°,∠ACB=90°,∴∠1+∠2=180°﹣30°﹣90°=60°,故答案为:70°18.(3分)已知∠AOB=60°,其角平分线为OM,∠BOC=20°,其角平分线为ON,则∠MON=40°或20°.【分析】分OC在∠AOB外部和内部两种情况,由OM、ON分别平分∠AOB、∠BOC可得∠BOM、∠BON度数,在根据两种位置分别求之.【解答】解:①如图,当OC在∠AOB外部时,∵∠AOB=60°,OM平分∠AOB,∴∠BOM=∠AOB=30°,又∵∠BOC=20°,ON平分∠BOC,∴∠BON=∠BOC=10°,∴∠MON=∠BOM+∠BON=40°;②如图,当OC在∠AOB内部时,∵∠AOB=60°,OM平分∠AOB,∴∠BOM=∠AOB=30°,又∵∠BOC=20°,ON平分∠BOC,∴∠BON=∠BOC=10°,∴∠MON=∠BOM﹣∠BON=20°,故答案为:40°或20°.三、解答题(共10题,66分)19.(8分)解方程(1)7y﹣3(3y+2)=6 (2)+1=x﹣【分析】(1)去括号、移项、合并同类项、系数化为1,(2)去分母、去括号、移项、合并同类项、系数化为1,【解答】解:(1)去括号,得7y﹣9y﹣6=6移项,得7y﹣9y=6﹣6合并同类项,得﹣2y=12系数化1,得y=﹣6(2)去分母,得2(x+1)+6=6x﹣3(x﹣1)去括号,得2x+2+6=6x﹣3x+3移项,得2x﹣6x+3x=3﹣2﹣6合并同类项,得﹣x=﹣5系数化1,得x=520.(6分)先化简,再求值:5﹣2(a2b﹣ab2+2)+(3ab2+a2b﹣1),其中a=2,b=﹣1.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=5﹣2a2b+2ab2﹣4+3ab2+a2b﹣1=﹣a2b+5ab2将a=2,b=﹣1代入上式,原式=4+10=14;21.(6分)一元一次方程解答题:已知关于x的方程与x﹣1=2(2x﹣l)的解互为倒数,求m 的值.【分析】求出第二个方程的解,确定出第一个方程的解,代入计算即可求出m的值.【解答】解:方程x﹣1=2(2x﹣1),去括号得:x﹣1=4x﹣2,解得:x=,将x=3代入方程得,=3﹣,去分母得:9﹣3m=18﹣2m,解得:m=﹣9.22.(6分)立体几何的三视图:若干个棱长为2cm的正方体摆放成如图所示的形状,回答下列问题:(1)画出该图形的三视图;(2)它的表面积是多少?【分析】(1)根据三视图的画法,分别画出主视图、左视图、俯视图,(2)求出一个小正方形的面积为4平方厘米,再计算出表面积有几个小正方形,从而计算出表面积.【解答】解:(1)三视图如图所示:(2)它的表面积为:(7+5+2+1)×2×(2×2)=120 cm223.(6分)角度计算题:如图,已知O为AD上一点,∠AOB与∠AOC互补,ON平分∠AOB,OM平分∠AOC,若是∠MON=42°,求∠AOB与∠AOC的度数.【分析】根据补角的定义,有时还需考虑角平分线的性质,分析并找到角与角之间的关系,再进行计算得出答案.【解答】解:设∠AOB=x°,因为∠AOC与∠AOB互补,则∠AOC=180°﹣x°.由题意,得﹣=42.∴180﹣x﹣x=84,∴﹣2x=﹣96,解得x=48,故∠AOB=48°,∠AOC=132°.24.(6分)线段计算题:已知线段AB=6,在直线AB上取一点C,恰好使AC=2BC,点D为CB的中点,求线段AD的长.【分析】①当点C在线段AB上时,如图1,②当点C在线段AB的延长线上时,如图2,③当点C在BA的延长线上时,明显,次情况不存在;列方程即可得到结论;【解答】解:①当点C在线段AB上时,如图1,∵AC=2BC,设BC=x,则AC=2x,∵AB=AC+BC,∴6=2x+x,∴x=2,∴BC=2,AC=4,∵点D是CB的中点,∴CD=BD=BC=1,∴AD=AC+CD=4+1=5;②当点C在线段AB的延长线上时,如图2,设BC=x,AC=2BC=2x,∵AB=AC﹣BC=x=6,∴x=6,∴BC=6,AC=12,AB=6,∵点D是CB的中点,∴BD=CD=BC=3,∴AD=AB+BD=6+3=9;③当点C在BA的延长线上时,明显,此情况不存在;综上所述,AD的长为5或9.25.(6分)如图,AC,BD相交于点O,AC平分∠DCB,CD⊥AD,∠ACD=45°,∠BAC=60°.(1)证明:AD∥BC;(2)求∠EAD的度数;(3)求证:∠AOB=∠DAC+∠CBD.【分析】(1)求出∠DCB+∠ADC=180°,根据平行线的判定得出即可;(2)根据平行线的性质求出∠DAC=∠ACB=45°,即可求出答案;(3)根据平行线的判定得出OF∥BC,根据平行线的性质得出∠ADB=∠DBC,∠AOF=∠DAC,∠FOB=∠CBD,即可求出答案.【解答】(1)证明:∵AC平分∠DCB,∴∠BCD=2∠ACD=2×45°=90°,∵CD⊥AD,∴∠ADC=90°,∴∠BCD+∠ADC=90°+90°=180°,∴AD∥BC;(2)解:∵AC平分∠DCB,∴∠ACB=∠ACD=45°,∵AD∥BC∴∠DAC=∠ACB=45°,∠EAD=180°﹣∠DAC﹣∠BAC=180°﹣45°﹣60°=75°;(3)证明:过点O作OF∥AD ,∵AD∥BC,∴∠ADB=∠DBC,OF∥BC,∴∠AOF=∠DAC,∠FOB=∠CBD,∴∠AOB=∠AOF+∠FOB=∠DAC+∠CBD.26.(6分)某水果经销商到水果批发市场采购苹果,他看中了甲、乙两家苹果的某种品质一样的苹果,零售价都为8元/千克,批发价各不相同.甲家规定:批发数量不超过100千克,全部按零售价的九折优惠;批发数量超过100千克全部按零售价的八五折优惠.乙家的规定如下表:表格说明:批发价分段计算:如:某人批发200千克的苹果;则总费用=50×8×95%+100×8×85%+50×8×75%.(1)如果他批发240千克苹果选择哪家批发更优惠;(2)设他批发x千克苹果(x>100),当x取何值时选择两家批发所花费用一样多.【分析】(1)分别求出在甲、乙两家批发200千克苹果所需费用,比较后即可得出结论;(2)分100<x≤150及x>150,当100<x≤150时,用含x的代数式表示出在甲、乙两家批发x千克苹果所需费用,进而得出不存在相等的情况;当x>150时,用含x的代数式表示出在甲、乙两家批发x千克苹果所需费用,令其相等即可求出x值.【解答】解:(1)在甲家批发所需费用为:240×8×85%=1632(元),在乙家批发所需费用为:50×8×95%+(150﹣50)×8×85%+(240﹣150)×8×75%=1600(元).∵1632>1600,在乙家批发更优惠.(2)当100<x≤150时,在甲家批发所需费用为:8×85%x=6.8x,在乙家批发所需费用为:50×8×95%+(x﹣50)×8×85%=6.8x+40.不可能相等;当x>150时,在甲家批发所需费用为:8×85%x=6.8x,在乙家批发所需费用为:50×8×95%+(150﹣50)×8×85%+(x﹣150)×8×75%=6x+160.∵6.8x=6x+160,∴x=200.综上所得:当x=200时他选择任何一家批发所花费用一样多.27.(8分)如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.解:∵AB∥CD(已知)∴∠4=∠BAF(两直线平行,同位角相等)∵∠3=∠4(已知)∴∠3=∠BAF(等量代换)∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF(等式的性质)即∠BAF=∠CAD(角的和差)∴∠3=∠CAD∴AD∥BE(内错角相等,两直线平行)【分析】由平行可得到∠4=∠BAF,可得到∠3=∠BAF=∠1+∠CAF=∠2+∠CAF=∠CAD,根据平行线的判定可得到AD∥BE,据此填空即可.【解答】解:∵AB∥CD(已知),∴∠4=∠BAF(两直线平行,同位角相等),∵∠3=∠4(已知),∴∠3=∠BAF(等量代换),∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF(等式的性质),即∠BAF=∠CAD(角的和差),∴∠3=∠CAD,∴AD∥BE(内错角相等,两直线平行).故答案为:BAF;两直线平行,同位角相等;BAF;等量代换;等式的性质;角的和差;CAD;内错角相等,两直线平行.28.(8分)综合应用题:如图,有一副直角三角板如图①放置(其中∠D=45°,∠C=30°),P A、PB 与直线MN重合,且三角板P AC,三角板PBD均可以绕点P逆时针旋转.(l)∠DPC=75°;(2)如图②,若三角板PBD保持不动,三角板∠P AC绕点P逆时针旋转,转速为10°/秒,转动一周三角板P AC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC∥DB成立;(3)如图③,在图①基础上,若三角板P AC的边P A从PN.处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当∠CPD=∠BPM,求旋转的时间是多少?【分析】(1)根据平角的定义即可得到结论;(2)如图1,根据平行线的性质得到∠CPN﹣∠DBP=90°,求得∠APN=30°,于是得到结论;如图2,根据平行线的性质得到∠CPB=∠DBP=90°,根据三角形的内角和得到∠CP A=60°,求得∠APM =30°,于是得到结论;(3)设旋转的时间为t秒,由题知,∠APN=3t°,∠BPM=2t°,根据周角的定义得到∠CPD=360°﹣∠BPD﹣∠BPN﹣∠APN﹣∠APC=360°﹣45°﹣(180°﹣2t°)﹣(3t°)﹣60°=75°﹣t°,列方程即可得到结论.【解答】解:(1)∵∠BPD=∠D=45°,∠APC=60°,∴∠DPC=180°﹣45°﹣60°=75°,故答案为:75°;(2)如图1,此时,BD∥PC成立,∵PC∥BD,∠DBP=90°,∴∠CPN﹣∠DBP=90°,∵∠C=30°,∴∠CP A=60°,∴∠APN=30°,∵转速为10°/秒,∴旋转时间为3秒;如图2,PC∥BD,∵PC∥BC,∠PBD=90°,∴∠CPB=∠DBP=90°,∵∠C=30°,∴∠CP A=60°,∴∠APM=30°,∵三角板P AC绕点P逆时针旋转D的角度为180°=30°=210°,∵转速为10°/秒,∴旋转时间为21秒,综上所诉,当旋转时间为3或21秒时,PC∥DB成立;(3)设旋转的时间为t秒,由题知,∠APN=3t°,∠BPM=2t°,∴∠BPN=180°﹣∠BPM=180°﹣2t°,∴∠CPD=360°﹣∠BPD﹣∠BPN﹣∠APN﹣∠APC=360°﹣45°﹣(180°﹣2t°)﹣(3t°)﹣60°=75°﹣t°,当∠CPD=∠BPM,即2t°=75°﹣t°,解得:t=25,∴当∠CPD=∠BPM,求旋转的时间是25秒.。

长郡七年级期末考数学试卷

长郡七年级期末考数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,不是有理数的是()A. 3.14B. √2C. -1/4D. 02. 下列各数中,绝对值最大的是()A. -5B. -3C. 1D. 23. 已知a、b是相反数,且|a|<|b|,则下列不等式中正确的是()A. a<bB. a>bC. a<-bD. a>-b4. 如果一个数a的平方等于4,那么a的值是()A. 2B. -2C. ±2D. 05. 下列图形中,不是轴对称图形的是()A. 等腰三角形B. 平行四边形C. 正方形D. 等边三角形6. 下列代数式中,是单项式的是()A. a^2bB. 2ab + 3cC. a^2 + b^2D. 3a - 2b + 4c7. 下列方程中,解为x=3的是()A. 2x - 4 = 2B. 3x + 1 = 10C. 4x - 5 = 15D. 5x + 2 = 88. 已知a、b、c是三角形的三边,且a+b+c=10,那么a的最大值是()A. 5B. 4C. 3D. 29. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2D. y = 4x - 310. 下列图形中,面积最大的是()A. 正方形B. 长方形C. 等腰梯形D. 等腰三角形二、填空题(每题5分,共50分)11. 若a=2,b=-3,则a+b的值是________。

12. |2-3|的值是________。

13. 如果一个数的平方是16,那么这个数是________。

14. 下列代数式中,单项式是________。

15. 下列方程中,解为x=2的是________。

16. 已知a、b、c是三角形的三边,且a+b+c=12,那么a的最小值是________。

17. 下列函数中,是正比例函数的是________。

18. 一个长方形的长是10cm,宽是5cm,那么这个长方形的面积是________cm²。

2018-2019学年 长郡 七上期末数学试卷

2018-2019学年    长郡   七上期末数学试卷

2018-2019学年湖南省长沙市长郡教育集团初中课程中心七年级(上)期末考试数学试卷一、选择题(每小题3分,共36分)1.质检员抽查4袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的产品是()A.-3B.-1C.2D.42A .x 2y -23A .120°4A .由7x B .由2x C .由2(2D .由2(x 5A.B.单项式C.多项式3222++xy x 是二次三项式D.单项式x 1,y x +2,b a 231,πy x -,xy45中,整式有4个6.将一个直角三角形绕它的最长边(斜边)旋转一周得到的几何体为()A. B. C. D.7.若A 为五次多项式,B 为四次多项式,则A +B 一定是()A.次数不高于九次多项式B.四次多项式C.五次多项式D.次数不定8.如图,OB 是∠AOC 内部的一条射线,把三角尺的角的顶点放在点处,转动三角尺,当三角尺的边OD平分∠A .130°9321-亥xA .4310.如图A.3个11.有m 1人43404340m +1,其中正确的是()A.①②B.②④C.②③D.③④12.如图,点A 在数轴上表示的数是-8,点B 在数轴上表示的数是16.若点A 以6个单位长度/秒的速度向右匀速运动,同时点B 以2个单位长度/秒的速度向左匀速运动.问:当AB =8时,运动时间为多少秒?A.2秒B.13.4秒C.2秒或4秒D.2秒或6秒二、填空题(共6小题,18分)13.若∠α=31°42′,则∠α的补角的度数为.14.已知325y xm +与1341+-n y x 是同类项,则n m +-3)(等于____.15.当1=x 时,代数式432+-bx ax 的值是7,则当1-=x 时,这个代数式的值等于____.16.小明从家里骑自行车到学校,每小时骑,可早到10分钟,每小时骑就会迟到5分钟,则他17.如图,°,∠BAC =3018.已知∠19.解方程(1)7y ﹣2021.已知关于x 方程2m x -=x +3m与x ﹣1=2(2x ﹣1)的解互为倒数,求m 的值.22.若干个棱长为2cm的正方体摆放成如图所示的形状,回答下列问题:(1)画出该图形的三视图.(2)它的表面积是多少?23.如图,已知O为AD上一点,∠AOC与∠AOB互补,OM,ON分别为∠AOC,∠AOB的平分线,若∠MON=40°,试求∠AOC与∠AOB的度数.24.已知线段AB=6,在直线AB上取一点C,恰好使AC=2BC,点D为CB的中点,求线段AD的长.25.如图,AC,BD相交于点O,AC平分∠DCB,CD⊥AD,∠ACD=45°,∠BAC=60°.(1)证明:AD∥BC;(2)求∠EAD的度数.27.如图AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE.∴28.如图,有一副直角三角板如图①放置(其中∠D=45°,∠C=30°),PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(l)直接写出∠DPC等于多少度.(2)如图②,若三角板PBD保持不动,三角板∠PAC绕点P逆时针旋转,转速为10°/秒,转动一周三角板PAC就停止转动,在旋转的过程中,当旋转时间为多少时,有PC∥DB成立.(3)如图③,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2°/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当∠CPD=∠BPM,求旋转的时间是多少?。

2018-2019学年第一学期期末测试七年级数学试题及答案

2018-2019学年第一学期期末测试七年级数学试题及答案

2018—2019学年第一学期期末测试七年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分为120分。

考试用时100分钟。

考试结束后,只上交答题卡。

2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写在答题卡规定的位置上,并用2B 铅笔填涂相应位置。

3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

答案不能答在试题卷上。

24.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)一、选择题:本大题共12小题,共36分,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.下列算式:(1)(2)--;(2)2- ;(3) 3(2)-;(4)2(2)-.其中运算结果为正数的个数为(A )1 (B )2 (C )3 (D )4【 2.若a 与b 互为相反数,则a-b 等于(A )2a (B )-2a (C ) 0 (D )-2 3.下列变形符合等式基本性质的是(A )如果2a -b =7,那么b =7-2a (B )如果mk =nk ,那么m =n(C )如果-3x =5,那么x =5+3 (D )如果-13a =2,那么a =-64.下列去括号的过程(1)c b a c b a --=--)(; (2)c b a c b a ++=--)(; (3)c b a c b a +-=+-)(; (4)c b a c b a --=+-)(.其中运算结果错误的个数为(A )1 (B )2 (C )3 (D )4【 5.下列说法正确的是(A )1-x 是一次单项式 (B)单项式a 的系数和次数都是1 (C )单项式-π2x 2y 2的次数是6 (D)单项式24102x ⨯的系数是26.下列方程:(1)2x -1=x -7 ,(2)12x =13x -1 ,(3)2(x +5)=-4-x , (4)23x =x -2.其中解为x =-6的方程的个数为 (A )4 (B )3 (C )2 (D )1 7.把方程5.07.01.023.012.0-=--x x 的分母化为整数的方程是 (A )57203102-=--x x (B )5723102-=--x x (C )572312-=--x x (D )5720312-=--x x 8.森林是地球之肺,每年能为人类提供大约28.3亿吨的有机物,28.3亿吨用科学记数法表示为(A ) 28.3×107(B ) 2.83×108(C )0.283×1010(D )2.83×1099.下列现象中,可用基本事实“两点之间,线段最短”来解释的现象是 (A )用两个钉子就可以把木条固定在墙上(B )利用圆规可以比较两条线段的大小关系 (C )把弯曲的公路改直,就能缩短路程(D )植树时,只要定出两棵树的位置,就能确定同一行树所在的直线10.一个两位数,个位数字为a ,十位数字为b ,把这个两位数的个位数字与十位数字 交换,得到一个新的两位数,则新两位数与原两位数的和为 (A )b a 99+(B )ab 2(C )ab ba +(D )b a 1111+ 11.已知表示有理数a 、b 的点在数轴上的位置如图所示:则下列结论正确的是(A )|a|<1<|b| (B )1<a<b (C )1<|a|<b (D ) -b<-a<-1 12.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x = (A )29-(B )29(C )4 (D )-4 第Ⅱ卷(非选择题)二、填空题:本大题共6小题,共24分,只要求填写最后结果,每小题填对得4分. 13.若把45.58°化成以度、分、秒的形式,则结果为.14.若xm-1y 3与2xy n 的和仍是单项式,则(m-n )2018的值等于______ .15. 若031)2(2=++-y x ,则y x -=. 16.某同学在计算10+2x 的值时,误将“+”看成了“﹣”,计算结果为20,那么10+2x 的值应为.17.如图,数轴上相邻刻度之间的距离是51,若BC=52,A 点在数轴上对应的数值是53-,则B 点在数轴上对应的数值是 .218.我们知道,钟表的时针与分针每隔一定的时间就会重合一次,请利用所学知识确定,时针与分针从上一次重合到下一次重合,间隔的时间是______ 小时.三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题分5分,本小题满分10分)计算: (1)11(0.5)06(7)( 4.75)42-+--+--(2)[(﹣5)2×]×(﹣2)3÷7.20.(每小题分5分,本小题满分10分)先化简,再求值: (1)3x 2-[5x-(6x-4)-2x 2],其中x=3(2)(8mn-3m 2)-5mn-2(3mn-2m 2),其中m=-1,n=2.21.(每小题分5分,本小题满分10分)解方程:(1)6322-41--=x x . (2)3125121103--=+x x . 22.(本小题满分8分)一个角的余角比这个角的补角的 13 还小10°,求这个角的度数.23.(本大题满分10分)列方程解应用题:A 车和B 车分别从甲,乙两地同时出发,沿同一路线相向匀速而行.出发后1.5小时两车相距75公里,之后再行驶2.5小时A 车到达乙地,而B 车还差40公里才能到达甲地.求甲地和乙地相距多少公里?24.(本小题满分12分)如图,∠AOB是直角,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)当∠AOC=40°,求出∠MON的大小,并写出解答过程理由;(2)当∠AOC=50°,求出∠MON的大小,并写出解答过程理由;(3)当锐角∠AOC=α时,求出∠MON的大小,并写出解答过程理由.2017—2018学年第一学期期末测试七年级数学试题参考答案一、选择题(本大题12个小题,每小题3分,共36分)二、填空题(本大题6个小题,每小题4分,共24分)13.45°34'48"; 14.1; 15.37; 16. 0 ; 17.0或54 ; 18.1112 . 三、解答题(本大题6个小题,共60分) 19.(每小题分5分,本小题满分10分)计算:解:(1)11(0.5)06(7)( 4.75)42-+--+-- =130.567.5444-+-+………………………………………………2分=13(0.57.5)(64)44--++………………………………………………4分=3.………………………………………………5分(2)[(﹣5)2×]×(﹣2)3÷7=[25×]×(﹣8)÷7……………………………………1分 =[﹣15+8]×(﹣8)÷7………………………………………………2分 =﹣7×(﹣8)÷7 (3)分=56÷7…………………………………………………………4分=8.…………………………………………………………5分20.(每小题分5分,本小题满分10分)先化简,再求值:解:(1)原式, ………………………3分当时,原式; ………………………5分 (2)原式,………………………3分当时,原式. ………………………5分21.(每小题分5分,本小题满分10分)解方程:解:(1)去分母得:, …………3分移项合并得:; …………5分(2)解:原方程可化为312253--=+x x . …………1分去分母,得)12(2)53(3--=+x x . …………2分去括号,得24159+-=+x x . …………3分移项,得215-49+=+x x . …………4分合并同类项,得1313-=x .系数化为1,得1-=x . …………5分22.(本小题满分8分)解:设这个角的度数为x °, …………1分根据题意,得90-x =13(180-x)-10, …………5分解得x =60. …………7分答:这个角的度数为60°. …………8分23.(本大题满分10分)解:设甲地和乙地相距x 公里,根据题意,列出方程752401.5 1.52.5x x --=+………………………………………5分 解方程,得4300360x x -=-………………………………………7分240x =………………………………………9分答:甲地和乙地相距240公里. ……………………………10分24.(本小题满分12分)解:(1)∠AOC =40°时, ∠MON =∠MOC -∠CON ………………………………………1分=12(∠BOC -∠AOC) ………………………………………3分=12∠AOB ………………………………………5分 =45°. ………………………………………6分 (2)当∠AOC =50°,∠MON =45°.理由同(1).………………………9分 (3)当∠AOC=α时,∠MON =45°. 理由同(1).………………………12分注意:评分标准仅做参考,只要学生作答正确,均可得分。

2018-2019学年七年级(上)期末数学试题(解析版)

2018-2019学年七年级(上)期末数学试题(解析版)

2018-2019学年七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1. 如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A. B. C. D.【答案】B【解析】【分析】检测质量时,与标准质量偏差越小,合格的程度就越高.比较与标准质量的差的绝对值即可.【详解】|+0.6|=0.6,|-0.2|=0.2,|-0.5|=0.5,|+0.3|=0.3 ,而0.2<0.3<0.5<0.6 ,∴B球与标准质量偏差最小,故选B.【点睛】本题考查的是绝对值的应用,理解绝对值表示的意义是解决本题的关键.2. 用式子表示“a的2倍与b的差的平方”,正确的是()A. 2(a﹣b)2B. 2a﹣b2C. (a﹣2b)2D. (2a﹣b)2【答案】D【解析】【分析】根据代数式的表示方法,先求倍数,然后求差,再求平方.【详解】解:a的2倍为2a,与b的差的平方为(2a﹣b)2故选:D.【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解题目中的关键词,比如本题中的倍、差、平方等,从而明确其中的运算关系,正确的列出代数式.3. 在下面四个几何体中,左视图、俯视图分别是长方形和圆的几何体是()A. B. C. D.【答案】A【解析】【分析】逐一判断出各几何体的左视图、俯视图即可求得答案.【详解】A 、圆柱的左视图是长方形,俯视图是圆,符合题意;B 、圆锥的的左视图是等腰三角形,俯视图是带有圆心的圆,不符合题意;C 、长方体的左视图是长方形,俯视图是长方形,不符合题意;D 、三棱柱的左视图是长方形,俯视图是三角形,不符合题意,故选A .【点睛】本题考查了简单几何体的三视图,熟练掌握常见几何体的三视图是解题的关键.4. 下列各式中运算正确的是( )A. 224a a a +=B. 4a 3a 1-=C. 2223a b 4ba a b -=-D. 2353a 2a 5a +=【答案】C【解析】【分析】根据合并同类项的法则逐一进行计算即可.【详解】A. 222a a 2a +=,故A 选项错误;B. 4a 3a a -=,故B 选项错误;C. 2223a b 4ba a b -=-,正确;D. 23a 与32a 不是同类项,不能合并,故D 选项错误,故选C .【点睛】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.5. 如图,能用∠1、∠ABC、∠B 三种方法表示同一个角的是( ) A. B. C.D.【答案】A【解析】【分析】根据角的表示法可以得到正确解答.【详解】解:B、C、D选项中,以B为顶点的角不只一个,所以不能用∠B表示某个角,所以三个选项都是错误的;A选项中,以B为顶点的只有一个角,并且∠B=∠ABC=∠1,所以A正确.故选A .【点睛】本题考查角的表示法,明确“过某个顶点的角不只一个时,不能单独用这个顶点表示角”是解题关键.6. 如图,经过刨平的木板上的A,B两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A. 两点之间,线段最短B. 两点确定一条直线C. 垂线段最短D. 在同一平面内,过一点有且只有一条直线与已知直线垂直【答案】B【解析】【分析】根据“经过两点有且只有一条直线”即可得出结论.【详解】解:∵经过两点有且只有一条直线,∴经过木板上的A、B两个点,只能弹出一条笔直的墨线.故选B.【点睛】本题考查了直线性质,牢记“经过两点有且只有一条直线”是解题的关键.7. 在下列式子中变形正确的是( )A. 如果a b =,那么a c b c +=-B. 如果a b =,那么a b 33=C. 如果a 63=,那么a 2=D. 如果a b c 0-+=,那么a b c =+【答案】B【解析】【分析】根据等式的性质逐个判断即可.【详解】A 、∵a=b ,∴a+c=b+c ,不是b-c ,故本选项不符合题意;B 、∵a=b ,∴两边都除以3得:a b 33=,故本选项符合题意; C 、∵a 63=,∴两边都乘以3得:a=18,故本选项不符合题意; D 、∵a-b+c=0,∴两边都加b-c 得:a=b-c ,故本选项不符合题意,故选B .【点睛】本题考查了等式的性质,能熟记等式的性质的内容是解此题的关键.8. 直线l 外一点P 与直线l 上两点的连线段长分别为3cm ,5cm ,则点P 到直线l 的距离是( )A. 不超过3cmB. 3cmC. 5cmD. 不少于5cm【答案】A【解析】【分析】根据直线外的点与直线上各点的连线垂线段最短,可得答案.【详解】解:直线外的点与直线上各点的连线垂线段最短,得点P 到直线l 的距离是小于或等于3,故选A .【点睛】本题考查了点到直线的距离,直线外的点与直线上各点的连线垂线段最短. 二、填空题(本大题共10小题,共30.0分)9. 元月份某天某市的最高气温是4℃,最低气温是-5℃,那么这天的温差(最高气温减最低气温)是______℃.【答案】9【解析】【分析】利用最高气温减最低气温,再根据减去一个数等于加上这个数的相反数计算即可.【详解】这天的温差为4-(-5)=4+5=9(℃),故答案为9【点睛】本题考查有理数的减法的应用,正确列出算式,熟练掌握有理数减法的运算法则是解题的关键. 10. 我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.【答案】4.4×109【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】4400000000的小数点向左移动9位得到4.4,所以4400000000用科学记数法可表示为:4.4×109, 故答案为4.4×109. 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11. 若3x =-是关于x 的一元一次方程250x m ++=的解,则m 的值为___________.【答案】1【解析】把x =−3代入方程得:−6+m +5=0,解得:m =1,故答案为1.12. 若|x -12|+(y +2)2=0,则(xy )2019的值为______. 【答案】-1【解析】【分析】根据非负数的性质列出算式,求出x 、y 的值,计算即可.【详解】∵|x-12|+(y+2)2=0, ∴x-12=0,y+2=0, ∴x=12,y=-2,∴(xy)2019=(-1)2019=-1,故答案为-1.【点睛】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.13. 若a+b=2019,c+d=-5,则代数式(a-2c)-(2d-b)=______.【答案】2029【解析】【分析】根据去括号、添括号法则把原式变形,代入计算,得到答案.【详解】(a-2c)-(2d-b)=a-2c-2d+b=(a+b)-2(c+d)=2019+10=2029,故答案为2029.【点睛】本题考查的是整式的加减混合运算,掌握去括号、添括号法则是解题的关键.注意整体思想的应用.14. 一个正方体的平面展开图如图所示,将它折成正方体后“扬”字对面是______字.【答案】美【解析】【分析】注意正方体的空间图形,从相对面入手,分析及解答问题.【详解】对于正方体的平面展开图中相对的面一定相隔一个小正方形,由图形可知,“扬”字对面是“美”字,故答案为美.【点睛】本题考查了正方体的平面展开图,对于正方体的平面展开图中相对的面一定相隔一个小正方形,据此作答.15. 若∠A=45°30′,则∠A的补角等于_______________.【答案】134°30′【解析】试题分析:根据补角定义:如果两个角的和等于180°(平角),就说这两个角互为补角可得答案.解:∵∠A=45°30′,∴∠A的补角=180°﹣45°30′=179°60′﹣45°30′=134°30′,故答案为134°30′.考点:余角和补角;度分秒的换算.16. 如图,将一副直角三角板叠放在一起,使其直角顶点重合于点O,若∠DOC=26°,则∠AOB=______°.【答案】154【解析】【分析】先根据∠COB=∠DOB-∠DOC求出∠COB,再代入∠AOB=∠AOC+∠COB,即可求解.【详解】∵∠COB=∠DOB-∠DOC=90°-26°=64°,∴∠AOB=∠AOC+∠COB=90°+64°=154°,故答案是:154.【点睛】本题考查了角度的计算,弄清角的和差关系是解题的关键.17. 已知线段AB=6cm,C是线段AB的中点,E是直线AB上的一点,且CE=13AB,则线段AE=______cm.【答案】1或5【解析】【分析】由已知C是线段AB中点,AB=6,求得AC=3,进一步分类探讨:E在线段AC内;E在线段CB内;由此画图得出答案即可.【详解】∵C是线段AB的中点,AB=6cm,∴AC=12AB=3cm,CE=13AB=2cm,①如图,当E在线段AC上时,AE=AC-CE=3-2=1cm;②如图,E在线段CB上,AE=AC+CE=3+2=5cm,所以AE=1cm或5cm,故答案为1或5.【点睛】本题考查线段中点的意义,线段的和与差,分类探究是解决问题的关键.18. 某中学初三(6)班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费赠送老师一张(由学生出钱),每个学生交0.6元刚好,则相片上共有______人.【答案】12【解析】【分析】扩印费+0.5×照片上人数=0.6×学生数,把相关数值代入计算即可.【详解】设相片上共有x人,0.6+0.5x=0.6×(x-1),解得x=12,故答案为12.【点睛】本题考查一元一次方程的应用,弄清题意,得到所需总费用的等量关系是解决本题的关键.三、计算题(本大题共4小题,共32.0分)19. 计算:(1)14-(-12)+(-25)-17.(2)(12-13)÷(-16)-22×(-4).【答案】(1)-16;(2)15【解析】【分析】(1)根据有理数的加减法法则进行计算即可;(2)按顺序先计算括号内的减法、乘方,然后再按运算顺序进行计算即可. 【详解】(1)14-(-12)+(-25)-17=14+12+(-25)+(-17)=-16;(2)(12-13)÷(-16)-22×(-4)=16×(-6)-4×(-4)=(-1)+16=15.【点睛】本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.20. 化简:(1)(5a-3b)-3(a-2b);(2)3x2-[7x-(4x-3)-2x2].【答案】(1)2a+3b;(2)5x2-3x-3【解析】【分析】(1)先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可;(2)先按照去括号法则去掉整式中的小括号,然后去中括号,最后合并整式中的同类项即可.【详解】(1)原式=5a-3b-3a+6b=2a+3b;(2)原式=3x2-[7x-4x+3-2x2]=3x2-7x+4x-3+2x2=5x2-3x-3.【点睛】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则.21. 解方程:(1)2x+3=11-6x.(2)x24+-2x16-=1【答案】(1)x=1;(2)x=-4.【解析】【分析】(1)按移项、合并同类项、系数化为1的步骤进行求解即可得;(2)按去分母、去括号、移项、合并同类项、系数化为1的步骤进行求解即可得.【详解】(1)2x+6x=11-3,8x=8,x=1;(2)3(x+2)-2(2x-1)=12,3x+6-4x+2=12,3x-4x=12-6-2,-x=4,x=-4.【点睛】本题主要考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化.22. 先化简,再求值,2(3ab2-a3b)-3(2ab2-a3b),其中a=-12,b=4.【答案】a3b,1 2 -.【解析】【分析】根据乘法分配律,先去括号,再合并同类项进行化简,再代入求值. 【详解】解:原式=6ab2﹣2a3b﹣6ab2+3a3b=a3b,当a=12-,b=4时,原式=3142⎛⎫-⨯⎪⎝⎭=12-.故答案为1 2 -【点睛】本题考核知识点:整式化简求值.解题关键点:根据乘法分配律去括号,再合并同类项.四、解答题(本大题共6小题,共64.0分)23. 如图,点P是∠AOB的边OB上的一点.(1)过点P画OB的垂线,交OA于点C;(2)过点P画OA的垂线,垂足为H;(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).【答案】(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.24. 某小组计划做一批“中华结”,如果每人做6个,那么比计划多做了8个;如果每人做4个,那么比计划少做了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.【答案】计划做多少个“中华结”?答案见解析.【解析】【分析】首先提出问题:这批“中华结”的个数是多少?设该批“中华结”的个数为x个,根据加工总个数=单人加工个数×人数,结合该小组人数不变找出关于x的一元一次方程,解之即可得出结论.【详解】这批“中华结”的个数是多少?设计划做“中华结”的个数为x个.根据题意,得:842 64x x+-=.解得:x=142.答:计划做“中华结”的个数为142个.【点睛】本题考查了一元一次方程应用.25. 阅读下面一段文字:问题:0.8⋅能用分数表示吗?探求:步骤①设x=0.8⋅,步骤②10x=10×0.8⋅,步骤③10x=8.8⋅,步骤④10x =8+0.8⋅,步骤⑤10x =8+x ,步骤⑥9x =8,步骤⑦x =89. 根据你对这段文字的理解,回答下列问题:(1)步骤①到步骤②的依据是______;(2)仿照上述探求过程,请你尝试把0.36⋅⋅表示成分数的形式.【答案】(1)等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)见解析,114x =. 【解析】【分析】(1)利用等式的基本性质得出答案;(2)利用已知设x=0.36⋅⋅,进而得出100x=36+x ,求出即可.【详解】(1)步骤①到步骤②,等式的两边同时乘10,依据的是等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立,故答案为等式的基本性质2:等式两边都乘以或除以同一个数(除数不能为0),所得的等式仍然成立;(2)设x=0.36⋅⋅,100x=100×0.36⋅⋅,100x=36.36⋅⋅,100x=36+ 0.36⋅⋅,100x=36+x ,99x=36,解得:x=411. 【点睛】本题主要考查了等式的基本性质以及一元一次方程的应用,根据题意得出正确等量关系是解题关键.26. 如图,直线AB 、CD 、EF 相交于点O ,OG ⊥CD ,∠BOD =32°.(1)求∠AOG 的度数;(2)如果OC 是∠AOE 的平分线,那么OG 是∠AOF 的平分线吗?请说明理由.【答案】(1)∠AOG=58°;(2)OG是∠AOF的平分线,见解析.【解析】【分析】(1)根据对顶角的性质,可得∠AOC的度数,根据角的和差,可得答案;(2)根据角平分线的性质,可得∠AOC与∠COE的关系,根据对顶角的性质,可得∠DOF与∠COE的关系,根据等量代换,可得∠AOC与∠DOF的关系,根据余角的性质,可得答案.【详解】(1)由对顶角相等,得∠AOC=∠BOD=32°,由角的和差,得∠AOG=∠COG-∠AOC=90°-32°=58°;(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线,理由如下:由OC是∠AOE的平分线,得∠COE=∠AOC=32°,由对顶角相等,得∠DOF=∠COE,等量代换,得∠DOF=∠AOC,∠AOC+∠AOG=∠COG=90°,∠DOF+∠FOG=∠DOG=90°,由等角的余角相等,得∠AOG=∠FOG,OG是∠AOF的平分线.【点睛】本题考查了对顶角、邻补角,(1)利用了对顶角相等的性质,角的和差;(2)利用了对顶角相等的性质,角的和差,还利用了余角的性质:等角的余角相等.27. 为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水38m ,则应收水费:264(86)20⨯+⨯-=元.(1)若该户居民2月份用水312.5m ,则应收水费______元;(2)若该户居民3、4月份共用水315m (4月份用水量超过3月份),共交水费44元,则该户居民3,4月份各用水多少立方米?【答案】(1)48;(2)三月份用水34m .四月份用水113m .【解析】【分析】(1)根据表中收费规则即可得到结果;(2)分两种情况:用水不超过36m 时与用水超过36m ,但不超过310m 时,再这两种情况下设三月份用水3m x ,根据表中收费规则分别列出方程即可得到结果.【详解】(1)应收水费()()264106812.51048⨯+⨯-+⨯-=元.(2)当三月份用水不超过36m 时,设三月份用水3m x ,则()226448151044x x +⨯+⨯+--= 解之得411x =<,符合题意.当三月份用水超过36m 时,但不超过310m 时,设三月份用水3m x ,则()()264626448151044x x ⨯+-+⨯+⨯+⨯--=解之得36x =<(舍去)所以三月份用水34m .四月份用水113m .28. 如图,点O 在直线AB 上,OC ⊥AB ,△ODE 中,∠ODE =90°,∠EOD =60°,先将△ODE 一边OE 与OC 重合,然后绕点O 顺时针方向旋转,当OE 与OB 重合时停止旋转.(1)当OD 在OA 与OC 之间,且∠COD =20°时,则∠AOE =______;(2)试探索:在△ODE 旋转过程中,∠AOD 与∠COE 大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.【答案】(1)130°;(2)∠AOD与∠COE的差不发生变化,为30°;(3)∠AOE=131.25°或175°.【解析】【分析】(1)求出∠COE的度数,即可求出答案;(2)分为两种情况,根据∠AOC=90°和∠DOE=60°求出即可;(3)根据∠AOE=7∠COD、∠DOE=60°、∠AOC=90°求出即可.【详解】(1)∵OC⊥AB,∴∠AOC=90°,∵OD在OA和OC之间,∠COD=20°,∠EOD=60°,∴∠COE=60°-20°=40°,∴∠AOE=90°+40°=130°,故答案为130°;(2)在△ODE旋转过程中,∠AOD与∠COE的差不发生变化,有两种情况:①如图1、∵∠AOD+∠COD=90°,∠COD+∠COE=60°,∴∠AOD-∠COE=90°-60°=30°,②如图2、∵∠AOD=∠AOC+∠COD=90°+∠COD,∠COE=∠DOE+∠DOC=60°+∠DOC,∴∠AOD-∠COE=(90°+∠COD)-(60°+∠COD)=30°,即△ODE在旋转过程中,∠AOD与∠COE的差不发生变化,为30°;(3)如图1、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°-∠COD=7∠COD,解得:∠COD=18.75°,∴∠AOE=7×18.75°=131.25°;如图2、∵∠AOE=7∠COD,∠AOC=90°,∠DOE=60°,∴90°+60°+∠COD=7∠COD,∴∠COD=25°,∴∠AOE=7×25°=175°,即∠AOE=131.25°或175°.【点睛】本题考查了角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键.注意分类思想的运用.。

长沙市长郡双语实验学校人教版七年级上册数学期末试卷及答案-百度文库

长沙市长郡双语实验学校人教版七年级上册数学期末试卷及答案-百度文库
(2)若前k个格子中所填数之和为2019,求k的值;
(3)如果m,n为前三个格子中的任意两个数,那么所有的|mn|的和可以通过计算|6a||6b||ab||a6||b6||ba|得到.若m,n为前8个格子中的任意两个数,求所有的|m-n|的和.
32.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.
画直线 、直线 画射线 ;
画一点 ,使点 既在直线 上又在直线 上;
在上面所作的图形中,以 为端点的线段共有条.
四、压轴题
31.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.
6
a
b
x
-1
-2
...
(1)可求得x=______,第2021个格子中的数为______;
9.下列等式的变形中,正确的有( )
①由5x=3,得x= ;②由a=b,得﹣a=﹣b;③由﹣x﹣3=0,得﹣x=3;④由m=n,得 =1.
A.1个B.2个C.3个D.4个
10.图中是几何体的主视图与左视图,其中正确的是( )
A. B. C. D.
11.下列图形中,哪一个是正方体的展开图()
A. B. C. D.
27.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.
28.计算题
(1)
(2)
(3)
(4)
29.如图,已知数轴上有 三个点,它们表示的数分别是 .
(1)填空: , .

七年级上册长沙市长郡双语实验学校数学期末试卷综合测试(Word版 含答案)

七年级上册长沙市长郡双语实验学校数学期末试卷综合测试(Word版 含答案)

七年级上册长沙市长郡双语实验学校数学期末试卷综合测试(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.2.已知点O是直线AB上的一点,∠COE=120°,射线OF是∠AOE的一条三等分线,且∠AOF= ∠AOE.(本题所涉及的角指小于平角的角)(1)如图,当射线OC、OE、OF在直线AB的同侧,∠BOE=15°,求∠COF的度数;(2)如图,当射线OC、OE、OF在直线AB的同侧,∠FOE比∠BOE的余角大40°,求∠COF的度数;(3)当射线OE、OF在直线AB上方,射线OC在直线AB下方,∠AOF<30°,其余条件不变,请同学们自己画出符合题意的图形,探究∠FOC与∠BOE确定的数量关系式,请直接给出你的结论.【答案】(1)解:∵∠AOE+∠BOE=180°,∠BOE=15°,∴∠AOE=180°-15°=165°∴∠AOF= ∠AOE=×165°=55°∵∠AOC=∠AOE-∠COE=165°-120°=45°∴∠COF=∠AOF-∠AOC=55°-45°=10°答:∠COF的度数为10°.(2)解:设∠BOE=x,则∠BOE的余角为90°-x.∵∠FOE比∠BOE的余角大40°,∴∠FOE=130°-x∵∠COE=120°,则∠COF=x-10°,∠AOC=60°-x,∴∠AOF=∠AOC+∠COF=50°∵∠AOF= ∠AOE∴∠AOE=150°∴∠BOE=x=180°-150°=30°∴∠COF=x-10°=30°-10°=20°答:∠COF的度数为20°(3)解:∠FOC=∠BOE如图,设∠AOF=x∵∠AOF=∠AOE∴∠AOE=3x∴∠EOF=2x,∠BOE=180°-3x=3(60°-x)∵∠COE=120°∴∠AOC=120°-3x∴∠COF=∠AOC+∠AOF=120°-3x+x=2(60°-x)∴∴∠FOC=∠BOE【解析】【分析】(1)利用邻补角的定义及已知求出∠AOE、∠AOF的度数,再利用∠AOC=∠AOE-∠COE,求出∠AOC的度数,然后根据∠COF=∠AOF-∠AOC,可求得结果。

长郡初一上期末数学试卷

长郡初一上期末数学试卷

一、选择题(每题4分,共40分)1. 下列各数中,无理数是()A. 3B. √2C. 0.333...D. 2/32. 如果a、b、c是等差数列的前三项,且a+b+c=0,那么a²+b²+c²的值为()A. 0B. 3C. 6D. 93. 在直角坐标系中,点A(2,3)关于y轴的对称点为()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)4. 下列各式中,正确的是()A. (-a)²=a²B. (a+b)²=a²+b²C. (a-b)²=a²-b²D. (a+b)²=a²+2ab+b²5. 下列函数中,单调递增的是()A. y=x²B. y=2xC. y=-xD. y=x³6. 若a、b、c是等比数列的前三项,且a+b+c=0,那么abc的值为()A. 0B. 1C. -1D. 无法确定7. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 60°B. 45°C. 75°D. 30°8. 若a、b、c是等差数列的前三项,且a+b+c=0,那么ab+bc+ca的值为()A. 0B. 3C. 6D. 99. 下列函数中,反比例函数的是()A. y=x²B. y=2xC. y=1/xD. y=x³10. 在△ABC中,∠A=90°,∠B=30°,则△ABC的周长为()A. 2B. 3C. 4D. 5二、填空题(每题4分,共20分)11. 下列各数中,绝对值最小的是()12. 下列各式中,正确的是()13. 若a、b、c是等差数列的前三项,且a+b+c=0,那么a²+b²+c²的值为()14. 在直角坐标系中,点A(2,3)关于x轴的对称点为()15. 下列函数中,反比例函数的是()三、解答题(每题10分,共40分)16. 已知a、b、c是等差数列的前三项,且a+b+c=0,求证:ab+bc+ca=0。

湖南省长沙市长郡教育集团2018学年上学期初一年级统一考试数学试卷

湖南省长沙市长郡教育集团2018学年上学期初一年级统一考试数学试卷

D
F
③∠COB -∠AOD=90°;④∠COE +∠BOF=180°.其中正确
A
结论的个数有( )
O E
A.4 个
B.3 个 C.2 个
D.0 个
二.填空题(本大题有 8 个小题,每小题 3 分,共 24 分)
C
(第 10 题图)
11. 如图,从 A 到 B 有多条道路,人们往往走中间的直路,而不会走其他的曲折的路,它的
E
A
B
D
C
22. (本题 4 分) 如图,点 A,O,E 在同一条直线上,∠AOB=40°,∠COD=28°,OD 平分∠COE。 求∠DOB 的度数 .
三、解答题(本大题共 13 小题,共 66 分.解答应写出必要的文字说明、证明过程或演算步骤)
19. 解方程:(每小题 4 分,共 16 分)
(1) 2x + 5 = 3(x −1)
设掷中 A 区一次得 x 分,依题意,得
………………………………2 分
5x + 3(x −1) =77 ……………………… ……………4 分
解得 x = 10
…………………………………………6 分
则掷中 B 区一次得 10-1=9 分
(2)小明的得分为:4×10+4×9=76 分……………………………………7 分
20. (每小题 4 分,共 12 分) 答案:
(注:用∠D OB =∠COB+ 23.(本题 8 分)
∠C 的DO方法也可)
(1)(−1)2014 − 9 + 3 8 =1 − 3 + 2 = 0; (2) 3 − 3 + 3 =3 − 3 + 3 =3; (3) 81 + 3 27 + (−2)2 = 9 + 3 + 2 = 14

2018-2019学年上学期七年级数学期末试卷及其答案

2018-2019学年上学期七年级数学期末试卷及其答案

七年级数学试题1. -3的相反数是 .2.某型号的电脑标价为a 元.打8折后又降价100元出售.则实际售价可用代数式表示为 元. 3.比较大小:32-- ______ 43- (填“<”、“=”或“>”) 4. 观察下列单项式:2x ; 5x 2; 10x 3; 17x 4; 26x 5; ……;按此规律;第10个单项式是 .5.如图是一个数值转换机;若输入的a 值为3-;则输出的结果应为 .6. 如图;A 、B 、C 、D 四名同学的家在同一条直线上;已知C 同学家处在A 与B 两家的中点处;而D 同学的家又处于A 与C 两家的中点处;又知C 与B 两家相距3千米;则A 与D 两同学家相距 千米. 7.若28x y -=; 则62x y -+= .8.已知2(2)|2|0a b a +++=;则2a b -的值等于 . 9.如图;A 、O 、B 在同一条直线上;如果OA 的方向是北偏西2430';那么OB 的方向是东偏南.... 10.如图所示;要使图中平面展开图按虚线折叠成正方体后;相对面上两个数之积为12;则x y += .二.精心选一选(每小题有且只有一个正确答案;请将你认为正确的答案前的字母填入下表相应的空格内;每题3分;共24分)11. 甲、乙、丙三地的海拔高度分别为20m 、-15m 和-10m ;那么最高的地方比最低的地方高A.5mB.10mC.25mD.35m12.如图;从A 到B 有多条道路;人们会走中间的直路;而不会走其他(第9题)题O 西北 南A B东(第10题)yx432 (第6题)输入 (第5题) (第12题)AB的曲折的路;这是因为A .两点之间线段最短B .两条直线相交只有一个交点C .两点确定一条直线D .其他的路行不通13.几个同学在日历竖列上圈出了三个数;算出它们的和;其中错误的一个是 A. 28 B. 33 C. 45 D. 57 14.物理教科书中给出了几种物质的密度;符合科学记数法的是 A .水银13.6×103 kg/m 3 B .铁7.8×103 kg/m 3 C .金19.3×103 kg/m 3 D .煤油0.8×103 kg/m 315.《棋盘上的米粒》故事中;皇帝往棋盘的第1格中放1粒米;第2格中放2粒米;在第3格上加倍至4粒;…;依次类推;每一格均是前一格的双倍;那么他在第12格中所放的米粒数是A . 22粒 B. 24粒 C. 211粒 D. 212粒16.如图;把边长为2的正方形的局部进行图①~图④的变换;最后再通过图形变换形成图⑤;则图⑤的面积是A 、18B 、16C 、12D 、817.一张桌子上摆放着若干个碟子;从三个方向上看到的三种视图如下图所示;则这张 桌子上共有碟子为A. 17个B. 12个C. 8个D. 6个18. 小颖按如图所示的程序输入一个正数..x ;最后输出的结果为656;则满足条件的x 的不同值最多有A.2个B.3个C.4个D.5个⑤④ ③ ② ①俯视图主视图左视图三.计算小能手(本大题共32分)19.计算与化简(每小题8分;共16分)⑴计算:42232[1(3)]()(15)35-÷--+-⨯-⑵先化简;再求值:222363()3x x x x+-+;其中5x=-20.(本题8分)解方程:242 5()()333 x x-=+-21.(本题8分)化简与求值:⑴ 若3m =-;则代数式2113m +的值为 ;⑵ 若3m n +=-;则代数式2()13m n ++的值为 ; ⑶ 若534m n -=-;请你仿照以上求代数式值的方法求出2()4(2)2m n m n -+-+的值四.请你当老师 (本题8分)22.下面是马小哈同学做的一道题;请按照“要求”帮他改正。

2018-2019学年度七年级上数学期末试题(含答案)

2018-2019学年度七年级上数学期末试题(含答案)

(上)期末教学质量测评试题七年级数学注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟. 2.在作答前,考生务必将自己的姓名,准考证号及座位号涂写在答题卡规定的地方.3.选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用0.5毫米黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等.A 卷(共100分)一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求. 1. 下列各数中,大于-2小于2的负数..是 A .-3 B .-2 C .-1 D .0 2. 如果||a a =-,那么a 一定是A .负数B .正数C .非负数D .非正数3. 有理数b a ,在数轴上的位置如图所示,则下列各式的符号为正的是 A . b a + B . b a - C . ab D . -4a 4. 用一平面截一个正方体,不能得到的截面形状是A .直角三角形B .等边三角形C .长方形D .六边形 5. 下列平面图形中不能..围成正方体的是A .B .C .D .6.a 个学生按每8个人一组分成若干组,其中有一组少3人,共分成的组数是A .8a B .38a - C .(3)8a + D .38a +7. 下列说法正确的是 A .23vt -的系数是2-B .233ab 的次数是6次C .5x y +是多项式D .21x x +-的常数项为18.下列语句正确的是A .线段AB 是点A 与点B 的距离 B .过n 边形的每一个顶点有(n -3)条对角线C .各边相等的多边形是正多边形D .两点之间的所有连线中,直线最短9. 某地区卫生组织为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是A .在公园调查了1000名老年人的健康状况B .在医院调查了1000名老年人的健康状况a(第3题图)C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况10. 成都市为减少雾霾天气采取了多项措施,如对城区主干道进行绿化.现计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,则根据题意列出方程正确的是A .5(x +21-1)=6(x -l)B .5(x +21)=6(x -l)C .5(x +21-1)=6xD .5(x +21)=6x 二、填空题:(每小题3分,共15分)11.近年来,汉语热在全球范围内不断升温。

2018-2019学年七年级(上)期末数学试卷含答案解析

2018-2019学年七年级(上)期末数学试卷含答案解析

2018-2019学年七年级(上)期末数学试卷一、选择题(每小题2分,共计16分)1.﹣2的相反数等于()A.2 B.﹣ C.±2 D.2.2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×1063.下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b4.方程2﹣3x=4﹣2x的解是()A.x=1 B.x=﹣2 C.x=2 D.x=﹣15.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.6.下列图形中,哪一个是棱锥的侧面展开图()A. B.C.D.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=138.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°二、填空题(每小题3分,共计30分)9.﹣3的绝对值是.10.某天的最高温度是5℃,最低温度是﹣6℃,这一天温差是℃.11.多项式2x2+xy+3是次三项式.12.已知∠A=70°,则∠A的补角是度.13.若单项式x2y n﹣3与单项式﹣5x m y3是同类项,则m﹣n的值为.14.关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为.15.已知点P是线段MN的中点,线段PN=7,则线段MN的长为.16.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.17.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为.18.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有.(只填序号)三、解答题(本题共9小题,共计74分)19.计算(1)﹣5+(﹣2)﹣(﹣3)(2)﹣22×3﹣(﹣3)+6﹣|﹣5|(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3.20.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.21.解方程(1)4﹣3x=6﹣5x(2)3x﹣4(x﹣1)=2(x+5)(3)﹣1=.22.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).23.已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.24.(1)在如图所示的方格纸中,经过线段AB外一点C,画线段AB的垂线CH (垂足为H)和平行线EF.(画出的线请用铅笔描粗描黑)(2)判断EF、CH的位置关系是.(3)用刻度尺量出C点到直线AB的距离(精确到0.1cm)25.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?26.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°.求:(1)∠BOC的度数;(2)∠BOE的度数;(3)∠EOF的度数.27.如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)时针1小时转过的角度为,分针1分钟转过的角度为;(2)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?2018-2019学年七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题2分,共计16分)1.﹣2的相反数等于()A.2 B.﹣ C.±2 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:A.2.2016年国家公务员考试报名人数约为1390000,将1390000用科学记数法表示,表示正确的为()A.1.39×105B.1.39×106C.13.9×105D.13.9×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将1390000用科学记数法表示为1.39×106.故选B.3.下列运算正确的是()A.2a﹣a=2 B.2a+b=2abC.3a2+2a2=5a4D.﹣a2b+2a2b=a2b【考点】合并同类项.【分析】根据合并同类项的法则,合并同类项是把同类项系数相加减而字母和字母的指数不变,即可解答.【解答】解:A、2a﹣a=a,故错误;B、2a与b不是同类项,故错误;C、3a2+2a2=5a2,故错误;D、正确;故选:D.4.方程2﹣3x=4﹣2x的解是()A.x=1 B.x=﹣2 C.x=2 D.x=﹣1【考点】解一元一次方程.【分析】先移项,再合并同类项,最后化系数为1,从而得到方程的解.【解答】解:移项得:﹣3x+2x=4﹣2,合并得:﹣x=2,系数化为1得:x=﹣2.故选B.5.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个角的是()A. B.C.D.【考点】角的概念.【分析】根据角的表示方法和图形选出即可.【解答】解:A、图中的∠AOB不能用∠O表示,故本选项错误;B、图中的∠1和∠AOB不是表示同一个角,故本选项错误;C、图中的∠1和∠AOB不是表示同一个角,故本选项错误;D、图中∠1、∠AOB、∠O表示同一个角,故本选项正确;故选D.6.下列图形中,哪一个是棱锥的侧面展开图()A. B.C.D.【考点】几何体的展开图.【分析】由棱锥的侧面展开图的特征可知答案.【解答】解:棱锥的侧面是三角形.故选:C.7.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B种饮料单价为x元/瓶,那么下面所列方程正确的是()A.2(x﹣1)+3x=13 B.2(x+1)+3x=13 C.2x+3(x+1)=13 D.2x+3(x﹣1)=13【考点】由实际问题抽象出一元一次方程.【分析】要列方程,首先要根据题意找出题中存在的等量关系,由题意可得到:买A饮料的钱+买B饮料的钱=总印数13元,明确了等量关系再列方程就不那么难了.【解答】解:设B种饮料单价为x元/瓶,则A种饮料单价为(x﹣1)元,根据小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,可得方程为:2(x﹣1)+3x=13.故选A.8.已知∠AOB=80°,OM是∠AOB的平分线,∠BOC=20°,ON是∠BOC的平分线,则∠MON的度数为()A.30°B.40°C.50°D.30°或50°【考点】角平分线的定义.【分析】由于OA与∠BOC的位置关系不能确定,故应分OA在∠BOC内和在∠BOC外两种情况进行讨论.【解答】解:当OA与∠BOC的位置关系如图1所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠AOM=∠AOB=×80°=40°,∠BON=∠COB=×20°=10°,∴∠MON=∠BON﹣∠AOM=40°﹣10°=30°;当OA与∠BOC的位置关系如图2所示时,∵OM是∠AOB的平分线,ON是∠BOC的平分线,∠AOB=80°,∠COB=20°,∴∠BOM=∠AOB=×80°=40°,∠BON=∠BOC=×20°=10°,∴∠MON=∠BOM+∠BON=10°+40°=50°.故选:D.二、填空题(每小题3分,共计30分)9.﹣3的绝对值是3.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.10.某天的最高温度是5℃,最低温度是﹣6℃,这一天温差是11℃.【考点】有理数的减法.【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【解答】解:这天最高温度与最低温度的温差为5﹣(﹣6)=11℃.故答案为:11.11.多项式2x2+xy+3是二次三项式.【考点】多项式.【分析】直接利用多项式的次数即单项式最高次数,进而得出答案.【解答】解:多项式2x2+xy+3是二次三项式.故答案为:二.12.已知∠A=70°,则∠A的补角是110度.【考点】余角和补角.【分析】根据补角的定义,两个角的和是180°即可求解.【解答】解:∠A的补角是:180°﹣∠A=180°﹣70°=110°.故答案是:110.13.若单项式x2y n﹣3与单项式﹣5x m y3是同类项,则m﹣n的值为﹣4.【考点】同类项.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关.【解答】解:由题意,得m=2,n﹣3=3,解得n=6,m﹣n=2﹣6=﹣4,故答案为:﹣4.14.关于x的方程2x+m=1﹣x的解是x=﹣2,则m的值为7.【考点】一元一次方程的解.【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x=﹣2代入方程2x+m=1﹣x就得到关于m的方程,从而求出m的值.【解答】解:把x=﹣2代入方程2x+m=1﹣x,得:﹣4+m=1+2,解得:m=7.故答案为:7.15.已知点P是线段MN的中点,线段PN=7,则线段MN的长为14.【考点】两点间的距离.【分析】根据点P是线段MN的中点,可得MN=2PN,再根据PN=7,求出线段MN的长为多少即可.【解答】解:∵点P是线段MN的中点,∴MN=2PN=2×7=14.故答案为:14.16.当a=时,两个代数式3a+、3(a﹣)的值互为相反数.【考点】解一元一次方程.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:3a++3(a﹣)=0,去括号得:3a++3a﹣=0,移项合并得:6a=1,解得:a=,故答案为:17.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,则∠AOB的度数为120°.【考点】角的计算;角平分线的定义.【分析】根据角平分线的性质得出∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,进而求出x的值,即可得出答案.【解答】解:∵∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,∴设∠COB=2∠AOC=2x,∠AOD=∠BOD=1.5x,∴∠COD=0.5x=20°,∴x=40°,∴∠AOB的度数为:3×40°=120°.故答案为:120°.18.下列说法中:①棱柱的上、下底面的形状相同;②若AB=BC,则点B为线段AC的中点;③相等的两个角一定是对顶角;④在同一平面内,不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有①④⑤.(只填序号)【考点】平行线;认识立体图形;对顶角、邻补角;垂线段最短.【分析】分别根据棱柱的特征以及对顶角和垂线段的性质得出答案即可.【解答】解:①棱柱的上、下底面的形状相同,正确;②若AB=BC,则点B为线段AC的中点,A,B,C不一定在一条直线上,故错误;③相等的两个角一定是对顶角,角的顶点不一定在一个位置,故此选项错误;④在同一平面内,不相交的两条直线叫做平行线,正确;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,正确.故答案为:①④⑤.三、解答题(本题共9小题,共计74分)19.计算(1)﹣5+(﹣2)﹣(﹣3)(2)﹣22×3﹣(﹣3)+6﹣|﹣5|(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3.【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出每个算式的值各是多少即可.【解答】解:(1)﹣5+(﹣2)﹣(﹣3)=﹣7+3=﹣4(2)﹣22×3﹣(﹣3)+6﹣|﹣5|=﹣12+3+6﹣5=﹣8(3)43﹣3[﹣32+(﹣2)×(﹣3)]+3+()3=64﹣3[﹣9+6]+3+=64+9+3+=7620.先化简,再求值:(3x2﹣xy+y)﹣2(5xy﹣4x2+y),其中x=﹣2,y=.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.【解答】解:原式=3x2﹣xy+y﹣10xy+8x2﹣2y=3x2+8x2﹣xy﹣10xy+y﹣2y=11x2﹣11xy﹣y,当x=﹣2,y=时,原式=51.21.解方程(1)4﹣3x=6﹣5x(2)3x﹣4(x﹣1)=2(x+5)(3)﹣1=.【考点】解一元一次方程.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:2x=2,解得:x=1;(2)去括号得:3x﹣4x+4=2x+10,移项合并得:﹣3x=6,解得:x=﹣2;(3)去分母得:3x+3﹣6=4﹣6x,移项合并得:9x=7,解得:x=.22.如图1,是由若干个完全相同的小正方体组成的一个长方体,请画出这个长方体的三视图(画出的线请用铅笔描粗描黑).【考点】作图-三视图.【分析】由已知条件可知,主视图有2行,每行小正方数形数目为4;左视图有2行,每行小正方形数目为3;俯视图有3行,每行小正方数形数目为4.据此即可画出图形.【解答】解:画出这个长方体的三视图如图所示.23.已知,x=2是方程2﹣(m﹣x)=2x的解,求代数式m2﹣(6m+2)的值.【考点】一元一次方程的解.【分析】把x=2代入方程得到一个关于m的方程,解方程求得m的值,然后代入所求的解析式即可求解.【解答】解:把x=2代入方程得:2﹣(m﹣2)=4,解得:m=﹣4,则m2﹣(6m+2)=16﹣(﹣24+2)=38.24.(1)在如图所示的方格纸中,经过线段AB外一点C,画线段AB的垂线CH (垂足为H)和平行线EF.(画出的线请用铅笔描粗描黑)(2)判断EF、CH的位置关系是垂直.(3)用刻度尺量出C点到直线AB的距离(精确到0.1cm)【考点】作图—复杂作图;点到直线的距离;平行线的性质.【分析】(1)分别根据垂线与平行线的性质与即可画出图形;(2)根据平行线的性质即可得出结论;(3)用刻度尺量出C点到直线AB的距离即可.【解答】解:(1)如图,线段CD与直线EF即为所求;(2)∵EF∥AB,CH⊥AB,∴EF⊥CH.(3)C点到直线AB的距离约为2.5cm.故答案为:垂直.25.A、B两地相距800km,一辆卡车从A地出发,速度为80km/h,一辆轿车从B地出发,速度为120km/h,若两车同时出发,相向而行,求:(1)出发几小时后两车相遇?(2)出发几小时后两车相距80km?【考点】一元一次方程的应用.【分析】(1)设出发x小时后两车相遇,根据题意列出方程解答即可.(2)设出发x小时后两车相距80km,分两种情况列出方程解答.【解答】解:(1)设出发x小时后两车相遇,可得:80x+120x=800,解得:x=4,答:设出发4小时后两车相遇;(2)设出发x小时后两车相距80km,可得:①80x+120x+80=800,解得:x=3.6,②80x+120x﹣80=800解得:x=4.4,答:设出发3.6或4.4小时后两车相距80km.26.如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=74°,∠DOF=90°.求:(1)∠BOC的度数;(2)∠BOE的度数;(3)∠EOF的度数.【考点】对顶角、邻补角.【分析】(1)由邻补角定义即可得出结果;(2)由对顶角相等得出∠BOD=∠AOC=74°,由角平分线定义即可得出结果;(3)求出∠BOF=∠DOF﹣∠BOD=16°,即可得出∠EOF的度数.【解答】解:(1)∵∠AOC=74°,∴∠BOC=180°﹣74°=106°;(2)∵∠BOD=∠AOC=74°,OE平分∠BOD,∴∠BOE=∠BOD=37°;(3)∵∠BOF=∠DOF﹣∠BOD=90°﹣74°=16°,∴∠EOF=∠BOE+∠BOF=37°+16°=53°.27.如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)时针1小时转过的角度为30°,分针1分钟转过的角度为6°;(2)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?【考点】一元一次方程的应用;钟面角.【分析】(1)钟表表盘共360°,被分成12大格,每一个大格是360°÷12=30°.(2)分①当分针在时针上方时②当分针在时针下方时两种情况列出方程解答即可.【解答】解:(1)时针1小时转过的角度为30°,分针1分钟转过的角度为6°,故答案为:30°,6°(2)设在下午3点至4点之间,从下午3点开始,经过x分钟,时针与分针成60°角.①当分针在时针上方时,由题意得:﹣6x=60解得:②当分针在时针下方时,由题意得:解得:.答:在下午3点至4点之间,从下午3点开始,经过或分钟,时针与分针成60°角.。

湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷--

湖南省长沙市天心区长郡教育集团七年级(上)期末数学试卷--
21【解答】解:﹣10+8÷(﹣2)2+(﹣4)×(﹣3) =﹣10+8÷4+12 =﹣10+2+12 =4. 22【解答】解:(1)去括号得:2x﹣4﹣12x+3=5﹣5x, 移项得:2x﹣12x+5x=5+4﹣3, 合并得:﹣5x=6, 解得:x=﹣1.2; (2)去分母得:3(2x+1)﹣12=12x﹣(10x+1), 去括号得:6x+3﹣12=12x﹣10x﹣1, 移项得:6x﹣12x+10x=﹣1﹣3+12, 合并得:4x=8, 解得:x=2. 23【解答】解:(1)设分配 x 名工人生产螺栓,则分配(24﹣x)名工人生产螺母,
A.
B.
C.
D.
二.填空题(共 8 题;每小题 3 分,共 24 分)
13.(3 分)数轴上表示 1 的点和表示﹣2 的点的距离是 14.(3 分)已知|a﹣1|+(b+2)2=0,则(a+b)2019 的值是
. .
15.(3 分)若 a﹣5b=3,则 17﹣3a+15b=

16.(3 分)多项式 2x4﹣(a+1)x3+(b﹣2)x2﹣3x﹣1,不含 x3 项和 x2 项,则 ab=
(2)
﹣1=x﹣

23.(16 分)列方程解应用题 (1)某车间有 24 名工人,每人每天平均生产螺栓 12 个或螺母 18 个,两个螺栓配三个 螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺
母?
(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡 70 张,已知贺卡的价格如 下:
=45(秒),45 秒后停止运动,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

慧享数学团队出品1. 质量员检查袋方便面,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的4角度看,最接近标准的产品是() A.B.C.D.3-1242. 下列各式中,正确的是() A. B.2222x y x y x y -=-235a b ab +=C.D.734ab ab -=325a a a +=3. 如图,直线,则为( )12l l α∠A. B. 120︒130︒C.D.140︒150︒4. 下列各题正确的是( )A. 由移项得743x x =-743x x -=B. 由去分母得213132x x --=+2(21)13(3)x x -=+-C. 由去括号得2(21)3(3)1x x ---=42391x x ---=D. 由去括号、移项、合并同类项得2(1)7x x +=+5x =5. 下列结论中正确的是()A.单项式的系数是,次数是B. 单项式的次数是,没有系数24x yπ144m 1C. 多项式是二次三项式D. 在中整式有个 2223x xy ++2115,2,,,,034x y y x y a b x xπ-+46. 将一个等腰直角三角形绕它的最长边旋转一周得到的几何体为()A. B. C.D.7. 若为五次多项式,为四次多项式,则一定是()A B A B +A. 次数不高于九次多项式 B. 四次多项式C. 五次多项式D. 次数不定8. 如图,是内部的一条射线,把三角尺的角的顶点放在点处,转动OB AOC ∠O 三角尺,当三角尺的边平分时,三角尺的另一边也正好平分OD AOB ∠OE ,则的度数为( )BOC ∠AOC ∠A. B. C.D.130︒120︒110︒100︒9. 猪是中国十二生肖排行第十二的动物,对应地支为“亥”,现规定一种新的运算,则满足a ○亥b ab b =-等式的值为( ) 123x-○亥61=-x A. B.  C.D. 3434-54-94-10. 如图,直线,,那么与(除外)DH EG BC DC EF DCB ∠DCB ∠相等的角的个数为() A. 个 B. 个34C. 个 D. 个5611. 有辆客车及个人,若每辆客车乘人,则还有人不能上车,若每辆客m n 4010车乘人,则只有人不能上车,有下列四个等式:①;②; 4314010431m m +=-1014043n n ++=③;④,其中正确的是( ) 1014043n n --=4010431m m +=+A. B. ❍ C. ●D. ●❍12. 如图,点在数轴上表示的数是,点在数轴上表示的数是,若点以个单位长度/秒的速度A 8-B 16A 6向右匀速运动,同时点以个单位长度/秒的速度向左匀速运动.问:当时,运动时间为多少秒?B 28AB =() A. 秒B. 秒 C. 秒或秒D. 秒或秒242426二、填空题(本题共6小题,每题3分,共18分) 13. 若,则的补角的度数为 .'3142α︒∠=α∠14. 已知与是同类项,则等于 .235m xy +3114n x y -+3()m n -+15. 当时,代数式的值是,则当时,这个代数式的值等于.1x =334ax bx -+71x =-16. 小明从家里骑自行车到学校,每小时骑,可早到分钟,每小时骑就会迟到骑分钟,15km 1012km 5则他家距离学校.km17. 如图,在平行线之间放置一个直角三角形,三角形的顶点a b ,分别在直线上,,,则,A B a b ,90ABC ︒∠=20BAC ︒∠=.12∠+∠=18. 已知其角平分线,,其角平分线,则 .60AOB ︒∠=OM 20BOC ︒∠=ON MON ∠=三、解答题(共66分) 19.(8分)解方程(1) (2)73(32)6y y -+=11132x x x +-+=-20.(6分)整式加减的化简求值先化简,再求值:,其中, . 222252(2)(31)a b ab ab a b --+++-2a =1b =-21.(6分)一元一次方程解答题已知关于的方程与的解互为倒数,求的值. x 23x m mx -=-12(21)x x -=-m22.(6分)立体几何的三视图若干个棱长为的正方体摆放成如图所示的形状,回答下列的问题:2cm(1)画出该图形的三视图. (2)它的表面积是多少?23.(6分)角度计算题如图,已知为上一点,与互补, 平分,平分,若O AD AOB ∠AOC ∠ON AOB ∠OM AOC ∠,试求与的度数.42MON ︒∠=AOB ∠AOC ∠24. (6分)分线段计算题已知线段,在直线上取一点,恰好使,点为的中点,求线段的长. 6AB =AB C 2AC BC =D CB AD25.(6分)平行线的计算与证明如图相交于点,平分,,,.,AC BD O AC DCB ∠CD AD ⊥45ACD ︒∠=60BAC ︒∠=(1)证明;; AD BC(2)求的度数.EAD ∠26. (6分)列一元一次方程解应用题某水果经销商到水果批发市场采购苹果,他看中了甲、乙两家苹果的某种品质一样的苹果,零售价都为8元/千克,批发价各不相同.甲家规定:批发数量不超过千克,全部按零售价的九折优惠;批发数量超100过千克全部按零售价的八五折优惠. 100乙家的规定如下表: 数量范围(千克) 不超过的部分 50 以上但不超过的部分 50150 以上的部分150 价格(元)零售价的95% 零售价的85% 零售价的75%表格说明:批发价分段计算:如:某人批发千克的苹果; 200则总费用.50895%100885%50875%=⨯⨯+⨯⨯+⨯⨯(1)如果他批发千克苹果选择哪家批发更优惠?240(2)设他批发千克苹果(),当取何值时选择两家批发所花费用一样多. x 150x >x27. (8分)几何证明填空如图,已知:,,,试说明. AB CD 12∠=∠34∠=∠AD BE 解:(已知),AB CD ( ), 4∴∠=∠(已知)34∠=∠ ( ),3∴∠=∠(已知), 12∠=∠ ,12CAF CAF ∴∠+∠=∠+∠即 ,∠=∠ (等量代换),3∴∠=∠( ). AD BE ∴ 28.(6分)列一元一次方程解应用题如图,有副直角三角板如图 放置(其中,),与直线重合,且三角板45D ︒∠=30C ︒∠=PA PB 、MN ,三角板均可以绕点逆时针旋转.PAC PBD P (1) .DPC ∠=(2)如图 ,若三角板保持不动,三角板绕点逆时针旋转,转速为/秒,转动一周PBD PAC P 10︒三角板就停止转动,在旋转的过程中,当旋转时间为多少时,有成立.PAC PC DB (3)如图●,在图 基础上,若三角板的边从处开始绕点逆时针旋转,转速为/PAC PA PN P ︒3秒,同时三角板的边从处开始绕点逆时针旋转,转速为/秒,(当转到与重PBD PB PM P ︒2PC PM 合时,两三角板都停止转动),在旋转的过程中,当,求旋转的时间是多少?CPD BPM ∠=∠1 2 3 4 5 6 7 8 9 10 11 12 BAADDDCBBCDC二、填空题(本大题共6个小题,每小题3分,共18分)13、 14、15、16、17、18、'14818︒3-11570︒20︒︒或40三、解答题19.解:(1)去括号,得 7966y y --= 移项,得 7966y y -=+ 合并同类项,得 212y -=系数化,得16y =- (2)去分母,得 2(1)663(1)x x x ++=-- 去括号,得 226633x x x ++=-+ 移项,得 263326x x x -+=--合并同类项,得 5x -=-系数化,得15x =20. 解:原式 , 2222225224315a b ab ab a b a b ab =-+-++-=-+当,时,代入原式2a =1b =-222(1)52(1)41014=-⨯-+⨯⨯-=+=21.解:解方程得:;12(21)x x -=-13x =方程的解互为倒数,的解为. 23x m mx -∴=-3x =将代入方程,得:,解得:. 3x =23x m m x -=-3323m m -=-9m =-22.解:(1)(2)表面积,23022120cm =⨯⨯=23.解: 设,AOB x ︒∠=与互补,, AOC ∠ AOB ∠180AOC x ︒︒∴∠=-平分,平分,ON AOB ∠OM AOC ∠, 118022x AOM AOC ︒︒-∴∠=∠=122x AON AOB ︒∠=∠=,, MON AOM AON ∠=∠-∠ 42MON ︒∠=,解得, 1804222x x-∴-=48x =,.48AOB ︒∴∠=132AOC ︒∠=24.解:情况一:如图所示,, 2AC BC = 6AB =,; 116233BC AB ∴==⨯=226433AC AB ==⨯=点为的中点,D CB ; 112122CD BD BC ∴===⨯=.415AD AC CD ∴=+=+=情况二:如图所示, 2AC BC = 6AB =,6AB BC ∴==点为的中点,,D CB 3BD ∴=,的长度为.639AD AB BD ∴=+=+=AD ∴59或25.解:(1)证明:平分,(已知),AC DCB ∠45ACD ︒∠=,224590BCD ACD ︒︒∴∠=∠=⨯=(已知),)(垂直的定义)CD AD ⊥ 90ADC ︒∴∠=, 9090180BCD ADC ︒︒︒∴∠+∠=+=(同旁内角互补,两直线平行).AD BC ∴ (2)平分(已知),AC DCB ∠(角平分线的定义)45ACB ACD ︒∠=∠=(已知),(两直线平行,内错角相等), AD BC 45DAC ACB ︒∴∠=∠=.180180456075EAD DAC BAC ︒︒︒︒︒∠=-∠-∠=--=26.解:(1)在甲家批发所需费用为:(元),240885%1632⨯⨯=在乙家批发所需费用为:50895%15050885%240150875%1600⨯⨯+-⨯⨯+-⨯⨯=()()(元).,在乙家批发更优惠.16321600> ∴答:批发千克苹果时,选择乙家批发更优惠. 240(2)在甲家批发所需费用为:,885% 6.8x x ⨯=在乙家批发所需费用为:. 50895%15050885%150875%6160x x ⨯⨯+-⨯⨯+-⨯⨯=+()(),6.86160x x =+ 200x ∴=答:当时他选择任何一家批发所花费用一样多.200x =27. 解:(已知),AB CD ( 两直线平行,同位角相等 ), 4∴∠=∠()BAE BAF EAB FAB 或或或(已知)34∠=∠ ( 等量代换 ),3∴∠=∠()BAE BAF EAB FAB 或或或(已知), 12∠=∠ ,12CAF CAF ∴∠+∠=∠+∠11即 , ∠()BAE BAF EAB FAB 或或或=∠()DAC CAD 或 (等量代换),3∴∠=∠()DAC CAD 或( 内错角相等,两直线平行 ).AD BE ∴ 28. 解:(1)75︒ (2)第一种情况:如图所示,此时成立,PC DB ,, , PC DB 90DBP ︒∠=90CPN DBP ︒∴∠=∠= ,,30C ︒∠= 60CPA ︒∴∠=30APN ︒∴∠= 三角板的转速为/秒, 旋转时间为. PAC 10︒∴3s 第二种情况:如图所示,此时成立,PC DB ,, , PC DB 90DBP ︒∠=90CPB DBP ︒∴∠=∠= ,,. 30C ︒∠= 60CPA ︒∴∠=30APM ︒∴∠= 三角板旋转的角度是.∴PAC 18030210︒︒︒+= 三角板的转速为/秒, 旋转时间为. PAC 10︒∴21s 综上所述,当旋转时间为和时,有成立.3s 21s PC DB (3)设旋转的时间是秒,t 由题意知,,,3APN t ︒∠=2BPM t ︒∠= ,1801802BPN BPM t ︒︒︒∴∠=-∠=-36036045(1802)(3)6075CPD BPD BPN APN APCt t t ︒︒︒︒︒︒︒︒︒∴∠=-∠-∠-∠-∠=-----=- ,,解得, CPD BPM ∠=∠ 752t t ∴-=25 t s = 当时,旋转时间为∴CPD BPM ∠=∠25 sM NM。

相关文档
最新文档