最新七年级有理数综合测试卷(word含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学有理数解答题压轴题精选(难)
1.阅读下面的材料:
点A、B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|
当A、B两点中有一点在原点时,设点A在原点,如图①|AB|=|OB|=|b|=|a﹣b|
当A、B两点都不在原点时,
( 1 )如图②,点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
(2 )如图③,点A、B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a ﹣b|
( 3 )如图④,点A、B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|
综上所述,数轴上A、B两点之间的距离|AB|=|a﹣b|
请用上面的知识解答下面的问题:
(1)数轴上表示﹣2和﹣4的两点之间的距离是________,数轴上表示1和﹣3的两点之间的距离是________.
(2)数轴上表示x和﹣1的两点A和B之间的距离是________,如果|AB|=2,那么x为________.
(3)当|x+1|+|x﹣2|=5时的整数x的值________.
(4)当|x+1|+|x﹣2|取最小值时,相应的x的取值范围是________.
【答案】(1)2;4
(2)x+1
;1或-3
(3)-2或3
(4)-1≤ x≤2
【解析】【解答】(1)数轴上表示﹣2和﹣4的两点之间的距离是|﹣2﹣(﹣4)|=2;
数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4
故答案为:2,4
(2)数轴上x与-1的两点间的距离为|x-(-1)|=|x+1|,如果|AB|=2,则x+1=±2,解得x=1或-3;
故答案为:|x+1|,1或-3
(3)解方程|x+1|+|x﹣2|=5,且x为整数.
当x+1>0,x-2>0,则(x+1)+(x-2)=5,解得x=3
当x+1<0,x-2<0,则-(x+1)-(x-2)=5,解得x=-2
当x+1与x-2异号,则等式不成立.
故答案为:3或-2.
( 4 )根据题意得x+1≥0且x-2≤0,则-1≤x≤2;
【分析】(1)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,代入数值运用绝对值的意义即可求解;
(2)直接根据数轴上A、B两点之间的距离|AB|=|a−b|,列出方程,求解即可;
(3)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,由于,2与-1之间的距离是3小于5,故表示数x的点,不可能在-1与2之间,然后分数轴上表示x的点在数轴上表示数字1的点的右边及数轴上表示x的点在数轴上表示数字-2的点的左边两种情况考虑即可解决问题;
(4)由数轴上A、B两点之间的距离|AB|=|a−b|可知,|x+1|+|x−2|表示点x到−1与2两点距离之和,根据两点之间线段最短即可得出x的取值范围.
2.如图,在数轴上点表示的数,点表示的数,点表示的数,是最大的负整数,且满足 .
(1)求,,的值;
(2)若将数轴折叠,使得点与点重合,求与点重合的点对应的数;
(3)点,,在数轴上同时开始运动,其中以单位每秒的速度向左运动,以单位每秒的速度向左运动,点以单位每秒的速度运动,当,相遇时,停止运动,求此时两点之间的距离.
【答案】(1)解:∵是最大的负整数,
∴b=-1,
∵,
∴a=-3,c=6
(2)解:设当点与点重合时,对折点为D,
则D点的坐标为(-2,0),
∴此时与点重合的点对应的数是-10
(3)解:由(1)和(2)可知,运动前BC=7,
由题意可得,运动后,相遇时,可计算出经历的时间为7s,此时C点坐标为(-8,0),
当A点向左运动时,此时C点坐标为(-24,0),可得此时两点之间的距离为16;
当A点向右运动时,此时C点坐标为(18,0),可得此时两点之间的距离为26
【解析】【分析】(1)根据是最大的负整数得出b=-1,根据绝对值的非负性,由两个非
负数的和为0,则这两个数都为0,求出a,c的值;
(2)设当点与点重合时,对折点为D,根据折叠的性质得出点D所表示的数是-2,故CD=8,在点D的左边距离点D8个单位的数就是-10,从而得出答案;
(3)由(1)和(2)可知,运动前BC=7,由题意可得,运动后,相遇时,可计算出经历的时间为7s,然后根据点A向左或向右运动两种情况考虑即可得出答案.
3.如图,在数轴上,点A表示﹣5,点B表示10.动点P从点A出发,沿数轴正方向以每秒1个单位的速度匀速运动;同时,动点Q从点B出发,沿数轴负方向以每秒2个单位的速度匀速运动,设运动时间为t秒:
(1)当t为________秒时,P、Q两点相遇,求出相遇点所对应的数________;
(2)当t为何值时,P、Q两点的距离为3个单位长度,并求出此时点P对应的数.
【答案】(1)5;0
(2)解:若P、Q两点相遇前距离为3,则有
t+2t+3=10-(-5),
解得:t=4,
此时P点对应的数为:-5+t=-5+4=-1;
若P、Q两点相遇后距离为3,则有
t+2t-3=10-(-5),
解得:t=6,
此时P点对应的数为:-5+t=-5+6=1;
综上可知,当t为4或6时,P,Q两点的距离为3个单位长度,此时点P对应的数分别为-1或1.
【解析】【解答】(1)解:由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t;
若P,Q两点相遇,则有
-5+t=10-2t,
解得:t=5,
-5+t=-5+5=0,
即相遇点所对应的数为0,
故答案为5;相遇点所对应的数为0;
【分析】(1)由题意可知运动t秒时P点表示的数为-5+t,Q点表示的数为10-2t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)分相遇前相距3个单位长度与相遇后相距3个单位长度两种情况分别求解即可得.
4.
(1)观察发现