2019年广州一模理科数学(含详细答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年广州市普通高中毕业班综合测试(一)
理科数学
一、选择题:本题共12小题,每小题5分,共60分. 1.设复数z 满足()2
1i 4i z -=,则复数z 的共轭复数z =
A .2-
B .2
C .2i -
D .2i
2.设集合301x A x
x ⎧+⎫
=<⎨⎬-⎩⎭
,{}3B x x =-≤,则集合{}1x x =≥
A .A
B
B .A
B
C .()()C A C B R R
D .()()C A C B R R
3.若A ,B ,C ,D ,E 五位同学站成一排照相,则A ,B 两位
同学不相邻的概率为
A .
45
B .
35
C .
25
D .
15
4.执行如图所示的程序框图,则输出的S =
A .
9
20
B .
49
C .
29 D .940
5.已知3sin 45x π⎛⎫-
= ⎪⎝
⎭,则cos 4x π⎛
⎫+= ⎪⎝⎭
A .
45
B .
35
C .45-
D .35
- 6.已知二项式212n
x x ⎛⎫
- ⎪⎝
⎭的所有二项式系数之和等于128,那么其展开式中含1x 项的系数是
A .84-
B .14-
C .14
D .84
7.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的表 面积为
A
.4+B
.14+ C
.10+
D .4
8.若x ,y 满足约束条件20,
210,10,x y y x -+⎧⎪-⎨⎪-⎩
≥≥≤ 则22
2z x x y =++的最小值为
A .
12
B .
14
C .12
-
D .34
-
9.已知函数()sin 6f x x ωπ⎛⎫=+
⎪⎝⎭()0ω>在区间43π2π⎡⎤
-⎢⎥⎣⎦
,上单调递增,则ω的取值范围为 A .80,3
⎛⎤ ⎥⎝
⎦
B .10,2
⎛⎤ ⎥⎝
⎦
C .18,23
⎡⎤⎢⎥⎣⎦
D .3,28
⎡⎤⎢⎥⎣⎦
10.已知函数()3
2
2
f x x ax bx a =+++在1x =处的极值为10,则数对(),a b 为
A .()3,3-
B .()11,4-
C .()4,11-
D .()3,3-或()4,11-
11.如图,在梯形ABCD 中,已知2AB CD =,2
5
AE AC =
,双曲线 过C ,D ,E 三点,且以A ,B 为焦点,则双曲线的离心率为
A
B
.
C .3
D
12.设函数()f x 在R 上存在导函数()f x ',对于任意的实数x ,都有()()2
2f x f x x +-=,当0x <时,
()12f x x '+<,若()()121f a f a a +-++≤,则实数a 的最小值为
A .1
2
-
B .1-
C .32
-
D .2-
二、填空题:本题共4小题,每小题5分,共20分.
13.已知向量(),2m =a ,()1,1=b ,若+=+a b a b ,则实数m = .
14.已知三棱锥P ABC -的底面ABC 是等腰三角形,AB AC ⊥,PA ⊥底面ABC ,1==AB PA ,则这个
三棱锥内切球的半径为 .
15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若()()2cos 2cos 0a B b A c θθ-+++=, 则cos θ的值为 .
16.我国南宋数学家杨辉所著的《详解九章算术》中,用图①的三角形形象地表示了二项式系数规律,俗称“杨
辉三角形”.现将杨辉三角形中的奇数换成1,偶数换成0,得到图②所示的由数字0和1组成的三角形数
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题, 每个试题考生
都必须做答.第22、23题为选考题,考生根据要求做答. (一)必考题:共60分.
图②
图① D
C A
B
E
17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,数列n S n ⎧⎫
⎨
⎬⎩⎭
是首项为1,公差为2的等差数列. (1)求数列{}n a 的通项公式;
(2)设数列{}n b 满足()1212
15452n
n n a a a
n b b b ⎛⎫
++
+=-+ ⎪⎝⎭
,求数列{}n b 的前n 项和n T .
18.(本小题满分12分)某地1~10岁男童年龄i x (岁)与身高的中位数i y ()cm ()1,2,,10i =L 如下表:
对上表的数据作初步处理,得到下面的散点图及一些统计量的值.
(1)求y 关于x 的线性回归方程(回归方程系数精确到0.01); (2)某同学认为,2y px qx r =++更适宜作为y 关于
x 的回归方程类型,他求得的回归方程是
20.3010.1768.07y x x =-++.经调查,该地11岁男童身高的中位数为145.3cm .与(1)中的线性回归方
程比较,哪个回归方程的拟合效果更好?
附:回归方程y a bx =+中的斜率和截距的最小二乘估计公式分别为: ,a y bx =-.
19.(本小题满分12分)如图,四棱锥S ABCD -中,△ABD 为正三角形,︒=∠120BCD ,
2CB CD CS ===,︒=∠90BSD .
(1)求证:AC ⊥平面SBD ;
(2)若BD SC ⊥,求二面角C SB A --的余弦值.
()()
()
121n
x x y y i i i b n x x i
i =
--∑=-∑=D
C
B
A
S