云南省文山州广南县2018_2019学年九年级数学上学期期末模拟试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年云南省文山州广南县九年级(上)期末
数学模拟试卷
一.选择题(共8小题,满分24分,每小题3分)
1.下列语句中,正确的是()
A.正整数、负整数统称整数
B.正数、0、负数统称有理数
C.开方开不尽的数和π统称无理数
D.有理数、无理数统称实数
2.如图所示的圆柱体从正面看得到的图形可能是()
A.B.C.D.
3.菱形OACB在平面直角坐标系中的位置如图所示,点C的坐标是(6,0),点A的纵坐标是1,则点B的坐标是()
A.(3,1)B.(3,﹣1)C.(1,﹣3)D.(1,3)
4.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB与E,交AC于F,过点O作OD⊥AC于D,下列四个结论:其中正确的结论是()①EF=BE+CF;
②∠BOC=90°+∠A;
③设OD=m,AE+AF=n,则S△AEF=mn.
④EF不能成为△ABC的中位线.
A.1个B.2个C.3个D.4个
5.已知∠A为锐角,且sin A=,那么∠A等于()
A.15°B.30°C.45°D.60°
6.如图,在⊙O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()
A.25°B.50°C.60°D.80°
7.下列各组线段中,能成比例的是()
A.3,6,7,9B.2,5,6,8C.3,6,9,18D.1,2,3,4 8.已知⊙O的半径为10cm,点A是线段OP的中点,且OP=25cm,则点A和⊙O的位置关系是()
A.点A在⊙O内B.点A在⊙O上C.点A在⊙O外D.无法确定
二.填空题(共6小题,满分18分,每小题3分)
9.若a,b互为相反数,则5a+5b的值为.
10.设a、b、c为非零实数,且a+b+c≤0,则+的值是.11.将473000用科学记数法表示为.
12.重庆市某房地产开发公司在2012年2月以来销售商品房时,市场营销部经分析发现:随着国家政策调控措施的持续影响,大多市民持币观望态度浓厚,从2月起第1周到第五周,房价y1(百元/m2)与周数x(1≤x≤5,且x取正整数)之间存在如图所示的变化趋势:3月中旬由于房屋刚性需求的释放,出现房地产市场“小阳春”行情,房价逆市上扬,从第6周到第12周,房价y2与周数x(6≤x≤12,且x取整数)之间关系如下表:周数x6791012
房价(百元/m2)6869717274
(1)根据如图所示的变化趋势,直接写出y1与x之间满足的函数关系式;请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y2与x之间的函数关系式,
(2)已知楼盘的造价为每平米30百元,该楼盘在1至5周的销售量p1(百平方米)与周数x满足函数关系式p1=x+74(1≤x≤5,且x为整数),6至12周的销售量p2(百平方米)与周数x满足函数关系式p2=2x+80(6≤x≤12,且x取整数),试求今年1至12周中哪个周销售利润最大,最大为多少万元?
(3)市场营销部分析预测:从五月开始,楼市成交均价将正常回落,五月(以四个周计算)每周的房价均比第12周下降了m%,楼盘的造价不变,每周的平均销量将比第12周增加5m%,这样以来5月份将完成总利润20800万元的销售任务,请你根据参考数据,估算出m的最小整数值.(参考数据:542=2916,552=3025,562=3136,572=3249)
13.若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为.14.如图,在△ABC中,∠ACB=90°,D是AB边的中点若AB=18,则CD的长为.
三.解答题(共8小题,满分58分)15.用适当的方法解下列方程.
(1)3x(x+3)=2(x+3)
(2)2x2﹣4x﹣3=0.
16.计算:sin30°﹣cos45°+tan260°.
17.计算:(π﹣3.14)0+(﹣)﹣2﹣|﹣5|+
18.已知:如图,矩形ABCD中,DE交BC于E,且DE=AD,AF⊥DE于F.求证:AB=AF.
19.如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果保留根号)
20.诸暨某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)
(2)每件童装降价多少元时,平均每天赢利1200元.
(3)要想平均每天赢利2000元,可能吗?请说明理由.
21.如图,在平面直角坐标系xOy中,已知直线y=x与反比例函数y=(k≠0)的图象交于点A,且点A的横坐标为1,点B是x轴正半轴上一点,且AB⊥OA.
(1)求反比例函数的解析式;
(2)求点B的坐标;
(3)先在∠AOB的内部求作点P,使点P到∠AOB的两边OA、OB的距离相等,且PA=PB;再写出点P的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P)
22.综合与探究:
如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.
(1)求点A,B,C的坐标.
(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.
(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.