上海市八年级上学期期中数学试卷新版
精品解析: 上海市浦东新区2022-2023学年八年级上学期期中数学试卷 (解析版)
2022-2023学年上海市浦东新区八年级第一学期期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1. 下列二次根式中,是最简二次根式的是( ) A. 2a b B. 32 C. 22+a b D. 0.5【答案】C【解析】【分析】根据最简二次根式的定义逐项判断即可. 2a b b =; 32不是二次根式,故本选项不符合题意; 22+a b 120.5==22,不是最简二次根式,故本选项不符合题意. 故选:C .【点睛】本题考查了最简二次根式的定义,判断时,被开方数要同时满足两个条件,一是被开方数的因数是整数,因式是整式;二是被开方数中不含能开得尽方的因数或因式,两个条件缺一不可.2. 下列方程一定是一元二次方程的是( )A. 270xy −=B. 22330x x +=C. 220ax x +=D. 22(2)1x x +=− 【答案】B【解析】【分析】根据一元二次方程的定义逐项判断即可.【详解】因为A 选项的方程是二元二次方程,故本选项不符合题意;因为B 选项的方程是一元二次方程,故本选项符合题意;因为当0a =时,C 选项的方程不是一元二次方程,故本选项不符合题意;将22(2)1x x +=−整理可得250x +=,是一元一次方程,故D 选项不合题意.故选:B .【点睛】本题主要考查了一元二次方程的判断,掌握定义是解题的关键.即只含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程.3. 下列等式正确的是( )A. 32=3B. 2(3)−﹣3C. 33=3D. (﹣32=﹣3 【答案】A【解析】【分析】根据二次根式的性质把各个二次根式化简,判断即可.详解】解:32=3,A 正确,符合题意; ()23−,B 错误,不符合题意;3327=33C 错误,不符合题意; (32=3,D 错误,不符合题意;故选A . 【点睛】本题考查2a a |是解题的关键. 4. 下列关于x 的二次三项式在实数范围内不能够因式分解的是( )A. 244x x −+;B. 22352x xy y −−;C. 229y y −+;D. 221y −−.【答案】C【解析】【分析】利用完全平方公式把A 分解,利用十字乘法把B 分解,再分别令229=0,y y −+221=0,y −再计算根的判别式,从而可判断C ,D ,从而可得答案.【详解】解:()22442,x x x −+=−故A 不符合题意;()()22352=32,x xy y x y x y −−+−故B 不符合题意;令229=0,y y −+则4419320,=−⨯⨯=−<所以229y y −+在实数范围内不能分解,故C 符合题意;令221=0,y −则()2=4241160,b ac −=−⨯⨯−=>26y ±∴= 122626,22y y ∴== 【的2262621=,y y y ⎛+−∴−−− ⎝⎭⎝⎭故D 不符合题意;故选:C【点睛】本题考查的是因式分解,一元二次方程的解法,根的判别式,掌握利用公式法解一元二次方程,进而分解因式是解题的关键.5. 在下列各命题中,是假命题是( )A. 在一个三角形中,等边对等角B. 全等三角形的对应边相等C. 同旁内角相等,两直线平行D. 等角的补角相等 【答案】C【解析】【分析】分别判断命题的真假即可得出答案.【详解】在一个三角形中,等边对等角,正确,是真命题,则A 不符合题意;全等三角形的对应边相等,正确,是真命题,则B 不符合题意;同旁内角互补,两直线平行,故原命题错误,是假命题,则C 符合题意;等角的补角相等,正确,是真命题,则D 不符合题意.故选:C .【点睛】本题主要考查了命题的真假,掌握定义是解题的关键.即条件和结论相矛盾的命题是假命题.6. 定义:如果一元二次方程200ax bx c a ++≠=()满足a +b +c =0,那么我们称这个方程为“凤凰”方程.已知200ax bx c a ++≠=()是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A. a =cB. a =bC. b =cD. a =b =c 【答案】A【解析】【分析】根据a +b +c =0得b =﹣a ﹣c ,根据方程有两个相等的实数根得240b ac −∆==,将b =﹣a ﹣c 代入240b ac −=得到()20a c −=,进而即可求解.【详解】解:∵一元二次方程200ax bx c a ++≠=()有两个相等的实数根, ∴240b ac −∆==,又a +b +c =0,即b =﹣a ﹣c ,代入240b ac −=得()24a c ac −−−=0,即()()22222242420a c ac a ac c ac a ac c a c −+=++−=−−=+=, 的∴a =c .∴b =﹣a ﹣c =﹣2a故选:A .【点睛】本题考查根的判别式,将a +b +c =0变形成b =﹣a ﹣c 再代入240b ac −∆==化简是解题的关键.二、填空题(本大题共12小题,每小题2分,共24分)7. 当x=______时,二次根式1x +取最小值,其最小值为_______.【答案】 ①. -1 ②. 0【解析】【详解】根据二次根式有意义的条件,得x+1⩾0,则x ⩾−1.所以当x=−1时,该二次根式有最小值,即为0.故答案为−1,0.8. 将命题“两个全等三角形的周长相等”改写成“如果…那么…”的形式 _____.【答案】如果两个三角形全等,那么它们的周长相等【解析】【分析】根据如果的后面是条件,那么的后面是结论,即可求解.【详解】解:将命题“两个全等三角形的周长相等”改写成“如果…,那么…”的形式: 如果两个三角形全等,那么它们周长相等,故答案为:如果两个三角形全等,那么它们的周长相等. 【点睛】本题主要考查了命题的“如果…那么…”形式,熟练掌握如果的后面是条件,那么的后面是结论是解题的关键.9. 920+5=_____. 【答案】1355【解析】【分析】根据二次根式的性质进行化简,再合并二次根式即可. 【详解】原式3513525+55==. 故答案为:1355 . 【点睛】此题考查了二次根式的加减运算,熟练掌握根据二次根式的性质化简的方法是解题的关键.的10. 6+5a 8+3a =a _____.【答案】1【解析】【分析】被开方式相同的最简二次根式,叫做同类二次根式,根据同类二次根式的定义列式计算即可. 6+5a 8+3a∴6583a a +=+,∴1a =.故答案为:1.【点睛】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解题的关键. 11. 方程213x x =的根是 _____. 【答案】1203x x ==,【解析】【分析】按照解一元二次方程的步骤进行求解即可.【详解】解:213x x =, 2103x x −=, 1103x x ⎛⎫−= ⎪⎝⎭, 1203x x ==,.故答案为:1203x x ==,.【点睛】本题主要考查了解一元二次方程,解题的关键是熟练掌握解一元二次方程的步骤和方法.12. 531x x ≥+的解集是 _____. 【答案】534x ≤−【解析】【分析】按照解不等式的步骤,先移项,再合并同类项,系数化为1,最后对结果进行化简即可. 531x x ≥+ 531x x −≥)531x ≥ 53x ≤− ()()55353x ≤−+534x ≤−, 故答案为:53x +≤. 【点睛】本题考查了不等式的解法以及二次根式的分母有理化,根据不等式的性质,确定未知系数的有理化因式是解题的关键.13. 若2|2|3(4)0a b c −−−=则a b c −+=___________.【答案】3【解析】【分析】根据绝对值、二次根式与平方的非负性即可求解【详解】解:∵2|2|3(4)0a b c −−−=∴2=03=04=0a b c −−−,,∴=2=3=4a b c ,,∴2-3+4=3a b c −+=故答案为:3【点睛】此题主要考查了绝对值、二次根式与平方的非负性,解题的关键是熟知绝对值、二次根式与平方的非负性.14. 已知关于x 的方程2210mx x −+=有两个不相等的实数根,则m 可取的最大整数是______.【答案】1−【解析】【分析】根据一元二次方程的定义和判别式的意义得到0m ≠且0∆>,然后求出两不等式的公共部分,最后解得m 可取的最大整数.【详解】解:已知关于x 的方程2210mx x −+=有两个不相等的实数根,∴0m ≠,且0∆>,∵a m =,2b =−,1c =,∴224(2)40b ac m ∆=−=−−⨯>,即440m −>,解得1m <且0m ≠,∴其中m 可取的最大整数是1−,故答案为:1−.【点睛】本题考查了根的判别式:一元二次方程20(0)ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程无实数根.本题中二次项系数不为零是易错点. 15. 在实数范围内分解因式:233x x −−=_____. 【答案】2132122x x ⎛⎫⎛⎫−− ⎪⎪ ⎪⎪⎝⎭⎝⎭【解析】【分析】令2330x x −−=,解得1212x =,2321x −=233x x −−写成因式分解的形式即可.【详解】解:令2330x x −−=,则1,3,3a b c ==−=−,∵()()224341321b ac −=−−⨯⨯−=, ∴3212x ±=, 即1212x =,23212x −=, 则2332132122x x x x ⎛⎫−−⎛⎫−− ⎪ ⎪⎝⎝=⎪⎭⎭. 故答案为:3+2132122x x ⎛⎫−−− ⎪ ⎪⎝⎭⎝⎭. 【点睛】此题考考查了实数范围内的因式分解,正确求解一元二次方程是解题的关键.16. 2022年3月,某单位发放防疫物品总计5万元,5月发放防疫物资增加到9万元,设每月发放金额平均增长率为x ,则根据题意可列出方程 _____.【答案】25(1)9x +=【解析】【分析】利用该单位5月发放防疫物资金额=该单位3月发放防疫物资金额(1⨯+每月发放金额平均增长率)2,即可得出关于x 的一元二次方程,此题得解.【详解】解:依题意得:25(1)9x +=.故答案为:25(1)9x +=.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.17. “若0ab >,则0a >,0b >”_____命题(选填“是”或“不是”).【答案】是【解析】【分析】根据命题的定义判断即可.【详解】若0ab >,则0a >,0b >是一个命题.故答案为:是.【点睛】本题主要考查了命题的判断,掌握定义是解题的关键.即是表示判断一件事情的句子是命题.18. 把四张形状大小完全相同宽为1cm 的小长方形卡片(如图①)不重叠地放在一个底面21cm ,宽为4cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是_________.【答案】16cm【解析】【分析】根据题意分别列出关系式,得出关于图②中两块阴影部分的长和宽,再利用周长公式时行计算,去括号合并即可得到结果.【详解】解:设小长方形卡片的长为xcm ,小长方形卡片的宽为1cm ,根据题意得: x 21-2, 21-2和2,宽分别为:2和4-x =621,∴图②中两块阴影部分的周长和是:2212+2)+2(2+621)=2116-22116(cm ).故答案为:16cm .【点睛】本题主要考查了二次根式的应用,在解题时要根据题意结合图形得出两块阴影部分的长和宽是解题的关键.三、简答题(本大题共6小题,每小题5分,共30分)19. 计算:216+0.2(24435. 5【解析】【分析】先将二次根式化简,再去括号、合并即可. 【详解】解:160.2244235 545226+556=− 55=5=【点睛】本题主要考查了二次根式的加减运算,注意二次根式的加减法实质是合并同类二次根式.20. 计算: )3231023b ab a b a b a ⎛> ⎝ 【答案】29a ab b【解析】【分析】先确定式子的符号,将除法转化为乘法,利用二次根式的乘法法则计算.【详解】原式=3231-23b ab a b b a ⎛⋅÷⋅÷⎝ =59a b b=29a ab b【点睛】本题考查了二次根式的混合运算.关键是先分母有理化,乘法转化为乘法,再根据二次根式的乘法法则计算.21. ()2x xy y x y x y −+÷−. 【答案】0【解析】【分析】根据二次根式的混合运算法则求解即可. ()2x xy y x y x y ++÷− 2x y x y x y x yx y=−+ x y x y =−0=.【点睛】本题考查了二次根式的混合运算,解决本题的关键是掌握平方差公式和完全平方公式.22. 解方程:()()23430x x x −+−=. 【答案】1x =3,2x =35. 【解析】 【详解】试题分析:方程的左边提取公因式x ﹣3,即可分解因式,因而方程利用因式分解法求解.试题解析:原式可化为:(x ﹣3)(x ﹣3+4x )=0,∴x ﹣3=0或5x ﹣3=0, 解得1x =3,2x =35. 考点:解一元二次方程——因式分解法.23. 解方程:2210y −−=. 【答案】123y =,223y = 【解析】【分析】利用公式法求出解即可. 【详解】∵1221a b c ==−=−,,,∴(()222411120∆=−−⨯⨯−=>, ∴22122321y ==⨯, ∴123y =223y =【点睛】此题考查了公式法解一元二次方程,熟练掌握求根公式是解本题关键. 24. 用配方法解方程:23520x x −−=.【答案】12x =,213x =−【解析】 【分析】根据配方法即可求解.【详解】解:23520x x −−=, 整理,得25233x x −=, 配方,得2549()636x −=, 即5766x =± ∴12x =,213x =−. 【点睛】本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.四、解答题(本大题共4题,第25、26、27每小题6分,第28题10分,共28分)25. 已知322x =−,求代数式2623x x x −+−的值. 【答案】24【解析】 【分析】先将x 进行化简,然后再代入求值即可. 【详解】解:()()22322322322322x ===+−−+, 原式2322632223223+−+++− 1221222222=24. 【点睛】本题考查二次根式的化简与计算,掌握化简方法及运算法则是解题关键. 26. 已知关于x 的一元二次方程210x mx −+=有两个相等的实数根,求m 的值并求出两个实数根.【答案】2m =±;当2m =时,两个实数根为121x x ==,当2m =−时,两个实数根为121x x ==−.【解析】【分析】根据方程有两个相等的实数根可得240m ∆=−=,求出2m =±,然后分2m =和2m =−两种情况,分别求出方程的解即可.【详解】解:∵关于x 的一元二次方程210x mx −+=有两个相等的实数根,∴240m ∆=−=,解得2m =±,当2m =时,原方程为:2210x x −+=,∴()210x −=,解得121x x ==,当2m =−时,原方程为:2210x x ++=,∴()210x +=,解得121x x ==−.【点睛】此题主要考查了一元二次方程的解法和根的判别式,熟记一元二次方程()200ax bx c a ++=≠的解与24b ac ∆=−的关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根是解决问题的关键.27. 观察下列运算: ①由)21211−==212+1− ②由32321==323+2 ……问题:(1)通过观察你得出什么规律?用含n 的式子表示出来;(2)利用(1)中发现的规律计算:)201912132432018201720192018++++++++++. 【答案】(1111n n n n =+−++n 为正整数)(2)2018【解析】 【分析】(1)根据题意即可得出规律;(2)根据规律将式子化简,再运用平方差公式求解即可.【小问1详解】 111n n n n =+−++n 为正整数);【小问2详解】 )201912132432018201720192018++++++++++ )213243201820172019201820191=−++ )2019120191=− 20191=−2018=.【点睛】本题考查了二次根式的分母有理化及数字的规律探索,掌握平方差公式()()22a b a b a b +−=−的结构特征是解题的关键.28. 某商店如果将进货价为每件10元的商品按每件12元出售,每天可销售200件,这种商品如果每涨价一元,其销售量就减少10件.(1)将售价定为每件多少元时,能使这天所获利润达到1200元?(2)将售价定为每件多少元时,能使这天所获利润最大?最大的利润是多少?【答案】(1)把售价定为每件20元或22元能使每天利润达到1200元(2)将售价定位每件21元时,能使这天可获的利润最大,最大利润是1210元【解析】【分析】对于(1),设商品的售价定为x 元,再表示出单间利润和销售量,然后根据单间利润×销售量=总利润列出方程,再求出解即可;对于(2),设这天的利润为y 元,结合(1)列出函数关系式,再配方讨论极值即可.【小问1详解】设每件商品的售价定为x 元,依题意,得(10)[20010(12)]1200x x −−−=,整理得:2424400x x −+=,解得:120x =,222x =,∴把售价定为每件20元或22元能使每天利润达到1200元;【小问2详解】设这天的利润为y 元,则2(10)[20010(12)]10(21)1210y x x x =−−−=−−+,∵-100<,∴当21x =时,y 有最大值,最大值为1210,答:将售价定位每件21元时,能使这天可获的利润最大,最大利润是1210元.【点睛】本题主要考查了一元二次方程的应用,函数最大值的问题等,根据等量关系列出关系式(方程)是解题的关键.。
沪教版八年级第一学期(上)期中数学试卷(含答案)
沪教版数学八上期中测试卷一、填空题(共14小题;共70分)1-当X _________________ 时,√xT5是二次根式. 2. 化简:V16ab i(α > 0) = ______________ .3. √=64 + √64=_______________ .4. 分母有理化:7J π= --------------------------------------- •5. 计算:(W+ 2)'(% —2)°= ______________ .6. 计算:(32 + 42)7=________________ .7. 方程X 2-2√3X + 3 = 0 中,根的判斷式△= ___________________________ . 8. 方程2X 2-3X -2 = 0 的根的情况是 ________________________ . 9. 方程x 2-3x-2Ar = O没有实数根,则k 的取值范囲是 _____________________ .10. 如果最简二次根式√3x -10和√5同类根式,那么X= ____________________________ . 11. 在实数范囲内分解因式X 2-3= ______________________ .12. 正比例函数y = kx 过点A (3, —2),则该函数解析式是 __________________________ . 13. 正比例函数y = (3a-2)x 的图象过第一、三象限,则a 的取值范围是 _________________ •14. 已知点Λ在函数y = -(k≠O) 上,过点Λ作两坐标轴的垂线,垂足分别为・\M 9 N 9且由四点 O, A 9 M 9 N 所囲成的四边形的而积是12 ,则k 的值 是 .二. 选择题(共4小题;共20分) 15. 下列说法正确的是(•.)18.如果二次三项式^X 2 + 3X + 4 在实数范围内能分解因式,则m 的取值范围是A.任何数的平方根都有两个B.负数没有平方根C.只有正数才有平方根 16. “\/-十可以化简为(..)A. — J_aB. Q_aD.正数的两个平方根互为倒数C. — y/uD ・ ∖fu17.下列各数中,不能使√(x -5)2 = 5-x成立的X 的取值是(. A. 6B. 5C. 4D. 3A W<4 且 w≠°B. /n 0 O9 D. O < /H ≤ —或 m < O10 三、解答题(共9小题;共63分) 计算题・(1) √0W6- √(-l)3+ √(≡2) + √3 × √5 ÷ .20.请回答:(1) √1.96×105∙√4×10-2 ;(2) (2√5)2 + l√32 + ^-l√5∂2Λ∕^- 3√^ + (√z ^) × √z5 +23. 解方程:√3 (x + √3) = √2 (x - √2)24. 如图,正比例函数y = k λx 的图象与反比例函数y =-的图象交于A 9 B 两・\点,点A 坐标为(√I2√J) •C. 91619.21. 22. (√5 + 2)(2 - √5) +1 ______ 3 3- √7 ^ √7 + 2(2)(1) 分别求出这两个函数的解析式;(2) 求点B的坐标•25. 已知y = y i + y2, y↑与X成正比例,2y = 一4 : X = 3时,7 = 6亍,求『与兀},2与X成反比例,且当X = -I时, 之间的函数关系式•26.已知X是√3-√2的相反数,y是√3-√2的倒数,求X I-Xy + y2的值.(2)若P 为射线OA 上的一点,则:① 设P 点横坐标为X, ΔOPB 的而积为S,写出S 关于 指出自变量X 的取值范围;② 当'POB 是直角三角形时,求P 点坐标•点B 坐标为(4.0).的函数解析式,答案第一部分1.2-52. 3. 4.4bVab 4√5-25.√5 + 26. 7.5 O8.有两个不相等的实数根f 99.k <——810.511.(X + (X —12.2丿=_亍X213. a > —3 14.±12第二部分15.B16.17.A A18.D第三部分19.(1) 3.04(2) - + 3√3"20.(1) 28√Tθ .(2) 20 + √2 .21.24∣-√5 ・O22.5 √7 2 " "F •23.% = -5√3-5√2 •24. (1) y = - 9 y = 2x .X Z(2) (-√3.-2√3).225. y = 2x + -・X26. X = —y/3 - 41 , y= √3 —χ∕2 , X I-Xy^r y1 =. 1127. (1) y = 2x .(2)① S = 4x(x>0).②PI (F ,尸2 (4.8).。
2024-2025学年上海市奉贤区八年级(上)期中数学试卷(含答案)
2024-2025学年上海市奉贤区八年级(上)期中数学试卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列方程中,是一元二次方程的是( )A. x(x +1)=x 2B. x 2−2 6x +3=0C. x 2−1x =0D. ax 2+2x +3=0(a 为常数)2.下列各组二次根式中,属于同类二次根式的是( )A. 12和 3 B. x 和 2x C. 13和 23 D. 2 3和3 23.下列关于x 的方程一定有实数解的是( )A. x 2+1=0B. x 2−x +1=0C. x 2−bx +1=0(b 为常数)D. x 2−bx−1=0(b 为常数)4.已知A(x 1,y 1)和点B(x 2,y 2)是直线y =−2x 上的两个点,如果x 1<x 2,那么y 1和y 2的大小关系正确的是( )A. y 1>y 2B. y 1<y 2C. y 1=y 2D. 无法判断5.下列各关系式中成正比例的个数有( )(1)圆的周长与半径;(2)正方形的面积与边长;(3)速度一定,路程与时间;(4)长方形的面积S 一定时,长a 和宽b .A. 4个B. 3个C. 2个D. 1个6.公元9世纪,阿拉伯数学家花拉子米在其著作《代数学》中提到构造图形来寻找某个一元二次方程的解的方法:先构造边长为x 正方形ABCD ,再分别以BC ,CD 为边作另一边长为5的长方形,最后得到四边形AIFH 是面积为64的正方形,如图所示,花拉子米寻找的是下列哪个一元二次方程( )的解.A. x 2+10x =25B. x 2+10x =64C. x 2+10x =39D. x 2+10x =99二、填空题:本题共12小题,每小题2分,共24分。
7.函数y=xx−3的定义域是______.8.代数式x−1+2的有理化因式可以是______.9.不等式3x−5>2x的解集是______.10.在实数范围内分解因式:x2−5x+1=______.11.已知函数f(x)=x+3x,那么f(3)=______.12.关于x的一元二次方程x2−4x+1=−2k有两个不相等的实数根,则k的取值范围为______.13.如果正比例函数y=(k−3)x的图象位于第二、四象限内,那么满足条件的正整数k是______.14.如果直线y=(k−1)x的图象与y=−2x的图象有公共点,那么k的取值范围是______.15.某地2024年4月份的房价平均每平方米为40100元,该地2022年同期的房价平均每平方米为39800元.假设这两年该地房价的平均增长率为x,根据题意可列出关x的方程为______.16.如图,正方形OABC,ADEF的顶点A,D,C在坐标轴上,点F在AB上,点B、E在函数y=4x(x>0)的图象上,则点E的横坐标是______.17.对于实数a,b,定义运算“∗”:a∗b={a2−ab(a≥b)ab−a2(a<b).例如4∗2,因为4>2,所以4∗2=42−4×2=8.若x1,x2是一元二次方程x2−4x−5=0的两个根,则x1∗x2=______.18.平面直角坐标系中,点A坐标为(3,2),点B与点A关于原点对称,将点B沿x轴向右平移m个单位后恰好落在反比例函数y=−43x的图象上,则m的值为______.三、解答题:本题共9小题,共58分。
上海市松江区2023-2024学年八年级上学期期中数学试题(含答案解析)
上海市松江区2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________二、单选题三、计算题四、解答题23.用配方法解方程:22410-+=.x x24.解方程:2(2)(2)x x x -=-五、计算题六、应用题27.某服装店在销售中发现:衬衫平均每天可售出30件,每件盈利40元.为了迎接“双十一”购物节,该服装店决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出3件.(1)若每件衬衫降价5元,那么平均每天就可售出______件;(2)为保持节后销售价格的稳定性,规定降价不能超过15元.要想平均每天销售这种衬衫盈利1800元,那么每件衬衫应降价多少元?28.定义:对于给定的两个函数,当0x ≥时,它们对应函数值相等;当0x <时,它们对应的函数值互为相反数.我们称这样的两个函数互为相关函数.例如:正比例函数y x =-,它的相关函数为()()00x x y x x ⎧-≥⎪=⎨<⎪⎩(1)已知点()1,M m -在正比例函数y x =-的相关函数的图象上,则m 的值为______;(2)已知正比例函数2y x=①这个函数的相关函数为______;②若点(),3N n 在这个函数的相关函数的图象上,求n 的值.七、问答题29.如图,已知正比例函数y kx =的图像经过点A ,点A 在第四象限,过点A 作AH x ⊥轴,垂足为H ,点A 的横坐标为4,且AOH △的面积为8.(1)求正比例函数的解析式;(2)若点P是该正比例函数倍,求点P的坐标;(3)已知42OA=,在直线形?若存在,直接写出OM参考答案:当4MH AH ==时,∵4OH =,当AM MH =时,∵4AH OH ==,90AHO ∠=︒,综上分析可知,OM的长为424-或424+或22.。
上海市青浦区教师进修学院附属中学2023-2024学年八年级上学期期中数学试题
上海市青浦区教师进修学院附属中学2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列二次根式中,是最简二次根式的是( )A B C D2 )A B C D 3.下列方程一定是一元二次方程的是( )A .xy x y +=B .22x =-C .220ax x +=D .()2551x x x x -=-- 4.已知反比例函数k y x =的图象与函数16y x =的图象没有交点.若点13,2y ⎛⎫- ⎪⎝⎭、26,7y ⎛⎫- ⎪⎝⎭、31,3y ⎛⎫ ⎪⎝⎭在这个反比例函数k y x =的图象上,则下列结论中正确的是( ) A .123y y y >> B .213y y y >> C .312y y y >> D .321y y y >>二、填空题5.6.若最简二次根式23a b -=.7.8.计算:20232024⋅=.93+<的解集是.10.方程24x x =-的根是.11.方程2616x x +=的根是.12.在实数范围内因式分解:2221x x --+=.13.在2019年11月11日,某商品销售额为2.35亿人民币.在2023年同日,销售额增长到6.38亿人民币.设这几年年销售额的平均增长率为x ,则根据题意可列出方程. 14.方程220x x m -+=没有实数根,则m 的取值范围是.15.反比例函数23m y x-=的图象经过第二、四象限,实数m 的取值范围是.16.已知f (x )=31x x ++,如果f (a )a=. 17.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,即三角形的三边长为a 、b 、c ,记2a b c p ++=,那么其面积S =三边长分别为5,6,7时,其面积S 介于整数n 和1n +之间,那么n 的值是.18.等腰三角形的一边长为1,另两边的长是关于x 的方程260x x k -+=的两根,那么其周长是.三、解答题19.计算:20.解方程:2(23)20153x --=21.用配方法解方程:240x --=22.在实数范围内因式分解:2223x xy y -++.23.先化简再求值:262a a a --+,其中a =24.已知反比例函数(0)k y k x=≠,当3x =-时,4y =. (1)求y 关于x 的函数表达式;(2)当43y ≤且0y ≠时,求自变量x 的取值范围. 25.小毛将进货单价为40元的商品按50元出售,每天可卖500个,如果这种商品每涨价1元,其销售量就减少10个,小毛为使这种商品每天赚得8000元的利润,商品的售价应定为每件多少元?26.已知a 、b 为整数,关于x 的方程230x ax b -+-=有两个不相等的实数根,关于x 的方程()2670x a x b +-+-=有两个相等的实数根,关于x 的方程()2450x a x b +-+-=没有实数根,求a 与b 的值.27.如图,长方形OABC 边8BC =,4AB =.(1)直线y kx =(0k ≠),交边AB 于点P ,求k 的取值范围;(2)直线y kx =(0k ≠),将长方形OABC 的面积分成两部分,直线上方的一部分记作S ,试写出S 关于k 的解析式;(3)直线y kx =(0k ≠),是否可能将长方形OABC 的面积分成两部分的面积比为2∶7?若能,求出k 的值;若不能,说明理由.。
上海市八年级上学期期中考试数学试卷含答案(共3套)
上海市八年级上学期期中考试数学试卷含答案(共3套)试卷一第一部分:单项选择题(共10题,每题2分,共20分)1. 请问下列哪个集合无限?- A. 自然数集合- B. 整数集合- C. 有理数集合- D. 实数集合答案:D2. 在一个等差数列中,第5项是9,第8项是14,那么第10项是多少?- A. 17- B. 18- C. 19- D. 20答案:A3. 以下哪个不是正方形?- A. 边长为4cm的图形- B. 边长为6cm的图形- C. 边长为8cm的图形- D. 边长为10cm的图形答案:B4. 一件商品的原价是100元,打8折后的价格是多少?- A. 12元- B. 20元- C. 80元- D. 92元答案:C5. 若a + b = 15,且a - b = 3,则a和b分别是多少?- A. a = 9,b = 6- B. a = 12,b = 3- C. a = 8,b = 7- D. a = 10,b = 5答案:D6. 在一个几何图形中,如果角A的度数是30°,角B的度数是60°,那么角A与角B的关系是?- A. 互补角- B. 对顶角- C. 锐角- D. 钝角答案:D7. 如果4个小球的质量总和是1.5千克,那么这4个小球平均质量是多少?- A. 0.5千克- B. 0.75千克- C. 1.25千克- D. 1.5千克答案:B8. 一个圆的半径是2cm,那么这个圆的直径是多少?- A. 2cm- B. 4cm- C. 6cm- D. 8cm答案:B9. 一个矩形的长度是3cm,宽度是4cm,那么它的面积是多少平方厘米?- A. 6平方厘米- B. 9平方厘米- C. 12平方厘米- D. 24平方厘米答案:C10. 以下哪个是合数?- A. 2- B. 3- C. 5- D. 9答案:D第二部分:填空题(共5题,每空2分,共10分)1. 直角三角形的一条直角边长是5cm,另一直角边长是12cm,斜边长是\_\_\_cm。
上海市浦东新区2022-2023学年八年级上学期期中数学试卷-精选全文完整版
可编辑修改精选全文完整版上海市浦东新区2022-2023学年八年级上学期期中数学试卷一、单选题1. 下列二次根式中,是最简二次根式的是()A.B.C.D.2. 下列方程一定是一元二次方程的是()A.B.C.D.3. 下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣34. 下列关于的二次三项式在实数范围内不能够因式分解的是()A.;B.;C.;D..5. 在下列各命题中,是假命题的是()A.在一个三角形中,等边对等角B.全等三角形的对应边相等C.同旁内角相等,两直线平行D.等角的补角相等6. 定义:如果一元二次方程满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是()A.a=c B.a=b C.b=c D.a=b=c二、填空题7. 当x=______时,二次根式取最小值,其最小值为_______.8. 将命题“两个全等三角形的周长相等”改写成“如果…那么…”的形式_____.9. 计算:=_____.10. 如果最简根式与是同类二次根式,那么_____.11. 方程的根是 _____.12. 不等式的解集是 _____.13. 若则___________.14. 已知关于的方程有两个不相等的实数根,则可取的最大整数是______.15. 在实数范围内分解因式:_____.16. 2022年3月,某单位发放防疫物品总计5万元,5月发放防疫物资增加到9万元,设每月发放金额平均增长率为x,则根据题意可列出方程 _____.17. “若,则,”_____命题(选填“是”或“不是”).18. 把四张形状大小完全相同宽为的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是_________.三、解答题19. 计算:.20. 计算:21. 计算:.22. 解方程:.23. 解方程:.24. 用配方法解方程:.25. 已知,求代数式的值.26. 已知关于x的一元二次方程有两个相等的实数根,求m的值并求出两个实数根.27. 观察下列运算:①由,得②由,得……问题:(1)通过观察你得出什么规律?用含n的式子表示出来;(2)利用(1)中发现的规律计算:.28. 某商店如果将进货价为每件10元的商品按每件12元出售,每天可销售200件,这种商品如果每涨价一元,其销售量就减少10件.(1)将售价定为每件多少元时,能使这天所获利润达到1200元?(2)将售价定为每件多少元时,能使这天所获利润最大?最大的利润是多少?。
2023-2024学年上海市长宁区延安中学八年级(上)期中数学试卷(含简单答案)
2023-2024学年上海市长宁区延安中学八年级(上)期中数学试卷一、选择题。
(每题2分,共12分)1.(2分)下列根式中,与是同类二次根式的是( )A.B.C.D.2.(2分)下列关于x的方程中,一定是一元二次方程的是( )A.(x﹣3)(x+4)=x2﹣x B.C.a2x﹣x+2=0D.|a|x2﹣bx+c=﹣x23.(2分)下列函数,y随x增大而增大的是( )A.B.C.y=﹣2x D.4.(2分)下列关于x的一元二次方程,一定有两个不相等的实数根的是( )A.x2+kx﹣1=0B.x2+kx+1=0C.x2+x﹣k=0D.x2+x+k=0 5.(2分)下列从左到右的变形不一定正确的是( )A.B.C.=D.=6.(2分)平面直角坐标系内有两点A(﹣2,1)、B(3,1),如果正比例函数y=kx的图象与线段AB有交点,那么k的取值范围是( )A.﹣2≤k≤3B.k≤﹣2或k≥3C.D.k≤﹣或二、填空题。
(每题3分,共36分)7.(3分)函数的定义域是 .8.(3分)写出的一个有理化因式 .9.(3分)如果反比例函数的图象位于第二、四象限,那么k的取值范围是 .10.(3分)化简:= .11.(3分)方程的根为 .12.(3分)已知点A(2,﹣3)与点B(t﹣1,t﹣2)在同一条经过原点的直线上,那么t 的值为 .13.(3分)在实数范围内因式分解:a2﹣3ab﹣b2= .14.(3分)比较大小: .(填“<”、“>”或“=”)15.(3分)已知关于x的方程(x﹣3m)(x+m+3)=0有两个相等的实数根,那么m的值为 .16.(3分)某种产品原来每件价格为800元,经过两次降价,且每次降价的百分率相同,现在每件售价为578元,每次降价的百分率是 .17.(3分)定义:如果两个一元二次方程分别有两个实数根,且至少有一个公共根,那么称这两个方程互为“联根方程”.已知关于x的两个一元二次方程x2﹣(2+a)x+2a=0和(a﹣1)x2﹣a2x﹣a+2=0互为联根方程,那么a的值为 .18.(3分)点A是反比例函数图象上一点,联结OA,并将线段OA绕点A 旋转90°,此时点O的对应点B恰也落在这个反比例函数图象上,已知点A的横坐标为4,那么k的值为 .三、解答题。
沪教版八年级第一学期(上)期中数学试卷(含答案)
沪教版八上数学期中测试卷一、填空题(共15小题;共60分)1. 求值:√18=.2. 若最简二次根式√2a+5b+3与2√3是同类二次根式,则a+ b=.3. 不等式(1−√2)x<1的解集为.4. 如果f(x)=xx−1,那么f(3)=.5. 等式√x2−9=√x−3⋅√x+3成立的条件是.6. 实数a,b在数轴上的对应点如图所示,则∣a−b∣+√a2的结果为.7. 方程x2+2x=0的根是.8. 若关于x的一元二次方程(m−1)x2+x+m2+2m−3=0有一个根为零,则m的值为.9. 当k时,关于x的方程3x2−2x+k−1=0有两个实数根.10. 在实数范围内分解因式:x2−6x+2=.11. 函数y=√3x−2的定义域是.12. 已知y是x的正比例函数,且当x=2时,y=1,则y关于x的函数表达式为.13. 已知正比例函数y=(3k−1)x,若y随x的增大而增大,则k的取值范围是.14. 一种型号的数码相机,原来每台售价5000元,经过两次降价后,现在每台售价为3200元,假设两次降价的百分率均为x,则x=.15. 对于实数a,b,定义运算“∗”:a∗b={a2−ab,a≥bab−b2,a<b.例如4∗2,因为4>2,所以4∗2=42−4×2=8.若x1,x2是一元二次方程x2−7x+12=0的两个根,则x1∗x2=.二、选择题(共5小题;共20分)16. 下列结论中正确的有( )(1)√6m(a2+b2)不是最简二次根式;是同类二次根式;(2)√8a与√12a(3)√a与√a互为有理化因式;(4)(x−1)(x+2)=x2是一元二次方程.A. 0个B. 1个C. 2个D. 3个17. 一元二次方程x2+2x+2=0的根的情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 无实数根18. 点A(x1,y1),B(x2,y2)在直线y=−3x上,且x1<x2,则( )A. y1<y2B. y1=y2C. y1>y2D. 无法比较y1,y2的大小19. 在水管放水的过程中,放水的时间x(分钟)与流出的水量y(m3)是两个变量.已知水管每分钟流出的水量是0.2m3,放水的过程共持续10分钟,则y关于x的函数图象是( )A.B.C.D.20. 定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么称这个方程为“凤凰”方程.已知ax2+bx+c=0(a≠0)为“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A. a=cB. a=bC. b=cD. a=b=c三、解答题(共9小题;共72分)21. 计算:2a √4a+√1a−2a√1a3.22. 计算:2√6x7÷4√x33÷12√x2.23. 解方程:2x(x−2)=x2−3.24. 用配方法解方程2x2−4x−7=0.25. 先化简,再求值:x+1x ÷(x−1+x22x),其中x=√2+1.26. 已知a,b,c分别是△ABC的三边,其中a=1,c=4,且关于x的方程12x2−bx+3b−4=0有两个相等的实数根,试判断△ABC的形状.27. 已知:正比例函数y=kx(k≠0)过A(−2,3).(1)求比例系数k的值;(2)在x轴上找一点P,使S△PAO=6,并求点P的坐标.28. 如图,要建一个面积为140平方米的仓库,仓库的一边靠墙,这堵墙的长为18米,在与墙垂直的一边要开一扇2米宽的门,已知围建仓库的现有木板材料可使新建板墙的总长为32米,那么这个仓库的宽和长分别为多少?29. 如图①所示,在平面直角坐标系中,点A的坐标为(−9,0),直线l的解析式为y=−2x,在直线l上有一点B使得△ABO的面积为27.(1)求点B的坐标;(2)如图②,当点B在第二象限时,四边形OABC为直角梯形,OA∥BC,求梯形OABC的面积;(3)在(2)的条件下是否存在直线m经过坐标原点O,且将直角梯形OABC 的面积分为1:5的两部分?若存在,请直接写出直线m的解析式;若不存在,请说明理由.答案第一部分1. 3√22. −23. x>−1−√24. 325. x≥36. b−2a7. x1=0,x2=−28. −39. ≤4310. (x−3−√7)(x−3+√7)11. x≥2312. y=12x13. k>1314. 20%15. 4或−4第二部分16. C17. D18. C19. C20. A第三部分21. 3a√a.22. 6x√x.23. x1=1,x2=3.24. x1=1+32√2,x2=1−32√2.25. 原式=2x−1=√2.26. △ABC 为等腰三角形.27. (1) k =−32.(2) P (4,0) 或 P (−4,0).28. 这个仓库的宽为 10 米,长为 14 米.29. (1) 点 B 的坐标为 (3,−6) 或 (−3,6).(2) 36.(3) y =−3x 和 y =−423x .。
沪科版八年级上册数学期中考试试卷含答案
沪科版八年级上册数学期中考试试题一、单选题1.在平面直角坐标系中,点(1,-3)所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限2.如果三角形的两边分别为3和5,那么第三边可能是()A .7B .1C .2D .93.函数=x y x 的自变量x 的取值范围是()A .x≥l 且x≠0B .x≠0C .x≤1且x≠0D .x≤14.已知点P (3,y1)、Q (-2,y 2)在一次函数y=(2m-1)x+2的图象上,且y 1<y 2,则m 的取值范围是()A .m≥1B .m <l C .m >1D .m <125.已知正比例函数y=kx (k≠0)的函数值y 随x 的增大而减小,则一次函数y=x-k 的图象大致是()A .B .C .D .6.如图,BD 为ΔABC 的角平分线,若∠DBA=30°,∠ADB=80°,则∠C 的度数为()A .30°B .40°C .50°D .60°7.已知直线l 1:y=kx+b 与直线l 2:y=-2x+4交于点C (m ,2),则方程组24y kx b y x =+⎧⎨=-+⎩的解是()A .12x y =⎧⎨=⎩B .12x y =-⎧⎨=⎩C.21xy=⎧⎨=⎩D.21xy=⎧⎨=-⎩8.有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④有两个角是锐角的三角形是直角三角形.其中是真命题的个数有()A.3个B.2个C.1个D.0个9.如图,A(1,0)、B(3,0)、M(4,3),动点P从点A出发,沿x轴以每秒1个单位长的速度向右移动,且过点P的直线y=-x+b也随之平移,设移动时间为t秒,若直线与线段BM有公共点,则t的取值范围()A.3≤t≤7B.3≤t≤6C.2≤t≤6D.2≤t≤510.如图,过点Q(0,3)的一次函数与正比例函数y=2x的图象交于点P,能表示这个一次函数图象的方程是()A.3x﹣2y+3=0B.3x﹣2y﹣3=0C.x﹣y+3=0D.x+y﹣3=0二、填空题11.若函数y=(k+3)x∣k∣-2+3是一次函数,则k的值是____________12.已知点(,)P m n在第2象限,且到x轴的距离为3,到y轴的距离等于5,则点P的坐标是________.13.如图,在△ABC中,点D、E分别AC、BC上,AE、BD交于一点F,D为AC的中点,BF=3DF,若SΔADF=2,则△ABC的面积是___________14.甲、乙两人分别加工100个零件,甲第1个小时加工了10个零件,之后每小时加工30个零件,乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务.设甲、乙两人各自加工的零件数为y(个),甲加工零件的时间为x(时),y 与x之间的函数图象如图所示,当甲、乙两人相差15个零件时,甲加工零件的时间为______________15.等腰三角形的一边长是10cm,另一边长是5cm,则它的周长是____________三、解答题16.已知△ABC在8×8方格中,位置如图所示,A(-3,1)、B(-2,4)(1)请你在方格中建立直角坐标系,并写出C点的坐标;(2)把△ABC向下平移1个单位长度,再向右平移2个单位长度,请你画出平移后的△A1B1C1,并写出点B1的坐标.17.一次函数y=kx+b 的图象与直线y=-2x 平行,且经过点(1,6)(1)求k 、b 的值;(2)判断点P (-1,10)是否在该函数的图象上.18.已知:如图,△ABC 中,AD 平分∠BAC .(1)画出△ADC 中DC 边上的高AE .(2)若∠B =30°,∠ACB =110°,求∠DAE 的度数.19.已知y 与2x +成正比例,当3x =时,10y =-(1)求y 与x 之间的函数表达式;(2)当21x -<≤时,求y 的取值范围20.如图,已知:点A 、B 、C 在一条直线上.(1)请从三个论断:①AD ∥BE ;②∠1=∠2;③∠A=∠E 中,选两个作为条件,另一个作为结论构成一个真命题:条件:结论:(2)证明你所构建的命题是真命题.x+1,且l1与x轴交于点D,直线12的函数解析式21.如图,直线l1的函数关系式为y1=12y2=kx+b经过定点A(4,0),B(-1,5),直线l1与l2相交于点C(1)求直线l2函数解析式;(2)若在x轴上存在一点F,使得SΔACF-SΔADC=3,求点F的坐标;22.如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q 同时出发,点P的速度为每秒lcm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒lcm,图②是点P出发x秒后△APD 的面积S(cm)与x(秒)的函数关系图象.(1)根据图象得a=;b=;(2)设点P已行的路程为y1(cm),点Q还剩的路程为y2(cm),请分别求出改变速度后,y1、y2和运动时间x(秒)的关系式,井写出自变量取值范围.23.如图,BE平分∠ABD,DF平分∠BDC,FD的延长线交BE于点E(1)若∠BAC=56°,∠DCA=22°,∠EBD=23°,求∠BEF的度数;(2)若∠BAC=α,∠DCA=β,∠BEF=γ,请直接写出α、β、γ三者之间的关系.24.双十一期间,合肥百大电器公司新进了一批空调机和电冰箱共100台,电冰箱是空调机数量的2倍多10台;计划调配给下属的甲、乙两个连锁店销售,其中60台给甲连锁店,40台给乙连锁店,两个连锁店销售这两种电器每台的利润(元)如下表:空调机电冰箱甲连锁店200170乙连锁店160150设公司调配给甲连锁店x台空调机,公司卖出这100台电器的总利润为y(元)(1)求新进空调机和电冰箱各多少台?(2)求y关于x的函数关系式,并求出x的取值范围;(3)为了促销,公司决定仅对甲连锁店的空调机每台让利m元(m>0)销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该公司应该如何设计调配方案,使总利润达到最大?参考答案1.D【分析】根据各象限内点P(a,b)的坐标特征:①第一象限:a>0,b>0;②第二象限:a<0,b >0;③第三象限:a<0,b<0;④第四象限:a>0,b<0进行判断即可.【详解】解:∵第四象限内的点横坐标>0,纵坐标<0,∴点(1,-3)所在的象限是第四象限,故选D.【点睛】考查点的坐标,掌握每个象限点的坐标特征是解题的关键.2.A【解析】【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案.【详解】解:设第三边为a,根据三角形的三边关系:5﹣3<a<3+5,解得:2<a<8.第三边可能是7,故选:A.【点睛】此题主要考查了三角形的三边关系,题目比较基础,只要掌握三角形的三边关系定理即可.3.C【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】解:根据题意得:1﹣x≥0且x≠0,解得:x≤1且x≠0.故选:C.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.D【解析】【分析】由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围.【详解】解:∵点P (3,y 1)、点Q (-2,y 2)在一次函数y=(2m-1)x+2的图象上,∴当3>-2时,由题意可知y 1<y 2,∴y 随x 的增大而减小,∴2m-1<0,解得m <12,故选D .【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.5.A【解析】【分析】先根据正比例函数y=kx 的函数值y 随x 的增大而减小,判断出k 的符号,再根据一次函数的性质即可得答案.【详解】解:∵正比例函数y =kx(k≠0)的函数值y 随x 的增大而减小,0k ∴<∴y =x-k 的图象经过一、二、三象限,故选A .【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b (k≠0)中,当0k >,0b >时,图象经过一、二、三象限.6.C【解析】【分析】根据角平分线的定义得到∠CBD=∠ABD=30°,再由三角形外角的性质即可得到∠C=∠ADB-∠CBD=50°.【详解】解:∵BD 是△ABC 的角平分线,∴∠CBD=∠ABD=30°,∵∠ADB=∠C+∠CBD=80°,∴∠C=∠ADB-∠CBD=50°,故选C .【点睛】本题主要考查了三角形外角的性质,角平分线的定义,解题的关键在于能够熟知角平分线的定义和三角形外角的性质.7.A【解析】【分析】根据直线解析式求出点C 坐标,根据两函数交点坐标与方程组的解得关系即可求解.【详解】解:∵y=-2x+4过点C (m ,2),∴224m =-+,解得1m =,∴点C (1,2),∴方程组24y kx b y x =+⎧⎨=-+⎩的解12x y =⎧⎨=⎩.故选择A .【点睛】本题考查两函数的交点坐标与方程组的解的关系,掌握两函数的交点坐标与方程组的解是解题关键.8.D【解析】【分析】①根据对顶角的定义进行判断;②根据同位角的知识判断;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;根据直角三角形的定义对④进行判断.【详解】解:①对顶角相等,相等的角不一定是对顶角,①假命题;②两直线平行,同位角相等;②假命题;③一个角的两边与另一个角的两边分别互相平行,这两个角相等或互补;③假命题;④有两个角是锐角且互余的三角形是直角三角形,所以④假命题;真命题的个数为0,故选:D.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.C【解析】【分析】分别求出直线经过点B、点M时的t值,即可得到t的取值范围.【详解】解:当直线y=-x+b过点B(3,0)时,∴3121t-==,当直线y=-x+b过点M(4,3)时,3=-4+b,解得:b=7,∴7y x =-+,当y=0时,07x =-+,解得:x=7,∴7161t -==,∴若直线与线段BM 有公共点,t 的取值范围是:2≤t≤6,故选:C .【点睛】此题考查了一次函数的图像和性质,解题的关键是根据题意求出直线经过点B 、点M 时的t 的值.10.D【解析】【分析】如果设这个一次函数的解析式为y=kx+b ,那么根据这条直线经过点P (1,2)和点Q (0,3),用待定系数法即可得出此一次函数的解析式.【详解】解:设这个一次函数的解析式为y=kx+b .∵这条直线经过点P (1,2)和点Q (0,3),∴2b 3k b +=⎧⎨=⎩,解得k=-1b=3⎧⎨⎩.故这个一次函数的解析式为y=-x+3,即:x+y-3=0.故选D .【点睛】本题主要考查了一次函数与方程组的关系及用待定系数法求一次函数的解析式.两个一次函数图象的交点坐标就是对应的二元一次方程组的解,反之,二元一次方程组的解就是对应的两个一次函数图象的交点坐标.11.k=3【解析】根据一次函数的定义可得:k+3≠0且|k|﹣2=1,求出k即可.【详解】解:由函数y=(k+3)x|k|﹣2+4是一次函数得:k+3≠0且|k|﹣2=1,解得:k≠-3且k=±3,∴k=3.故答案为:3.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.12.(-5,3)【解析】【分析】根据到x轴的距离得到点P的纵坐标的绝对值,到y轴的距离得到横坐标的绝对值,进而根据所在象限判断出具体坐标即可.【详解】解:∵到x轴的距离为3,到y轴的距离为5,∴纵坐标的绝对值为3,横坐标的绝对值为5,∵点P在第二象限,∴点P的坐标为(-5,3).故答案为(-5,3).【点睛】本题考查点的坐标的确定;用到的知识点为:点到x轴的距离得到点的纵坐标的绝对值,到y轴的距离得到横坐标的绝对值.13.16【解析】【分析】根据BF=3DF,若SΔADF=2,求出S△ABD,再根据D为AC的中点,即可求出△ABC的面积.解:∵BF=3DF ,若S ΔADF=2,∴S △ABF =3S △ADF =6,S △ABD =S △ABF+S △ADF =8,∵点D 是AC 的中点,∴S △ABC =2S △ABD =16,故答案为:16.【点睛】本题考查了三角形中线的性质和三角形面积,解题关键是根据边的关系得出面积之间的关系.14.32或52或72【解析】【分析】结合题意,首先计算得甲加工到100个零件需要的时间、乙在3小时后的每小时加工零件数;再根据一次函数的性质,分别得甲、乙两人各自加工的零件数和加工零件的时间的函数解析式;再结合函数图像,通过列一元一次方程并求解,即可得到答案.【详解】根据题意,甲加工到100个零件,需要的时间为:100101430-+=(小时)∴甲加工零件的时间04x ≤≤(时)∴甲加工的零件数为()()()10,110301,14x x x ⎧≤⎪⎨+-<≤⎪⎩,即()()10,13020,14x x x ⎧≤⎪⎨-<≤⎪⎩∵乙在甲加工前已经加工了40个零件,在甲加工3小时后乙开始追赶甲,结果两人同时完成任务∴乙在3小时后,每小时加工零件数为:100406043-=-(个)∴乙加工的零件数为()()()40,340603,34x x x ⎧≤⎪⎨+-<≤⎪⎩,即()()40,360140,34x x x ⎧≤⎪⎨-<≤⎪⎩甲、乙两人相差15个零件,分甲比乙少15个零件和甲比乙多15个零件两种情况;根据y 与x 之间的函数图象,当甲比乙少15个零件时,得:30204015x -=-∴32x =;当甲比乙多15个零件时,分3x <和3x >两种情况;当3x <时,得30204015x --=∴52x =当3x >时,()30206014015x x ---=∴72x =;故答案为:32或52或72.【点睛】本题考查了一次函数、一元一次方程的知识;解题的关键是熟练掌握一次函数的性质,从而完成求解.15.25cm【解析】【分析】题目给出等腰三角形有两条边长为5cm 和10cm ,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:分两种情况:当腰为5时,5+5=10,所以不能构成三角形;当腰为10时,5+10>10,所以能构成三角形,周长是:10+10+5=25cm .故答案为:25cm .【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.16.(1)图见解析,C (1,1);(2)图见解析,(0,3)【解析】【分析】(1)根据点A 、B 的坐标和直角坐标系的特点建立直角坐标系;(2)分别将点A 、B 、C 向下平移1个单位长度,再向右平移2个单位长度,然后顺次连接各点,并写出点B 1的坐标;【详解】(1)直角坐标系如图所示,C 点坐标(1,1);(2)△A 1B 1C 1如图所示,点B 1坐标(0,3);【点睛】本题考查了利用平移变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.17.(1)k=-2,b=8;(2)在该函数的图象上【解析】【分析】(1)根据平行即可得出k 的值,再将点(1,6)代入函数解析式即可求出b 的值.(2)根据(1)可求出函数解析式,再令1x =-时,求出y 的值,即可判断.【详解】解:(1)根据题意两直线平行可知其斜率相等,∴2k =-.∴一次函数的解析式为2y x b =-+.∵该一次函数又经过点(1,6),∴62b =-+,解得:8b =.(2)根据(1)可知该一次函数解析式为28y x =-+,对于28y x =-+,当1x =-时,2(1)810y =-⨯-+=,∴点P(-1,10)在该函数图象上.【点睛】本题考查一次函数的性质,掌握一次函数图象上的点的坐标满足其解析式是解答本题的关键.18.(1)见解析;(2)40°【解析】【分析】(1)利用三角形高线的作法进而得出AE 即可;(2)利用三角形内角和定理得出∠BAC 的度数,再利用角平分线的性质得出∠DAC 的度数,进而得出∠CAE 的度数,即可得出答案.【详解】解:(1)如图所示:AE 即为所求;(2)∵∠B =30°,∠ACB =110°,∴∠ECA =70°,∠BAC =40°,∵AD 平分∠BAC ,∴∠BAD =∠DAC =20°,∵∠E =90°,∠ECA =70°,∴∠EAC =20°,∴∠DAE =20°+20°=40°.【点睛】此题主要考查了复杂作图以及角平分线的性质以及三角形内角和定理等知识,得出∠DAC 的度数是解题关键.19.(1)24y x =--;(2)60y -≤<.【解析】【分析】(1)设(2)(0)y k x k =+≠,把x 、y 的值代入求出k 的值,即可求得函数表达式;(2)由(1)可得24y x =--,再根据21x -<≤,可得6240x ---<≤,即可得结果.【详解】解:(1)设(2)(0)y k x k =+≠,把3x =,10y =-代入得:510k =-,解得:2k =-,24y x ∴=--,y ∴与x 之间的函数表达式为:24y x =--;(2)∵21x -<≤,∴224x --<≤,∴6240x ---<≤即60y -≤<,y ∴的取值范围为:60y -≤<.【点睛】本题考查了待定系数法求一次函数表达式,理解题意根据x 的取值范围求得y 的范围,得出关于k 的方程是解决问题的关键.20.(1)AD ∥BE ,12∠=∠;A E ∠=∠;(2)见解析【解析】【分析】(1)根据命题的概念,写出条件、结论;(2)根据平行线的判定的礼盒性质定理证明.【详解】解:(1)条件:①AD ∥BE ;②∠1=∠2;结论:③∠A =∠E ,故答案为:①AD ∥BE ,②∠1=∠2;③∠A =∠E ;(2)证明:∵AD ∥BE ,∴∠A =∠EBC ,∵∠1=∠2,∴DE ∥BC ,∴∠E =∠EBC ,∴∠A =∠E .【点睛】本题考查的是命题的概念、平行线的性质,掌握平行线的判定定理和性质定理是解题的关键.21.(1)y=-x+4;(2)F (-5,0)或(13,0)【解析】【分析】(1)直接把A 、B 两点坐标代入直线l 2解析式进行求解即可;(2)设F 的坐标为(m ,0),则4AF m =-,然后求出D (-2,0),得到()426AD =--=,再求出C (2,2),得到1=62ADC C S AD y ⋅=△,142ACF C S AF y m =⋅=-△,再由3ACF ADC S S -=△△进行求解即可.【详解】解:(1)把A (4,0),B (-1,5)代入直线l 2的解析式得:405k b k b +=⎧⎨-+=⎩,解得14k b =-⎧⎨=⎩,∴直线l 2的解析式为4y x =-+;(2)设F 的坐标为(m ,0),∴4AF m =-,∵D 是直线l 1:112y x =+与x 轴的交点,∴D (-2,0),∴()426AD =--=,联立4112y x y x =-+⎧⎪⎨=+⎪⎩,解得22x y =⎧⎨=⎩,∴C (2,2),∴1=62ADC C S AD y ⋅=△,142ACF C S AF y m =⋅=-△,∵3ACF ADC S S -=△△,∴463m --=,解得5m =-或13m =,∴F 的坐标为(-5,0)或(13,0).【点睛】本题主要考查了待定系数法求一次函数解析式,两直线交点问题,三角形面积,坐标与图形,解题的关键在于能够熟练掌握待定系数法.22.(1)a=6;b=2;(2)y 1=2x-6(6≤x≤17),y 2=22-x (6≤x≤22)【解析】【分析】(1)先判断出P 改变速度时是在AB 上运动,由此即可求出改变速度的时间和位置,从而求出a ,再根据在第8秒P 的面积判断出此时P 运动到B 点,即可求出b ;(2)根据P 和Q 的总路程都是CD+BC+AB=28cm ,然后根据题意进行求解即可.【详解】解:(1)∵当P 在线段AB 上运动时,12APD S AD AP =⋅△,∴当P 在线段AB 上运动时,△APD 的面积一直增大,∵四边形ABCD 是矩形,∴AD=BC=10cm ,∴当P 在线段AB 上运动时,△APD 的面积的最大值即为P 运动到B 点时,此时2140cm 2APD S AD AB =⋅=△,由函数图像可知,当P 改变速度时,此时P 还在AB 上运动,∴1=242APD S AD AP =⋅△,即18242a ⨯=,解得6a =,∴6cm AP =,∴4cmBP AB AP =-=又由函数图像可知当P 改变速度之后,在第8秒面积达到40cm 2,即此时P 到底B 点∴()864b -=,∴2b =,故答案为:6,2;(2)由(1)得再第6秒开始改变速度,∴改变速度时,P 行走的路程为6cm ,Q 行走的路程为12cm ,∵Q 和P 的总路程都为CD+BC+AB=28cm ,∴()()162626617y x x t =+-=-≤≤,()()22812622622y x x x =---=-≤≤【点睛】本题主要考查了从函数图像上获取信息,解题的关键在于能够准确根据函数图像判断出P 点在改变速度时是在AB 上运动.23.(1)39°;(2)22αβγ=+【解析】【分析】(1)连接BC ,根据∠EBD=23°,BE 平分∠ABD ,求出ABD ∠的度数,然后根据∠BAC=56°,∠DCA=22°,求出DBC ∠的度数,然后根据DF 是BDC ∠的平分线,求出BDF ∠的度数,最后根据外角的性质即可求出∠BEF 的度数;(2)连接BC ,首先根据三角形内角和定理和BE 平分∠ABD ,表示出∠BDC 的度数,然后根据DF 平分∠BDC ,表示出∠BDF 的度数,利用BDF BEF EBD ∠=∠+∠,即可得到α、β、γ三者之间的关系.【详解】解:(1)如图所示,连接BC ,23,EBD BE ︒∠= 平分ABD ∠,246ABD EBD ︒∴∠=∠=,56,22BAC DCA ︒︒∠=∠= ,18056DBC DCB BAC ABD DCA ︒∴∠+∠=-∠-∠-∠=︒,180()18056124BDC DBC DCB ︒∴∠=-∠+∠=︒-︒=︒,∵DF 是BDC ∠的平分线,1622BDF BDC ︒∴∠=∠=,632239BEF BDF EBD ︒︒=︒∴∠=∠-∠=-.(2)如图所示,连接BC ,∵BE 是ABD ∠的平分线,∴12EBD ABD ∠=∠,,BAC DCA αβ∠=∠= ,180()BDC DBC DCB ︒∴∠=-∠+∠()180180BAC DCA ABD︒=︒--∠-∠-∠ABD αβ=++∠,∵DF 平分BDC ∠,11112222BDF BDC ABD αβ∴∠=∠=++∠,BDF BEF EBD ∠=∠+∠ ,11112222ABD ABD αβγ∴++∠=+∠,1122γαβ∴=+,∴,,αβγ三者之间的关系是1122γαβ≡+.【点睛】此题考查了角平分线的运用,三角形内角和定理等知识,解题的关键是根据题意表示出∠BDF .24.(1)空凋30台,电冰箱70台;(2)y=20x+16500(0≤x≤30);(3)当0<m <20时,配给甲连锁店空调、电冰箱各30台;配给乙连锁店电冰箱40台;当m=20时,x 的取值在0≤x≤30内的所有方案利润相同;当20<m <30时,调配给甲连锁店空调机0台,电冰箱60台,乙连锁店空调30台,电冰箱10台.【解析】【分析】(1)设空调机数量为m台,列出方程即可得出答案;(2)由题意可知,设公司调配给甲连锁店x台空调机,则调配给甲连锁店电冰箱(60﹣x)台,调配给乙连锁店空调机(30﹣x)台,电冰箱为70﹣(60﹣x)=x+10台,列出函数和不等式组求解即可;(3)依题意得出y与x的关系式,根据m的取值范围利用函数的增减性可得出使利润达到最大的分配方案.【详解】解:(1)设空调机数量为m台,则2m+10+m=100解得:m=30∴空凋30台,电冰箱70台;(2)由题意可知,设公司调配给甲连锁店x台空调机,则调配给甲连锁店电冰箱(60﹣x)台,调配给乙连锁店空调机(30﹣x)台,电冰箱为70﹣(60﹣x)=x+10台,则y=200x+170(60﹣x)+160(30﹣x)+150(x+10),即y=20x+16500.∵0 600 300100 xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩∴0≤x≤30.∴y=20x+16500(0≤x≤30);(3)由题意得:y=(200-m)x+170(60-x)+160(30-x)+150(10+x)=(20-m)x+16500;∵200﹣m>170,∴m<30.①当0<m<20时,即20﹣m>0,函数y随x的增大而增大,当x=30时,y最大,此时配给甲连锁店空调、电冰箱各30台;配给乙连锁店电冰箱40台;②当m=20时,x的取值在0≤x≤30内的所有方案利润相同;③当20<m<30时,即20﹣m<0,函数y随x的增大而减小,故当x=0时,总利润最大,即调配给甲连锁店空调机0台,电冰箱60台,乙连锁店空调30台,电冰箱10台;综上可得:当0<m<20时,配给甲连锁店空调、电冰箱各30台;配给乙连锁店电冰箱40台;当m=20时,x的取值在0≤x≤30内的所有方案利润相同;当20<m<30时,调配给甲连锁店空调机0台,电冰箱60台,乙连锁店空调30台,电冰箱10台.【点睛】本题考查函数和一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意.。
沪教版八年级第一学期(上)期中数学试卷(含答案)
沪教版八上数学期中测试一、选择题(共6小题;共24分)1. 下列二次根式中是最简二次根式的是A. B. C. D.2. 在下列二次根式中,与是同类二次根式的是A. B. C. D.3. 若,则的取值范围是A. B. C. D. 一切实数4. 方程的根的情况是A. 有两个不相等实根B. 有两个相等实根C. 没有实数根D. 有实数根5. 已知函数的图象过点,图象上有两点,,如果,那么A. B. C. D.6. 如图,在平面直角坐标系中,点在函数的图象上,点在函数的图象上,轴于点.若,则的值为B. D.二、填空题(共13小题;共52分)7. 函数的定义域是.8. 化简得.9. 方程的根是.10. 不等式的解集是.11. 若关于的方程有两个实数根,则的取值范围是.12. 当时,代数式和的值互为相反数.13. 在实数范围内因式分解:.14. 如果正比例函数的图象经过第二、四象限,那么的取值范围是.15. 已知与成反比例,当时,,则关于的函数解析式为.16. 上海玩具厂月份生产玩具个,后来生产效率逐月提高,月份生产玩县个,设平均每月增长率为,则可列方程.17. 如图,大正方形被分成两个小正方形和两个长方形,如果两个小正方形的面积分别为和,那么这个大正方形的面积为.18. 若关于的一元二次方程的一个根是,则.19. 如图,反比例函数,点是它在第二象限内的图象上一点,垂直轴于点,如果的面积为,那么该函数的解析式为.三、解答题(共11小题;共77分)20. .21. 化简:.22. 用配方法解方程.23. 解方程.24. 已知,,求的值.25. 已知关于的一元二次方程有实数根,求的最大整数解.26. 如图,在平面直角坐标系中,点为坐标原点,的边垂直于轴,垂足为点,反比例函数的图象经过的中点,且与相交于点,连接,,.(1)求反比例函数的解析式;(2)求的面积.27. 已知矩形的顶点在正比例函数的图象上,点在轴上,点在轴上,反比例函数的图象与边相交于点,与边交于,且,求反比例函数解析式及点的坐标.28. 将进货单价为元的商品按元售出时,能卖出件,已知这种商品每涨元,其销售量就减少件.如果希望能获得利润元,那么售价应定多少元?这时应进货多少件?29. 有一块长米,宽米的长方形绿地,其中有三条笔直的道路(图中阴影部分道路的一边与长方形绿地的一边平行,且道路的出入口,,,,,的长度相同),其余的部分种植绿化,已知道路的面积为平方米,求道路出入口的宽度.30. 已知,且与成正比例,与成反比例,又当,时,的值均为,求与的函数解析式.答案第一部分1. D2. C3. B4. A5. B6. A第二部分7. 且8.9. ,10.11. 且或13.14.15.16.17.19.第三部分.21. .22. ,.23. ,.24. 化简得,,所以.25. 因为,所以,所以的最大整数解是.26. (1)设点的坐标为,则点的坐标为,因为点为线段的中点,所以点的坐标为.又点,均在反比例函数的图象上,则解得所以反比例函数的解析式为.(2)过作,易证,所以.27. 将代入,得,解得,从而求得点的坐标为.又因为,所以,,从而求得点的坐标为,所以反比例函数的解析式为.设点的坐标为,将代入,解得,所以点的坐标为.28. 设每种商品涨元,原来每件利润元.由题意列方程得,解得,.当时,,;当时,,.答:当每件定价元时,应进货件;当每件定价元时,应进货件,都可以获得利润元.29. 设道路出入口宽度为,则解得30. 设,,所以,因为时,都是,所以解得所以,与的函数解析式为.。
上海市闵行区2022-2023学年八年级上学期期中考试数学试卷(解析版)
2022学年第一学期期中考试八年级数学试卷(考试时间:90分钟,满分100分)一、选择题:(本大题共6题,每题3分,满分18分)1.下列各组二次根式中,属于同类二次根式的是()A.B. C.与3 D.【答案】B【解析】【分析】将各项先化为最简二次根式,再根据同类二次根式的定义逐项判断即可.【详解】A.,不是同类二次根式,故该选项不符合题意;B.=,是同类二次根式,故该选项符合题意;C.33=-和3,不是同类二次根式,故该选项不符合题意;D.==故选:B .【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式,掌握同类二次根式的定义是解题的关键.2.的一个有理化因式是()A. B. C. D.【答案】A【解析】【分析】根据有理化的定义以及二次根式的乘除法则解决此题.【详解】解:A m n =+,的一个有理化因式,故A 符合题意;B =+不是的一个有理化因式,故B 不符合题意;C =-的一个有理化因式,故C 不符合题意;D =,的一个有理化因式,故D 不符合题意;故选:A .【点睛】本题主要考查分母有理化,熟练掌握有理化的定义以及二次根式的乘除法则是解决本题的关键.3.下列选项中的数是一元二次方程28x x x +=-的根的是()A.2- B.5 C.4- D.4【答案】C【解析】【分析】利用因式分解法解出一元二次方程的解,再作出判断即可.【详解】解:28x x x +=-,移项得2280x x +-=,因式分解得(4)(2)0x x +-=,所以40x +=或20x -=,解得4x =-或2x =.故选:C .【点睛】本题考查了一元二次方程的解,掌握一元二次方程的解法并灵活运用是解题的关键.4.下列计算正确的是()A.+=B.=C.4=D.2=-【答案】C【解析】【分析】分别根据二次根式的加法,乘法,除法法则以及利用平方差公式进行分母有理化逐一判断即可.【详解】解:A 、与B 、6742=⨯=,故本选项不合题意;C 4==,故本选项符合题意;D 2=,故本选项不合题意.故选:C .【点睛】本题考查了二次根式的混合运算以及分母有理化,掌握相关运算法则是解答本题的关键.5.下列命题中,假命题的是()A.在同一平面内,垂直于同一条直线的两条直线平行B.面积相等的两个三角形全等C.等腰三角形的顶角平分线垂直于底边D.三角形的一个外角大于任何一个与它不相邻的内角【答案】B【解析】【分析】分别利用平行线的判定、三角形全等的判定方法、等腰三角形的性质以及三角形外角的性质逐一判断即可.【详解】A .在同一平面内,垂直于同一条直线的两条直线平行,是真命题,故选项A 不合题意;B .面积相等的两个三角形不一定全等,故选项B 是假命题,符合题意;C .等腰三角形的顶角平分线垂直于底边,是真命题,故选项C 不合题意;D .三角形的一个外角大于任何一个与它不相邻的内角,是真命题,故选项D 不合题意,故选:B【点睛】本题考查了命题的真假,熟练掌握已经学过的概念、性质、定理是解题的关键.6.已知a 、b 、c 是三角形三边的长,则关于x 的一元二次方程()220ax b c x a +-+=的实数根的情况是()A.有两个相等的实数根B.有两个不相等的实数根;C.没有实数根D.无法确定【答案】C【解析】【分析】根据三角形的三边关系可知Δ0<,可知一元二次方程根的情况.【详解】解:[]222()44()()b c a b c a b c a ∆=--=-+--,∵a 、b 、c 是三角形三边的长,∴00b c a b c a -+>--<,,∴4()()0b c a b c a ∆=-+--<,∴原方程没有实数根,故选:C.【点睛】本题考查了一元二次方程根的判别式,三角形的三边关系,熟练掌握根的判别式与根的情况的关系是解题的关键.二、填空题:(本大题共12题,每题2分,满分24分)7.分母有理化:=____________.【答案】【解析】【即可分母有理化.255==..【点睛】本题考查了二次根式的运算,解题的关键是掌握分母有理化.8.=____________.【答案】3π-【解析】【分析】根据二次根式的性质解答.【详解】∵π>3,∴π−3>0;=π−3.【点睛】本题考查二次根式的性质与化简,解题的关键是掌握二次根式的性质.9.设x x应满足的条件是____________.【答案】14 x≥【解析】【分析】根据二次根式有意义的条件进行求解即可.【详解】解:∵二次根式∴410x-≥,解得14x ≥,故答案为:14x ≥.【点睛】本题主要考查了二次根式有意义的条件,熟知二次根式有意义的条件是被开方数大于等于0是解题的关键.10.比较大小:-.(填“>”“<”“=”)【答案】>【解析】【分析】利用两个负数比较大小,绝对值大的反而小即可求解.【详解】解:∵=,-==∴-即-故答案为:>【点睛】本题考查了实数的大小比较,熟记两个负实数比较大小的方法是解题的关键.11.已知2410ax x +-=是关于x 的一元二次方程,那么a 的取值范围为___________.【答案】0a ≠【解析】【分析】根据一元二次方程的定义求解即可.【详解】解:因为2410ax x +-=是关于x 的一元二次方程,所以a 的取值范围为0a ≠.故答案为:0a ≠.【点睛】本题考查了一元二次方程的定义,解题的关键是掌握一元二次方程的定义:只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20(0)ax bx c a ++=≠.特别要注意0a ≠的条件.12.不等式10->的解集是____________.【答案】66x <-【解析】【分析】直接按照解不等式的一般步骤求解即可.【详解】10->解:移项,得1>,不等式两边同除以66x <-,故答案为:6x <-【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的解题步骤是解题的关键.13.方程()87x x -=-的根是____________.【答案】17x =,21x =【解析】【分析】把原方程化为一般形式后利用因式分解法解方程即可.【详解】解:∵()87x x -=-,∴2870x x -+=,∴()()710x x --=,∴70x -=或10x -=,解得17x =,21x =,故答案为:17x =,21x =【点睛】本题考查了因式分解法解一元二次方程,根据所给方程的特点选择适当的是解题的关键.14.一种型号的电视,原来每台售价7500元,经过两次降价后,现在每台售价为4800元,如果每次降价的百分率相同,设每次降价百分率为x ,那么根据题意可列出方程:______.【答案】()2750014800x -=【解析】【分析】设每次降价百分率为x ,根据原来每台售价为7500元,经过两次降价后,现在每台售价为4800元,可列出方程.【详解】解:每次降价百分率为x ,()2750014800x -=.故答案为:()2750014800x -=.【点睛】本题考查理一元二次方程的应用,是个增长率问题,根据两次降价前的结果,和现在的价格,列出方程是关键.15.在实数范围内分解因式:231x x --=_________.【答案】(22x x --##()(22x x --【解析】【分析】求出方程2310x x --=中的判别式的值,求出方程的两个解,代入212()()ax bx c a x x x x ++=--即可.【详解】设2310x x --=,∵2(3)41(1)13∆=--⨯⨯-=,∴3132x ±=∴1 2x =,2 2x =,∴231()()22x x x x --=--.故答案为:3133+13(22x x ---.【点睛】本题考查了在实数范围内分解因式和解一元二次方程,注意:若x 1和x 2是一元二次方程20ax bx c ++=的两个根,则212()()ax bx c a x x x x ++=--.16.已知关于x 的一元二次方程230x mx +-=的一个根是3,则该方程的另一个根是___________.【答案】1-【解析】【分析】根据一元二次方程根与系数的关系求解即可.【详解】解:∵关于x 的一元二次方程230x mx +-=的一个根是3,∴该方程的另一个根是313-=-,故答案为:1-.【点睛】本题主要考查了一元二次方程根与系数的关系,对于一元二次方程()200ax bx c a ++=≠,若其两根为12x x ,则1212bc a x x x x a+=-=,.17.已知:如图,AC AD =,要使ACB ADB ≌,还需添加一个条件,这个条件可以是__________.写出一个即可)【答案】BC BD =(答案不唯一)【解析】【分析】根据全等三角形的判定定理求解即可.【详解】解:这个条件可以是BC BD =,在ACB △和ADB 中,AC AD AB AB BC BD =⎧⎪=⎨⎪=⎩,∴(SSS)ACB ADB ≌△△,故答案为:BC BD =(答案不唯一).【点睛】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.18.阅读材料:在直角三角形中,斜边和两条直角边满足定理:两条直角边的平方和,等于斜边的平方,因此如果已知两条边的长,根据定理就能求出第三边的长,例如:在Rt ABC △中,已知90C ∠=︒,3AC =,4BC =,由定理得222AC BC AB +=,代入数据计算求得5AB =.请结合上述材料和已学几何知识解答以下问题:已知:如图,90C ∠=︒,AB CD ∥,5AB =,11CD =,8AC =,点E 是BD 的中点,那么AE 的长为____________.【答案】5【解析】【分析】延长AE 交CD 于点F ,如图所示,只要证得()ASA ABE FDE ≌,根据全等三角形的性质可得AE EF =,5AB DF ==,然后在Rt ACF 中,利用勾股定理求得10AF ===,最后可得152AE EF AF ===.【详解】解:延长AE 交CD 于点F,如图所示,∵AB CD ∥,∴B D ∠=∠,∵点E 是BD 的中点,∴BE DE =,在ABE 和FDE V 中B D BE DE AEB DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABE FDE ≌,∴AE EF =,5AB DF ==,∵11CD =,∴1156CF DC DF =-=-=,又∵90C ∠=︒,8AC =,∴Rt ACF中,10AF ===,∴152AE EF AF ===,故答案为:5【点睛】本题考查了全等三角形的判定和性质,勾股定理的应用,根据题意作出适当的辅助线是解题的关键.三、简答题:(本大题共4题,满分32分)19.(1)计算:-+;(2(其中0x >).【答案】(1)3-;(2)3y x 【解析】【分析】(1)利用二次根式的性质及二次根式的加减混合运算计算即可;(2)利用二次根式的乘除混合运算法则计算即可.【详解】解:(1)-21224=-⨯+()2221122=---++3=-(2====3yx=【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质及加减乘除混合运算的法则是解题的关键.20.(1)解方程:()()22131x x -=-;(2)用配方法解方程:23620x x +-=.【答案】(1)112x =-,21x =;(2)11513x =-+,21513x =--【解析】【分析】(1)把方程移项变形后,利用因式分解法解方程即可;(2)直接利用配方法解方程即可.【详解】解:(1)()()22131x x -=-解:移项,得()()202131x x -+-=因式分解得,()()2110x x +-=,∴210x +=或10x -=,解得112x =-,21x =;(2)23620x x +-=,解:方程两边同除以3,得22203x x +-=,移项,得2232x x +=,方程两边同加上一次项系数一半的平方,得221321x x +=++,即()2513x +=,∴1513x +=±,解得11513x =-+,21513x =--.【点睛】本题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.21.已知:x =,求代数式221x x --的值.【答案】1【解析】【分析】先分母有理数求出1x =+,再根据完全平方公式进行变形,最后代入求出答案即可.【详解】解:∵1x ==,∴221x x --2(1)11x =---211)2=--32=-1=.【点睛】本题考查了二次根式的化简求值和分母有理化,能求出x 的值是解此题的关键.22.已知:a 、b 20b +=,求关于x 的一元二次方程2102ax bx ++=的根.【答案】12113x x ==,【解析】、b 的值,然后解一元二次方程即可.20b +=020b ≥+=≥,,∴30202a b -=+=,,∴322a b ==-,,∴原一元二次方程即为2312022x x -+=,整理得:23410x x -+=,∴()()3110x x --=,解得12113x x ==.【点睛】本题主要考查了非负数的性质,解一元二次方程,正确求出a 、b 的值是解题的关键.四、解答题:(本大题共2题,满分16分)23.如图,点D ,E 在ABC ∆的边BC 上,AD AE =,BD CE =,求证:B C ∠=∠.【答案】证明见解析【解析】【分析】利用全等三角形的性质证明即可.【详解】证明∵AD AE =,∴ADE AED ∠=∠,∵180ADE ADB AED AEC ∠+∠=∠+∠=︒,∴ADB AEC ∠=∠,在ABD ∆和ACE ∆中,AD AE ADB AEC BD EC =⎧⎪∠=∠⎨⎪=⎩,∴()ABD ACE SAS ∆≅∆,∴B C ∠=∠.【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题.24.某小区为了美化环境,准备在一块长50米,宽42米的长方形场地上修筑内外宽度相等且互相垂直的道路,余下的部分作为草坪(图中阴影部分),若草坪的面积是1920平方米,求道路的宽度.【答案】道路的宽度为2米【解析】【分析】设道路的宽度为x 米,根据平移的性质可知草坪的面积可以看作一个长为()50x -米,宽为()42x -米的长方形面积,据此列出方程求解即可.【详解】解:设道路的宽度为x 米,由题意得()()50421920x x --=,∴2921800x x -+=,解得2x =或90x =(不符合题意,舍去)∴道路的宽度为2米.【点睛】本题主要考查了一元二次方程的应用,正确理解题意找到等量关系是解题的关键.五、综合题:(本大题共1题,满分10分)25.已知:如图,在Rt ABC △中,90BAC ∠=︒,ABC ∠的平分线交AD 于点E ,交AC 于点F ,AD BC ⊥,垂足为点D .(1)求证:AE AF =;(2)过点E 作EG D C ∥交AC 于点G ,过点F 作FH BC ⊥,垂足为点H .①请判断AF 与CG 的数量关系,并说明理由;②当AE BE =时,设BF x =,试用含有x 的式子表示GC 的长.【答案】(1)见解析(2)①AF CG =,理由见解析;②12CG x =.【解析】【分析】(1)根据90AEF BED CBF ∠=∠=︒-∠,90AFB ABF ∠=︒-∠,得AFE AEF ∠=∠,从而AE AF =;(2)①由角平分线的性质知AF FH =,由(1)知AF AE =,则AE FH =,再利用AAS 证明AEG FHC ≌△△,得AG CF =,即可证明;②由等腰三角形的性质可得BAE ABE ∠=∠,可证AE EF AF BE ===,可得结论.【小问1详解】证明:∵BF 平分ABC ∠,∴ABF CBF ∠=∠,∵AD BC ⊥,∴90ADB ∠=︒,∴90AEF BED CBF ∠=∠=︒-∠,∵90AFB ABF ∠=︒-∠,∴AFE AEF ∠=∠,∴AE AF =;【小问2详解】解:①AF CG =,理由如下:∵BF 平分ABC ∠,FA AB FH BC ⊥⊥,,∴AF FH =,由(1)知AF AE =,∴AE FH =,∵EG D C ∥,∴90AEG FHC ∠=∠=︒,AGE C ∠=∠,∴(AAS)AEG FHC ≌△△,∴AG CF =,∴AF CG =;②∵AE BE =,∴BAE ABE ∠=∠,∵90BAC ∠=︒,∴EAF EFA ∠=∠,∴AE EF =,∴AE EF AF BE ===,∴2BF AF =,∴12CG AF x ==.【点睛】本题考查了全等三角形的判定和性质,直角三角形的性质,角平分线的性质等知识,得到AEG FHC ≌△△是解题的关键.第16页/共16页。
上海市2024-2025学年八年级上学期数学期中测试卷(无答案)
上海市2024学年第一学期第一次形成性评价八年级数学试卷(完卷时间90分钟,满分100分)一、选择题:(每题2分,共12分)1.下列与)A. B.2.下列方程一定是一元二次方程的是( )A.C.D.3.如果的化简结果是( )A. B. C. D.4.如果,、的关系是( )A. B. C. D.5.得( )B. C.6.已知关于的一元二次方程有一个根为0,则的值为.()A.3B.0C.D.二、填空题:(每题2分,共24分)7.当______.8.中,最简二次根式是______.9.已知______.10.______.20ax bx c ++=235x -=-()251512x x x +=-21132x x -=--3x ≤3x -3x +3x --3x-2a =b =a b 1ab =-a b =0a b +=1ab =x ()22339m x x m --+=m 3-3±x 0b >==11.______.的一个有理化因式是______.13.不等式的解集是______.14.若一元二次方程的二次项系数为3,则该方程的常数项是______.15.方程的解为______.16.已知,那么______.17.已知,,那么的值是______.18.______.三、计算题:(每题5分,共40分)19..20.21.计算:.22.23.解方程:.24.解方程:.25.解方程:.26.解方程:.四、简答题:(每题6分,共24分)27.已知、是实数,且.=2-(21x -<2324x x -=+2940x -=()()222267a b a b ++-=22a b +=1x 1y =-+2==⎛- ⎝)21+x -+=-(23254x =260x -+=()()32411x x -+=-x y y =28.已知:,的值.29.先化简,再求值:,其中.30.回读材料并解决问题:时采用了下面的方法:由,又有,两边平方可得,经检验是原方程的解.请你学习小明的方法,解决下列问题:(1的值为______;(2.x =y =22353x xy y -+112111x x x x ⎛⎫+÷ ⎪-+-⎝⎭x 2=()()2224816x x =-=---=2=8=5=1x =-1x =-=4x =。
上海市金山区金山初级中学2021-2022学年八年级上学期期中数学试题(解析版)
2021-2022学年上海市金山初级中学八年级(上)期中数学试卷一、选择题(每题3分,共18分)1.在下列二次根式中,最简二次根式是()A. B. C.D.【答案】C【解析】【分析】根据最简二次根式的定义判断即可得.【详解】解:A55=,此选项错误,不符合题意;B=,此选项错误,不符合题意;CD||x=,此选项错误,不符合题意;故选:C.【点睛】本题主要考查最简二次根式的定义,解题的关键是掌握(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式,是解题的关键.2.下列各组二次根式中,属于同类二次根式的是()A. B. C.和3 D.和【答案】A【解析】【分析】将各项先化为最简二次根式,再根据同类二次根式的定义逐项判断即可.【详解】A.=和是同类二次根式,故该选项符合题意;B.,不是同类二次根式,故该选项不符合题意;C.=3和3,不是同类二次根式,故该选项不符合题意;D.故选A【点睛】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式,掌握同类二次根式的定义是解题的关键.3.下列方程中,属于一元二次方程的是()A.2124x =- B.2x +y =3C.2x (x ﹣1)=2x 2+4D.2x (x +5)﹣x 2=0【答案】D 【解析】【分析】根据一元二次方程的定义:含有一个未知数,并且这个未知数的最高次幂是2的整式方程,即可判断结果,需要注意的是C、D 需要进行化简之后再进行判断.【详解】解:A.2124x =-属于分母中含有未知数,不是整式方程,故错误;B.方程中含有两个未知数,故错误;C.方程化简之后为:-2x -4=0,未知数的次数为1,故错误;D.方程化简后为:2100x x +=,符合定义,故正确.故答案为:D .【点睛】本题重点考察的是一元二次方程的基础定义,注意部分方程需要进行化简是本题的易错点.4.若关于x 的方程2x 2+bx +c =0的两根为2、﹣1,则多项式2x 2+bx +c 可因式分解为()A.2x 2+bx +c =(x ﹣2)(x +1)B.2x 2+bx +c =2(x +2)(x ﹣1)C.2x 2+bx +c =(x +2)(x ﹣1)D.2x 2+bx +c =2(x ﹣2)(x +1)【答案】D 【解析】【分析】若一元二次方程20(a 0)++=≠ax bx c 有两个实数根1x 与2x ,则该一元二次方程可写为12()()0a x x x x --=的形式,由此可得到答案.【详解】∵关于x 的方程2x 2+bx +c =0的两根为2、﹣1∴此方程即为2(2)(1)0x x -+=也即2x 2+bx +c 可因式分解为2(2)(1)x x -+∴222(2)(1)x bx c x x ++=-+故选:D【点睛】本题考查了一元二次方程与一元一次方程的根的关系,掌握此关系是关键,本题也说明,可以用解一元二次方程的方法来对二次三项式进行因式分解.5.下列各点中,在正比例函数13y x =的图象上的是()A.1(,6)2B.(﹣3,﹣1)C.(0,1)D.(6,3)【答案】B 【解析】【分析】将四点的横坐标x 代入正比例函数解析式求出函数值,然后利用正比例函数图象上点的坐标特征验证四个选项中的点是否在正比例函数图象上即可得解.【详解】解:A 、当x =12时,111163326y x ==⨯=≠,∴点1(,6)2不在正比例函数13y x =的图象上;B 、当x =﹣3时,()1313y =⨯-=-,∴点(﹣3,﹣1)在正比例函数13y x =的图象上;C 、当x =0时,10013y =⨯=≠,∴点(0,1)不在正比例函数13y x =的图象上;D 、当x =6时,16233y =⨯=≠,∴(6,3)不在正比例函数13y x =的图象上.故选:B .【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y =kx 是解题的关键.6.已知一个等腰三角形的腰长为x ,底边长为y ,周长是10,则底边y 关于腰长x 之间的函数关系式及定义域为()A.y =10﹣2x (5<x <10)B.y =10﹣2x (2.5<x <5)C.y =10﹣2x (0<x <5)D.y =10﹣2x (0<x <10)【答案】B 【解析】【分析】根据等腰三角形的定义即三角形的周长公式列出底边y 关于腰长x 之间的函数关系式,根据三角形的三边关系以及底边大于0,列出不等式组,进而求得定义域.【详解】 一个等腰三角形的腰长为x ,底边长为y ,周长是10,210x y ∴+=即102y x=-2x y> 即2102x x >-解得 2.5x > 0y >即1020x ->解得5x <2.55x ∴<<∴底边y 关于腰长x 之间的函数关系式为102y x =-()2.55x <<故选B【点睛】本题考查了等腰三角形的定义,三角形的三边关系,函数解析式,掌握以上知识是解题的关键.二、填空题(每题2分,共24分)7.式子有意义时a 的取值范围是____________.【答案】4a ≥【解析】【分析】二次根式有意义需要保证根号下的值大于等于0,即40a -≥,解得:4a ≥.有意义,则40a -≥,解得:4a ≥故答案为:4a ≥.【点睛】掌握二次根式的基本性质,二次根式的非负性是解题的关键.8.写出的一个有理化因式是____.【答案】【解析】【分析】充分利用平方差公式,得出有理化因子即可.-+,+【点睛】本题考查了分子有理化,解题的关键是熟练掌握平方差公式进行求解.9.【答案】4π-【解析】【分析】根据二次根式的性质化简即可.44ππ=-=-故答案为:4π-.【点睛】本题考查了二次根式的化简,熟练掌握二次根式的性质是解题的关键.10.0)x >=___.【答案】5【解析】【分析】根据二次根式的性质进行化简根式即可.【详解】解:230,250x x y >≥ 0y ∴≥∴5==故答案为:5故答案为:【点睛】本题主要考查二次根式的化简,熟练掌握二次根式的性质是解题的关键.11.【答案】【解析】【分析】根据二次根式的除法法则解决此题.===故答案为:.【点睛】本题主要考查二次根式的除法,解题的关键是熟练掌握二次根式的除法法则.12.方程9x 2﹣16=0的根是___.【答案】43±【解析】【分析】利用直接开平方法求解即可得到答案.【详解】解:29160x -=,2169x =,43x ∴=±,故答案为:43±.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,解题的关键是结合方程的特点选择合适、简便的方法.13.若关于x 的一元二次方程2(2)34m x x m -+=+有一个根是0,则另一个根是___.【答案】32-##112-## 1.5-【解析】【分析】先把0x =代入方程2(2)34m x x m -+=+得到满足条件的m 的值为4,此时方程化为2230x x +=,设方程的另一个根为t ,利用根与系数的关系得到302t +=-,然后求出t 即可.【详解】解:把0x =代入方程2(2)34m x x m -+=+,解得:4m =,此时方程化为2230x x +=,设方程的另一个根为t ,则302t +=-,解得32t =-,所以方程的另一个根为32-.故答案为:32-.【点睛】本题考查了根与系数的关系,解题的关键是掌握若1x ,2x 是一元二次方程20(a 0)++=≠ax bx c 的两根时,12b x x a +=-,12c x x a=.14.在实数范围内分解因式:2231x x --=______.【答案】2(x- 4)(x- 4).【解析】【分析】求出方程2x 2-3x-1=0中的判别式的值,求出方程的两个解,代入ax 2+bx+c=a (x-x 1)(x-x 2)即可.【详解】设2x2-3x-1=0,∵△=(-3)2-4×2×(-1)=17,∴x=31722±⨯∴x1=3+174,x2=3+174,∴2x2-3x-1=2(x- 4)(x- 4).故答案为2(x-3+174)(x-3+174).【点睛】本题考查了在实数范围内分解因式和解一元二次方程,注意:若x1和x2是一元二次方程ax2+bx+c=0的两个根,则ax2+bx+c=a(x-x1)(x-x2).15.正比例函数12y x=的图像经过第___象限.【答案】一、三##三、一【解析】【分析】由题目可知,该正比例函数过原点,且系数为正,故函数图象过一、三象限.【详解】解:由题意可知函数12y x=的图象过一、三象限.故答案为一、三.【点睛】本题考查了正比例函数的性质,根据函数式判断出函数图象的位置是解题的关键.16.正比例函数y=(3m+1)x,y随x的增大而减小,则m的取值范围是___.【答案】13 m<-【解析】【分析】先根据正比例函数的性质列出关于m的不等式,求出m的取值范围即可.【详解】∵正比例函数y=(3m+1)x中,y随x的增大而减小,∴3m+1<0,解得13 m<-.故答案为;13 m<-.【点睛】本题考查的是正比例函数的性质,即正比例函数y=kx(k≠0)中,当k<0时,y随x的增大而减小.17.已知正比例函数513y x =图像上有一个点M ,点M 的横坐标是方程x 2+6x ﹣91=0的根,则点M 的纵坐标为___.【答案】3513或5-##5-或3513【解析】【分析】根据因式分解法解一元二次方程,进而将两根分别代入正比例函数解析式即可求得点M 的纵坐标【详解】x 2+6x ﹣91=0即()()7130x x -+=解得127,13x x ==- 点M 的横坐标是方程x 2+6x ﹣91=0的根,∴当7x =,解得3513y =,当13x =-时,解得5y =-∴点M 的纵坐标为3513或5-故答案为:3513或5-【点睛】本题考查了解一元二次方程,正比例函数上点的特征,正确的解一元二次方程是解题的关键.18.关于x 的一元二次方程22(1)04a x --+=有实数根,则2ax 的值为___.【答案】2-【解析】【分析】根据一元二次方程有实数根可得判别式大于或等于0,进而列出不等式求解,根据二次根式的性质可得0a -≥,进而根据()210a +≥,确定a 的值,代入原方程,解方程即可求得x 的值,进而求得2ax 的值.【详解】 关于x 的一元二次方程22(1)04a x --+=有实数根,其中0a -≥∴(()222410b ac a ∆=-=---≥且0a -≥即()210a +≤且0a -≥()210a +≥ 10a ∴+=1a ∴=-则原方程为2210x x -+=解得121x x ==()22112ax ∴=⨯-⨯=-故答案为:2-【点睛】本题考查了一元二次方程根的判别式,一元二次方程根的定义,二次根式的性质,解一元二次方程,求得a 的值是解题的关键.三、简答题(每题5分,共25分)19.+-.524+【解析】【分析】利用二次根式的性质化简,再合并同类项.-324=,4=.【点睛】本题考查了二次根式的性质及化简,解题的关键是掌握相应的运算法则.20.计算:5(3-.【答案】86-【解析】【分析】类比多项式乘多项式的计算方法展开,再根据二次根式的乘法法则计算,再合并同类项即可.【详解】解:53-55333322=⨯-⨯-+15536=--86=-.【点睛】本题考查了二次根式的混合运算,熟练掌握运算顺序及运算法则是解题的关键.21.解方程:4x (3x +2)﹣(2x ﹣5)(3x +2)=0.【答案】1225,32x x =-=-.【解析】【分析】利用因式分解法解一元二次方程即可得.【详解】解:4(32)(25)(32)0x x x x +--+=,(32)(425)0x x x +-+=,3225()()0x x ++=,320x +=或250x +=,23x =-或52x =-,即1225,32x x =-=-.【点睛】本题考查了解一元二次方程,熟练掌握方程的解法是解题关键.22.用配方法解方程:22510x x -+=【答案】1544x =+,2544x =-【解析】【分析】依据配方法的基本步骤解方程即可.【详解】解:22510x x -+=,系数化为1得:251022x x -+=,配方得:2255251()024162x x -+--+=,即:2517()416x -=,两边同时开平方得:51744x -=±,即151744x =+,251744x =-.【点睛】本题考查配方法解一元二次方程.配方法的关键步骤在于配完全平方公式,此步需熟练掌握完全平方公式及各部分之间的关系.23.解方程:230x --=.【答案】1x =+,2x =-【解析】【分析】方程利用求根公式计算即可求出解.【详解】解:1a = ,b =-3c =-,224(41(3)81220b ac ∴-=--⨯⨯-=+=,x ∴=即1x =2x =【点睛】本题考查了解一元二次方程-公式法,解题的关键是熟练掌握求根公式.四、解答题(第24、25、26每题6分,27题7分,28题8分,共33分)24.已知x =,则21055x x x -+-的值.【答案】63【解析】【分析】先根据分母有理化化简x ,再把原式变形即可求解.【详解】∵x =5=+∴21055x x x -+-21025205x x x -+--=()25205x x ---=252063--==.【点睛】此题主要考查分式的化简求值,解题的关键是熟知二次根式、分式及完全平方公式的运算.25.当m 取何值时,关于x 的一元二次方程(m ﹣2)x 2+(﹣2m +1)x +m =0.(1)有实数根?(2)没有实数根?【答案】(1)14m ≥-且2m ≠;(2)14m <-.【解析】【分析】(1)先根据一元二次方程的二次项系数不能为0可得2m ≠,再根据根的判别式0∆≥即可得;(2)根据一元二次方程根的判别式∆<0即可得.【详解】解: 方程2(2)(21)0m x m x m -+-++=是一元二次方程,20m ∴-≠,解得2m ≠,(1)若方程有实数根,则方程根的判别式2(21)4(2)0m m m ∆=-+--≥,解得14m ≥-,故此时m 的取值范围为14m ≥-且2m ≠;(2)若方程没有实数根,则方程根的判别式2(21)4(2)0m m m ∆=-+--<,解得14m <-,故此时m 的取值范围为14m <-.【点睛】本题考查了一元二次方程的定义、根的判别式,熟练掌握一元二次方程根的判别式是解题关键.26.某单位开展了赈灾捐款活动.第一天收到捐款10000元,第三天收到捐款12100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第二天该单位收到多少捐款?【答案】(1)10%;(2)11000元【解析】【分析】(1)设第二天、第三天收到捐款的增长率为x ,则第三天收到的捐款为()2100001x +元,根据第三天收到捐款12100元,则可列出方程,解方程即可;(2)根据:第一天收到的捐款×(1+增长率)=第二天收到的捐款,即可求得第二天应收到的捐款数.【详解】(1)设第二天、第三天收到捐款的增长率为x ,则第三天收到的捐款为10000(1+x )2元由题意得:()210000112100x +=即()2121100 1x =+解得:1110x =,22110x =-(舍去)所以第二天、第三天收到捐款的增长率为10%(2)第二天收到的捐款为:10000(110%)11000⨯+=(元)【点睛】本题主要考查了一元二次方程的实际应用,理解题意并根据等量关系列出方程是关键.27.如图,某工程队在工地互相垂直的两面墙AE 、AF 处,用180米长的铁栅栏围成一个长方形场地ABCD ,中间用同样材料分割成两个长方形.已知墙AE 长120米,墙AF 长40米,要使长方形ABCD 的面积为4000平方米,问BC 和CD 各取多少米?【答案】BC=40米,CD=100米【解析】【分析】设BC=x 米,则CD=(180-2x )米,然后根据长方形的面积公式列出方程求解即可.【详解】设BC=x 米,则CD=(180-2x )米.由题意,得:x (180-2x )=4000,整理,得:x 2-90x+2000=0,解得:x=40或x=50>40(不符合题意,舍去),∴180-2x=180-2×40=100<120(符合题意).答:BC=40米,CD=100米.【点睛】本题考查了一元二次方程的应用,解题的关键是用x 表示CD 的长,然后根据长方形的面积公式列出方程.28.已知如图,在平面直角坐标系中,点A (3,7)在正比例函数图像上.(1)求正比例函数的解析式.(2)点B (1,0)和点C 都在x 轴上,当△ABC 的面积是17.5时,求点C 的坐标.(3)在(2)的条件下,将点A 左右平移m 个单位,得到点D ,使得△AOC 的面积是△ACD 的面积的两倍,写出点D 的坐标.(直接写出答案,不用解题过程)【答案】(1)73y x=;(2)(4,0)C-或(6,0)C;(3)(0,7)或(1,7)或(5,7)或(6,7)【解析】【分析】(1)用待定系数法即可(2)设点(,0)C a,则可得BC=|a-1|,由三角形的面积即可得关于a的方程,解方程即可;(3)根据C点坐标可求得平移的距离,从而可求得点D的坐标.【详解】(1)设正比例函数的解析式为y=kx,其中k≠0∵点A(3,7)在正比例函数图像上∴3k=7∴73 k=∴正比例函数的解析式为73 y x =(2)设点(,0)C a,如图∵B(1,0)∴BC =|a -1|∴1|1|713.52a ⨯-⨯=即15a -=解得4a =-或6a =∴点C 的坐标为(4,0)-或(6,0)(3)当(4,0)C -时,OC =4分别以OC 和AD 为底的△AOC 和△ACD 的高相等∴122AD OC ==∴点A 向左或向右平移2个单位∴点D 的坐标为(1,7)或(5,7)当(6,0)C 时,OC =6分别以OC 和AD 为底的△AOC 和△ACD 的高相等∵△AOC 的面积是△ACD 的面积的两倍∴132AD OC ==∴点A 向左或向右平移3个单位∴点D 的坐标为(0,7)或(6,7)综上所述,点D 的坐标为(0,7)或(1,7)或(5,7)或(6,7)【点睛】本题考查了待定系数法求正比例函数解析式,图形面积及点的平移等知识,这里求得的点的坐标不只一个,不要出现遗漏.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海市八年级上学期期中数学试卷新版
一、选择题 (共8题;共16分)
1. (2分)下列图标,是轴对称图形的是()
A .
B .
C .
D .
2. (2分)若等腰三角形的两边长分别4和6,则它的周长是()
A . 14
B . 15
C . 16
D . 14或16
3. (2分)如图,在△ABC中,AB=AC , AD、CE分别是△ABC的中线和角平分线.若∠CAD=20° ,则∠ACE的度数是()
A . 55°
B . 40°
C . 35°
D . 20°
4. (2分)点A(2,4)关于x轴的对称点B的坐标是()
A . (-2,4)
B . (2,-4)
C . (-2,-4)
D . (4,2)
5. (2分)一个多边形的每一个外角都等于,则这个多边形的边数等于()
A . 8
B . 10
C . 12
D . 14
6. (2分)已知一个等腰三角形一内角的度数为,则这个等腰三角形顶角的度数为()
A .
B .
C . 或
D . 或
7. (2分)下列各组条件中,能判定△ABC≌△DEF的是()
A . AB=DE,BC=EF,∠A=∠D
B . ∠A=∠D,∠C=∠F,AC=EF
C . AB=DE,BC=EF,△ABC的周长= △DEF的周长
D . ∠ A=∠D,∠B=∠E,∠C=∠F
8. (2分)如图所示,一位同学书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()
A . SSS
B . SAS
C . AAS
D . ASA
二、填空题 (共7题;共7分)
9. (1分)如图,已知OP平分∠AOB,PC⊥OB,PD⊥OA,PC=4,OD=7,则△DOP的面积=________ .
10. (1分)已知一个三角形的两边长分别为2和5,第三边的取值范围为________.
11. (1分)如图,正六边形ABCDEF,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.则∠MPN=________.
12. (1分)如图,DE∥AB,则∠B 的大小为________
13. (1分)如图,△ABC,点E是AB上一点,D是BC的中点,连接ED并延长至点F,使DF=DE,连接CF,则线段BE与线段CF的关系为________.
14. (1分)如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP
垂直平分RS.其中正确结论的序号是________(请将所有正确结论的序号都填上).
15. (1分)如图,在△ABC中,AB=10,∠B=60°,点D,E分别在AB,BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为________.
三、解答题 (共8题;共69分)
16. (5分)如图,△ABC的三个顶点均在网格小正方形的顶点上,这样的三角形称为格点三角形,请你分别在图1、图2、图3的网格中画出一个和△ABC关于某条直线对称的格点三角形,并画出这条对称轴.
17. (5分)如图,AC和BD相交于点0,OA=OC, OB=OD.求证:DC//AB
18. (15分)如图,在Rt△ABC中,∠BAC=90°.
(1)先作∠ACB的平分线交AB边于点P,再以点P为圆心,PA长为半径作⊙P.
(要求:尺规作图,保留作图痕迹,不写作法)
(2)请你判断(1)中BC与⊙P的位置关系,并证明你的结论.
(3)若AB=4,AC=3,求出(1)中⊙P的半径.
19. (5分)如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.
20. (10分)如图,△ABC内接于⊙O,AB是⊙O的直径,⊙O的切线AP与OC的延长线相交于点P,∠P=∠BCO.
(1)求证:AC=PC;
(2)若AB=6 ,求AP的长.
21. (9分)如图,在等腰中,,点是内一点,连接,且,设 .
(1)如图1,若,将绕点顺时针旋转至,连结,易证为等边三角形,则 ________, ________;
(2)如图2,若,则 ________, ________;
(3)如图3,试猜想和之间的数量关系,并给予证明.
22. (10分)如图,(图1,图2),四边形ABCD是边长为4的正方形,点E在线段BC 上,∠AEF=90°,且EF交正方形外角平分线CP于点F,交BC的延长线于点N, FN⊥BC.
(1)若点E是BC的中点(如图1),AE与EF相等吗?
(2)点E在BC间运动时(如图2),设BE=x,△ECF的面积为y。
①求y与x的函数关系式;
②当x取何值时,y有最大值,并求出这个最大值.
23. (10分)已知△ABC是边长为4的等边三角形.边AB点D是射线0M上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE
(1)如图1,求证:△CDE是等边三角形.
(2)如图2,设OD=t
①当6<t<10时,△BDE的周长是否存在最小值?若存在,求Rt△BDE周长的最小值:若不存在,请说明理由。
②求t为何值时,△DEB是直角三角形(直接写出结果即可).
参考答案一、选择题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共7题;共7分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
三、解答题 (共8题;共69分) 16-1、
17-1、
18-1、
18-2、
18-3、19-1、20-1、20-2、
21-1、21-2、
21-3、
22-1、
22-2、23-1、
23-2、。