微带传输线微带电容微带电感设计ppt

合集下载

电阻电容电感ppt课件

电阻电容电感ppt课件
4
电阻 电容 电感元件
电阻元件 电容元件 电感元件
5
1.电阻元件
一、电阻基本概念
限流+调压
电阻器是电子设备中使用最多的基本元件之一。各种材料的 物体对通过它的电流都呈现一定的阻碍作用,我们把这种阻 碍电流的作用叫做电阻(物体阻碍电流通过的属性,叫物体 的电阻)。
在远距离传输电能的强电工程中,电阻是十分有害的,它消 耗了大量的电能。然而在无线电工程中,在电子仪器当中, 尽管电阻同样会消耗电能,但在许多情况下,它具有特殊作 用。
前有 乘 偏 三效 数 差 环数 为
精密色环电阻器 标称值430×102=43kΩ 偏差±1%
(b)
图 电阻器色环标志法
31
电容的默认基本单位:pF
位置 方向
棕 绿 橙
黄 紫 红

标称值0. 015μF 标称值4700pF 偏差±10% 偏差±20%
立式色电容器
蓝灰红银
棕黑黑红银
பைடு நூலகம்
标称值6800pF 偏差±10% 色点标示的电容器
如:可见光敏电阻,主要材料是硫化镉,应用于光电控制。红外光敏 电阻,主要材料是硫化铅,应用于导弹、卫星监测。
其符号为:
22
C. 压敏电阻(MY)
压敏电阻是以氧化锌为主要材料制成的半导体陶瓷元件,电阻值随 加在两端电压的变化按非线性特性变化。当加到两端电压不超过某一特 定值时,呈高阻抗,流过压敏电阻的电流很小,相当于开路。当电压超 过某一值时,其电阻急骤减小,流过电阻的电流急剧增大。
抽油烟机上所装的电子鼻,即是利用气敏管;测汽车尾气、司机是否喝 酒等装置都是利用气敏管。
25
2、电抗元件的标志方法 这里我们所介绍的是电抗元件的电阻值、电

传输线及S参数-PPT

传输线及S参数-PPT
11
反射系数 (reflection coefficient)
反射系数 :传输线上任意一点处的反射波电压(或电流)与入射波电 压(或电流)之比,即
(z) U r (z) Ir (z) Ui (z) Ii (z)
对无耗传输线 j ,终端负载为Zl,则
(z)
A2e jz A1e jz
Zl Zl
21
散射参量(S)
实际的射频系统不能采用终端开路(电容效应)或短路(电感效应)的测量方
法,另外终端的不连续性将导致有害的电压电流波反射,并产生可能造成器
件损坏的振荡。
S 参量的定义
a1 b1
S
a2 b2
定义归一化入射电压波:an
Vn 2
Z0In Z0
定义归一化反射电压波:bn
Vn 2
Z0In Z0
+ -
v3
iN-1 N-1端口+- vN-1
其中
阻抗
Znm
矩阵
多端口 网络
vn i ik 0
m
i2 v2
+ -
2
端口
i4 v4
+ -
4
端口
iN vN
+- N
端口
for k m 19
同理:
i1 i2
Y11 Y21
iN YN1
Y12 Y22
YN 2
Y1N v1
Y2
N
相加:Vn an bn Z0 相减:In an bn / Z0

an Vn /
Z0
, I
n
Z0
bn Vn /
Z0
I
n
Z0
参量:

《电容以及电感》课件

《电容以及电感》课件

电感的应用场景和实例
滤波
电感常用于滤波电路中,如电 源滤波器和信号滤波器。
振荡
电感与电容配合使用,可构成 LC振荡电路,用于产生特定频 率的信号。
磁屏蔽
大电流的导线绕在铁氧体磁芯 上,可构成磁屏蔽,用于减小 磁场对周围电子设备的干扰。
传感器
利用电感的磁路和电路特性, 可制成位移、速度、加速度等
传感器。

信号处理
电容和电感在信号处理中起到关键 作用,能够实现信号的过滤、耦合 和转换等功能。
电路稳定性
电容和电感在电路中起到稳定电流 的作用,有助于提高电路的可靠性 和稳定性。
电容和电感的发展趋势和未来展望
微型化
随着电子技术的不断发展,电容和电感元件正朝着微型化 、高密度集成方向发展,以满足现代电子产品对小型化和 轻量化的需电源滤波电 路中,滤除交流成分,保 持直流输出平稳。
高频信号处理
陶瓷电容和云母电容用于 高频信号处理电路中,如 调频收音机和电视机的信 号处理。
耦合
电容用于信号耦合,将信 号从一个电路传输到另一 个电路,如音频信号的传 输。
03 电感的工作原理和应用
电感的磁路和电路特性
02 电容的工作原理和应用
电容的充电和放电过程
充电过程
当直流电压加在电容两端时,电容开 始充电,正电荷在电场力的作用下向 电容的一极移动,负电荷向另一极移 动,在极板上形成电荷积累。
放电过程
当充电后的电容两端接上负载电阻时 ,电容开始放电,电荷通过负载电阻 释放,电流逐渐减小,最终电容内的 电荷完全释放。
在RC振荡器中,通过改变电容的容量或电阻的阻值,可以调节振荡器的 输出频率。在LC振荡器中,通过改变电感的量或电容的容量,也可以调

第12单元 微带线匹配电路之设计与制作PPT课件

第12单元 微带线匹配电路之设计与制作PPT课件

求出
/41.6 7mm foF r 4 RSubstrate
4
Zin
Zo
ZL
150
圖1-4 /4轉阻器示意圖
1-29
單端短路殘段匹配網路
➢ 實例二:試設計頻率於2400 MHz之單端短路殘段 匹配網路,如圖1-5所示,使ZL= 150 之負載阻 抗匹配至Zin = 50 處。
ZL 150

l1 Zin
註:可參考圖1-13
1-24
傳輸線輸入阻抗與長度及負載關係
✓ 當ZL= ∞及 l = (3/8) 時 ( 即
3 4
)

Zin jZo
(1-14)
上式所顯示之特性為:一條終端開路的3/8 傳輸 線,其特性如同一個電感性元件 ,所以我們可以 利用一條開路的3/8微帶線替代一個並聯的電感 元件 ,而其電感抗之值是由微帶線之特性阻抗值 來決定。
ZL
V(z) I(z)
z0
Vo+ejz +Voejz (Vo+ejz Voejz) Zo
z0
Zo
Vo+(1+) Vo+(1)
Zo
(1+) (1)
其中: Vo Vo+ ;反射係數
(1-5)
1-15
反射係數之關係式
➢ 由式(1-5)我們即可求得反射係數與負載阻抗及特 性阻抗間之關係式:
L
ZL ZL
+
1-23
傳輸線輸入阻抗與長度及負載關係
✓ 當ZL= ∞及 l = (/8) 時 ( 即 0.25) :
ZinjZo
(1-13)
上式所顯示之特性為:一條終端開路的/8傳輸線, 其特性如同一個電容性元件,所以我們可以利用 一條開路的/8微帶線替代一個並聯的電容元件, 而其電容抗之值是由微帶線之特性阻抗值來決定。

电容与电感课件ppt

电容与电感课件ppt

旁路去耦
总结词
电容在电路中具有去耦的作用,能够消除电路中的自激振荡和噪声干扰。
详细描述
在电子电路中,常常通过在关键部位增加适当的去耦电容来消除自激振荡和噪声干扰。去耦电容能够旁路掉电源 中的高频噪声,提高电路的信噪比和稳定性。
能量存储
总结词
电容作为一种储能元件,能够存储电能并在需要时释放。
详细描述
电容的能量存储特性
能量存储
电容可以存储电能。当电压升高时,电容充电并存储能量。当电压降低时,电 容放电并释放能量。
储能计算
电容所储存的能量可以用以下公式表示:E = 1/2CV²,其中C是电容的电容量 ,V是电容两端的电压。
03
电容的应用
滤波稳压
总结词
电容在滤波稳压电路中发挥着重要的作用,能够平滑输出电 压,提高稳定性。
应用场景
扼流圈广泛应用于各种电子设备中 ,如电源、音频设备等,用于稳定 电流和防止电磁干扰。
变压器
定义
变压器是一种利用电磁感应原理 改变交流电压的装置。
工作原理
变压器由两个或多个绕组组成, 当一个绕组上施加交流电压时, 磁场在另一个绕组上产生感应电
动势,从而改变电压的大小。
应用场景
变压器广泛应用于电力系统和电 子设备中,如电源、电机控制、 音频设备等,用于升压、降压、
制造工艺上的联系与差异
总结词
电容和电感的制造工艺既有联系又有差异。
详细描述
它们的基本结构都是由导线绕制成线圈,但 电容的导线之间是并联关系,而电感的导线 之间则是串联关系。此外,电容的内部填充 物通常为绝缘材料,而电感的内部则可能填
充磁性材料。
THANKS。
电容的物理意义
电容的主要作用是储存电能。

电磁场课件-第三章微带传输线

电磁场课件-第三章微带传输线
导波速度
在微带线中,导波速度受到介质和导 体材料的影响,不同材料的微带线具 有不同的导波速度。
传播常数与衰减
传播常数
传播常数是描述电磁波在传输线中传播特性的参数,包括相位常数和衰减常数。
衰减
在微带线中,电磁波会因为介质和导体材料的损耗而发生衰减,衰减的大小与传输线的长度和频率有 关。
04 微带线的传输模式
降低介质损耗的方法包括选择低损耗的介质材料、降低介质温度和减小电场强度 等。
色散特性
色散是指不同频率的信号在传输过程中具有不同的相速度和 群速度的现象。在微带线中,色散主要与介质的介电常数和 电导率等因素有关。
了解色散特性对于设计高性能的微带线系统和避免信号失真 非常重要。通过优化微带线的结构和参数,可以减小色散效 应,提高信号传输质量。
03 微带传输线的电气特性
电场分布
电场分布特点
在微带线中,电场主要分布在导体和介质之间,而导体内部 电场强度较小。
电场分布与传输模式
电场的分布与传输模式有关,例如在准TEM模式下,电场主 要分布在导体两侧,而在其他模式下,电场分布可能更加复 杂。
阻抗与导波速度
阻抗计算
微带线的阻抗可以通过其几何尺寸和 介质参数计算得出,阻抗值与传输线 的特性阻抗有关。
微带线的宽度通常在几毫米到几十毫 米之间,根据传输信号的频率和介质 基片的电气性能来选择合适的宽度。
厚度
微带线的厚度通常在几微米到几百微 米之间,较薄的介质基片可以减小线 路的介质损耗,提高传输效率。
介质基片
种类
常用的介质基片有氧化铝、陶瓷、聚四氟乙烯等,根据应用场景和性能要求选 择合适的介质基片。
响。
应用场景
01
02
03

电感和电容PPT课件

电感和电容PPT课件

不能通直流,只能 通变化的电流
决 定 因 素
由导体本身( 长短、粗细、 材料)决定, 与温度有关
由线圈的自感系 由电容的大小和交 数和交流电的频 流电的频率决定( 率决定(成正比) 成反比)

能 转
电能转化为内 能
电能和磁场能转 化
电能与电场能转化

(1)隔直电容器:如图所示, 电容器的作用是“通交流、隔 直流”,因为直流电不能通过 电容器,交流电能“通过”电容 器。这种电容器的电容一般比 较大。
率决定(成正比)
由电容的大小和交 流电的频率决定(成 反比)
电能的 电流通过电阻做 转化与 功,电能转化为 做功 内能
电能和磁场能往 电能与电场能往复
复转化
转化
(1)如果将电容器与负载并联, 然后与电感器串联,就能更 好地起到滤掉电流中交流成 分或高频联, 就能更好地起到滤掉电流 中直流成分和低频成分的 作用。
解析:因L有“通低频、阻高频”的特点,因 此L的作用是阻挡高频成分;而通过L后还有少 量的高频成分,利用C“通高频、阻低频”的特 点,使绝大部分高频成分从C流过。
例2、如图所示,线圈L的自感系数和电容器的 电容C都很小(如L=100μH,C=100pF)。此 电路的主要作用是---------( )D
A.阻直流、通交流,输出交流 B.阻交流、通直流,输出直流 C.阻低频、通高频,输出高频交变电流 D.阻高频、通低频,输出低频交变电流和直 流电
例3、如图所示,当交流电源的电压(有效值)U= 220V、频率f=50Hz时,三只灯A、B、C的亮度相 同(L无直流电阻)。
(1)将交流电源的频率变为f=100Hz,则 (AC )
4.实际应用:扼流圈 (1)低频扼流圈:

第三章 微波传输线 4微带线

第三章 微波传输线 4微带线

第3章 微波传输线
微带线可由双导体系统演化而来, 但由于在中心导带和接 地板之间加入了介质, 因此在介质基底存在的微带线所传 输的波已非标准的TEM波, 而是纵向分量Ez和Hz必然存在。
下面我们首先从麦克斯韦尔方程出发加以证明纵向分量的 存在。
第3章 微波传输线
为微带线建立如图 3 - 5 所示的坐标。介质边界两边电磁 场均满足无源麦克斯韦方程组:
t )](w / h h
2)
h
2h
2h
第3章 微波传输线
式中, we为t不为零时导带的等效宽度; RS为导体表面电阻。
为了降低导体的损耗, 除了选择表面电阻率很小的导体材 料(金、 银、 铜)之外, 对微带线的加工工艺也有严格的要求。 一方面加大导体带厚度, 这是由于趋肤效应的影响, 导体带越厚, 则导体损耗越小, 故一般取导体厚度为 5~8 倍的趋肤深度; 另一 方面, 导体带表面的粗糙度要尽可能小, 一般应在微米量级以下。
(2) 介质衰减常数αd
对均匀介质传输线, 其介质衰减常数由下式决定:
ad
1 2
GZ0
27.3
0
tan
第3章 微波传输线
式中, tanδ为介质材料的损耗角正切。由于实际微带只有 部分介质填充, 因此必须使用以下修正公式
式中,
q
ad
e
27.3
(q e ) tan
0
r
为介质损耗角的填充系数。
r
一般情况下, 微带线的导体衰减远大于介质衰减, 因此一般
第3章 微波传输线
同理可得
EZ1 y
r
Ez 2 y
j
(1
1
r
)
E
y

微带线理论.ppt

微带线理论.ppt

图 3.34 耦合微带线
利用前述耦合传输线的结果得出耦合微带的传输参数。 对于奇模激励有
c v po eo 0 po eo o 2 po 1 Z 0o v po C 0 o ( r )
(3-3-14)
对于偶模激励有
c v pe ee 0 pe ee e 2 pe 1 Z 0e v pe C 0 e ( r )
式中,c为光速。
(3-3-15)
C0o(1)、C0e(1)、C0o(εr)、C0e(εr)可采用保角变换法或
介质格林函数积分方程法进行计算而得到精确解,但过程
传输模: 对于实际填充εr介质的标准微带线,导带周围一般有两种介 质,即导带上方为空气,下方为εr的介质,其场大部分集中在导 带与接地板之间,其余的场分布在空气介质中。实际上,微带线 中真正传输的是一种叫作TE-TM 的混合波,即纵向场分量Ez、 Hz不为零,主要是由介质、空气分界面处的边界条件引起的。 但由于纵向场与导带和接地板之间的横向场分量相比要小得多, 当工作频率不是很高时,适当选择微带线尺寸,便可忽略纵向场 分量的影响,因此微带线中传输模的特性与TEM 波相差很小, 故称其为准TEM 波。 实验表明,此时微带中纵向场分量比 较弱,其场分布与纯 TEM模很相似,微 带线实际的相速、特性阻抗等基本参量 和按纯TEM模计算的结果也十分接近。
变化
图3.31给出 了微带线有 效介电常数 平方根 e 随 W h 变 化的曲线。
图3.31微带线有效介电常数平方根

W
e
随 h
变化曲线
3.2.6 微带线的尺寸要求 微带线中除了准TEM 模外,同带状线一样,也有高次 模存在。微带线的高次模有波导模和表面波模两种模式。 波导模存在于导带与接地板之间,表面波模只要接地板上 有介质基片就会存在。 为了抑制高次模,微带线的横向尺寸应选择为

第三章微带传输线

第三章微带传输线


t h x
微带线及其坐标
二 微带线的传输模式
1 分布参数 和平行双线同轴线一样,只要微带线工组 模式是TEM波,可以定义微带线的分布参数 单位长度的电阻和电感、电导和电容。 可是由于微带线结构的特殊性很难得到其 简单的表达式。
2 TEM波传输线传输特性 根据平行双线和同轴线的传输特性,当 传输线周围填充同一种介质传输TEM波时, 传输线的传输特性可以概括为:
λmin > 2ω ε r λmin > 2h ε r λmin > 4h ε r 1
五 微带线的工程应用
微带线作为一种导行电磁波的机构, 由于其自身结构特点不能用于大功率传输 系统,而且也不适合用于长距离作为传输 线。前面已经说到,它更适合于构造成各 种微波电路元件,并与其它微波器件、元 件组合,作为小型平面化和集成微波电路 单元。这对于微波电路和设备的小型化、 集成化具有重要的意义。 通频带5GHz~15GHz。
微带线Z0和相对等效介电常数与尺寸的关系
5 微带线的工程计算 微带线的工程计算,通常是由给定的高 度、和波阻抗的要求,设计导带宽度。
6 微带线的传输模式 需要明确的是微带线中真正传输的是TE波 与TM波的混合波,称作EH波,其纵向分量 主要是介质与空气界面上的边缘场所引起。 但是由于微带线导行的电磁波,场量主要 集中于介质基片,波的纵向分量比之横向 分量要小的多,因此微带线中的电磁波与 TEM波相差很小,所以称之为准TEM波。 上述采用方法是一种非常好的近似方法。
导体损耗
αd =
Rs
Z 0W
=
π f
1
σ
Z 0W
介质损耗
εr G0 α c ≈ q tgδ , tg δ = 2 ε rc ωC0

第三章 微波传输线 4微带线

第三章 微波传输线 4微带线

2
e
(
f
)
r
1
4F
e
1.5
e
式中
F
4h
r 0
1 0.5 [1 2ln(1
w h
)]2
第3章 微波传输线
z0 (
f
)
z0
e( f ) e
1
1
e e( f )
5)
微带线的高次模有两种模式: 波导模式和表面波模式。 波 导模式存在于导带与接地板之间, 表面波模式则只要在接地板 上有介质基片即能存在。
可忽略介质衰减。但当用硅和砷化镓等半导体材料作为介质基
片时, 微带线的介质衰减相对较大, 不可忽略。
4)
前面对微带线的分析都是基于准TEM模条件下进行的。 当频率较低时, 这种假设是符合实际的。
第3章 微波传输线
然而, 实验证明, 当工作频率高于5GHz时, 介质微带线的特 性阻抗和相速的计算结果与实际相差较多。这表明, 当频率较 高时, 微带线中由TE和TM模组成的高次模使特性阻抗和相速
基片 打孔 蒸发 光刻 腐蚀 电镀 图 23-2 微带工艺
一般地说,微带均有介质填充,因此电磁波在其中传 播时产生波长缩短,微带的特点是微。
第3章 微波传输线
常用的基片有两种:
氧化铝Al2O3陶瓷 r=90~99 聚四氟乙烯或聚氯乙烯 r=2.50左右。
容易集成,和有源器件、半导体管构成放大、混频和振荡。
第3章 微波传输线
同理可得
EZ1 y
r
Ez 2 y
j
(1
1
r
)
E
y
2
可见,当εr≠1时, 必然存在纵向分量Ez和Hz, 亦即不存在纯 TEM模。但是当频率不很高时, 由于微带线基片厚度h远小于

微带传输线微带电容微带电感设计说明

微带传输线微带电容微带电感设计说明

ADS建模仿真
MUSB
MUSB
MLIN
ADS建模仿真
ADS建模仿真
手动设置法
• 手动微调微带传输线的W,当WH=2.96时,S11<-40dB,可以求出反射 系数为0.01,反射能量为万分之一,满足设:选择【Tools】→【LineCalc】→【Start LineCalc】 工具来分析综合微带线的特性阻抗。
ADS建模仿真
设置控件MSUB微带线参数 copper: relative permittivity:1 relative permeability:0.999991 conductivity:58000000 siemens/m mass density:8933
H=1mm,微带线基板厚度为1mm Er=2.3,微带线基板的相对介电常数为2.3 Mur=1,微带线基板的相对磁导率为1 Cond=58000000,微带线导体的电导率为58000000 Hu=1.0e+0.33mm,表示微带线的封装高度 T=0.05mm,微带线的导体层厚度为0.05mm(50um) TanD=0.0003,微带线的损耗角tan=0.0003 Rough=0mm,微带线表面粗糙度为0mm
微波电路ADS仿真
周亮 12111043
微带传输线设计
几种方法: (1)经验公式法 (2)手动设置法 (3)计算法,需要ADS的计算控件 (4)优化法
经验计算方法
微带线的特性阻抗计算方法:
Z0 =60 2
0 e
1+
W
1 +Ln(1+
W
( W )
h)
2h
2h
这个公式近似度差些,若要求稍微更精确些的计算,可采用下列的计算公式:

微带传输线微带电容微带电感设计-PPT

微带传输线微带电容微带电感设计-PPT
• 在原理图设计窗口中选择优化面板列表optim/stat/Yield/DOE, 在列表中选择优化控件optim,双击该控件设置优化方法和优化 次数,常用的优化方法有Random(随机)、Gradient(梯度)等。 随机法通常用于大范围搜索,梯度法则用于局部收敛。
• 在优化面板列表中选择优化目标控件Goal放置在原理图中,双 击该控件设置其参数。 Expr是优化目标名称,dB(S(1,2)) SimlnstanceName是仿真控件名称,这里选择SP1。 Min和Max是优化目标的最小与最大值。 Weight是指优化目标的权重。
计算结果
综合10Ghz频段
综合4Ghz频段
使用计算参数仿真结果
优化法
• 单击工具栏上的VAR 图标,把变量控件VAR放置在原理图上,双 击该图标弹出变量设置窗口,依次添加各变量。
• 在Name栏中填变量名称,Variable Value栏中填变量的初值, 点击Add添加变量,然后单击Tune/Opt/Stat/DOE Setup按钮设 置变量的取值范围,其中的Enabled/Disabled表示该变量是否 能被优化,Minimum Value表示可优化的最小值Maximum Value 表示可优化的最大值。
disp('微带线阻抗计算') er=2.3; wh=1:0.1:10 ee=(1+er)/2+(er-1)/2*(1+10*(1./wh)).^(-0.5); z0=120*pi./(wh+2.44-0.44./wh+(1-1./wh).^6) z1=60*pi*pi*sqrt(1./ee)./(1+pi*wh+log(1+pi/2.*wh)) subplot(1,2,1) plot(wh,z0) subplot(1,2,2) plot(wh,z1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-
ADS建模仿真
-
MUSB
-
MUSB
-
MLIN
-
ADS建模仿真
-
ADS建模仿真
-
手动设置法
• 手动微调微带传输线的W,当WH=2.96时,S11<-40dB,可以求出反射 系数为0.01,反射能量为万分之一,满足设计要求。
-
计算法
• 微带线计算控件:选择【Tools】→【LineCalc】→【Start LineCalc】 工具来分析综合微带线的特性阻抗。 在Substrate Parameters栏中填入与MSUB相同的微带线参数。 在Component Parameters栏中填入中心频率。 Physical栏中的W和L分别表示微带线的宽和长。 Electrical栏中的Z0和E_Eff分别表示微带线的特性阻抗和相位延迟, 点击Synthesize和Analyze栏,可以进行W、L与Z0、E_Eff间的相互 换算。
• 在原理图设计窗口中选择优化面板列表optim/stat/Yield/DOE,在列 表中选择优化控件optim,双击该控件设置优化方法和优化次数,常 用的优化方法有Random(随机)、Gradient(梯度)等。随机法通常用于 大范围搜索,梯度法则用于局部收敛。
• 在优化面板列表中选择优化目标控件Goal放置在原理图中,双击该控 件设置其参数。 Expr是优化目标名称,dB(S(1,2)) SimlnstanceName是仿真控件名称,这里选择SP1。 Min和Max是优化目标的最小与最大值。 Weight是指优化目标的权重。 RangeVar[1]是优化目标所依赖的-变量,这里为频率freq。 RangeMin[1]和RangeMax[1]是上述变量的变化范围。
-
计算结果
-
综合10Ghz频段
-
综合4Ghz频段
-
使用计算参数仿真结果
-
优化法
• 单击工具栏上的VAR 图标,把变量控件VAR放置在原理图上,双击该 图标弹出变量设置窗口,依次添加各变量。
• 在Name栏中填变量名称,Variable Value栏中填变量的初值,点击 Add添加变量,然后单击Tune/Opt/Stat/DOE Setup按钮设置变量的取 值范围,其中的Enabled/Disabled表示该变量是否能被优化, Minimum Value表示可优化的最小值Maximum Value表示可优化的最大 值。
最终得到WH比为1.95
-
Matlab计算结果
-
Matlab计算结果
-
Matlab计算结果
-
Matlab计算结果
-
ADS建模仿真
• 新建工程,选择【File】→【New Project】,系统出现新建工程对 话框。在name栏中输入工程:microstrip,并在Project Technology Files栏中选择ADS Standard:Length unit——millimet,默认单位 为mm。单击OK,完成新建工程,此时原理图设计窗口会自动打开。
优化法结果
-
介电常数1.3
-
介电常数2.3
-
介电常数3.3
-
导带线宽2mm
-
导带线宽3mm
-
导带线宽4mm
-
介质高度1mm
-
-
ADS建模仿真
设置控件MSUB微带线参数 copper: relative permittivity:1 relative permeability:0.999991 conductivity:58000000 siemens/m mass density:8933
H=1mm,微带线基板厚度为1mm Er=2.3,微带线基板的相对介电常数为2.3 Mur=1,微带线基板的相对磁导率为1 Cond=58000000,微带线导体的电导率为58000000 Hu=1.0e+0.33mm,表示微带线的封装高度 T=0.05mm,微带线的导体层厚度为0.05mm(50um) TanD=0.0003,微带线的损耗角tan=0.0003 Rough=0mm,微带线表面粗糙度为0mm
• 在原理图设计窗口中选择TLines-Microstrip元件面板列表,并选择 MSUB,按照如图所示的方式连接起来。
• 在原理图设计窗口中选择S参数仿真工具栏,Simulation-S_Param。 选择Term放置在微带线两边,用来定义端口1和2,并放置两个地,连 接好电路。 选择S参数扫描控件放置在原理图中,并设置扫描的频率范围和步长。 双击S参数仿真控制器,参数设置如下。 Start=0 GHz,表示频率扫描的起始频率为0 GHz。 Stop=5 GHz,表示频率扫描的终止频率为5 GHz。 Step=0.01 GHz,表示频率扫描的频率间隔为0.01 GHz。
Z 0 =60
W
1 + 1 Ln[2 e( W
( W h) +0.94) ]
2h h
2h
e
1+ r 2
+
r -1( 2
1+
10h W
)- 12
或者使用另一组计算公式:
Z0
=60Ln(
8h W
+
W 4h


W
hபைடு நூலகம்
Z0= W
120 +2.42-0.44 h
+( 1-
h
,W )6
h
-
h
W
W
Matlab编程
本设计中使用=2.3的介质,那么对于不同的W/h,使用matlab编程计算:
disp('微带线阻抗计算') er=2.3; wh=1:0.1:10 ee=(1+er)/2+(er-1)/2*(1+10*(1./wh)).^(-0.5); z0=120*pi./(wh+2.44-0.44./wh+(1-1./wh).^6) z1=60*pi*pi*sqrt(1./ee)./(1+pi*wh+log(1+pi/2.*wh)) subplot(1,2,1) plot(wh,z0) subplot(1,2,2) plot(wh,z1)
微波电路ADS仿真
周亮 12111043
-
微带传输线设计
几种方法: (1)经验公式法 (2)手动设置法 (3)计算法,需要ADS的计算控件 (4)优化法
-
经验计算方法
微带线的特性阻抗计算方法:
Z0 =60 2
0
1
( W h)
e 1+ W +Ln( 1+ W )
2h
2h
这个公式近似度差些,若要求稍微更精确些的计算,可采用下列的计算公式:
相关文档
最新文档