空间几何体的表面积与体积练习题及答案
高一数学空间几何体的表面积与体积试题答案及解析
高一数学空间几何体的表面积与体积试题答案及解析1. 已知正方体的棱长为1,且其顶点都在一个球面上,则该球的表面积为( ) A .π B .2π C .3π D .4π【答案】C.【解析】正方体的对角线长为外接球的直径,因此,,因此.【考点】球的表面积公式.2. 如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =2,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.【答案】S 表面=(60+4)π.V =π.【解析】该图形旋转后是一个圆台除去一个倒放的圆锥, 则S 表面=S 下底面+S 台侧面+S 锥侧面 , 设圆台上,下地面半径是r 1,r 2,则 S 表面=π×r 22+π×(r 2+r 1)×5+π×r 1×CDV =V 台-V 锥=π(+r 1r 2+)AE -πr 2DE ,将数据代入计算即可。
试题解析:如图,设圆台上,下地面半径是r 1,r 2,过C 点作CF ⊥AB ,由∠ADC =135°,CE ⊥AD, CD=2得∠EDC =45°,r 1=" CE=" 2,则CF=4,BF=3,CF ⊥AB ,得BC=5,r 2=" AB=" 5, ∴S 表面=S 下底面+S 台侧面+S 锥侧面 =π×r 22+π×(r 2+r 1)×5+π×r 1×CD =π×52+π×(2+5)×5+π×2×2 =(60+4)π. V =V 台-V 锥=π(+r 1r 2+)AE -πDE =π(+2×5+)4-π×2=π.【考点】圆台,圆锥的表面积和体积.3.如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.(1)求证:ED⊥平面EBC;(2)求三棱锥E-DBC的体积.【答案】(1)见解析;(2)【解析】(1)易得△DD1E为等腰直角三角形DE⊥EC,BC⊥平面 BC⊥DE,所以DE⊥平面EBC平面DEB⊥平面EBC.(2)需要做辅助线,取CD中点M,连接EM∥,DCB(这个证明很关键),然后根据公式.试题解析:(1)在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.∴△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.∴,即DE⊥EC.在长方体ABCD-中,BC⊥平面,又DE平面,∴BC⊥DE.又,∴DE⊥平面EBC.又∴平面DEB⊥平面EBC.(2)取CD中点M,连接EM,E为D1C1的中点,∥,且,又DCB.【考点】线面垂直,三棱锥的体积.4.设甲、乙两个圆柱的底面积分别为,体积分别为,若它们的侧面积相等,且,则的值是.【答案】【解析】设甲、乙两个圆柱的底面半径为,母线长,由于侧面积相等,,,,.【考点】圆柱的体积公式应用.5.如果两个球的体积之比为8:27,那么两个球的表面积之比为()A.8:27B.2:3C.4:9D.2:9【答案】C【解析】由题意,故选C【考点】球的体积和表面积6.棱长为4的正方体的八个顶点都在同一个球面上,则此球的表面积为_____________.【答案】48【解析】正方体的外接球的球心为正方体的中心,球的直径为正方体的对角线,所以球的表面积为【考点】正方体的外接球7.如图是从上下底面处在水平状态下的棱长为的正方体中分离出来的.有如下结论:①在图中的度数和它表示的角的真实度数都是;②;③与所成的角是;④若,则用图示中这样一个装置盛水,最多能盛的水.其中正确的结论是(请填上你所有认为正确结论的序号).【答案】①④【解析】①∵在正视图的等腰直角中,在图中的度数和它表示的角的真实度数都是,故①正确;②补全正方体如图所示:连接.∵,∴是正三角形,故.而==,故②错;③连接、,∵,∴是正三角形,所以与所成的角是,故③错;④用图示中这样一个装置来盛水,那么盛最多体积的水时应是三棱锥的体积.又===,故④正确,故填①④.【考点】1、正方体的性质;2、异面直线所成角;3、三棱锥的体积.8.已知一个正三棱锥的三条侧棱两两垂直且相等,底面边长为,则该三棱锥的外接球的表面积是()A.B.C.D.【答案】A【解析】设该正三棱锥为,依题意两两垂直且,所以,且该正三棱锥的外接球与以为邻边的正方体的外接球是相同的,正方体的边长为,体对角线长为,故球的半径为,所以球的表面积为,故选A.【考点】1.三棱锥的外接球;2.球的表面积公式.9.如图,已知直三棱柱中,,,,D为BC的中点.(1)求证:∥面;(2)求三棱锥的体积.【答案】(1)略(2)【解析】(1)连接交于点O,连接OD,在中可根据中位线证得∥,再根据线面平行的性质定理可证得∥面。
高二数学空间几何体的表面积与体积试题答案及解析
高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.一个圆柱形的罐子半径是4米,高是9米,将其平放,并在其中注入深2米的水,截面如图所示,水的体积是()平方米.A.B.C.D.【答案】D.【解析】所求几何体的体积为阴影部分的面积与高的乘积,在中,,则,,体积.【考点】组合体的体积.3.一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是_________.【答案】【解析】由正视图可知四棱锥的底面边长为2,高为2,可求出斜高为,因此四棱锥的侧面积,答案为.【考点】1.几何体的三视图;2.锥体的侧面积计算4.已知球的直径SC=4,A.,B是该球球面上的两点,AB=2,∠ASC=∠BSC=45°,则棱锥S-ABC的体积为_________【答案】【解析】设AB的中点为D,球心为O,连结SD,CD,OD,由SC=4为球的直径知,∠SBC=∠SAC=90o,因为∠ASC=∠BSC=45°,所以SA=BC=SB=AC=,所以SD⊥AB,DC⊥AB,所以AB⊥面SDC,因为AB=2,所以SD=DC==,所以DO= =,所以= ===.考点:球的性质,线面垂直判定,三棱锥的体积公式,转化思想5.如图,一个盛满水的三棱锥容器,不久发现三条侧棱上各有一个小洞,且知,若仍用这个容器盛水,则最多可盛水的体积是原来的 .【答案】【解析】过作截面平行于平面,可得截面下体积为原体积的,若过点F,作截面平行于平面,可得截面上的体积为原体积的,若C为最低点,以平面为水平上面,则体积为原体积的,此时体积最大.【考点】体积相似计算.6.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。
高三高考数学复习练习82空间几何体的表面积与体积
821.一个球的表面积是16π,那么这个球的体积为( )A.163π B.323π C .16π D .24π【解析】 设球的半径为R ,因为表面积是16π,所以4πR 2=16π,解得R =2,所以体积为43πR 3=32π3. 【答案】 B2.某几何体的三视图如图所示,则其表面积为( )A .πB .2πC .3πD .4π【解析】 由三视图可知,该几何体为半径为r =1的半球体,表面积为底面圆面积加上半球面的面积,所以S =πr 2+12×4πr 2=π×12+12×4π×12=3π.故选C. 【答案】 C3.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3 D .2π【解析】 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 【答案】 C4.一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2 【解析】 由空间几何体的三视图可得该空间几何体的直观图,如图所示,∴该四面体的表面积为S 表=2×12×2×1+2×34×(2)2=2+3,故选B. 【答案】 B5.(2018·太原一模)某几何体的三视图如图所示,则该几何体的表面积为( )A .6π+1B.(24+2)π4+1C.(23+2)π4+12D.(23+2)π4+1 【解析】 由几何体的三视图知,该几何体为一个组合体,其中下部是底面直径为2,高为2的圆柱,上部是底面直径为2,高为1的圆锥的四分之一,所以该几何体的表面积为4π+π+3π4+2π4+1=(23+2)π4+1,故选D. 【答案】 D6.甲几何体(上)与乙几何体(下)的组合体的三视图如图所示,甲、乙几何体的体积分别为V 1,V 2,则V 1∶V 2等于( )A .1∶4B .1∶3C .2∶3D .1∶π【解析】 由三视图知,甲几何体是半径为1的球,乙几何体是底面半径为2,高为3的圆锥,所以球的体积V 1=43π,V 2=13π×22×3=4π,所以V 1∶V 2=1∶3.故选B. 【答案】 B7.(2017·全国Ⅲ卷)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB.3π4C.π2D.π4【解析】 设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r = 12-⎝⎛⎭⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4. 故选B.【答案】 B8.(2017·襄阳调研)如图是一个空间几何体的三视图,则该几何体的表面积为________.【解析】 由三视图可知,该几何体是一个正四棱柱挖掉一个半球所得的几何体,其中半球的底面就是正四棱柱上底面的内切圆,正四棱柱的底面边长为4,高为2,半球所在球的半径为2.所以该几何体的表面由正四棱柱的表面与半球的表面积之和减去半球的底面构成,故其表面积为(4×4×2+2×4×4)+12×(4π×22)-π×22=64+4π. 【答案】 64+4π9.(2018·乌鲁木齐二诊)已知四面体ABCD 满足AB =CD =6,AC =AD =BC =BD =2,则四面体ABCD 的外接球的表面积是________.【解析】 (图略)在四面体ABCD 中,取线段CD 的中点为E ,连接AE ,BE .∵AC =AD =BC =BD =2,∴AE ⊥CD ,BE ⊥C D.在Rt △AED 中,CD =6,∴AE =102.同理BE =102.取AB 的中点为F ,连接EF .由AE =BE ,得EF ⊥A B.在Rt △EF A 中,∵AF =12AB =62,AE =102,∴EF =1.取EF 的中点为O ,连接OA ,则OF =12.在Rt △OF A 中,OA =72.∵OA =OB =OC =OD ,∴该四面体的外接球的半径是72,∴外接球的表面积是7π. 【答案】 7π10.(2018·贵州适应性考试)已知球O 的表面积是36π,A ,B 是球面上的两点,∠AOB =60°,C 是球面上的动点,则四面体OABC 体积V 的最大值为________.【解析】 设球的半径为R ,由4πR 2=36π,得R =3.显然在四面体OABC 中,△OAB 的面积为定值,S △OAB =12×R ×32R =34R 2=934.要使三棱锥的体积最大,只需球上的点到平面OAB 的距离最大,显然,到平面OAB 距离的最大值为球的半径,所以四面体OABC 的体积的最大值V =13×934×R =934. 【答案】 93411.(2016·全国丙卷)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明:MN ∥平面P AB ;(2)求四面体N -BCM 的体积.【解析】 (1)证明 由已知得AM =23AD =2. 如图,取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =12BC =2. 又AD ∥BC ,故TN 綊AM ,所以四边形AMNT 为平行四边形,于是MN ∥AT .因为AT ⊂平面P AB ,MN ⊄平面P AB ,所以MN ∥平面P AB .(2)因为P A ⊥平面ABCD ,N 为PC 的中点,所以N 到平面ABCD 的距离为12P A. 取BC 的中点E ,连接AE .由AB =AC =3得AE ⊥BC ,AE =AB 2-BE 2= 5.由AM ∥BC 得M 到BC 的距离为5,故S △BCM =12×4×5=2 5. 所以四面体N -BCM 的体积V N -BCM =13×S △BCM ×P A 2=453. 12.如图所示,在空间几何体ADE -BCF 中,四边形ABCD 是梯形,四边形CDEF 是矩形,且平面ABCD ⊥平面CDEF ,AD ⊥DC ,AB =AD =DE =2,EF =4,M 是线段AE 上的动点.(1)试确定点M 的位置,使AC ∥平面MDF ,并说明理由;(2)在(1)的条件下,平面MDF 将几何体ADE -BCF 分成两部分,求空间几何体M -DEF 与空间几何体ADM -BCF 的体积之比.【解析】(1)当M 是线段AE 的中点时,AC ∥平面MDF .理由如下:连接CE 交DF 于点N ,连接MN .因为M ,N 分别是AE ,CE 的中点,所以MN ∥AC .又因为MN ⊂平面MDF ,AC ⊄平面MDF ,所以AC ∥平面MDF .(2)将几何体ADE -BCF 补成三棱柱ADE -B ′CF ,如图所示,三棱柱ADE -B ′CF 的体积为V =S △ADE ·CD =12×2×2×4=8,则几何体ADE -BCF 的体积V ADE BCF =V ADE B ′CF -V F BB ′C=8-13×⎝⎛⎭⎫12×2×2×2=203. 因为三棱锥M -DEF 的体积V M DEF =13×⎝⎛⎭⎫12×2×4×1=43, 所以V ADM BCF =203-43=163, 所以两几何体的体积之比为43∶163=1∶4.。
空间几何体的表面积与体积习题附答案
空间几何体的表面积与体积习题附答案1.圆柱的侧面积可以通过展开图计算,展开图是一个正方形,边长为2πr,所以侧面积为4πr^2,即4πS,因此选项为A。
2.根据三视图可以看出该几何体由两个同底的半圆锥组成,底面半径为1,高为3,因此体积为2×(1/3)πr^2h=π,因此选项为D。
3.根据三视图可以看出该几何体是一个组合体,由一个底面为等腰直角三角形的直三棱柱和一个底面为等腰直角三角形的三棱锥组成。
直三棱柱的高为2,三棱锥的高为2,因此梯形的高为2,底边为2和4,面积为(2+4)×2/2=6,共有2个梯形,因此梯形的面积之和为12,因此选项为B。
4.根据三视图可以看出该几何体为一个圆柱挖去一个同底的圆锥,圆锥的高为圆柱高的一半,因此圆锥的高为2,圆柱的底面积为π,侧面积为4π,圆锥的侧面积为2π×5/2=5π,因此表面积为π+4π+5π=9π+5π,因此选项为A。
5.根据三视图可以看出该几何体为一个直三棱柱削去一个同底的三棱锥,三棱柱的高为5,三棱锥的高为3,三棱锥与三棱柱的底面均为两直角边分别为3和4的直角三角形,因此三棱柱的体积为底面积×高=3×4×5=60,三棱锥的体积为1/3×底面积×高=1/3×3×4×3=4,因此该几何体的体积为60-4=56,因此选项为C。
C1F=4,连接EF,交AD于点G,求三角形AEF和四边形ABCG的面积和长方体ABCD-A1B1C1D1的体积.解:首先可以求出AE=BF=6,EF=8,再根据三角形相似可以求出AG=12,GD=4,因此AD=16,AGD为等腰直角三角形,所以GD=DG=4,因此CG=10,BG=AB-AG =4,所以ABCG为梯形,其面积为(AB+CG)×4=56.三角形AEF的面积为1/2×AE×EF=24.长方体ABCD-A1B1C1D1的体积为16×10×8=1280.题目1:一长方体被平面α分成两个高为10的直棱柱,求平面α把该长方体分成的两部分体积的比值。
高中数学必修2 空间几何体的表面积与体积最全试题及答案
空间几何体的表面积与体积一.相关知识点1.几何体的表面积(1)棱柱、棱锥、棱台的表面积就是各个面的面积的和。
(2)圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环。
(3)若圆柱、圆锥的底面半径为r,母线长l,则其表面积为S柱=2πr2+2πrl,S锥=πr2+πrl。
(4)若圆台的上下底面半径为r1,r2,母线长为l,则圆台的表面积为S=π(r21+r22)+π(r1+r2)l。
(5)球的表面积为4πR2(球半径是R)。
2.几何体的体积(1)V柱体=Sh。
(2)V锥体=13Sh。
(3)V台体V圆台=13π(r21+r1r2+r22)h,V球=43πR3(球半径是R)。
一、细品教材1.(必修2P28A组T3改编)如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________。
2.(必修2P36A组T10改编)一直角三角形的三边长分别为6 cm,8 cm,10 cm,绕斜边旋转一周所得几何体的表面积为________。
细品教材答案:1.1∶47; 2.3365π cm2二、基础自测1.(2016·全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()A.20π B.24πC.28π D.32π2.已知正四棱锥的侧棱与底面的边长都为32,则这个四棱锥的外接球的表面积为()A.12π B.36πC.72π D.108π3.表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为__________。
4.(2016·北京高考)某四棱柱的三视图如图所示,则该四棱柱的体积为________。
5.(2016·赤峰模拟)已知三棱柱ABC-A1B1C1的侧棱和底面垂直,且所有棱长都相等,若该三棱柱的各顶点都在球O的表面上,且球O的表面积为7π,则此三棱柱的体积为________。
基础自测答案1.C;2.B;3.2;4.32;5.94三.直击考点考点一空间几何体的表面积【典例1】(1)某几何体的三视图如图所示,则该几何体的表面积等于()A.8+22B.11+22C.14+2 2 D.15(2)(2016·全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径。
专题24 空间几何体的表面积与体积(纯答案)
专题24 空间几何体的表面积与体积 答案题型一、柱与锥的体积与表面积例1、【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 ▲ cm.【答案】2π【解析】正六棱柱体积为262⨯, 圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为: 2π变式1、(多选题)(2020届山东省潍坊市高三上期末)等腰直角三角形直角边长为1 ,现将该三角形绕其某一边旋转一周 ,则所形成的几何体的表面积可以为( )AB .(1π+C .D .(2π+【答案】AB 【解析】如果是绕直角边旋转,形成圆锥,圆锥底面半径为1,高为1,所以所形成的几何体的表面积是)22111S rl r πππππ=+=⨯⨯=.如果绕斜边旋转,形成的是上下两个圆锥,圆锥的半径是直角三角形斜边的高2,两个圆锥的母线都是直角三角形的直角边,母线长是1,所以写成的几何体的表面积221S rl ππ=⨯=⨯=.综上可知形成几何体的表面积是)1π.故选:AB变式2、【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形, ∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.变式3、【2019.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】π4【解析】由题意,四棱锥的底面是边长为,借助勾股定理,可知四棱锥的高为2=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12, 故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 变式4、【2018年高考全国II 卷理数】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为__________.【答案】【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 因为SAB △的面积为,l 所以221802l l ⨯=∴=,因为SA 与圆锥底面所成角为45°,所以底面半径为πcos,4r l ==因此圆锥的侧面积为2ππ.2rl l == 题型二、球的切与接的问题例2、【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=1OO AB ∴==,根据球的截面性质1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====, ∴球O 的表面积2464S R ππ==.故选:A.变式1、【2020年高考天津】若棱长为 A .12π B .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=. 故选:C .变式2、(2020届山东省德州市高三上期末)中国古代数学经典《九章算术》系统地总结了战国、秦、汉时期的数学成就,书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑,如图为一个阳马与一个鳖臑的组合体,已知PA ⊥平面ABCE ,四边形ABCD 为正方形,AD =ED =P ADE -的外接球的体积为,则阳马P ABCD -的外接球的表面积等于______.【答案】20π【解析】四边形ABCD 是正方形,AD CD ∴⊥,即AD CE ⊥,且AD =ED =,所以,ADE ∆的外接圆半径为12AE r ===设鳖臑P ADE -的外接球的半径1R ,则3143R π=,解得12R =.PA ⊥平面ADE ,1R ∴=2PA ==PA ∴=正方形ABCD 的外接圆直径为22r AC ===,2r ∴=,PA ⊥平面ABCD ,所以,阳马P ABCD -的外接球半径2R ==因此,阳马P ABCD -的外接球的表面积为22420R ππ=.变式3、(2020届山东省泰安市高三上期末)已知正三棱锥S ABC -的侧棱长为43,底面边长为6,则该正三棱锥外接球的表面积是( ) A .16π B .20πC .32πD .64π【答案】D【解析】如图所示,因为正三棱锥S ABC -的侧棱长为6,则263AE ==6SE ===, 又由球心O 到四个顶点的距离相等,在直角三角形AOE 中,,6AO R OE SE SO R ==-=-,又由222OA AE OE =+,即222(6)R R =+-,解得4R =,所以球的表面积为2464S R ππ==, 故选D.变式4、【2019年高考全国Ⅲ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D【解析】解法一:,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R ==344π33R V R =∴=π==,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC △为边长为2的等边三角形,CF ∴=,又90CEF ∠=︒,12CE AE PA x ∴===, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =,D 为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,2212122x x x ∴+=∴==,,,PA PB PC ∴=== 又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,34433V R ∴=π==,故选D.1、(2020届山东省潍坊市高三上学期统考)已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,则过A ,B ,C ,D 四点的球的表面积为( )A .3πB .4πC .5πD .6π【答案】C【解析】边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造以其为长宽高的长方体,其对角线即为球的直径,三条棱长分别为1,12R ==245S ππ==,故选C. 2、【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A B C D【答案】C【解析】如图,设,CD a PE b ==,则PO ==,由题意得212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得14b a +=. 故选C .3、【2020年高考全国II 卷理数】已知△ABC 的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为A B .32C .1D .2【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =. 设ABC △外接圆半径为r ,边长为a ,ABC △21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC的距离1d ==.故选:C .4、【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______. 【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 故答案为:15、【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 6、【2018年高考江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于√2,所以该多面体的体积为2142133⨯⨯⨯=. 7、(2020届山东省滨州市三校高三上学期联考)已知三棱锥S ABC -,SA ⊥平面ABC ,6ABC π∠=,3SA =,1BC =,直线SB 和平面ABC 所成的角大小为3π.若三棱锥S ABC -的四个顶点都在同一球面上,则该球的表面积为________.【答案】13π【解析】如图:SA ⊥平面ABC ,则SBA ∠为直线SB 和平面ABC 所成的角,即3SBA π∠=在Rt SAB ∆中:tan 3SAAB π=== 如图,设O 为三棱锥S ABC -外接球的球心,G 为ABC ∆外接圆圆心, 连结,,,,OA OB GA GB OG ,则必有OG ⊥面ABC在ABC ∆,2222cos 312162AC AB BC AB BC π=+-⋅⋅=+-=, 则1AC = 其外接圆半径122,1sin sin 6AC r r ABC π====∠, 又1322OG SA ==, 所以三棱锥S ABC -外接球半径为R ===该球的表面积为21344134S R πππ==⨯=, 故答案为:13π.。
最新空间几何体的表面积与体积练习题.及答案
空间几何体的表面积与体积专题一、选择题1 •棱长为2的正四面体的表面积是(C ).A. 3 B . 4 C . 4 3 D . 16解析 每个面的面积为:2X 2X 2X — •••正四面体的表面积为:4,3. 2. 把球的表面积扩大到原来的2倍,那么体积扩大到原来的(B ). A. 2 倍B . 2 2倍C. 2倍D.32咅解析 由题意知球的半径扩大到原来的 2倍,则体积V =彳冗戌,知体积扩大到原来的2 2倍.3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为 142284 BP解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积 V = V 长方体一V 正三"4X 4X 6—卜!X 2X2 X 2842=亍4 .某几何体的三视图如下,则它的体积是A)A. 8 — 2n B . 8—n n C . 8 — 2n解析由三视图可知该几何体是一个边长为3 1径为1,咼为2的圆锥,所以v = 2 — 3X 2nX 2= 8 —三. 5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何^3 /Tn体的体积为(A)A . 24 — 2冗 B . 24—§ C . 24— n D . 24—据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分1别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V = 2X 3X 4—2XnX1 X 3= 24—6 .某品牌香水瓶的三视图如图(单位:cm ),则该几何体的表面积为( C ) B ).3C.280140 D.-T2n D 2的正方体内部挖去一个底面半正三角形,所以 V = ^S A ABD X 4=〔 3.二、填空题8. 三棱锥PABC 中, PAL 底面ABC PA = 3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体 积等于_^3 _______ •解析 依题意有,三棱锥PABC 的体积V = J S A ABC -| PA| = 3X^43X 22X 3=/3.9. 一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球 的体积之比为_ 3 : 2 _______ .解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2n r -2r = 4n r 2,设球的 半径是R,则球的表面积是4n 氏,根据已知4n 4n r 2,所以R = r.所以圆柱的体积是n r 2・2r =2n r 3,球的体积是3n r 3,所以圆柱的体积和球的体积的比是= 3 : 2. 3433n r10. 如图所示,已知一个多面体的平面展开图( 2J n \严-才Cm B. 7二 n \ 2J n 、 94 + — I cmD.7解析这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、,.,. n下面是一个四棱柱.上面四棱柱的表面积为2X 3X 3+ 12X 1 ——n 1=30 ——;中间部分的表面积为 2 n X 2 X 1= n ,下面部分的表面积为2X 4X 4+ 16X 2— n = 64—手.故其表面积是94 +弓.4 4 27. 已知球的直径SC = 4, A , B 是该球球面上的两点,A 吐 3, / AS(=Z BS(= 30°,则棱锥S-ABC 的体积为( C).A. 3 3 B . 2 3 C.3 D . 1解析 由题可知AB —定在与直径SC 垂直的小圆面上,作过 AB 的小圆交直径SC 于D,设SD = x , 则DC = 4 — x ,此时所求棱锥即分割成两个棱锥 S-ABD 和 C-ABD 在厶SAD ffiA SBD 中,由已知条件 可得AD = BC=¥X ,又因为SC 为直径,所以/ SB(=Z SA(= 90°,所以/ DC =Z DCA= 60°,在3 △ BDC 中 , BD= \.?3(4 — x),所以 3 x = _ 3(4 — x),所以 x = 3, AD = BD = 3,所以三角形ABD 为A. C. 2 cm 2 cm圧视閉 値视图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是解析 由题知该多面体为正四棱锥,底面边长为 1,侧棱长为1,斜高为~^,连 接顶点和底面中心即为高,可求得高为才所以体积1x 仆子# 11.如图,半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时, 球的表面积与该圆柱的侧面积之差是 ___ 2 n R ____ .解析 由球的半径为R,可知球的表面积为4n 氏.设内接圆柱底面半径为r ,高为 2h ,则h + r 2= R.而圆柱的侧面积为2 n r ・2h = 4n rh <4 n 2 — = 2n R(当且仅当r = h 时等号成立),即内接圆柱的侧面积最大值为2n R 2,此时球的表面积与内 接圆柱的侧面积之差为2n 巨12.如图,已知正三棱柱 ABCBC 的底面边长为2 cm,高为5 cm,则一质点自点 A 出发,沿着三棱柱的侧面绕行两周到达点 A 1的最短路线的长为 13 cm.解析 根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展 开为如图所示的实线部分,贝冋知所求最短路线的长为 52 + 122二13(cm).三、解答题13.某高速公路收费站入口处的安全标识墩如图 1所示,墩的上 半部分是正四棱锥PEFGH 下半部分是长方体 ABCDEFG 图2、图 3分别是该标识墩的正视图和俯视图.(2)求该安全标识墩的体积. 解析⑴侧视图同正视图,如图所示:1 2 2 3V = V P EFG 卄 V KBCDEFG ^ 3 x 40 x 60+ 40 x 20= 64 000(cm ).314 . 一个几何体的三视图如图所示.已知正视图是底边长为 侧视(1)请画出该安全标识墩的侧视图; (2)该安全标识墩的体积为1的正方形拼成 S.俯觇图cnii1的平行四边形,图是一个长为.3,宽为1的矩形,俯视图为两个边长为的矩形.(1)求该几何体的体积V;⑵求该几何体的表面积解析(1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为,3,所以V= 1 x 1 x 3= 3.⑵由三视图可知,该平行六面体中,A1DL平面ABCD CDL平面BCC1B,1所以AA1= 2,侧面ABB1A1 CDD1C均为矩形,S= 2X (1 x 1+ 1X 3+ 1X 2)= 6+ 2 3.15. 已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为&高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.解析由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h1的等腰三角形,左、右侧面均为底边长为6,高为h2的等腰三角形,如右图所示.1 1(1)几何体的体积为:V= 3 • S矩形• h=-X 6X 8X 4= 64.3 3(2)正侧面及相对侧面底边上的高为:h1= ,42+ 32= 5.左、右侧面的底边上的高为:h2= . 42+ 42=1 、4 2.故几何体的侧面面积为:S= 2X ^X 8X5 + 2X 6X 4 2 = 40 + 24,2.1. 一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()..2解:设展开图的正方形边长为a,圆柱的底面半径为r,则2n=a, ,底面圆的面积是—,2兀4兀2a +g2于是全面积与侧面积的比是三,a222. 在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后,剩下的几何体的体积是()•2 .解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是1 (丄--)」1,于是8个三棱锥的体积是1,剩余部分的体积是-,3 2 2 2 2 48 6 63 .—个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm和8cm,高是5cm,则这个直棱柱的全面积是 _____________ 。
高二数学空间几何体的表面积与体积试题答案及解析
高二数学空间几何体的表面积与体积试题答案及解析1.正四棱锥的五个顶点在同一个球面上,若其底面边长为4,侧棱长为,则此球的表面积为()A.B.C.D.【答案】B【解析】设球的半径为,正方形的ABCD的对角线的交点 M,则球心在直线PM上.,由勾股定理得,再由射影定理得即∴此球的表面积为.【考点】球的表面积.2.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.【答案】.【解析】设圆锥的底面半径和高为,则其母线长;所以圆锥的侧面积,底面面积,则它的侧面积与底面积的比为.【考点】圆锥的侧面积公式.3.如图1,直角梯形中,,分别为边和上的点,且,.将四边形沿折起成如图2的位置,使.(1)求证:平面;(2)求四棱锥的体积.【答案】(1)见解析;(2)【解析】(1)此题是个折叠图形题,平面和立体的互化,分析可知面面;(2)求体积,抓住地面和底面上的高,显然平面面,这个证明很重要,可以确定底面和底面上的高.试题解析:(1)证:面面又面所以平面(2)取的中点,连接平面又平面面所以四棱锥的体积【考点】线面平行的判定,线面垂直的判定.4.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=4,AB=2,以BD的中点O为球心、BD为直径的球面交PD于点M.(1)求证:平面ABM平面PCD;(2)求三棱锥M-ABD的体积.【答案】(1)见解析(2)【解析】(1)由PA⊥平面ABCD知,PA⊥AB,由ABCD为矩形知,AB⊥AD,由线面垂直判定定理知,AB⊥PAD,所以PB⊥AB,由以BD为直径的球与PB的交点为M知,BM⊥DM,由线面垂直判定知PD⊥面ABM,由面面垂直判定定理知面PCD⊥面ABM;(2)由(1)知,PD⊥面ABM,所以PD⊥AM,因为PA=AD=4,所以M是PD的中点,取AD的中点为N,则NM平行PA,因为PA⊥平面ABCD,所以MN⊥ABCD,MN==2,即MN是三棱锥M-ABD的高,用棱锥的体积公式即可求出其体积.试题解析:(1)又由题意得,又 6分(2)由(1)知,PD⊥面ABM,所以PD⊥AM,因为PA=AD=4,所以M是PD的中点,取AD的中点为N,则NM平行PA,因为PA⊥平面ABCD,所以MN⊥ABCD,MN==2,所以===. 12分考点:球的性质,线面垂直的判定与性质,面面垂直判定定理,棱锥的体积公式,逻辑推论证能力.5.四面体ABCD中,已知AB=CD=,AC=BD=,AD=BC=,则四面体ABCD的外接球的表面()A.25p B.45p C.50p D.100p【答案】C【解析】作长方体,AB=CD=,AC=BD=,AD=BC=,该长方体和四面体有共同的外接球,长方体的对角线长为直径长,,表面积【考点】四面体的外接球的体积.6.如图,已知球的面上有四点,平面,,,则球的表面积为.【答案】【解析】把几何体看成长方体一部分,由于,,因此为球的直径半径,因此球的表面积【考点】球的表面积公式的应用.7.已知空间4个球,它们的半径分别为2, 2, 3, 3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为()A.B.C.D.【答案】B【解析】设半径为的两个球的球心为,半径为2的两个球的球心为,与这4个球都外切的小球的球心为,半径为,连接,得到四棱锥,则,,连接,取的中点分别为,连接,在中,,同理,为等腰三角形,,同理可证,是异面直线的公垂线,又分别是的中点,在线段上,在中,,同理得,在中,,又,由此可得,解得,负值舍去。
空间几何体的表面积与体积习题附答案
1.圆柱的底面积为S ,侧面展开图是一个正方形,那么圆柱的侧面积是( )A .4πSB.2πS C .πS D .233πS 解析:选A .由πr 2=S 得圆柱的底面半径是S π,故侧面展开图的边长为2π·S π=2πS ,所以圆柱的侧面积是4πS ,故选A .2.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的体积是( )A .πB.π3 C .3π D .3π3解析:选D .由三视图可知,该几何体是两个同底的半圆锥,其中底的半径为1,高为22-12=3,因此体积=2×12×13π×12×3=33π.3.(2017·高考全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B.12 C .14 D .16解析:选B .由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B . 4.(2018·兰州诊断考试)某几何体的三视图如图所示,则该几何体的表面积为( )A .(9+5)πB.(9+25)π C .(10+5)π D .(10+25)π解析:选A .由三视图可知,该几何体为一个圆柱挖去一个同底的圆锥,且圆锥的高是圆柱高的一半.故该几何体的表面积S =π×12+4×2π+12×2π×5=(9+5)π. 5.(2018·云南第一次统考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )A .12B.18 C .24 D .30解析:选C .由三视图知,该几何体是直三棱柱削去一个同底的三棱锥,其中三棱柱的高为5,削去的三棱锥的高为3,三棱锥与三棱柱的底面均为两直角边分别为3和4的直角三角形,所以该几何体的体积为12×3×4×5-13×12×3×4×3=24,故选C . 6.将一个边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是________. 解析:当以长度为4π的边为底面圆时,底面圆的半径为2,两个底面的面积是8π;当以长度为8π的边为底面圆时,底面圆的半径为4,两个底面圆的面积为32π.无论哪种方式,侧面积都是矩形的面积32π2.故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π7.一个几何体的三视图如图所示,则该几何体的体积为________.。
空间几何体的表面积与体积练习题
空间几何体的表面积与体积练习题.及答案空间几何体的表面积与体积专题1.选择题1.正四面体的棱长为2,其表面积为43.解析:每个面的面积为2×2×sin60°=3,正四面体共有4个面,故表面积为4×3=12,即43.2.将球的表面积扩大到原来的2倍,其体积扩大到原来的22倍。
解析:由题意可知球的半径扩大到原来的2倍,故体积扩大到原来的(2^3)/(2^2)=4倍,即22倍。
3.给定一个长方体截去一个角后所得多面体的三视图,求该多面体的体积。
解析:根据三视图的特点,可画出多面体的形状,如图所示。
该多面体是由长方体截去一个正三棱锥而得到的,故所求多面体的体积为V=长方体的体积-正三棱锥的体积=4×4×6-1/3×(1/2)×2×2×2=284/3.4.给定某几何体的三视图,求其体积。
解析:由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半径为1,高为2的圆锥,故其体积为V=2^3-1/3×π×1^2×2=8-2π/3.5.已知某几何体的三视图,其中正视图中半圆的半径为1,求该几何体的体积。
解析:根据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为2、3、4,半圆柱的底面半径为1,母线长为3,故其体积为V=2×3×4-1/3×π×1^2×3=24-π/3.6.给定某品牌香水瓶的三视图,求其表面积。
解析:该空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱。
上面四棱柱的表面积为2×3×3+12×1-1/4×π×1^2=30,中间部分的表面积为2π×1=2π,下面部分的表面积为2×4×4+16×2-1/4×π×1^2=64,故其表面积为94+π。
3空间几何体的表面积与体积含答案
1.3空间几何体的表面积与体积1图形2(1)柱体:柱体的底面面积为S,高为h,则V=______.(2)锥体:锥体的底面面积为S,高为h,则V=______.(3)台体:台体的上、下底面面积分别为S′、S,高为h,则V=13(S′+S′S+S)h.3.球的表面积设球的半径为R,则球的表面积S=_____,即球的表面积等于它的大圆面积的_____倍.4.球的体积设球的半径为R,则球的体积V=________.知识梳理1.πr22πrlπr2πrlπr(r+l)πr′2πr2π(r′+r)l π(r′2+r2+r′l+rl)2.(1)Sh(2)13Sh3.4πR244.43πR3一、选择题1.用长为4、宽为2的矩形做侧面围成一个高为2的圆柱,此圆柱的轴截面面积为() A.8 B.8πC.4πD.2π2.已知直角三角形的两直角边长为a、b,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为()A.a∶b B.b∶a C.a2∶b2D.b2∶a23.几何体的三视图及其尺寸如图(单位:cm),则该几何体的表面积和体积分别为() A.24π cm2 12πcm3B.15π cm2 12πcm3C .24π cm 2 36πcm 3D .以上都不正确 4.三视图如图所示的几何体的全面积是( )A .7+ 2B .112+ 2C .7+ 3D .325.一个正方体与一个球表面积相等,那么它们的体积比是( )A .6π6B .π2C .2π2D .3ππ6.把球的表面积扩大到原来的2倍,那么体积扩大到原来的( )A .2倍B .22倍C .2倍D .32倍 二、填空题 7.圆柱的侧面展开图是长12 cm ,宽8 cm 的矩形,则这个圆柱的体积为____________ cm 3. 8.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.9.(1)表面积相等的正方体和球中,体积较大的几何体是________;(2)体积相等的正方体和球中,表面积较小的几何体是________. 三、解答题10.圆台的上、下底面半径分别为10 cm 和20 cm .它的侧面展开图扇环的圆心角为180°,那么圆台的表面积和体积分别是多少?(结果中保留π)11.已知正四棱台(上、下底是正方形,上底面的中心在下底面的投影是下底面中心)上底面边长为6,高和下底面边长都是12,求它的侧面积.作业设计1.B [易知2πr =4,则2r =4π,所以轴截面面积=4π×2=8π.]2.B [以长为a 的直角边所在直线旋转得到圆锥体积V =13πb 2a ,以长为b 的直角边所在直线旋转得到圆锥体积V =13πa 2b .]3.A [该几何体是底面半径为3,母线长为5的圆锥,易得高为4,表面积和体积分别为24π cm 2,12π cm 3.]4.A [图中的几何体可看成是一个底面为直角梯形的直棱柱.直角梯形的上底为1,下底为2,高为1,棱柱的高为1.可求得直角梯形的四条边的长度为1,1,2,2,表面积S 表面=2S 底+S 侧面=12(1+2)×1×2+(1+1+2+2)×1=7+2.]5.A [先由面积相等得到棱长a 和半径r 的关系a =6π3r ,再由体积公式求得体积比为6π6.]6.B [由面积扩大的倍数可知半径扩大为原来的2倍,则体积扩大到原来的22倍.]7.288π或192π 解析 (1)12为底面圆周长,则2πr =12,所以r =6π,所以V =π·⎝⎛⎭⎫6π2·8=288π(cm 3). (2)8为底面圆周长,则2πr =8,所以r =4π,所以V =π·⎝⎛⎭⎫4π2·12=192π(cm 3). 8.3 cm 解析 设球的半径为r ,则36π=43πr 3,可得r =3 cm .9.(1)球 (2)球 解析 设正方体的棱长为a ,球的半径为r .(1)当6a 2=4πr 2时,V 球=43πr 3=6πa 3>a 3=V 正方体;(2)当a 3=43πr 3时,S 球=4πr 2=63π6a 2<6a 2=S 正方体.10.解 如图所示,设圆台的上底面周长为c ,因为扇环的圆心角是180°,故c =π·SA =2π×10,所以SA =20,同理可得SB =40, 所以AB =SB -SA =20, ∴S 表面积=S 侧+S 上+S 下=π(r 1+r 2)·AB +πr 21+πr 22=π(10+20)×20+π×102+π×202=1 100π(cm 2). 故圆台的表面积为1 100π cm 2.h =AB 2-(OB -O 1A )2=202-102=103,V =13πh(r 21+r 1r 2+r 22) =13π×103×(102+10×20+202)=7 00033π (cm 3). 即圆台的表面积为1 100π cm 2,体积为7 00033π cm 3.11.解 如图,E 、E 1分别是BC 、B 1C 1的中点,O 、O 1分别是下、上底面正方形的中心,则O 1O 为正四棱台的高,则O 1O =12.连接OE 、O 1E 1,则OE =12AB=12×12=6,O 1E 1=12A 1B 1=3. 过E 1作E 1H ⊥OE ,垂足为H ,则E 1H =O 1O =12,OH =O 1E 1=3, HE =OE -O 1E 1=6-3=3.在Rt △E 1HE 中,E 1E 2=E 1H 2+HE 2=122+32 =32×42+32=32×17, 所以E 1E =317.所以S 侧=4×12×(B 1C 1+BC)×E 1E=2×(12+6)×317=10817.。
几何体的表面积及体积习题及答案
空间几何体的表面积与体积(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1.正六棱柱的高为6,底面边长为4,则它的全面积为 ( )A.48(3+3)B.48(3+23)C.24(6+2)2.如图(1)所示,一只装了水的密封瓶子可以看成是由半径为1 cm 和半径为3 cm 的两个圆柱组成的几何体.当这个几何体如图(2)水平放置时,液面高度为20 cm ,当这个几何体如图(3)水平放置时,液面高度为28 cm ,则这个几何体的总高度为 ( )A.29 cmB.30 cmC.32 cmD.48 cm3.(2010·浙江)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是 ( )A.3523 cm 3B.3203cm 3 C.2243 cm 3 D.1603cm 34.如图所示,已知三棱柱ABC —A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1—ABC 1的体积为 ( )A.312 B.34 C.612 D.645.(2010·辽宁)已知S,A,B,C是球O表面上的点,SA⊥平面ABC,AB⊥BC,SA=AB=1,BC=2,则球O的表面积等于()二、填空题(每小题6分,共24分)6.(2010·天津)一个几何体的三视图如图所示,则这个几何体的体积为.7.(2011·湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是.8.(2010·抚顺六校第二次模拟)把边长为1的正方形ABCD沿对角线BD折起形成三棱锥C—ABD,其正视图与俯视图如图所示,则其侧视图的面积为.9.(2011·南京第一次调研)如图,已知正三棱柱ABC—A1B1C1的底面边长为2 cm,高为5 cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为cm.三、解答题(共41分)10.(13分)已知正方体AC 1的棱长为a ,E ,F 分别为棱AA 1与CC 1的中点,求四棱锥A 1—EBFD 1的体积.11.(14分)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法);(2)求这个几何体的表面积及体积.12.(14分)(2011·广州调研)如图1,在直角梯形ABCD 中,∠ADC =90°,CD ∥AB ,AB =4,AD =CD =2,将△ADC 沿AC 折起,使平面ADC ⊥平面ABC ,得到几何体D —ABC ,如图2所示.图1 图2(1)求证:BC ⊥平面ACD ;(2)求几何体D —ABC 的体积.答案7.26 8.1410. 解 因为EB =BF =FD 1=D 1E =a 2+⎝⎛⎭⎫a 22=52a , 所以四棱锥A 1—EBFD 1的底面是菱形,连接EF ,则△EFB ≌△EFD 1,由于三棱锥A 1—EFB 与三棱锥A 1—EFD 1等底同高,所以111122A EBFD A EFB F EBA V V V ---===2·13·1EBA S ∆·a =16a 3. 11. 解 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q —A 1D 1P 的组合体.由P A 1=PD 1=2,A 1D 1=AD =2,可得P A 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),体积V =23+12×(2)2×2=10 (cm 3).12. (1)证明 在图中,可得AC =BC =22,从而AC 2+BC 2=AB 2,故AC ⊥BC ,取AC 的中点O ,连接DO ,则DO ⊥AC ,又平面ADC ⊥平面ABC ,平面ADC ∩平面ABC =AC ,DO ⊂平面ADC ,从而DO ⊥平面ABC ,∴DO ⊥BC ,又AC ⊥BC ,AC ∩DO =O ,∴BC ⊥平面ACD .(2)解 由(1)可知BC 为三棱锥B —ACD 的高,BC =22,S △ACD =2,∴V B —ACD =13S △ACD ·BC =13×2×22=423,由等体积性可知,几何体D —ABC 的体积为423.几何作图(作业)1.如图,按要求作图:(1)连接CE ;(2)延长CE 到点D ,使ED =CE ;(3)作直线AD ,作射线DB .B2.如图,已知线段AB,按要求作图:(1)分别以点A和点B为圆心、以AB的长为半径作弧,两弧相交于点C和点D;(2)作直线CD,交线段AB于点E.A3.如图,一辆汽车在公路上由A向B行驶,M、N分别为位于AB两侧的学校.(1)汽车在公路上行驶时会对学校的教学造成影响,当汽车行驶到点P的位置时对学校M的影响最大,行驶到点Q的位置时对学校N的影响最大.请在图中分别作出点P,Q的位置.(2)当汽车从A向B行驶,哪一段上对两个学校的影响越来越大?哪一段上对学校M的影响逐渐减小,而对学校N的影响逐渐增大?NMB A4.(1)如图1,在一条笔直的公路两侧,分别有A ,B 两个村庄,现在要在公路l 上建一座火力发电厂,向A ,B 两个村庄供电,为使所用电线最短,请问发电厂P 应建在何处?简要说明理由.(2)如图2,若要向4个村庄A ,B ,C ,D 供电,发电厂Q 应该建在何处使发电厂到四个村庄的距离之和最小?l A BDC B A图1 图25.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行所在的直线;③从A 地到B 地,架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直就能缩短路程.其中可用定理“两点之间,线段最短”来解释的现象有______(填序号).6.在直线l 上任取一点A ,截取AB =10cm ,再截取AC =6cm ,则线段BC 的长为__________.B A B A7.在直线l 上任取一点A ,截取AB =20cm ,再截取AC=50cm ,则AB 的中点D 与AC 的中点E 之间的距离为__________.B A B A8.已知线段AB =15cm ,C 点在直线AB 上,BC =2AB ,则AC 的长为__________.B A B A9.从O 点出发的三条射线OA ,OB ,OC ,若∠AOB =60°,∠AOC =40°,则∠BOC 的度数为__________.O B A 60° O B A60°10.已知∠AOB 为直角,∠BOC =40°,OM 平分∠AOB ,ON 平分∠BOC ,则∠MON 的度数为__________.B O A B OA【参考答案】1.(1)作图略;(2)作图略;(3)作图略;2.作图略;3.(1)作图略(提示:过点M作AB的垂线,垂足即为所求的点P,过点N作AB的垂线,垂足即为Q 点);(2)AP段,PQ段;4.(1)作图略(连接AB交直线l的交点即为P点);(2)作图略(提示:连接AD,BC,AD与BC的交点即为Q点)5.③④;6.4 cm或16 cm;7.15 cm或35 cm;8.15cm或45cm;9.20°或100°;10.20°或100°;11.25°或65°.。
空间几何体的面积体积(含答案)
11.空间几何体的表面积和体积要点归纳表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径。
典例解析题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:4cm 变式:一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是(D ) A .23B .32C .6D .6例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π。
(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上;(2)求这个平行六面体的体积。
解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。
作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。
由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。
∵∠A 1AM=∠A 1AN ,∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N ,从而OM=ON 。
∴点O 在∠BAD 的平分线上。
PACDOE图1 图2(2)∵AM=AA 1cos3π=3×21=23.∴AO=4cosπAM =223。
又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9-29=29, ∴A 1O=223,平行六面体的体积为22345⨯⨯=V 230=。
题型2:锥体的体积和表面积例3.在四棱锥P -ABCD 中,底面是边长为2的菱形,∠DAB =60,对角线AC 与BD 相交于点O ,PO ⊥平面ABCD ,PB 与平面ABCD 所成的角为60,求四棱锥P -ABCD 的体积?解:在四棱锥P-ABCD 中,由PO ⊥平面ABCD,得∠PBO 是PB 与平面ABCD 所成的角,∠PBO=60°。
高二数学空间几何体的表面积与体积试题答案及解析
高二数学空间几何体的表面积与体积试题答案及解析1. 如图,正方体,则下列四个命题: ①在直线上运动时,三棱锥的体积不变; ②在直线上运动时,直线与平面所成角的大小不变; ③在直线上运动时,二面角的大小不变; ④是平面上到点D 和距离相等的点,则点的轨迹是过点的直线其中真命题的个数是A .1B .2C .3D .4【答案】C 【解析】①∵∥平面,∴∥上任意一点到平面的距离相等,所以体积不变,正确.②在直线上运动时,直线与平面所成角和直线与平面所成角不相等,所以不正确.③当在直线上运动时,的轨迹是平面,即二面角的大小不受影响,所以正确.④∵是平面上到点和距离相等的点,∴点的轨迹是一条与直线平行的直线,而,所以正确,故答案为:C.【考点】异面直线及其所成的角;棱柱、棱锥、棱台的体积;与二面角有关的立体几何综合题.2. 一个四棱锥的侧棱长都相等,底面是正方形,其正视图如图所示,则该四棱锥的侧面积是 _________ .【答案】【解析】由正视图可知四棱锥的底面边长为2,高为2,可求出斜高为,因此四棱锥的侧面积,答案为.【考点】1.几何体的三视图;2.锥体的侧面积计算3. 已知四边形ABCD 是矩形,AB=,BC=,将△ABC 沿着对角线AC 折起来得到△AB 1C ,且顶点B 1在平面AB=CD 上射影O 恰落在边AD 上,如图所示. (1)求证:AB 1⊥平面B 1CD ;(2)求三棱锥B 1﹣ABC 的体积V B1﹣ABC .【答案】(1)见解析;(2)【解析】(1)平面ABCD,平面ABCD,所以,又CD AD,AD =O,所以平面,又平面,所以,又,且平面(2)由于平面,平面ABCD,所以在中,,又由得,所以试题解析:(1)平面ABCD,平面ABCD,,又CD AD,AD=O平面,又平面,又,且平面(2)由于平面,平面ABCD,所以在中,,又由得,所以【考点】1.空间线面垂直;2.锥体的体积4.如图1,直角梯形中,,分别为边和上的点,且,.将四边形沿折起成如图2的位置,使.(1)求证:平面;(2)求四棱锥的体积.【答案】(1)见解析;(2)【解析】(1)此题是个折叠图形题,平面和立体的互化,分析可知面面;(2)求体积,抓住地面和底面上的高,显然平面面,这个证明很重要,可以确定底面和底面上的高.试题解析:(1)证:面面又面所以平面(2)取的中点,连接平面又平面面所以四棱锥的体积【考点】线面平行的判定,线面垂直的判定.5.将函数的图象绕轴旋转一周所形成的几何体的体积为__________.【答案】【解析】首先函数的图象为以原点为圆心,为半径的圆在轴上方的半圆,它绕轴旋转一周所形成的几何体是以原点为球心,为半径的球,故体积为.【考点】球及球的体积计算.6.如图水平放置的三棱柱的侧棱长为1,且侧棱平面,主视图是边长为1的正方形,俯视图为一个等边三角形,则该三棱柱的左视图面积为________.【答案】.【解析】由题意得:该三棱柱是正三棱柱,底面是边长为1的正三角形,侧棱长为1;该三棱柱的左视图是一个矩形,边长分别为与,所以该三棱柱的左视图面积为.【考点】空间几何体的三视图.7.一个半径为1的小球在一个内壁棱长为的正四面体封闭容器内可向各个方向自由运动,则该小球表面永远不可能接触到的容器内壁的面积是.【答案】【解析】如图甲,考虑小球挤在一个角时的情况,记小球半径为,作平面//平面,与小球相切于点,则小球球心为正四面体的中心,,垂足为的中心.因,故,从而.记此时小球与面的切点为,连接,则.考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如图乙.记正四面体的棱长为,过作于.因,有,故小三角形的边长.小球与面不能接触到的部分的面积为(如答图2中阴影部分).又,,所以.由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为.【考点】(1)三棱锥的体积公式;(2)分情况讨论及割补思想的应用。
高三数学空间几何体的表面积与体积试题答案及解析
高三数学空间几何体的表面积与体积试题答案及解析1.如图, 四棱柱的底面ABCD是正方形, O为底面中心, ⊥平面ABCD,.(1)证明: // 平面;(2)求三棱柱的体积.【答案】(1)证明详见解析;(2)体积为1.【解析】本题主要考查线线平行、面面平行、线面垂直、柱体的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由图象可得到,,,所以得到四边形为平行四边形,所以,利用面面平行的判定得证;第二问,由面ABCD,所以得到是三棱柱的高,利用体积转化法,得到三棱柱的体积.试题解析:(1)设线段的中点为,∵BD和是的对应棱,∴,同理,∵AO和是棱柱的对应线段,∴,且,且四边形为平行四边形且,面面.(2)∵面ABCD,∴是三棱柱的高,在正方形ABCD中,,在中,,,所以,.【考点】线线平行、面面平行、线面垂直、柱体的体积.2.(正四棱锥与球体积选做题)棱长为1的正方体的外接球的体积为________.【答案】.【解析】正方体的体对角线,就是正方体的外接球的直径,所以球的直径为:所以球的半径为:,∴正方体的外接球的体积V=.【考点】1.球的体积;2.球内接多面体.3.如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD.(1)求证:BF∥平面ACE;(2)求证:平面EAC⊥平面BDEF(3)求几何体ABCDEF的体积.【答案】(1)见解析;(2)见解析;(3)2【解析】(1)利用线线平行,推证线面平行;(2)利用一个面内一条直线与另一个平面垂直,则这两个平面垂直,证明面面垂直;(3)将不规则几何体转化为主题或椎体的体积求解.试题解析:(1)证明:记AC与BD的交点为O,则DO=BO=BD,连接EO,∵EF∥BD且EF=BD,∴EF∥BO且EF=BO,则四边形EFBO是平行四边形,∴BF∥EO,又∵面ACE,面ACE,∴BF∥平面ACE;(2)证明:∵ED⊥平面ABCD,平面ABCD,∴ED⊥AC.∵ABCD为正方形,∴BD⊥AC,又ED∩BD=D,∴AC⊥平面BDEF,又平面EAC,∴平面EAC⊥平面BDEF;(3)解:∵ED⊥平面ABCD,∴ED⊥BD,又∵EF∥BD且EF=BD,∴BDEF是直角梯形,又∵ABCD是边长为2的正方形,BD=2,EF=,∴题型BDEF的面积为,由(1)知AC⊥平面BDEF,∴几何体的体积VABCDEF =2VA-BDEF=2×S BDEF·AO=.【考点】空间直线与平面位置关系,几何体的体积4.如图,多面体的直观图及三视图如图所示,分别为的中点.(1)求证:平面;(2)求多面体的体积.【答案】(1)证明:见解析;(2)多面体的体积.【解析】(1)由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,由三角形中位线定理得,得证.(2)利用平面,得到,再据⊥,得到⊥平面,从而可得:四边形是矩形,且侧面⊥平面. 取的中点得到,且平面.利用体积公式计算.所以多面体的体积. 12分试题解析:(1)证明:由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,在△中,,且平面,平面,∴∥平面. 6分(2)因为平面,平面,,又⊥,所以,⊥平面,∴四边形是矩形,且侧面⊥平面 8分取的中点,,且平面. 10分所以多面体的体积. 12分【考点】三视图,平行关系,垂直关系,几何体的体积.5.正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为A.B.C.D.【答案】C【解析】如下图所示,连接,因为是正三角形,且为中点,则,又因为面,故,且,所以面,所以是三棱锥的高,所以.【考点】1、直线和平面垂直的判断和性质;2、三棱锥体积.6.棱长为的正四面体的外接球半径为.【答案】【解析】记正四面体棱长为,外接球半径为,在正四面体中,利用棱,与棱共顶点的高及这条棱在对面上的射影构成的直角三角形可解得,因此中本题中.【考点】正四面体(正棱锥的性质).7.如图,已知平面,,,且是的中点,.(1)求证:平面;(2)求证:平面平面;(3)求此多面体的体积.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)取的中点,连结、,利用中位线证明,利用题中条件得到,进而得到,于是说明四边形为平行四边形,得到,最后利用直线与平面平行的判定定理证明平面;(2)由平面得到,再利用等腰三角形三线合一得到,利用直线与平面垂直的判定定理证明平面,结合(1)中的结论证明平面,最后利用平面与平面垂直的判定定理证明平面平面;(3)利用已知条件得到平面平面,然后利用平面与平面垂直的性质定理求出椎体的高,最后利用椎体的体积公式计算该几何体的体积.(1)取中点,连结、,为的中点,,且,又,且,且,为平行四边形,,又平面,平面,平面;(2),,所以为正三角形,,平面,,平面,又平面,,又,,平面,又,平面,又平面,平面平面;(3)此多面体是一个以为定点,以四边形为底边的四棱锥,,平面平面,等边三角形边上的高就是四棱锥的高,.【考点】1.直线与平面平行;2.平面与平面垂直;3.椎体体积的计算8.如图,在三棱锥中,,,°,平面平面,,分别为,中点.(1)求证:∥平面;(2)求证:;(3)求三棱锥的体积.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力.第一问,由于D、E分别为AB、AC中点,所以利用三角形的中位线得出∥,再利用线面平行的判定直接得到结论;第二问,由,而∥得,而D为AB中点,PA=PB,得,所以利用线面垂直的判定得平面,再利用线面垂直的性质得;第三问,由于,利用面面垂直的性质得平面,所以PD是三棱锥的高,而,所以. (1)因为,分别为,中点,所以∥,又平面,平面,所以∥平面. 4分(2)连结,因为∥,又°,所以.又,为中点,所以.所以平面,所以. 9分(3)因为平面平面,有,所以平面,所以. 14分【考点】线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积.9.棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为 .【答案】【解析】 .【考点】几何体的表面积.10.已知等腰梯形PDCB中(如图),PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD(如图).(1)证明:平面PAD⊥平面PCD.(2)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分VPDCMA ∶VMACB=2∶1.(3)在M满足(2)的情况下,判断直线PD是否平行平面AMC.【答案】(1)见解析(2)M为线段PB的中点时(3)不平行【解析】(1)因为PDCB为等腰梯形,PB=3,DC=1,PA=1,则PA⊥AD,CD⊥AD.又因为面PAD⊥面ABCD,面PAD∩面ABCD=AD,CD⊂面ABCD,故CD⊥面PAD. 又因为CD⊂面PCD,所以平面PAD⊥平面PCD.(2)所求的点M即为线段PB的中点.证明如下:设三棱锥M-ACB的高为h1,四棱锥P-ABCD的高为h2,当M为线段PB的中点时,==,所以===,所以截面AMC把几何体分成的两部分VPDCMA ∶VMACB=2∶1.(3)当M为线段PB的中点时,直线PD与面AMC不平行.证明如下:(反证法)假设PD∥面AMC,连接DB交AC于点O,连接MO.因为PD⊂面PBD,且面AMC∩面PBD=MO,所以PD∥MO.因为M为线段PB的中点时,则O为线段BD的中点,即=,而AB∥DC,故==,故矛盾.所以假设不成立,故当M为线段PB的中点时,直线PD与平面AMC不平行.11.棱长为2的三棱锥的外接球的表面积为()A.6πB.4πC.2πD.π【答案】A【解析】由题意知,此三棱锥为正四面体,以此正四面体的各棱为正方形的对角线拓展出一个正方体,则三棱锥外接球的半径为正方体外接球的半径.因三棱锥棱长为2,所以正方体棱长为,其外接球的直径为所以三棱锥的外接球的表面积为6π.12.如图,在三棱锥中,,,平面平面,为中点,点分别为线段上的动点(不含端点),且,则三棱锥体积的最大值为________.【答案】【解析】因为且为中点,所以,因为平面平面,由面面垂直的性质定理可得,即。
高一数学空间几何体的表面积与体积试题答案及解析
高一数学空间几何体的表面积与体积试题答案及解析1.如图,在长方体ABCD—A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连结ED,EC,EB和DB.(1)求证:ED⊥平面EBC;(2)求三棱锥E-DBC的体积.【答案】(1)见解析;(2)【解析】(1)易得△DD1E为等腰直角三角形DE⊥EC,BC⊥平面 BC⊥DE,所以DE⊥平面EBC平面DEB⊥平面EBC.(2)需要做辅助线,取CD中点M,连接EM∥,DCB(这个证明很关键),然后根据公式.试题解析:(1)在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.∴△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.∴,即DE⊥EC.在长方体ABCD-中,BC⊥平面,又DE平面,∴BC⊥DE.又,∴DE⊥平面EBC.又∴平面DEB⊥平面EBC.(2)取CD中点M,连接EM,E为D1C1的中点,∥,且,又DCB.【考点】线面垂直,三棱锥的体积.2.在三棱柱中,已知,,此三棱柱各个顶点都在一个球面上,则球的体积为().A.B.C.D.【答案】A【解析】把三棱柱补成长方体,三棱柱与长方体由相同的外接球,长方体的对角线长就是球的直径长,即,.【考点】球的体积.3.已知圆锥的底面半径为2cm,高为1cm,则圆锥的侧面积是cm2.【答案】【解析】圆锥的底面周长为:,母线长为:,.故答案为.【考点】圆锥侧面积的求法.4.已知△ABC为等腰直角三角形,斜边BC上的中线AD = 2,将△ABC沿AD折成60°的二面角,连结BC,则三棱锥C - ABD的体积为.【答案】.【解析】如图,由题意可得,,∴平面,而,∴.【考点】空间几何体的体积.5.棱长为的正方体内切一球,该球的表面积为()A.B.2C.3D.【答案】A【解析】正方体内切球的直径等于其棱长,故内切球的半径为,则。
高二数学空间几何体的表面积与体积试题答案及解析
高二数学空间几何体的表面积与体积试题答案及解析1.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.【答案】.【解析】设圆锥的底面半径和高为,则其母线长;所以圆锥的侧面积,底面面积,则它的侧面积与底面积的比为.【考点】圆锥的侧面积公式.2.一个与球心距离为1的平面截球所得的圆面面积为,则球的表面积为 .【答案】【解析】球的截面圆的半径为:π=πr2,r=1,球的半径为:R= ,所以球的表面积:4πR2=4π×( )2=8π.【考点】球的表面积.3.三棱锥P−ABC中,PA⊥平面ABC,AB⊥BC。
(1)证明:平面PAB⊥平面PBC;(2)若,,PB与底面ABC成60°角,分别是与的中点,是线段上任意一动点(可与端点重合),求多面体的体积.【答案】(1)证明见解析;(2).【解析】(1)证明两个平面垂直,首先考虑直线与平面垂直,也可以简单记为“证面面垂直,找线面垂直”,是化归思想的体现,这种思想方法与空间中的平行关系的证明类似,掌握化归与转化思想方法是解决这类题的关键;(2)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化;(3)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算.试题解析:(1)证明:,,且,而中,(2)解:(2)与底面成角即,在中,,又,在中,分别是的中点,面.【考点】(1)平面与平面垂直的判断;(2)求几何体的体积.4.如图,菱形ABCD的边长为4,∠BAD=60°,AC∩BD=O.将菱形ABCD沿对角线AC折起,得到三棱锥B﹣ACD,点M是棱BC的中点,DM=2.(1)求证:OM∥平面ABD;(2)求证:平面DOM⊥平面ABC;(3)求三棱锥B﹣DOM的体积.【答案】(1)∵O为AC的中点,M为BC的中点,∴OM∥AB.又∵OM⊄平面ABD,AB⊂平面ABD,∴OM∥平面ABD.(2)∵在菱形ABCD中,OD⊥AC,∴在三棱锥B-ACD中,OD⊥AC.在菱形ABCD中,AB=AD=4,∠BAD=60°,可得BD=4.∵O为BD的中点,∴,BD=2.∵O为AC的中点,M为BC的中点,∴,AB=2.因此,,可得OD⊥OM.∵AC、OM是平面ABC内的相交直线,∴OD⊥平面ABC.∵OD⊂平面DOM,∴平面DOM⊥平面ABC.(3).【解析】(1)利用三角形中位线定理,证出OM∥AB,结合线面平行判定定理,即可证出OM∥平面ABD.(2)根据题中数据,算出,BD=2,,AB=2,从而得到,可得OD⊥OM.结合OD⊥AC利用线面垂直的判定定理,证出OD⊥平面ABC,从而证出平面DOM⊥平面ABC.(3)由(2)得到OD为三棱锥D-BOM的高.算出△BOM的面积,利用锥体体积公式算出三棱锥D-BOM的体积,即可得到三棱锥B-DOM的体积.试题解析:(1)∵O为AC的中点,M为BC的中点,∴OM∥AB.又∵OM⊄平面ABD,AB⊂平面ABD,∴OM∥平面ABD.(2)∵在菱形ABCD中,OD⊥AC,∴在三棱锥B-ACD中,OD⊥AC.在菱形ABCD中,AB=AD=4,∠BAD=60°,可得BD=4.∵O为BD的中点,∴DO=,BD=2.∵O为AC的中点,M为BC的中点,∴OM=,AB=2.因此,,可得OD⊥OM.∵AC、OM是平面ABC内的相交直线,∴OD⊥平面ABC.∵OD⊂平面DOM,∴平面DOM⊥平面ABC.(3)由(2)得,OD⊥平面BOM,所以OD是三棱锥D-BOM的高.由OD=2,,所以.【考点】线面平行问题;面面垂直问题;三棱锥的体积.5.四面体ABCD中,已知AB=CD=,AC=BD=,AD=BC=,则四面体ABCD的外接球的表面()A.25p B.45p C.50p D.100p【答案】C【解析】作长方体,AB=CD=,AC=BD=,AD=BC=,该长方体和四面体有共同的外接球,长方体的对角线长为直径长,,表面积【考点】四面体的外接球的体积.6.如图,三棱柱中,侧棱垂直底面,,,是棱的中点。
高三数学空间几何体的表面积与体积试题答案及解析
高三数学空间几何体的表面积与体积试题答案及解析1.(本题满分12分)底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.【答案】边长为4,体积为.【解析】由于展开图是,分别是所在边的中点,根据三角形的性质,是正三角形,其边长为4,原三棱锥的侧棱也是2,要求棱锥的体积需要求出棱锥的高,由于是正棱锥,顶点在底面上的射影是底面的中心,由相应的直角三角形可求得高,得到体积.试题解析:由题意中,,,所以是的中位线,因此是正三角形,且边长为4.即,三棱锥是边长为2的正四面体∴如右图所示作图,设顶点在底面内的投影为,连接,并延长交于∴为中点,为的重心,底面∴,,【考点】图象的翻折,几何体的体积.2.设甲,乙两个圆柱的底面面积分别为,体积为,若它们的侧面积相等且,则的值是 .【答案】【解析】设甲、乙两个圆柱的底面和高分别为,,则,,又,所以,则.【考点】圆柱的侧面积与体积.3.正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为A.B.C.D.【答案】C【解析】如下图所示,连接,因为是正三角形,且为中点,则,又因为面,故,且,所以面,所以是三棱锥的高,所以.【考点】1、直线和平面垂直的判断和性质;2、三棱锥体积.4.如图,在三棱锥中,,,°,平面平面,,分别为,中点.(1)求证:∥平面;(2)求证:;(3)求三棱锥的体积.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力.第一问,由于D、E分别为AB、AC中点,所以利用三角形的中位线得出∥,再利用线面平行的判定直接得到结论;第二问,由,而∥得,而D为AB中点,PA=PB,得,所以利用线面垂直的判定得平面,再利用线面垂直的性质得;第三问,由于,利用面面垂直的性质得平面,所以PD是三棱锥的高,而,所以.(1)因为,分别为,中点,所以∥,又平面,平面,所以∥平面. 4分(2)连结,因为∥,又°,所以.又,为中点,所以.所以平面,所以. 9分(3)因为平面平面,有,所以平面,所以. 14分【考点】线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积.5.如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.(1)求证:平面PBC⊥面PDC(2)设E为PC上一点,若二面角B-EA-P的余弦值为-,求三棱锥E-PAB的体积.【答案】(1)见解析(2)【解析】(1)∵AB=1,PA=2,∠PAB=60°,∴在△PAB中,由余弦定理得PB2=PA2+AB2-2AB·PAcos600=4+1-2×1×2×=3∴PA2=PB2+AB2,即AB⊥PB∵DA⊥面ABP,CB∥DA∴CB⊥面ABP CB⊥AB ,∴AB⊥面PBC又DC∥AB,∴DC∥面PBC∵DC面PDC,∴平面PBC⊥面PDC(2)如图建立空间直角坐标系则A(0,1,0),P(,0,0),C(0,0,1)设E(x,y,z),= (0<<1)则(-,0,1)=(x-,y,z)x=(1-),y=0,z=设面ABE的法向量为n=(a,b,c),则令c=n=(,0,)同理可求平面PAE的法向量为m=(1,,)∵cos<n,m>====∴=或=1(舍去)∴E(,0,)为PC的中点,其竖坐标即为点E到底面PAB的距离∴V=××1××=E-PAB6.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是 .【答案】【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.【考点】圆锥的侧面展开图与体积.7.如图,在三棱锥中,,,平面平面,为中点,点分别为线段上的动点(不含端点),且,则三棱锥体积的最大值为________.【答案】【解析】因为且为中点,所以,因为平面平面,由面面垂直的性质定理可得,即。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体的表面积与体积专题一、选择题1.棱长为2的正四面体的表面积是( C ).B .4C .4 3D .16解析 每个面的面积为:12×2×2×32= 3.∴正四面体的表面积为:4 3.2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( B ). A .2倍 B .22倍 倍 倍解析 由题意知球的半径扩大到原来的2倍,则体积V =43πR 3,知体积扩大到原来的22倍.3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( B ). 解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843. 4.某几何体的三视图如下,则它的体积是( A) A .8-2π3 B .8-π3C .8-2π解析 由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半径为1,高为2的圆锥,所以V =23-13×π×2=8-2π3.5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( A)A .24-32π B .24-π3 C .24-π D .24-π2据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12×3=24-3π2.6.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为( C )cm 2 cm 2 cm 2 cm 2解析 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱.上面四棱柱的表面积为2×3×3+12×1-π4=30-π4;中间部分的表面积为2π×12×1=π,下面部分的表面积为2×4×4+16×2-π4=64-π4.故其表面积是94+π2.7.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S-ABC 的体积为( C). A .3 3 B .2 3 D .1解析 由题可知AB 一定在与直径SC 垂直的小圆面上,作过AB 的小圆交直径SC 于D ,设SD =x ,则DC =4-x ,此时所求棱锥即分割成两个棱锥S-ABD 和C-ABD ,在△SAD 和△SBD 中,由已知条件可得AD =BD =33x ,又因为SC 为直径,所以∠SBC =∠SAC =90°,所以∠DCB =∠DCA =60°,在△BDC 中 ,BD =3(4-x ),所以33x =3(4-x ),所以x =3,AD =BD =3,所以三角形ABD 为正三角形,所以V =13S △ABD ×4= 3.二、填空题8.三棱锥PABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体积等于__3______.解析 依题意有,三棱锥PABC 的体积V =13S △ABC ·|PA |=13×34×22×3= 3.9.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为_ 3∶2_______.解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2πr ·2r =4πr 2,设球的半径是R ,则球的表面积是4πR 2,根据已知4πR 2=4πr 2,所以R =r .所以圆柱的体积是πr 2·2r =2πr 3,球的体积是43πr 3,所以圆柱的体积和球的体积的比是2πr 343πr 3=3∶2.10.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是___26_____.解析由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V=13×1×1×22=26.11.如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是____2πR2____.解析由球的半径为R,可知球的表面积为4πR2.设内接圆柱底面半径为r,高为2h,则h2+r2=R2.而圆柱的侧面积为2πr·2h=4πrh≤4πr2+h22=2πR2(当且仅当r=h时等号成立),即内接圆柱的侧面积最大值为2πR2,此时球的表面积与内接圆柱的侧面积之差为2πR2.12.如图,已知正三棱柱ABCA1B1C1的底面边长为2 cm,高为5 cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为___13_____cm. 解析根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 (cm).三、解答题13.某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH.图2、图3分别是该标识墩的正视图和俯视图.(1)请画出该安全标识墩的侧视图;(2)求该安全标识墩的体积.解析(1)侧视图同正视图,如图所示:(2)该安全标识墩的体积为V=VPEFGH +V ABCDEFGH=13×402×60+402×20=64 000(cm3).14 .一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解析 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3,所以V=1×1×3= 3.(2)由三视图可知,该平行六面体中,A1D ⊥平面ABCD ,CD ⊥平面BCC1B1, 所以AA1=2,侧面ABB1A1,CDD1C1均为矩形, S =2×(1×1+1×3+1×2)=6+2 3.15.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .解析 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、 右侧面均为底边长为6,高为h 2的等腰三角形,如右图所示. (1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.(2)正侧面及相对侧面底边上的高为:h 1=42+32=5.左、右侧面的底边上的高为:h 2=42+42=4 2.故几何体的侧面面积为:S =2×⎝ ⎛⎭⎪⎫12×8×5+12×6×42=40+24 2.1.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ). .解:设展开图的正方形边长为a ,圆柱的底面半径为r ,则2πr =a ,2ar π=,底面圆的面积是24a π,于是全面积与侧面积的比是2221222a a a πππ++=, 2.在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后 ,剩下的几何体的体积是( ).2.解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是111111()3222248⨯⨯⨯⨯=,于是8个三棱锥的体积是61,剩余部分的体积是65, 3.一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm 和8cm ,高是5cm ,则这个直棱柱的全面积是 。
3.答案:148 cm 2解:底面菱形中,对角线长分别是6cm 和8cm ,所以底面边长是5cm ,侧面面积是4×5×5=100cm 2,两个底面面积是48cm 2, 所以棱柱的全面积是148cm 2.4.已知两个母线长相等的圆锥的侧面展开图恰能拼成一个圆,且它们的侧面积之比为1:2,则它们的高之比为 。
4.答案:22:5解:设圆柱的母线长为l ,因为两个圆锥的侧面展开图恰能拼成一个圆,且它们的侧面积之比为1:2,所以它们的展开图即扇形的圆心角分别是23π和43π,由圆锥侧面展开图扇形的圆心角的计算公式2r l πθ=,得13l r =,223lr =, 所以它们的高的比是2222()22325()3l l l l -=-. 5.已知三棱锥的三条侧棱两两互相垂直,且长度分别为1cm ,2cm ,3cm ,则此棱锥的体积_________5.答案:1cm 3解:转换一个角度来认识这个三棱锥,即把它的两条侧棱(如长度为1cm ,2cm 的两条)确定的侧面看作底面,另一条侧棱作为高,则此三棱锥的底面面积是1,高为3,则它的体积是31×1×3=1cm 3.6.矩形两邻边的长为a 、b ,当它分别绕边a 、b 旋转一周时, 所形成的几何体的体积之比为6.答案:ba解:矩形绕a 边旋转,所得几何体的体积是V 1=πb 2a ,矩形绕b 边旋转,所得几何体的体积是V 2=πa 2b ,所以两个几何体的体积的比是2122V b a b V a b a ππ==16.四面体的六条棱中,有五条棱长都等于a .(1)求该四面体的体积的最大值;(2)当四面体的体积最大时,求其表面积.解析 (1)如图,在四面体ABCD 中,设AB =BC =CD =AC =BD =a ,AD =x ,取AD 的中点为P ,BC 的中点为E ,连接BP 、EP 、CP .得到AD ⊥平面BPC ,∴V A-BCD =V A-BPC +V D-BPC =13·S △BPC ·AP +13S △BPC ·PD =13·S △BPC ·AD =13·12·a a 2-x 24-a 24·x =a 123a 2-x 2x 2≤a12·3a 22=18a 3(当且仅当x =62a 时取等号).∴该四面体的体积的最大值为18a 3. (2)由(1)知,△ABC 和△BCD 都是边长为a 的正三角形,△ABD 和△ACD 是全等的等腰三角形,其腰长为a ,底边长为62a ,∴S 表=2×34a 2+2×12×62a × a 2-⎝⎛⎭⎪⎫64a 2=32a 2+62a ×10a 4=32a 2+15a 24=23+154a 2.。