数字信号处理(第二版) 绪论

合集下载

(完整word版)数字信号处理复习总结

(完整word版)数字信号处理复习总结

绪论:本章介绍数字信号处理课程的基本概念。

0.1信号、系统与信号处理1.信号及其分类信号是信息的载体,以某种函数的形式传递信息。

这个函数可以是时间域、频率域或其它域,但最基础的域是时域。

分类:周期信号/非周期信号确定信号/随机信号能量信号/功率信号连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类:2.系统系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。

3.信号处理信号处理即是用系统对信号进行某种加工。

包括:滤波、分析、变换、综合、压缩、估计、识别等等。

所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。

0.2 数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理。

不仅应用于数字化信号的处理,而且也可应用于模拟信号的处理。

以下讨论模拟信号数字化处理系统框图。

(1)前置滤波器将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。

(2)A/D变换器在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。

在A/D变换器中的保持电路中进一步变换为若干位码。

(3)数字信号处理器(DSP)(4)D/A变换器按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。

由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。

(5)模拟滤波器把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。

0.3 数字信号处理的特点(1)灵活性。

(2)高精度和高稳定性。

(3)便于大规模集成。

(4)对数字信号可以存储、运算、系统可以获得高性能指标。

0.4 数字信号处理基本学科分支数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。

2 绪论

2 绪论
确定性信号和随机信号 一维信号和多维信号 连续时间信号和离散时间信号 因果信号与非因果信号 周期信号和非周期信号 能量信号和功率信号 实信号和复信号 因果信号与非因果信号
4
信号描述方法
• I 数学描述 – 使用具体的数学表达式,把信号描述 为一个或若干个自变量的函数或序列 的形式。
时域 f (t ) sin( t )
x ( n) a nu ( n)
因此,常可将“信号”与 “函数”和“序列”等同 起来
频域
1 F ( j ) , F (s) 1 j
5
信号描述方法
• II 波形描述 – 按照函数随自变量的变化关系,把信 号的波形画出来。
Sa(t) 1
Sa (t )
35
4 DSP的学科内容
离散时间线性时不变系统分析 离散时间信号时域及频域分析、离散付里 叶变换(DFT)理论。 信号的采集,包括A/D,D/A技术,抽样, 多率抽样,量化噪声理论等。 数字滤波技术 谱分析与快速付里叶变换(FFT),快速 卷积与相关算法。 自适应信号处理
36
33
3 DSP的理论基础
• 数字信号处理的基本工具:微积分,概 率统计,随机过程,高等代数,数值分 析,近代代数,复杂函数。 • 数字信号处理的理论基础:离散线性变 换(LSI)系统理论,离散付里叶变换 (DFT)。
34
3 DSP的理论基础
“数字信号处理”又成为一 些学科的理论基础:
在学科发展上,数字信号处理又和最 优控制,通信理论,故障诊断等紧紧相连 ,成为人工智能,模式识别,神经网络, 数字通信等新兴学科的理论基础。
39
按照预定要求,在处理器中将信号 序列x(n)进行加工处理得到输出信号y(n).

《数字信号处理》教案

《数字信号处理》教案

《数字信号处理》教案第一章:绪论1.1 课程介绍理解数字信号处理的基本概念了解数字信号处理的发展历程明确数字信号处理的应用领域1.2 信号的概念与分类定义信号、模拟信号和数字信号掌握信号的分类和特点理解信号的采样与量化过程1.3 数字信号处理的基本算法掌握离散傅里叶变换(DFT)了解快速傅里叶变换(FFT)学习Z变换及其应用第二章:离散时间信号与系统2.1 离散时间信号理解离散时间信号的定义熟悉离散时间信号的表示方法掌握离散时间信号的运算2.2 离散时间系统定义离散时间系统及其特性学习线性时不变(LTI)系统的性质了解离散时间系统的响应2.3 离散时间系统的性质掌握系统的稳定性、因果性和线性学习时域和频域特性分析方法第三章:离散傅里叶变换3.1 离散傅里叶变换(DFT)推导DFT的数学表达式理解DFT的性质和特点熟悉DFT的应用领域3.2 快速傅里叶变换(FFT)介绍FFT的基本概念掌握FFT的计算步骤学习FFT的应用实例3.3 离散傅里叶变换的局限性探讨DFT在处理非周期信号时的局限性了解基于DFT的信号处理方法第四章:数字滤波器设计4.1 滤波器的基本概念理解滤波器的定义和分类熟悉滤波器的特性指标学习滤波器的设计方法4.2 数字滤波器的设计方法掌握常见数字滤波器的设计算法学习IIR和FIR滤波器的区别与联系了解自适应滤波器的设计方法4.3 数字滤波器的应用探讨数字滤波器在信号处理领域的应用学习滤波器在通信、语音处理等领域的应用实例第五章:数字信号处理实现5.1 数字信号处理器(DSP)概述了解DSP的定义和发展历程熟悉DSP的特点和应用领域5.2 常用DSP芯片介绍学习TMS320系列DSP芯片的结构和性能了解其他常用DSP芯片的特点和应用5.3 DSP编程与实现掌握DSP编程的基本方法学习DSP算法实现和优化技巧探讨DSP在实际应用中的问题与解决方案第六章:数字信号处理的应用领域6.1 通信系统中的应用理解数字信号处理在通信系统中的重要性学习调制解调、信道编码和解码等通信技术探讨数字信号处理在无线通信和光通信中的应用6.2 音频信号处理熟悉音频信号处理的基本概念和算法学习音频压缩、回声消除和噪声抑制等技术了解数字信号处理在音乐合成和音频效果处理中的应用6.3 图像处理与视频压缩掌握数字图像处理的基本原理和方法学习图像滤波、边缘检测和图像压缩等技术探讨数字信号处理在视频处理和多媒体通信中的应用第七章:数字信号处理工具与软件7.1 MATLAB在数字信号处理中的应用学习MATLAB的基本操作和编程方法熟悉MATLAB中的信号处理工具箱和函数掌握利用MATLAB进行数字信号处理实验和分析的方法7.2 其他数字信号处理工具和软件了解常用的数字信号处理工具和软件,如Python、Octave等学习这些工具和软件的特点和应用实例探讨数字信号处理工具和软件的选择与使用第八章:数字信号处理实验与实践8.1 数字信号处理实验概述明确实验目的和要求学习实验原理和方法掌握实验数据的采集和处理8.2 常用数字信号处理实验完成离散信号与系统、离散傅里叶变换、数字滤波器设计等实验8.3 数字信号处理实验设备与工具熟悉实验设备的结构和操作方法学习实验工具的使用技巧和安全注意事项第九章:数字信号处理的发展趋势9.1 与数字信号处理探讨技术在数字信号处理中的应用学习深度学习、神经网络等算法在信号处理领域的应用实例9.2 物联网与数字信号处理理解物联网技术与数字信号处理的关系学习数字信号处理在物联网中的应用,如传感器信号处理、无线通信等9.3 边缘计算与数字信号处理了解边缘计算的概念和应用场景探讨数字信号处理在边缘计算中的作用和挑战10.1 课程回顾梳理本门课程的主要内容和知识点10.2 数字信号处理在未来的发展展望数字信号处理技术在各个领域的应用前景探讨数字信号处理技术的发展趋势和挑战10.3 课程考核与评价明确课程考核方式和评价标准鼓励学生积极参与课堂讨论和实践活动,提高综合素质重点和难点解析重点一:信号的概念与分类信号的定义和分类是理解数字信号处理的基础,需要重点关注。

数字信号处理-第二版-胡广书-习题解答

数字信号处理-第二版-胡广书-习题解答

!!"#$%&’!"#$()*+,-./!!!"!!!"!""!!"#$!!""#!"$"#%$#"#%"%##"#$#"$%&%&’(!""9:!!""+;<&=>?@A+(%!!"BC !!""D&EF+GHIJ !!""%!&"K &"!""#!!!"%""&B9:&"!""+;<%!$"K &!!""#&!!"$!"&B9:&!!""+;<%!’"L !!""G H $M N O A P Q &R S T &U &&!""&B 9:&&!""+;<%!%"VL !!""ST &PGH $MNOAUW &$!""&B9:&$!""+;<%!’!""!!""+;<X;"’"’"YJ %;!"("("!!"!!""#%!!""$%!!"%""$%!!"%!"$%!!"%&"$%!!"%$"$)!!"$""$%!!"$!"$$!!"$&"$!!!"$$"!!"#$%&’()*+,-!!!!!&"&"!""#!!!"%""Z[4\!!""GH"MNO]^&P_Q‘-!UW+&&;<X;"’"’!YJ%;!"("(!!$"&!!""#&!!"$!"Z[4\!!""a7!MNO]^&=_Q‘-&UW+&;< X;"’"’&YJ%;!"("(&!’"L!!""GH$MNOAU!(!""#!!"%$"&PL!(!""Q&RSTU&&!""# !(!%""#!!%"%$"&&&!""+;<X;"’"’$YJ%;!"("($!%"&$!""bIc%’&$!""#!!%"$$"&&;<X;"’"’’YJ%!"#!!"#"!d"’"!:+!!""’!""9:!!%""+;<%"!./01#$2./01345’67(8"!;!"("(’!&"ef !+!""#"!(!!""%!!%"")&=9:!+!""+;<%!$"BC !*!""&!+!""IJ !!""&=ghLiM4\jk%iMldm4\niM odm4\+pq %!’!""!!%""+;<X;"’!’"YJ %;!"(!("!!"!*!""#"!(!!""$!!%"")#"$)%$#"#%"%"$)"#"#$%"###"$%&%&’(&;<X;"’!’!YJ %!!"#$%&’()*+,-#!!&"!+!""#"!(!!""%!!%"")#"$!%$#"#%""%!"#"#$#"$%&%&’(&;<X;"’!’&YJ %;!"(!(&!$"drstuvwx4\!!""&bQL&jk%iMldm4\!*!""yiMo dm4\!+!""zy &{Zuvwx#$jk+i|}~p & !!""#!*!""$!+!"" *!*!""#"!(!!""$!!%"")!+!""#"!(!!""%!!%"$%&") &!*!""y !+!""j !*!""#!*!%""&!+!""#%!+!%""+dm ‘%!"$!#"!"!!" ‘ ’!""&!""#!!""$!!"%""$!!"%!"%!!"&!""#&!%""%!&"&!""#!!"!"%!$"&!""#!!!""%!’"&!""#!!"",-.!"""%!%"&!""#)!!""$*&&*)&*% -%B iM‘ Z * += 0 %!’!""d‘ &!""#!!""$!!"%""$!!"%!"&!" !"!""y !!!""& Y! j p &"!./01#$2./01345’67(8$! K!!""##!"!""$$!!!""‘ d!!""+ F&!""#+(!!"")##!"!""$$!!!""$#!"!"%""$$!!!"%""$#!"!"%!"$$!!!"%!"##(!"!""$!"!"%""$!"!"%!")$$(!!!""$!!!"%""$!!!"%!")&!""##&"!""$$&!!""¡¢‘ !""Z +%r&!""#+(!!"")#!!""$!!"%""$!!"%!"£¤‘ d!!"%,"+ F&,!""Z&,!""#+(!!"%,")#!!"%,"$!!"%,%""$!!"%,%!"¥&!"%,"#!!"%,"$!!"%,%""$!!"%,%!"¦§&!"%,"#+(!!"%,")#&,!""¡¢‘ !"" %!!"d‘ &!""#&!%""&!" !"!""y!!!""& Y! jp &&"!""#+(!"!"")#!"!%""&!!""#+(!!!"")#!!!%""K!!""##!"!""$$!!!""£¤‘ d!!""+ F&!""#+(!!"")##!"!%""$$!!!%""##&"!""$$&!!"" ? +¨©ªZ&"!""y&!!""+«¬&­‘ !!"Z +%r&!""#+(!!"")#!!%""£¤‘ d!!"%,"+ F&,!""Z&,!""#+(!!"%,")#!(%!"%,")¥&!"%,"#!(%!"%,")!!"#$%&’()*+,-%!YQ‘ !!" %!&"d‘ &!""#!!"!"&!" !"!""y !!!""& Y! jp & &"!""#+(!"!"")#!"!"!"&!!""#+(!!!"")#!!!"!"K!!""##!"!""$$!!!""£¤‘ d !!""+ F &!""#+(!!"")##!"!"!"$$!!!"!"##&"!""$$&!!""? +¨©ªZ &"!""y &!!""+«¬&­‘ !&"Z +% r&!""#+(!!"")#!!"!"£¤‘ d !!"%,"+ F &,!""Z &,!""#+(!!"%,")#!(!"%,"!)¥&!"%,"#!(!"%,"!)¦§&!"%,"#+(!!"%,")#&,!""YQ‘ !&" %!$"d‘ &!""#!!!""&!" !"!""y !!!""& Y! jp & &"!""#+(!"!"")#!!"!""&!!""#+(!!!"")#!!!!""K!!""##!"!""$$!!!""£¤‘ d !!""+ F &!""#+(!!"")#(#!"!""$$!!!"")!’#&"!""$$&!!""¡¢&‘ !$"Z® +% r&!""#+(!!"")#!!!""£¤‘ d !!"%,"+ F &,!""Z &,!""#+(!!"%,")#!!!"%,"¥&!"%,"#!!!"%,""!./01#$2./01345’67(8&!YQ‘ !$" %!’"d‘ &!""#!!"",-.!"""&!" !"!""y !!!""& Y! jp & &"!""#+(!"!"")#!"!"",-.!"""&!!""#+(!!!"")#!!!"",-.!"""K!!""##!"!""$$!!!""£¤‘ d !!""+ F &!""#+(!!"")#(#!"!""$$!!!""),-.!"""##!"!"",-.!"""$$!!!"",-.!"""&!""##&"!""$$&!!""¡¢&‘ !’"Z +% r&!""#+(!!"")#!!"",-.!"""£¤‘ d !!"%,"+ F &,!""Z &,!""#+(!!"%,")#!!"%,",-.!"""¥&!"%,"#!!"%,",-.(!"%,"")¦§&!"%,"’+(!!"%,")#&,!""¡¢&‘ !’" %!%"d‘ &!""#)!!""$*&!" !"!""y !!!""& r )&*% -& Y! j p &&"!""#+(!"!"")#)!"!""$*&!!""#+(!!!"")#)!!!""$*K!!""##!"!""$$!!!""£¤‘ d !!""+ F &!""#+(!!"")#)(#!"!""$$!!!"")$*’#&"!""$$&!!""¡¢&‘ !%"Z® +% r!!"#$%&’()*+,-’!&,!""#+(!!"%,")#)!!"%,"$*¥&!"%,"#)!!"%,"$*¦§&!"%,"#+(!!"%,")#&,!""¡¢&‘ !%" %!"%!#"#"!!" ‘ ’!""&!""#"-$"(-,##!!"%,"&&*-%¯r°+±-%!!"&!""#)!!""$*%!&"&!""#!!""$.!!"$""&&*.% -%!$"&!""#!!"!"%!’"&!""#!!,""&&*,%¯r°+±-%!%"&!""#!!%""%B "²iMZ¡³‘ +²iMZ®¡³‘ += 0 %!’!""&!""#"-$"(-,##!!"%,"&&*-%¯r°+±-%¡%´‘ µs¶w·+ :¸¹"rºµw·y»¼+ !!""&!!"%""&,& !!"%-"&¥yL½+ ¾ &YQ&´‘ Z¡³‘ %!!"&!""#)!!""$*%¡%´‘ µs¶w·+ :¸¹"rºµw·+!!""&¥yL½+ ¾ &Y Q&´‘ Z¡³‘ %!&"&!""#!!""$.!!"$""&&*.% -%¡%´‘ µ¿7w·!""+ : ÀÁ¹r¿7w·!""+ !!""&¥ÂÃÁ¹rL½w·!"$""w+ !!"$""&YQ´‘ Z®¡³‘ %!$"&!""#!!"!"%µ")!w&´‘ ds¶w·"w+ :Ä L½w·"!+ Y¹"&¡¢´‘ %®¡³‘ %!’"&!""#!!,""&&*,%¯r°+±-%XÅÆ,!$"&¿"*#w&‘ + : L½w·,"+ Y¹"&¡¢‘ %®¡³‘ %"!./01#$2./01345’67(8(!¡³‘ %!"&!#"$"!X ÈM‘ ’!""&!""#(-%",###,!!"%,"&&*##&#"&,&#-%"% -%!!"&!""#!#/+,"#&!"%""%#!&!"%!"$!!""%#/+,"#!!"%""&&*#&"#% -%BÉ&ÊËNO F /!""&= ‘ Z Ì"+Ì"+ÍÎZϤ+!’!""ÊËNO FZ‘ µ %ÊËNO4\!!""w+ :%dr´‘ &&ÊËNO F/!""#(-%",###,!!"%,"!!ÐZi M ÑÒr "##&ÓÔ%-+ ÕÓ4\& Z i M 012‘ %Ö r ##&#"&,&#-%"Ä% Õ+ -&YQ´‘ gZÌ"+%!!"bCÈ|pqÉU´‘ +ÊËNO F %pqi ’K !!""#!!""& ‘ + :&!""#/!""& /!""#!#/+,"#/!"%""%#!/!"%!"$!!""%#/+,"#!!"%"""##!/!#"#""#"!/!""#!#/+,"#%#/+,"###/+,"#"#!!/!!"#!#/+,"#(#/+,"#)%#!##!/+,!"#"#&!/!&"#!#/+,"#(#!/+,!"#)%#!(#/+,"#)##&/+,&"#×¢ØÙ&/!""##"/+,""#0!""!!pqÚ’ÛÜbQÝCÞßà!á r 3 â+pqÉ:‘ +ÊËNO F %d‘ + jp ãä3 â&U !"%!#1%"/+,"#$#!1%!"2!1"#!"%#1%"/+,"#"3!1"ã¥UW´‘ T å-4!1"#2!1"3!1"#"%#1%"/+,"#"%!#1%"/+,"#$#!1%!ÊËNO F /!""ZT å-4!1"+æ3 â& Þß+I !’&’"!ç’d #-.#$/012$ZI !’’’""&U /!""#5%"(4!1")##"/+,""#0!""¿§&È|pq!:+h³ZiO+%!!"#$%&’()*+,-)*!8&!""8#8/!"""!!""8#($7,###,/+,"#,!!"%,"#($7,###,/+,"#,8!!"%,"8#6($7,###,/+,"#,#6($7,##8#,8#6($7,##8#8,¿#+"w &‘ + :&!""#/!"""!!""#6"%8#8ÇZ ë+&YQ‘ ZÌ"+%ìz &X³#)"& ‘ Ì"%?íYC+ pq ZÌ" +"î& ë+ ïð ë+ :!4145"%!"’!#"&"!K /!""#-/!#"&/!""&/!!".#-&&!&".&É!""&"!""#/!"""/!""!!"&!!""#/!"""/!"""/!""!’Ék´, È|p q &i Z ñò óô+"îÉ&ÚZ 678974*+:õÎ/+.;½É&ºj !:EF+h³%pqi ’dÆ,!""& &"!""#(79#%7/!"%9"/!9"&bÉ:&"!#"#/!#"/!#"#<&"!""#/!#"/!""$/!""/!#"#"!&"!!"#/!#"/!!"$/!""/!""$/!!"/!#"#"#&"!&"#/!""/!!"$/!!"/!""#$&"!$"#/!!"/!!"#"!!dÆ,!!"&ö÷?&!!""#&"!"""/!""&øùóô+"îbÉ:&!!""#-!=&’$&%&&$$&!"&%&". ú+Ékûüýþÿ!"!:%pqÚ’öºÆ,!""+678974 4Z *>/#"/#%/"(:&#ä´ 4+h³%<!!"!!!"#!!$!!"!!öºÆ,!!"+678974 4ýþÿ!"!:%!"(!/!""$ "’%,!:&K !!""#-!!#"&!!""&!!!"&!!&".#-"&!&&&$.%!""É/!""+!E å-:/!9"%!!"É/!""y !!""+%E å-:/!!9"&=9::/!9"&:/!!9"+;<%。

DSP-绪论

DSP-绪论

模拟 抗 混 叠
模拟
y(t)
三、数字信号处理的发展与应用
1965年 Cooley和Tukey提出了FFT算法 ("An algorithm for the machine calculation of complex Fourier series")
FFT问世作为开端,典型应用P4 1、由简单的运算走向复杂的运算
数字信号处理的重要性
• 从模拟到数字是信息技术革命的主要特征
• 我们实际生活在一个模拟的世界里,接触的信息都是模拟信 号,因为模拟信号难以获得、存储、放大、传输,所以我们 采用了数字技术来对模拟信号进行处理,这推动了DSP的发 展 ; • 信息化的基础是数字化,数字化的核心技术就是数字信号处 理,数字信号处理是数字化大厦的基石。
2、由低频走向高频
3、由一维走向多维 4、各种数字信号处理系统均几经更新换代
What is DSP Used For?
…And much more!
数字信号处理系统的实现
• 软件实现
• 硬件实现 • 片上系统(SOC, System on a Chip)
数字信号处理的软件实现
软件实现是用一台通用的数字计算机运行数字信 号处理程序。 其优点是经济,一机可以多用; 缺点是处理速度慢,这是由于通用数字计算机的 体系结构并不是为某一种特定算法而设计的。 在许多非实时的应用场合,可以采用软件实现方 法。
• • • • 相关课程 课时安排 考试方式 评分标准
教材
<数字信号处理> 吴镇扬,高等教育出版社,第二版, 2010
参考书
• A.V.奥本海姆,R.W.谢弗.离散时间信号处理. 第二版.刘树棠,黄建国译.西安:西安交通 大学出版社,2001 • 邓立新.数字信号处理学习辅导及习题详解. 北京:电子工业出版社,2005 • 许开宇.数字信号处理.电子工业出版社,2005

西交大数字信号处理课件-0绪论

西交大数字信号处理课件-0绪论
西交大数字信号处理课件 -0绪论
• 绪论 • 信号与系统 • 数字信号处理的基本原理 • 数字信号处理的实现方法 • 数字信号处理的发展趋势与展望
01
绪论
数字信号处理简介
数字信号处理(Digital Signal Processing,简称DSP)是一门涉及多 学科的交叉学科,主要研究如何利用数 字方法对信号进行采集、变换、分析和
将Z平面上的复数映射回时域,得到原始的 离散信号。
离散时间系统的稳定性
系统对输入信号的响应是否随时间无限增 长的性质。
离散时间系统的因果性和稳定性 关系
因果性保证系统对过去和现在输入的响应 只影响未来输出,稳定性则保证系统对输 入的响应不会无限增长。
离散傅里叶变换(DFT)与快速傅里叶变换(FFT)
傅里叶变换
将时域信号转换为频域信号,用于分析信号 的频域特性。
离散傅里叶变换(DFT)
对有限长度的离散信号进行傅里叶变换,得 到信号的频谱。
快速傅里叶变换(FFT)
高效计算DFT的算法,大幅度减少了计算量。
DFT和FFT的应用
频谱分析、滤波器设计、信号去噪等。
04
数字信号处理的实现方法
数字信号处理器的结构与特点
离散信号与系统
离散信号
在时间或数值上取样点的集合,通常由数字或符号表示。
离散系统
在离散时间点上对输入信号进行处理并产生输出信号的数学模型。
离散信号的特性
幅度、频率和相位。
离散系统的特性
线性、时不变性和因果性。
Z变换与离散时间系统
Z变换
逆Z变换
将离散信号映射到复平面上的数学工具, 用于分析信号的频域特性。
嵌入式应用
数字信号处理技术在嵌入式系 统中的应用越来越广泛,推动 了智能硬件的发展。

数字信号处理 第2版 教学课件 ppt 作者 张小虹 9数字信号处理1

数字信号处理 第2版 教学课件 ppt 作者 张小虹 9数字信号处理1

第9章数字信号处理的DSP实现9.1 数字信号处理器介绍9.1.1 DSP芯片特点DSP芯片,即数字信号处理芯片,也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器,其主要应用是实时快速地实现各种数字信号处理算法。

根据数字信号处理的要求,DSP芯片一般具有如下一些主要特点:(1)在一个指令周期内可完成一次乘法和一次加法;(2)程序和数据空间分开,可以同时访问指令和数据;(3)片内具有快速 RAM,通常可通过独立的数据总线在两块中同时访问;(4)具有低开销或无开销循环及跳转的硬件支持;(5)快速的中断处理和硬件I/O支持;(6)具有在单周期内操作的多个硬件地址产生器;(7)可以并行执行多个操作;(8)支持流水线操作,使取指、译码和执行等操作可以并行执行。

9.1.2 DSP芯片的发展世界上第一片单片 DSP 芯片应当是1978年 AMI 公司宣布的 S2811,1979年美国Intel公司宣布的商用可编程器件2920是DSP芯片的一个主要里程碑。

这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。

1980 年,日本 NEC 公司推出的uPD7720是第一片具有乘法器的商用 DSP 芯片。

在这之后,最成功的DSP 芯片当数美国德克萨斯仪器公司(Texas Instruments,简称TI)的一系列产品。

TI 公司在1982年成功推出其第一代 DSP 芯片 TMS32010及其系列产品TMS32011、TMS320C10/C14/C15/C16/C17等,之后相继推出了第二代DSP芯片TMS32020、TMS320C25/C26/C28,第三代DSP芯片TMS320C30/C31/C32,第四代DSP芯片TMS320C40/C44,第五代 DSP 芯片TMS320C5x/C54x,第二代DSP芯片的改进型TMS320C2xx,集多片DSP芯片于一体的高性能DSP芯片TMS320C8x以及目前速度最快的第六代DSP芯片TMS320C62x/C67x等。

《数字信号处理》第二版课后答案

《数字信号处理》第二版课后答案

————第一章———— 时域离散信号与系统理论分析基础本章1.1节“学习要点”和1.2节“例题”部分的内容对应教材第一、二章内容。

为了便于归纳总结,我们将《数字信号处理(第二版)》教材中第一章和第二章的内容合并在一起叙述,这样使读者对时域离散线性时不变系统的描述与分析方法建立一个完整的概念,以便在分析和解决问题时,能全面考虑各种有效的途径,选择最好的解决方案。

1.1 学 习 要 点1.1.1 时域离散信号——序列时域离散信号(以下简称序列)是时域离散系统处理的对象,研究时域离散系统离不开序列。

例如,在时域离散线性时不变系统的时域描述中,系统的单位脉冲响应()n h 就是系统对单位脉冲响应()n δ的响应输出序列。

掌握()n δ的时域和频域特征,对分析讨论系统的时域特性描述函数()n h 和频域特性描述函数()ωj e H 和()z H 是必不可少的。

1. 序列的概念在数字信号处理中,一般用()n x 表示时域离散信号(序列)。

()n x 可看作对模拟信号()t x a 的采样,即()()nT x n x a =,也可以看作一组有序的数据集合。

要点 在数字信号处理中,序列()n x 是一个离散函数,n 为整数,如图1.1所示。

当≠n 整数时,()n x 无定义,但不能理解为零。

当()()nT x n x a =时,这一点容易理解。

当=n 整数时,()()nT x n x a =,为()t x a 在nT t =时刻的采样值,非整数T 时刻未采样,而并非为零。

在学习连续信号的采样与恢复时会看到,()n x 经过低通滤波器后,相邻的()T n nT 1~+之间的()t x a 的值就得到恢复。

例如,()n x 为一序列,取()()2n x n y =,n 为整数是不正确的,因为当=n 奇数时,()n y 无定义(无确切的值)。

2. 常用序列常用序列有六种:①单位脉冲序列()n δ,②矩形序列()n R N ,③指数序列()n u a n,④正弦序列()n ωcos 、()n ωsin ,⑤复指数序列nj eω,⑥周期序列。

《数字信号处理》教案

《数字信号处理》教案

《数字信号处理》教学大纲课程类型:专业课总学时:通信工程专业70;信息工程专业64讲课学时:通信工程专业60;信息工程专业54实践学时:通信工程专业10;信息工程专业10一、课程的目的与任务本课程讲授数字信号处理的基本理论和基本分析方法,并且进行理论与算法的实践。

要求学生掌握离散时间信号与系统的基本理论,掌握离散时间系统的时域分析与 Z变换及离散傅立叶变换和快速傅里叶变换的理论计算法;掌握IIR和FIR数字滤波器的结构、理论和设计方法,为学生毕业后从事数字技术及其工程应用提供必要的训练。

二、课程有关说明《数字信号处理》是通信工程专业和信息工程专业的专业课,课程的内容包括:线性时不变离散时间系统的基础知识、数学模型(差分方程)及其求解,Z变换,离散傅立叶变换(DFT)理论及应用,快速傅立叶变换(FFT),无限长单位脉冲响应(IIR)数字滤波器设计,有限长单位脉冲响应(FIR)数字滤波器设计等内容。

除了理论教学外,还配有一定数量的上机实验。

数字信号处理在理论上所涉及的范围及其广泛。

高等数学、随机过程、复变函数等都是其数学基本工具。

电路理论、信号与系统等是其理论基础。

其算法及实现(硬件和软件)与计算机学科和微电子技术密不可分。

学生应该认真学习以上的知识,更好地掌握数字信号处理的基本理论、算法和实现技能。

主要教学方式:教师主讲,答疑、课堂讨论为辅,并结合实验教学。

考核评分方式:闭卷考试三、教学内容绪论(2学时)本章应掌握:数字信号处理的基本概念。

熟悉:数字信号处理系统的基本组成。

了解:数字信号处理的学科概貌、学科特点、实际应用、发展方向和实现方法。

第一章时域离散信号和时域离散系统(4学时)第一节时域离散信号本节应掌握:序列的运算,即移位、翻褶、和、积、累加、差分、时间尺度变换、卷积和等;序列的周期性。

熟悉:几种常用序列,即单位抽样序列、单位阶跃序列、矩形序列、实指数序列、复指数序列、正弦序列。

了解:用单位抽样序列来表示任意序列。

数字信号处理(刘顺兰)(第二版)全书章 (1)

数字信号处理(刘顺兰)(第二版)全书章 (1)

第1章 离散时间信号与系统
设连续正弦信号xa(t)为
xa (t) Asin(0t )
这 一 信 号 的 频 率 为 f0 , 角 频 率 Ω0=2πf0 , 信 号 的 周 期 为 T0=1/f0=2π/Ω0。
如果对连续周期信号xa(t)进行采样,其采样时间间隔为 T, 采样后信号以x(n)表示,则有
x(n) Asin(n0 )
这就是我们上面讨论的正弦型序列。
第1章 离散时间信号与系统
下面我们来看2π/ω0与T及T0的关系,从而讨论上面所述
正弦型序列的周期性的条件意味着什么?
2 2 1 2 1 1 T0
0
0T
2f0T f0T T
这表明,若要2π/ω0为整数,就表示连续正弦信号的周期T0应为采
第1章 离散时间信号与系统 图 1-1 离散时间信号x(n)的图形表示
第1章 离散时间信号与系统
离散时间信号常常可以对模拟信号(如语音)进行等间隔 采样而得到。例如,对于一个连续时间信号xa(t),以每秒fs=1/T 个采样的速率采样而产生采样信号,它与xa(t)的关系如下:
x(n) xa (nT )
x(n) x(m) (n m) m
(1-14)
由于
(n
m)
1
mn
0 m n
第1章 离散时间信号与系统

x(m)
(n
m)
x(n)
0
mn 其他m
因此,式(1-14)成立,这种表达式提供了一种信号分析工具。 例如,图1-9所示的序列用式(1-14)表示为
x(n) 2 (n) 3 (n 1) (n 2) (n 3)
6

该序列的数字域频率为
0

数字信号处理 第二版 课后答案 (刘益成 著) 电子工业出版社

数字信号处理 第二版  课后答案 (刘益成 著) 电子工业出版社

(2) y(n) = δ (n) + 1 − a n+1 u(n −1) 1− a
(3)
y(n)
=
1 − a n+1 1− a
R5 (n)
+
a
⋅1− a6 1− a
u(n

6)
25.解: h(n) = 9 ⋅ 3n u(−n) − 1 (1)n u(n)
8
83
28.解: ya1 (t)
没有失真,因为输入信号的频率小于 Ω s 2
n−n0 −k
n−n0
nα (
)k
k =n0
β k =n0
∑ ∑ y(n) =
N
β β a ⋅ = k
n−n0 −k
n−n0
N (α )k
k =n0
β k =n0
20.解:(1)
rxx
(m)
=
am
1 + a −2 1− a2
(2)
⎧ ⎨ ⎩
rxx (m) = 0 rxx (m) = N − m
21.解:(1) rxx (m)
(2) x(n) = [(0.5)n − 2n ]u(−n −1)
(3) x(n) = −(0.5)n u(n) − 2un (−n −1)
4.(1) x(n) = -u(n) - 2n+1 u(−n −1)
(2) x(n) = 6 ⋅ 0.5n − 2 ⋅ 2n u(−n −1)
(3) x(n) = nu(−n −1)
( ) (3) 1 − e −6 jϖ
( ) 1 − e − jϖ
= e − j 5ϖ 2
sin 3ϖ sin ϖ 2
(4) 1 − a cosϖ + aj sinϖ cosϖ − a − j sinϖ

数字信号处理第二版(丁玉美) 西安电子科技大学出版社

数字信号处理第二版(丁玉美) 西安电子科技大学出版社

第1章 时域离散信号和时域离散系统 章
(2) 2π/ ω0不是整数,是一个有理数时,设2π/ ω0 =P/Q,式中P、Q是互为素数的整数,取k=Q,那么N=P, 则正弦序列是以P为周期的周期序列。例如sin(4/5)πn, ω0 =(4/5)π,2π/ ω0 =5/2,k=2,该正弦序列是以5为周 期的周期序列。 (3)2π/ ω0 是无理数,任何整数k都不能使N为正整 数,因此,此时的正弦序列不是周期序列。例如, ω0 =1/4,sin(ω0 n)即不是周期序列。对于复指数序列ejω0 n 的周期性也有同样的分析结果。
第1章 时域离散信号和时域离散系统 章
信号随n的变化规律可以用公式表示,也可以用图 形表示。如果x(n)是通过观测得到的一组离散数据,则 其可以用集合符号表示,例如: x(n)={…1.3,2.5,3.3,1.9,0,4.1…}
第1章 时域离散信号和时域离散系统 章
1.2.1 常用的典型序列 1. 单位采样序列δ(n) 1,n=0 0,n≠0 (1.2.3)
t = nT
= xa ( nT ),
−∞< n<∞
(1.2.1)
第1章 时域离散信号和时域离散系统 章
这里n取整数。对于不同的n值, xa(nT)是一个有 序的数字序列:… xa(-T)、 xa(0)、 xa(T)…,该数字序列 就是时域离散信号。实际信号处理中,这些数字序列 值按顺序放在存贮器中,此时nT代表的是前后顺序。 为简化,采样间隔可以不写,形成x(n)信号,x(n)可以 称为序列。对于具体信号,x(n)也代表第n个序列值。 需要说明的是,这里n取整数,非整数时无定义,另外, 在数值上它等于信号的采样值,即 x(n)=xa(nT), -∞<n<∞(1.2.2)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、发展与运用
年代 60年代 70年代 80年代 90年代 21世纪
特点 大学探索 军事运用 商用成功 消费类电子 能源、居家
$/MIPS $100-$1,000 $10-$100 $1-$10 $0.1-$1 $0.01以下
三、发展与运用
上个世纪60年代计算机每秒可以完成百万 次操作,而1024点的DFT就需要百万次的复 数乘法运算。
三、发展与应用
1946年 宾夕法尼亚大学发明了第一代电子管计算 机
1957年 飞歌公司制造出第二代晶体管计算机 1964年 IBM公司制造出第三代集成电路计算机 1971年 Intel公司制造出第四代微型计算机―微处
理器 1975年 第一台PC机 1979年 苹果机问世 1982年 IBM—PC
数字信号处理
Digital Signal Processing 绪论
从模拟到数字
1、留声机诞生于1877年 。它的发明人就是誉满全球 的发明大王爱迪生。
2、模拟系统经历了一个世纪 的历程。留声机→电唱机→ 钢丝录音机→磁带录音机
3、 1982年问世的CD唱 盘,是数字技术取代模拟技 术的典型产品。 CD唱盘只用 了5年就淘汰了唱片。
3、可以实现模拟系统很难达 到的指标或特性
例如: 有限长单位脉冲响应数字滤波器可以实 现严格的线性相位; 在数字信号处理中可以将信号存储起来 ,用延迟的方法实现非因果系统,从而 提高了系统的性能指标; 数据压缩方法可以大大地减少信息传输 中的信道容量。
4、可以实现多维信号处理
利用庞大的存储单元,可以存储 二维的图像信号或多维的阵列信 号,实现二维或多维的滤波及谱 分析等。
信号可以由单个信号源产生,也可以由多个信号源产 生。前者是一标量信号(Scalar signal),而后者是一向 量信号通常也称作多通道信号(Multichannel signal),例 如,立体声信号是一种双通道信号。
二、为什么要采用数字信号处 理
数字信号处理采用数字系统完成信 号处理的任务,它具有数字系统的 一些共同优点,例如抗干扰、可靠 性强,便于大规模集成等。除此而 外,与传统的模拟信号处理方法相 比较,它还具有以下一些明显的优 点:
数字信号处理不断开辟新的 应用领域
在机械制造中,基于 FFT算法的频谱分 析仪用于振动分析和机械故障诊断;医 学中使用数字信号处理技术对心电 (ECG)和脑电(EEG)等生物电信号作分析 和处理;数字音频广播(DAB)广泛地使 用了数字信号处理技术。可以说,数字 信号处理技术已在信息处理领域引起 了广泛的关注和高度的重视。
5、缺点
(1)增加了系统的复杂性。他需要模拟接口以 及比较复杂的数字系统。 (2)应用的频率范围受到限制。主要是A/D转换 的采样频率的限制。 (3)系统的功率消耗比较大。数字信号处理系 统中集成了几十万甚至更多的晶体管,而模拟信 号处理系统中大量使用的是电阻、电容、电感等 无源器件,随着系统的复杂性增加这一矛盾会更 加突出。
1、精度高
在模拟系统的电路中,元器件精度要 达到10-3以上已经不容易了,而 数字系统17位字长可以达到10-5 的精度,这是很平常的。例如,基于 离散傅里叶变换的数字式频谱分析仪 ,其幅值精度和频率分辨率均远远高 于模拟频谱分析仪。
2、灵活性强
数字信号处理采用了专用或通用的 数字系统,其性能取决于运算程序 和乘法器的各系数,这些均存储在 数字系统中,只要改变运算程序或 系数,即可改变系统的特性参数, 比改变模拟系统方便得多。
年代 1971 年 1974 年 1978 年 1986 年 1989 年 1993 年 1997 年 1999 年 2000 年 2003 年 2006 年
发展规模 第一块微处理器4004,大约3000个晶体管 8 位微处理器8080,大约9000个晶体管 16 位微处理器8086,大约5 万个晶体管 32 位微处理器80386,50 万个晶体管 微处理器80386,120万个晶体管 INTEL高性能Pentium微处理器,310 万个晶体管,包括MMX指令集 INTEL Pentium II微处理器,750 万个晶体管 INTEL Pentium III微处理器,2400 万个晶体管,包括SSE 指令集 INTEL Pentium 4 微处理器,4200 万个晶体管,包括SSE2指令集 第一块64 位微处理器AMD Athlon 64,大约10600万个晶体管 INTEL Core 2 Duo双核微处理器,大约29100万个晶体管,包括改进 SSE3指令集
(2)由低频走向高频,模数转 换器的采样频率已高达数百 兆赫,可以将视频甚至更高 频率的信号数字化后送入计 算机处理;
(3)由一维走向多维,像高分 辨率彩色电视、雷达、石油勘 探等多维信号处理的应用领域 已与数字信号处理结下了不解 之缘。
(4)各种数字信号处理系统 均几经更新换代
在图像处理方面,图像数据压缩是多媒体 通信、影碟机(VCD或DVD)和高清晰度电视 (HDTV)的关键技术。国际上先后制定的标 准H.261、JPEG、MPEG—1和MPEG—2中均使用 了离散余弦变换(DCT)算法。近年来发展起 来的小波(Wavelet)变换也是一种具有高压 缩比和快速运算特点的崭新压缩技术,应 用前景十分广阔,可望成为新一代压缩技 术的标准。
上个世纪80年代用Apple II计算机用雷米 兹交替算法设计一256阶的FIR滤波器需要20 多小时。
上个世纪90年代已经可以实时地在PC机上 实现音视频向复杂的运 算,目前几十位乘几十位的全 并行乘法器可以在数个纳秒的 时间内完成一次浮点乘法运算 ,这无论在运算速度上和运算 精度上均为复杂的数字信号处 理算法提供了先决条件;
从模拟到数字
形形色色的数字化信息系统
从模拟到数字
一、信号的分类和特征
信号:信号传递信息的函数也是独立变量的函数,这 个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬 时均有确定值。
模拟信号是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。 数字信号:幅度量化,时间和幅度均不连续。
相关文档
最新文档