第十二章 随机过程及其统计描述概率论与数理统计
数理统计与随机过程
![数理统计与随机过程](https://img.taocdn.com/s3/m/2af8e00682c4bb4cf7ec4afe04a1b0717fd5b3dd.png)
数理统计与随机过程一、数理统计的基本概念和方法1.1 数理统计的定义数理统计是应用数学和统计学的原理与方法,对各种现象进行观察、收集、整理、分析和解释,从而得出有关这些现象的规律性和特征性的科学。
1.2 数理统计的基本方法数理统计的基本方法包括:数据收集、数据整理、数据分析和结论推断等。
1.3 数据收集数据收集是指通过各种手段获取有关某一现象或问题的信息。
常见的数据收集方式包括问卷调查、实验观测、抽样调查等。
1.4 数据整理数据整理是指对收集到的原始数据进行加工处理,使其变成可分析和可比较的形式。
常见的数据整理方式包括分类汇总、编码标记等。
1.5 数据分析数据分析是指通过各种统计方法对已经整理好的数据进行描述性分析和推断性分析。
常见的数据分析方法包括频率分布、中心位置测度、离散程度测度等。
1.6 结论推断结论推断是指根据已经得出的结果,对所研究问题作出科学合理判断。
常见的结论推断方式包括假设检验、置信区间估计等。
二、随机变量及其分布2.1 随机变量的定义随机变量是指在一次试验中可能取到不同值的变量,其取值不仅受试验本身的性质决定,还受到随机因素的影响。
2.2 随机变量的分类随机变量可以分为离散型和连续型两种。
离散型随机变量只能取有限个或可数个值,而连续型随机变量可以取任意实数值。
2.3 随机变量的分布函数随机变量的分布函数是指对于任何实数x,求出X≤x的概率。
对于离散型随机变量,其分布函数为累积分布函数;对于连续型随机变量,其分布函数为概率密度函数。
2.4 常见离散型随机分布常见离散型随机分布包括:伯努利分布、二项式分布、泊松分布等。
2.5 常见连续型随机分布常见连续型随机分布包括:均匀分布、正态分布、指数分布等。
三、参数估计和假设检验3.1 参数估计的基本概念参数估计是指通过样本数据对总体分布的某些未知参数进行估计。
常见的参数估计方法包括点估计和区间估计。
3.2 点估计点估计是指用样本数据直接求出总体分布的某个未知参数的值。
数理统计与随机过程知识点总结
![数理统计与随机过程知识点总结](https://img.taocdn.com/s3/m/68a45641a88271fe910ef12d2af90242a895ab89.png)
数理统计与随机过程知识点总结数理统计与随机过程是一门关于定量方法研究和应用统计和数学知识来描述和分析数据的学科。
它是一门极具挑战性的课程,帮助专业人士在统计学和数学方面更好地理解和使用相关概念,以分析重要的问题。
为此,本文将总结数理统计与随机过程的知识点,以便更好地掌握这门课程。
首先,需要了解数理统计与随机过程的基础概念。
数理统计与随机过程涉及数据收集,描述统计学和概率论。
其中,描述统计学是一种用来研究特定群体的统计方法,涉及描述统计总体和抽样方法。
概率论是一种研究事件发生的可能性和概率的科学,其目的是对自然和社会现象的发生概率进行估计和预测,以及了解概率的行为。
其次,也需要明确数理统计与随机过程研究中的一些基本概念。
数理统计与随机过程研究中的常见概念包括分布,假设检验,回归和管理统计,以及各种数据挖掘技术。
分布是指描述变量的分布类型,而假设检验是指使用统计技术来检验假设的过程。
回归分析是一种统计分析方法,可以根据实际变量的变化来预测变量的值,以及它们之间的关系。
而管理统计则是一种定量分析技术,用于确定管理决策的最优选择。
此外,数据挖掘技术是一种流行的数据分析技术,用于从海量数据中挖掘出有用的信息。
此外,数理统计与随机过程研究中还涉及许多数学概念,包括矩阵分析,概率分析,随机变量,概率分布,多变量分析,概率论,等等。
矩阵分析是一种用于组织和处理大量数据的非常有用的方法,可以用来对数据进行汇总和分析。
而概率分析是概率论研究中的重要概念,可以用来估计某个事件发生的可能性和概率,也可以用来分析复杂的统计问题。
而随机变量是概率分布中的一种重要概念,可以用来表示不同类型的变量。
多变量分析是一种特殊的回归分析,可以用来涉及多个变量的数据分析,而概率论是一种研究事件发生的可能性的科学,可以用来预测事件发生的概率。
最后,在处理数理统计与随机过程问题时,需要熟悉使用软件,包括分析软件,统计软件,数据库管理系统,以及数据可视化工具。
第十二章随机过程及其统计描述概率论与数理统计
![第十二章随机过程及其统计描述概率论与数理统计](https://img.taocdn.com/s3/m/49271d082f60ddccda38a0a7.png)
20
当n充分大时, n维分布函数族能够近似地描 述随机过程的统计特性. 显然, n取得越大, 则 n维分布函数族描述随机过程的特性也越趋 完善. 一般, 可以指出(科尔莫戈罗夫定律):有 限维分布函数族, 即{FX(x1,x2,...,xn, n=1,2,...,t1, t2, ...,tn), tiT}完全地确定了随机过程的统计 特性.
4
随机过程可看作多维随机变量的延伸. 随机过 程与其样本函数的关系就象数理统计中总体 与样本的关系一样. 因此, 热噪声电压的变化过程{V(t), t0}是一 随机过程, 它的状态空间是(-, +), 一次观 测到的电压-时间函数就是这个随机过程的一 个样本函数. 在以后的叙述中, 为简便起见, 常以X(t), tT 表示随机过程. 在上下文不致混淆的情况下, 一般略去记号中的参数集T.
13
随机过程的不同描述方式在本质上是一致的. 在理论分析时往往以随机变量族的描述方式 作为出发点, 而在实际测量和数据处理中往往 采用样本函数族的描述方式. 这两种描述方式 在理论和实际两方面是互为补充的. 随机过程可依其在任一时刻的状态是连续型 或离散型随机变量而分成连续型随机过程和 离散型随机过程. 热噪声电压, 例2和例3是连 续型随机过程, 例1, 例4和例5是离散型随机过 程.
12
工程技术中有很多随机现象, 例如, 地震波幅, 结构物承受的风荷载, 时间间隔(0, t]内船舶甲 板"上浪"的次数, 通讯系统和自控系统中的 各种噪声和干扰, 以及生物群体的生长等等变 化过程都可用随机过程这一数学模型来描绘. 不过, 这些随机过程都不能象随机相位正弦波 那样, 很方便, 很具体地用时间和随机变量(一 个或几个)的关系式表示出来, 其主要原因是 自然界和社会产生随机因素的机理极为复杂, 甚至不可能观察到, 因此只有通过分析样本函 数才能掌握它们的规律性.
浙江大学概率论与数理统计第4版复习笔记详解
![浙江大学概率论与数理统计第4版复习笔记详解](https://img.taocdn.com/s3/m/a52a4857fad6195f302ba622.png)
浙江大学概率论与数理统计第4版复习笔记详解|才聪学习网浙江大学《概率论与数理统计》(第4版)笔记和课后习题(含考研真题)详解文章来源:才聪学习网/概率论与数理统计内容简介本书是浙江大学盛骤等主编的《概率论与数理统计》(第4版)的学习辅导书,主要包括以下内容:(1)梳理知识脉络,浓缩学科精华。
本书每章的复习笔记均对该章的重难点进行了整理,并参考了国内名校名师讲授该教材的课堂笔记。
因此,本书的内容几乎浓缩了该教材的知识精华。
(2)详解课后习题,巩固重点难点。
本书参考大量相关辅导资料,对盛骤主编的《概率论与数理统计》(第4版)的课后思考题进行了详细的分析和解答,并对相关重要知识点进行了延伸和归纳。
(3)精选考研真题,培养解题思路。
本书从历年考研真题中挑选最具代表性的部分,并对之做了详尽的解析。
所选考研真题基本涵盖了每章的考点和难点,考生可以据此了解考研真题的命题风格和难易程度,并检验自己的复习效果。
目录第1章概率论的基本概念1.1 复习笔记1.2 课后习题详解1.3 考研真题详解第2章随机变量及其分布2.1 复习笔记2.2 课后习题详解2.3 考研真题详解第3章多维随机变量及其分布3.1 复习笔记3.2 课后习题详解3.3 考研真题详解第4章随机变量的数字特征4.1 复习笔记4.2 课后习题详解4.3 考研真题详解第5章大数定律及中心极限定理5.1 复习笔记5.2 课后习题详解5.3 考研真题详解第6章样本及抽样分布6.1 复习笔记6.2 课后习题详解6.3 考研真题详解第7章参数估计7.1 复习笔记7.2 课后习题详解7.3 考研真题详解第8章假设检验8.1 复习笔记8.2 课后习题详解8.3 考研真题详解第9章方差分析及回归分析9.1 复习笔记9.2 课后习题详解9.3 考研真题详解第10章bootstrap方法10.1 复习笔记10.2 课后习题详解10.3 考研真题详解第11章在数理统计中应用Excel软件11.1 复习笔记11.2 课后习题详解11.3 考研真题详解第12章随机过程及其统计描述12.1 复习笔记12.2 课后习题详解12.3 考研真题详解第13章马尔可夫链13.1 复习笔记13.2 课后习题详解13.3 考研真题详解第14章平稳随机过程14.1 复习笔记14.2 课后习题详解14.3 考研真题详解复习笔记详解第1章概率论的基本概念1.1 复习笔记在个别试验中其结果呈现出不确定性,在大量重复试验中其结果又具有统计规律性的现象,称为随机现象.一、随机试验1.定义试验包括各种各样的科学实验,甚至对某一事物的某一特征的观察也认为是一种试验.2.试验的特点(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.在概率论中,将具有上述三个特点的试验称为随机试验.二、样本空间、随机事件1.样本空间随机试验E的所有可能结果组成的集合称为E的样本空间,记为S.样本空间的元素,即E的每个结果,称为样本点.2.随机事件一般地,称试验E的样本空间S的子集为E的随机事件,简称事件.在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别地,由一个样本点组成的单点集,称为基本事件.样本空间S包含所有的样本点,它是S自身的子集:(1)在每次试验中它总是发生的,S称为必然事件.(2)空集不包含任何样本点,也是样本空间的子集,它在每次试验中都不发生,称为不可能事件.3.事件间的关系与事件的运算事件间的关系与事件的运算按照集合论中集合之间的关系和集合运算来处理.设试验E的样本空间为S,而A,B,A k(k=1,2,…)是S的子集.(1)包含关系①若,则称事件B包含事件A,即事件A发生必导致事件B发生;②若且,即A=B,则称事件A与事件B相等.(2)和事件事件A∪B={x|x∈A或x∈B)称为事件A与事件B的和事件.当且仅当A,B 中至少有一个发生时,事件A B发生.称为n个事件A1,A2,…,A n的和事件;称为可列个事件A1,A2,…的和事件.(3)积事件事件A∩B={x|x∈A且x∈B)称为事件A与事件B的积事件.当且仅当A,B 同时发生时,事件A∩B发生.A∩B也记作AB.称为n个事件A1,A2,…,A n的积事件;称为可列个事件A1,A2,…的积事件.(4)差事件事件A-B={x|x∈A且x B)称为事件A与事件B的差事件.当且仅当A发生、B不发生时事件A-B发生.(5)互斥若,则称事件A与B是互不相容的,或互斥的.即事件A与事件B不能同时发生.基本事件是两两互不相容的.(6)逆事件若A∪B=S且,则称事件A与事件B互为逆事件,又称事件A与事件B互为对立事件.对每次试验而言,事件A、B中必有一个发生,且仅有一个发生.A的对立事件记为.(7)定律设A,B,C为事件,则有:①交换律:A∪B=B∪A;A∩B=B∩A;②结合律:A∪(B∪C)=(A∪B)∪C;A∩(B∩C)=(A∩B)∩C;③分配律:A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A ∩C);④德摩根律:;.。
概率论与数理统计完整ppt课件
![概率论与数理统计完整ppt课件](https://img.taocdn.com/s3/m/6b8051c9d1d233d4b14e852458fb770bf78a3b04.png)
在化学领域,概率论与数理统计被用于研究化学反应的速率和化 学物质的分布,如化学反应动力学、量子化学计算等。
生物
在生物学中,概率论与数理统计用于研究生物现象的变异和分布, 如遗传学、生态学、流行病学等。
在工程中的应用
通信工程
01
概率论与数理统计在通信工程中用于信道容量、误码率、调制
解调等方面的研究。
边缘分布
对于n维随机变量(X_1,...,X_n),在概 率论中,分别定义了X_1的边缘分布 、...、X_n的边缘分布。
04
数理统计基础
样本与抽样分布
01
02
03
总体与样本
总体是包含所有可能数据 的数据集合,样本是总体 的一个随机子集。
抽样方法
包括简单随机抽样、分层 抽样、系统抽样等。
样本分布
描述样本数据的分布情况 ,如均值、中位数、标准 差等。
参数估计与置信区间
参数估计
利用样本数据估计总体的 未知参数,如均值、方差 等。
点估计
用样本统计量作为总体参 数的估计值。
置信区间
给出总体参数的一个估计 区间,表示对总体的参数 有一个可信的估计范围。
假设检验与方差分析
假设检验
通过样本数据对总体参数提出 假设,然后根据假设进行检验
01
定义
设E是一个随机试验,X,Y是定义在E上,取值分别为实数的随机变量
。称有序实数对(X,Y)为一个二维随机变量。
02
分布函数
设(X,Y)是一个二维随机变量,对于任意实数x,y,二元函数
F(x,y)=P({X<=x,Y<=y})称为二维随机变量(X,Y)的分布函数。
03
边缘分布
对于二维随机变量(X,Y),在概率论中,分别定义了X的边缘分布和Y的
数理统计与随机过程课件
![数理统计与随机过程课件](https://img.taocdn.com/s3/m/79acfe909b6648d7c0c74674.png)
[例1]研究1000件产品的质量。已知其中一件产品的质 量等级可分为:次品、一等品、二等品,请写出母体。 解:设数0、1、2分别表示次品、一等品、二等品, 则母体为数集 {0,1,2}。 [例2]研究2021年全校学生的身高。母体是什么? 母体:2021年全校学生的身高。
母体是随机变量
2.母体分布
f(x1,x2,… ,xn)= fX1 (x1) fX2 (x2) … fXn (xn) =f(x1) f(x2) … f(xn)
3)若总体X的分布函数为F(x),则子样(X1,X2,…,Xn )的 联合分布函数为
F(x1,x2,… ,xn)= FX1(x1) FX2(x2) … FXn(xn) = F(x1) F(x2) … F(xn)
测后放回母体,再随机抽取下一个个体; u 无放回(非重复)抽样(当N/n<=0.1时,无放回
抽样可视为有放回抽样).
定义:有放回地随机抽样称为简单随机抽样。通过 简单随机抽样得到的子样称为简单随机子样。
注:教材使用的都是简单随机子样,简称为子样。
2. 子样的二重性
u 在具体的抽样行为发生之前,子样 (X1,X2,…,Xn ) 中的每个样品都是随机变量, 从而子样是n 维随 机向量(随机变量).
求子样频数分布和子样频率分布.
解:将12个数从小到大排列:
0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3
子样频数分布
子样频率分布
X 0123 X 0 1 2 3 频数 3 5 3 1 频率 1/4 5/12 1/4 1/12
问:频数分布和频率分布有什么作用?
2.经验分布函数
定义:设子样值为( x1,x2,… ,xn),对任意实数x,子样
随机过程及其统计描述
![随机过程及其统计描述](https://img.taocdn.com/s3/m/b81f249ddaef5ef7ba0d3cff.png)
{v1 (t ), v2 (t ),
, vk (t ), }
在给定的时刻 t j观测热噪声电压 V, 它是一个随机变量,其取值是
{v1 (t j ), v2 (t j ),
中的任意一个。
, vk (t j ), }
对热噪声电压的重复观测
3
12.1 随机过程的概念
热噪声电压现象的特点
(1)在某一时刻tj,电压V是一个随机变量,有其样本空间:
12.3 泊松过程及维纳过程
2
12.1 随机过程的概念
一个实例:热噪声电压
在一段时间内对热噪声电压进行观测 是随机试验。观测结果将得到某种形 式的v-t函数图象,可能是
v1 (t ), v2 (t ),
中的任意一个。
, vk (t ),
在相同条件下,独立、重复的观 测,所有可能的结果构成一个函 数族:
, tn ), ti T} 称为n维分布函数族
, X (tn ) xn }
,n
xi R, i 1, 2,
12
12.2 随机过程的统计描述
(二) 随机过程的数字特征
均值函数
X (t ) 是一个随机变量, 给定随机过程 { X (t ), t T } ,固定 t T , t 时刻的均值(数学期望),记为
mn维分布函数可分离变量两随机过程相互独立的概念互相关函数12extytrt互协方差函数12不相关的判据若对任意恒有二维随机过程的分布函数和数字特征122随机过程的统计描述仍指的是线性不相关24三个随机过程的和wtxtytzt均值函数自相关函数12rttewtwtxxxyxzyxyyyzzxzyzzxtytztxtytzt二维随机过程的分布函数和数字特征122随机过程的统计描述25123泊松过程及维纳过程增量的概念给定二阶矩过程我们称随机变量为随机过程在区间上的增量
随机过程课件
![随机过程课件](https://img.taocdn.com/s3/m/c8a97637a517866fb84ae45c3b3567ec102ddc97.png)
随机过程课件随机过程课件随机过程是概率论与数理统计中的重要概念,它描述了随机变量随时间的演化规律。
在现代科学和工程领域,随机过程被广泛应用于信号处理、通信系统、金融市场等众多领域。
本文将介绍随机过程的基本概念、分类以及一些常见的应用。
一、随机过程的基本概念随机过程是一族随机变量的集合,它描述了随机变量随时间的变化。
在数学上,随机过程可以用函数的形式表示,即X(t),其中t表示时间,X(t)表示在时间t时刻的随机变量。
随机过程可以分为离散时间和连续时间两种类型。
离散时间随机过程是指随机变量在离散时间点上的演化,例如抛硬币的结果、骰子的点数等。
连续时间随机过程是指随机变量在连续时间上的演化,例如股票价格的变动、电信号的传输等。
二、随机过程的分类根据随机过程的性质和演化规律,可以将其分为多种类型。
常见的分类包括马尔可夫过程、泊松过程、布朗运动等。
1. 马尔可夫过程马尔可夫过程是指在给定当前状态下,未来的演化只与当前状态有关,与过去的状态无关。
马尔可夫过程具有“无记忆”的特性,常用于描述具有时序性质的问题,如排队系统、信道传输等。
2. 泊松过程泊松过程是一种用于描述随机事件的发生次数的随机过程。
它具有独立增量和无记忆性的特点,常用于描述到达率恒定的随机事件,如电话呼叫、交通流量等。
3. 布朗运动布朗运动是一种连续时间的随机过程,其演化规律由随机变量驱动。
布朗运动具有连续性、无界性和马尔可夫性等特点,广泛应用于金融市场、物理学等领域。
三、随机过程的应用随机过程在现代科学和工程领域有着广泛的应用。
以下列举几个常见的应用领域。
1. 信号处理随机过程在信号处理中起到了重要的作用。
通过对信号进行建模,可以利用随机过程的理论和方法对信号进行分析和处理,如图像压缩、语音识别等。
2. 通信系统随机过程在通信系统中也有着重要的应用。
通过对信道的建模,可以利用随机过程的理论来分析和优化通信系统的性能,如误码率分析、信道编码等。
《概率论与数理统计》教学大纲课程名称:概率论与数理统计英文名称
![《概率论与数理统计》教学大纲课程名称:概率论与数理统计英文名称](https://img.taocdn.com/s3/m/96db4862a517866fb84ae45c3b3567ec112ddc5c.png)
《概率论与数理统计》教学大纲课程名称:概率论与数理统计英文名称:Probability Theory and Mathematical Statitics课程编号:09420003学时数及学分:54学时 3学分教材名称及作者:《概率论与数理统计》(第三版), 盛骤、谢式干、潘承毅编出版社、出版时间:高等教育出版社,2001年本大纲主笔人:邓娜一、课程的目的、要求和任务概率统计是一门重要的理论性基础课,是研究随机现象统计规律性的数学学科,本课程的任务是使学生掌握概率论与数理统计的基本概念,了解它的基本理论和方法,从而使学生初步掌握处理随机现象的基本思想和方法,培养学生运用概率统计方法分析和解决、处理实际不确定问题的基本技能和基本素质。
通过本课程的学习,要使学生初步理解和掌握概率统计的基本概念和基本方法,了解其基本理论,学习和训练运用概率统计的思想方法观察事物、分析事物以及培养学生用概率统计方法解决实际问题的初步能力。
概率统计的理论和方法的应用是非常广泛的,几乎遍及所有科学技术领域,工农业生产和国民经济的各个部门,例如使用概率统计方法可以进行气象预报,水文预报以及地震预报,产品的抽样检验,在研究新产品时,为寻求最佳生产方案可以进行试验设计和数据处理,在可靠性工程中,使用概率统计方法可以给出元件或系统的使用可靠性以及平均寿命的估计,在自动控制中,可以通过建立数学模型以便通过计算机控制工业生产,在通讯工程中可用以提高抗干扰和分辨率等。
所以我院各专业学习概率统计是非常必要的,它也是学习专业课的基础。
二、大纲的基本内容及学时分配本课程的教学要求分为三个层次。
凡属较高要求的内容,必须使学生深入理解、牢固掌握、熟练应用。
其中,概念、理论用“理解”一词表述,方法、运算用“熟练掌握”一词表述。
在教学要求上一般的内容中,概念、理论用“了解”一词表述,方法、运算用“掌握”表述。
对于在教学上要求低于前者的内容中,概念、理论用“会”一词表述,方法、运算用“知道”表述(一)随机事件及其概率1、理解随机实验、随机事件、必然事件、不可能事件等概念。
数理统计与随机过程
![数理统计与随机过程](https://img.taocdn.com/s3/m/8df39d4ff02d2af90242a8956bec0975f465a41e.png)
数理统计与随机过程数理统计与随机过程1. 引言数理统计与随机过程是两个密切相关的概念,既有相似之处又有一些区别之处。
数理统计是一种研究数据收集、分析和解释的方法,而随机过程则是研究时间上的随机变化的数学模型。
本文将深入探讨数理统计与随机过程的基本概念、应用以及相互关系,以期帮助读者更全面地理解这两个领域。
2. 数理统计数理统计是一种通过收集、处理和解释数据来进行推断和决策的学科。
它包括描述统计和推断统计两个方面。
描述统计主要包括对数据的总结、图形展示和基本统计指标的计算,通过这些方法可以揭示数据的特征和分布。
推断统计则是基于样本数据对总体特征进行估计和推断的方法,其中包括参数估计和假设检验。
数理统计在各个领域都有广泛的应用,如市场调研、医学研究和金融风险评估等。
3. 随机过程随机过程是一种描述随机现象演变的数学模型,它涉及到时间上不确定性的变化。
随机过程可以看作是一系列随机变量的集合,这些随机变量在时间上有关联,并且它们的取值取决于某个随机事件的结果。
随机过程可以分为离散时间和连续时间两种类型。
离散时间下的随机过程通常用更简单的概率论工具进行描述,如马尔可夫链和随机游走。
而连续时间下的随机过程则需要用到更为复杂的数学方法,如随机微分方程和布朗运动。
随机过程在物理学、通信系统和金融工程等领域有着广泛的应用。
4. 数理统计与随机过程的联系数理统计和随机过程有着密切的联系,两者既有相互支持的关系,也有独立发展的特点。
数理统计可以用来对随机过程进行建模和推断。
通过收集随机过程的样本数据,可以应用数理统计中的方法来估计空间分布、预测未来变化趋势等。
而随机过程则为数理统计提供了数据来源,将现实世界的随机现象进行数学描述,为数理统计的分析提供了基础。
随机过程的理论和方法也常常被运用到数理统计中。
在时间序列分析中,随机过程的模型可以用来描述数据随时间变化的规律,从而可以对未来的观测结果进行预测和分析。
数理统计和随机过程的融合使得对数据的分析更加全面和准确。
数理统计与随机过程知识点总结
![数理统计与随机过程知识点总结](https://img.taocdn.com/s3/m/f55828f9250c844769eae009581b6bd97f19bc36.png)
数理统计与随机过程知识点总结数理统计和随机过程是基础研究探索世界现象和未知现象的杰出工具,因此,对于想要发展科学技术的知识和研究能力的研究人员和学者是至关重要的。
在本文中,我们将概述数理统计和随机过程学科中重要的知识点,以期帮助研究人员和学者更好地理解这两门学科,以及它们在工程应用和科学研究中的重要性。
首先,数理统计的基本概念是频率学派的思想,它以概率和概率分布理论为基础。
在数理统计中,可以用不同的分析方法来研究特定的统计分布,并使用统计学的工具来确定问题的解决方案。
此外,数理统计还涉及描述性统计,回归分析,分析和预测统计,经验概率分布和统计推断。
其次,随机过程是一门研究不确定性或未知性行为的学科,一般是指随机变量或随机变量序列的行为。
主要用于处理过去,现在和未来时刻发生的事件。
在随机过程中,可以使用概率论来研究集合中变量的关系,从而了解系统的发展趋势,以及如何运用随机过程的知识来解决问题。
随机过程涉及到随机变量的分布,频率,跳跃,稳定性,非平稳性,随机变量序列和模型,马尔可夫链,随机微分方程,随机微分方程的数值求解和随机微分方程的解析求解。
此外,数理统计和随机过程学科还涉及应用,例如生物统计学,医学统计学,金融统计学,社会统计学,环境统计学,工程统计学和经济统计学。
此外,数理统计和随机过程的工程应用也在不断发展,例如用于风险分析,信号处理,统计图形分析,生物信息学,数据挖掘,人工智能,搜索引擎优化和机器学习等。
综上所述,数理统计和随机过程是关键的学科,这些学科的研究可以帮助研究人员和学者更好地理解世界现象,并有助于他们在未来的研究中发挥更大的作用。
本文旨在总结数理统计和随机过程学科中重要的知识点,并展示两个学科在工程应用和科学研究中的重要性。
深入了解这些学科将有助于研究人员和学者更好地利用数理统计和随机过程研究现象和未知现象,从而最大化社会,经济和技术发展的好处。
随机过程及其统计描述
![随机过程及其统计描述](https://img.taocdn.com/s3/m/1be7f1d5f90f76c661371a5d.png)
随机过程数字特征之间 的关系:
2 1 X t RX t , t ; 2 2 2C X t1 , t2 RX t1 , t2 X t1 X t2 ; 3 X t C X t , t X t .
若CXY t1 , t2 0, 则称随机过程 X t 和Y t 是不相关的 .
10.2.8 三个随机过程之和的统计特性
设X t , Y t , Z t 是三个随机过程 , 令W t X t Y t Z t , 则
W t X t Y t Z t ,
说明: 1*式表明几个随机过程之 和的自相关函数可以表 示 为各个随机过程的自相 关函数以及各对随机过 程的互相关函 数之和;
*
2如果上述三个随机过程 是两两不相关的 , 且各自的均值函数 都为零, 则由*式可知诸相关函数均等 于零, 此时W t 的自相关
函数简单地等于各个过 程的自相关函数之和 ,即
1 PT PH 2
例2﹑设a.b 是常数 t R, ~ U0,2, Xt, a cosbt 试问 如此 Xt, , t R, U0,2 定义的过程 是否为一随 机过程?
解:显然对固定 Ua, b ,Xt, 是一个仅 Xt , 依赖于t 的函数;对固定的t U 0,2 , 是一个随机变量 •由定义即知该过程为一随机过程。
3. 随机过的举例说明
例1抛掷一枚硬币的试验,样本空间是 S H, T, 现 以此定义
cost, H Xt, , T t t ,
最新考研数学三不考的部分(最全)
![最新考研数学三不考的部分(最全)](https://img.taocdn.com/s3/m/45a5dcd74afe04a1b171de20.png)
高等数学不用看的部分:第5页映射;第17页到第20页双曲正弦双曲余弦双曲正切及相应的反函数可以不记;第107页由参数方程所确定的函数的导数;第119页微分在近似方程中的应用记住几个公式4,5,6还有120页的近似公式即可,不用看例题;第140页泰勒公式的证明可以不看,例题中的几个公式一定要记住,比如正弦公式等;第169页第七节;第178页第八节;第213页第四节;第218页第五节;第280页平行截面面积为已知的立体体积;第282页平面曲线的弧长;第287页第三节;第316页第五节;在第七章微分方程中建议大家只要会解方程即可,凡是书上涉及到物理之类的例题不看跳过例如第301页的例2例3例4;第八章;第90页第六节;第101页第七节;第157页第三节;165页第四节;第十一章;第261页定理6;第278页第四节;第285页第五节;第302页第七节;第316第八节线性代数不用看的部分:第102页第五节概率论与数理统计要考的部分:第一二三四五章;第六章第135页抽样分布;第7章第一节点估计和第二节最大似然估计注意:数学课本和习题中标注星号的为不考内容,在上面的内容中我并没有标出。
上述内容是根据文都发放的教材编的。
《高等数学》目录与2010数三大纲对照的重点计划用时(天)标记及内容要求:★─大纲中要求“掌握”和“会”的内容以及对学习高数特别重要的内容,应当重点加强,对其概念、性质、结论及使用方法熟知,对重要定理、公式会推导。
要大量做题。
☆─大纲中要求“理解”和“了解”的内容以及对学习高数比较重要的内容,要看懂定理、公式的推导,知道其概念、性质和方法,能使用其结论做题●─大纲中没有明确要求,但对做题和以后的学习有帮助。
要能看懂,了解其思路和结论。
▲─超出大纲要求。
第一章函数与极限第一节映射与函数(☆集合、影射,★其余)第二节数列的极限(☆)第三节函数的极限(☆)第四节无穷小与无穷大(★)第五节极限运算法则(★)第六节极限存在准则(★)第七节无穷小的比较(★)第八节函数的连续性与间断点(★)第九节连续函数的运算与初等函数的连续性(★)第十节闭区间上连续函数的性质(★)总习题第二章导数与微分第一节导数概念(★)第二节函数的求导法则(★)第三节高阶导数(★)第四节隐函数及由参数方程所确定的函数的导数相关变化率(★)第五节函数的微分(★)总习题二第三章微分中值定理与导数的应用第一节微分中值定理(★罗尔,★拉格朗日,☆柯西)第二节洛必达法则(★)第三节泰勒公式(☆)第四节函数的单调性与曲线的凹凸性(★)第五节函数的极值与最大值最小值(★)第六节函数图形的描绘(★)第七节曲率(●)第八节方程的近似解(●)总习题三(★注意渐近线)第四章不定积分第一节不定积分的概念与性质(★)第二节换元积分法(★)第三节分部积分法(★)第四节有理函数的积分(★)第五节积分表的使用(★)总习题四第五章定积分第一节定积分的概念与性质(☆)第二节微积分基本公式(★)第三节定积分的换元法和分部积分法(★)第四节反常积分(☆概念,★计算)第五节反常积分的审敛法г函数(●)总习题五第六章定积分的应用第一节定积分的元素法(★)第二节定积分在几何学上的应用(★平面面积,★旋转体,★简单经济应用)第三节定积分在物理学上的应用(★求函数平均值)总习题六、第七章微分方程第一节微分方程的基本概念(☆)第二节可分离变量的微分方程(☆)(★掌握求解方法)第三节齐次方程(☆)(★掌握求解方法)第四节一阶线性微分方程(☆)(★掌握求解方法)第五节可降阶的高阶微分方程(☆)第六节高阶线性微分方程(☆)第七节常系数齐次线性微分方程(★二阶的)第八节常系数非齐次线性微分方程(★二阶的)第九节欧拉方程(●)第十节常系数线性微分方程组解法举例(●)总习题七附录I 二阶和三阶行列式简介附录II 几种常用的曲线附录、积分表第八章空间解析几何与向量代数(▲)第一节向量及其线性运算第二节数量积向量积混合积第三节曲面及其方程第四节空间曲线及其方程第五节平面及其方程第六节空间直线及其方程总习题八第九章多元函数微分法及其应用第一节多元函数的基本概念(☆)第二节偏导数(☆概念。
概率论与数理统计ppt课件
![概率论与数理统计ppt课件](https://img.taocdn.com/s3/m/84be0264c850ad02de804148.png)
注:P( A) 0不能 A ; P( B) 1不能 B S .
2。 A1 , A2 ,...,An , Ai Aj , i j, P( P(
n n i 1
Ai ) P( Ai )
i 1
n
证:令 Ank (k 1, 2,...), Ai Aj , i j, i, j 1, 2,....
•
5.1 大数定律 5.2 中心极限定理
•
第六章 数理统计的基本概念
• • 6.1 总体和样本 6.2 常用的分布
4
第七章 参数估计
• • • 7.1 参数的点估计 7.2 估计量的评选标准 7.3 区间估计
第八章 假设检验
• • • • • • • 8.1 8.2 8.3 8.4 8.5 8.6 8.7 假设检验 正态总体均值的假设检验 正态总体方差的假设检验 置信区间与假设检验之间的关系 样本容量的选取 分布拟合检验 秩和检验
A B 2 A=B B A
B A
S
例: 记A={明天天晴},B={明天无雨} B A
记A={至少有10人候车},B={至少有5人候车} B
A
一枚硬币抛两次,A={第一次是正面},B={至少有一次正面}
BA
13
事件的运算
A与B的和事件,记为 A B
8
§1 随机试验
确定性现象
自然界与社会Βιβλιοθήκη 活中的两类现象不确定性现象
确定性现象:结果确定 不确定性现象:结果不确定
例:
向上抛出的物体会掉落到地上 ——确定 ——不确定 明天天气状况 ——不确定 买了彩票会中奖
数理统计与随机过程
![数理统计与随机过程](https://img.taocdn.com/s3/m/f15cdb3ddf80d4d8d15abe23482fb4daa58d1d1a.png)
数理统计与随机过程标题:深入理解数理统计与随机过程摘要:本文将深入探讨数理统计与随机过程的多个方面,从简单概念和基本原理出发,逐步深入到更复杂的应用和高级理论。
通过结构化的介绍和回顾性总结,将帮助读者对这一主题有更全面、深刻和灵活的理解。
第一部分:数理统计的基础概念与原理1.1 概率与统计的基本概念- 随机事件与概率空间- 概率分布函数与密度函数- 随机变量与随机过程1.2 统计学的基本方法- 描述统计:均值、方差、中位数等指标- 推断统计:参数估计与假设检验- 抽样方法与样本容量选择第二部分:数理统计的应用领域2.1 生物统计学- 实验设计与样本调查分析- 遗传学与流行病学研究- 医学统计与临床试验分析2.2 金融统计学- 风险管理与投资组合优化- 金融工程与衍生品定价- 高频数据分析与交易策略2.3 工程统计学- 质量控制与流程改进- 可靠性分析与寿命预测- 多元数据分析与建模第三部分:随机过程的基本理论与应用3.1 马尔可夫过程- 离散时间马尔可夫链与连续时间马尔可夫过程 - 马尔可夫链的平稳性与收敛性- 马尔可夫决策过程与最优控制3.2 随机过程的分类与性质- 马尔可夫性与时齐性- 随机过程的独立增量与平稳增量- 马尔可夫过程的各种变形与扩展3.3 随机过程的应用领域- 信号处理与通信系统建模- 排队论与网络性能分析- 金融衍生品定价与投资组合优化第四部分:数理统计与随机过程的未来发展方向4.1 大数据与机器学习的融合- 基于统计学的机器学习方法- 高维数据分析与特征选择- 强化学习与无监督学习的应用潜力4.2 贝叶斯统计与深度学习- 贝叶斯推断与参数估计- 深度学习的贝叶斯框架与不确定性建模- 基于深度学习的贝叶斯优化与决策分析结论:数理统计与随机过程作为现代科学和工程领域中不可或缺的工具和理论基础,其应用广泛而深远。
随着技术和方法的不断创新,数理统计与随机过程将在更多领域发挥重要作用,进一步推动科学和技术的进步。
南邮-概率与数理统计-第12章 - 随机过程及其统计描述
![南邮-概率与数理统计-第12章 - 随机过程及其统计描述](https://img.taocdn.com/s3/m/ab9df21ec281e53a5802ffca.png)
. 自协方差函数, 简称协方差函数
10
随机过程的数字特征之 间的关系: 2 (1). X ( t ) RX ( t , t ) ( 2). C X ( t1 , t 2 ) RX ( t1 , t 2 ) X ( t1 ) X ( t 2 ) 2 2 ( 3). X ( t ) C X ( t , t ) RX ( t , t ) X ( t )
1
2、当 X ( 0) 0 时,有 C X ( s, t ) D X (min( s, t )) (注:记 D X ( t ) D( X ( t )))
X ( t ), t T
族中的每一个函数称为这个随机过程的样本函数。
T 定义2 : 设 ( ,) ,如果对于每一个T ,都有一个随机 t 变量 X (t ) 与它相对应 ,则称随机变量族), t T } { X (t 为随机过程。 称T 为时间参数集,称 ) 为时刻 时过程的状态, X (t t
类似,对t1 , ,t n T,称 ( X ( t1 ), , X ( t n )) 的分布函数 FX ( x1 , , x n ; t1 , , t n ) P{ X ( t1 ) x1 , , X ( t n ) x n } 为随机过 程的n维分布函数 . 称 { FX ( x1 , , x n ; t1 , , t n ), t1 , , t n T } 为随机过程的 维分布 n
6
§ 随机过程的统计描述 2 下面从分布函数族和数 字特征两方面来描述随 机过程的
统计特性. (一)、随机过程的分布函数 族 设 { X ( t ), t T } 为一个随机过程 . 对t T,称 X ( t ) 的分布函数FX ( x; t ) P{ X ( t ) x } 为随机 过程的一维分布函数 . 称 {FX ( x; t ), t T } 为随机过程的一维分布 函数族.
《概率论与数理统计》课件-随机过程
![《概率论与数理统计》课件-随机过程](https://img.taocdn.com/s3/m/ced30c66b5daa58da0116c175f0e7cd185251868.png)
06
随机过程的未来发展与挑战
随机过程理论的发展趋势
随机过程与大数据的结合
随着大数据技术的快速发展,如何将随机过程与大数据分 析相结合,挖掘出更多有价值的信息和模式,是未来的一 个重要研究方向。
复杂系统中的随机过程
研究复杂系统中的随机过程,如金融市场、生态系统、社 交网络等,以揭示其内在的运行规律和动态特性。
02
随机过程的基本ቤተ መጻሕፍቲ ባይዱ型
独立增量过程
总结词
描述随机过程中事件发生次数随时间变化的过程,其中每次事件的发生都是独立 的。
详细描述
独立增量过程是指随机过程中事件发生次数在不相重叠的时间区间内相互独立, 即每次事件的发生与其他时间点的事件无关。这种过程在保险、金融等领域有广 泛应用。
马尔科夫过程
总结词
描述一个随机系统在给定当前状态的情况下,未来状态只依 赖于当前状态的过程。
详细描述
马尔科夫过程是一种特殊的随机过程,其中下一个状态只与 当前状态有关,而与过去状态无关。这种过程在自然现象、 社会现象和工程领域中都有广泛的应用,如天气预报、股票 价格波动等。
泊松过程
总结词
描述随机事件在单位时间内按照恒定速率独立发生的随机过程。
该方法通过大量随机抽样,得到概率分布的近似结果,具有简单、灵活和通用性强 的特点。
蒙特卡洛方法在金融、物理、工程等领域有广泛应用,如期权定价、核反应堆模拟 等。
离散事件模拟方法
离散事件模拟方法是一种基于 事件驱动的模拟方法,适用于 描述离散状态变化的过程。
该方法通过跟踪系统中的事件 发生和状态变化,来模拟系统 的动态行为。
离散事件模拟方法在交通运输 、生产制造、通信网络等领域 有广泛应用。
数理统计与随机过程PPT学习教案
![数理统计与随机过程PPT学习教案](https://img.taocdn.com/s3/m/d7e3d90c998fcc22bdd10da2.png)
需注意的是:参数 t 虽然通常解释为时间,但 它也可以表示其它的量。诸如:序号、距离等。 如例5中,假定每隔一个单位时间掷一次骰子,则 第n次掷出的点数 Xn就相当于 t=n时骰子出现的点 数。
第14页/共69页
§10.2 随机过程的统计描述
随机过程在任一时刻的状态是随机变量, 由此可以利用随机变量(一维或多维)的统计描述 方法来描述随机过程的统计特征。
从另一个角度来看,如果固定某一个观测时刻t, 事物在时刻t出现的第1页状/共态69页是随机的。
例1电话问题:我们用X(t)表示在时刻t前电话局 接到的呼唤次数。如果固定时间t,则X(t)是一个随 机变量;但是t是可变参数,是一个连续变量,所以 X(t)是一个过程。因此,这个问题所涉及的不仅是一 个随机变量的问题,它是随机的,又是一个过程。
对于一切 t ∈T, X(t) 所有可能取得一切值的全
体称为随机过程的状态空间。
第6页/共69页
对随机过程 { X(t),t ∈T } 进行一次试验 (即在 T上 进行一次全程观测),其结果是 t 的函数,记为x(t), t∈T, 称它为随机过程的一个样本函数或样本曲线。 所有不同的试验结果构成一族 (可以只包括有限个, 如本节例1) 样本函数。
不同值, Xn是不同的随机变量,因而{Xn, n≥1} 构成一随机过程, 称为伯努力过程, 或伯努力随 机序列。状态空间都是{1, 2, 3, 4, 5, 6}。 (2). 设Xn是前n次掷出的最大点数,则{Xn, n ≥1}也 是一随机过程。状态空间是{1, 2, 3, 4, 5, 6}。
第12页/共69页
例2液面上质点的运动:我观测液面上一个做布 朗运动的质点A,若用{X(t),Y(t)}表示在时刻t该质点在 液面上的坐标位置。当t固定时, {X(t),Y(t)} 是一对 二维随机变量。而t是一个连续变量,因此{X(t),Y(t)} 又是一个过程。
概率与数理统计12.1随机过程初步
![概率与数理统计12.1随机过程初步](https://img.taocdn.com/s3/m/7b41ed5a27284b73f242508a.png)
自协方差函数
均方值函数
显然C(t1, t1)=DX(t1).
(3)互相关函数 同时考虑两个随机过程X(t)与Y(t)时, 对任意的 t1,t2T,若X(t1)与Y(t2)的二阶混合矩存在,
RXY (t1, t2 ) E[ X (t1 )Y (t2 )] 互相关函数
定义 12.1.1 设 是样本空间, T 是一个实数集, {X(,t),tT, }是对应于t和的实数,即为 定义在T和上的二元函数,则称{X(,t),tT, }随机过程。简记为 X (t ), t T 或 X(t).
称T为参数集合,参数tT可以视为时间,X(t)的每一 个可能的取值所构成的集合,称为状态空间,用 S表示.
为随机过程,且称具有这样特性的随机过程为贝努
里随机过程或贝努里随机序列. 例12-2 电话问题 用N(t)表示时刻t以前即时间间 隔[O,t)内电话总台接到的电话呼唤次数,对于固 定的t,显然N(t)是一个随机变量,但t是一个变化连
续的参数,因此{N(t),t≥0}为一随机过程. 由上述实例归纳出如下定义:
如果随机过程{X(t), t≥0}为齐次的独立增量过程,
对任意的 t1<t2, 有 X (t2 ) X (t1 ) ~ N (0, 2 (t2 t1 ))
则称二阶矩过程X(t)为维纳过程. X(0)=0
3、马尔可夫过程(Markov) 设有一随机过程{X(t), t T},对任意正整数n (n≥3)及任意的t1<t2<…<tn<tn+1 T,有
总 结
一、 随机过程的定义
3、马尔 可夫过程 (Markov) 齐次的独立 增量过程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27
随机过程{X(t), tT}, 如果对每一个tT, 二阶 矩E[X2(t)]都存在, 则称它为二阶矩过程. 二阶矩过程的相关函数总存在. 事实上, 由于 E[X2(t1)], E[X2(t2)]存在, 根据柯西-许瓦兹不等 式有 {E[X(t1)X(t2)]}E[X2(t1)X2(t2)], t1,t2T. 即知RX(t1,t2)=E[X(t1)X(t2)]存在
23
把随机变量X(t)的二阶原点矩和二阶中心矩 分别记作 2 2 X ( t ) E[ X ( t )] ( 2.2) 和
( t ) DX ( t ) Var[ X ( t )] E{[ X ( t ) - m X ( t )] },
2 X 2
( 2.3) 并分别称它们为随机过程{X(t), tT}的均方值 函数和方差函数. 方差函数的算术平方根X(t) 称为随机过程的标准差函数, 它表示随机过程 X(t)在时刻t对于均值mX(t)的平均偏离程度.
4
随机过程可看作多维随机变量的延伸. 随机过 程与其样本函数的关系就象数理统计中总体 与样本的关系一样. 因此, 热噪声电压的变化过程{V(t), t0}是一 随机过程, 它的状态空间是(-, +), 一次观 测到的电压-时间函数就是这个随机过程的一 个样本函数. 在以后的叙述中, 为简便起见, 常以X(t), tT 表示随机过程. 在上下文不致混淆的情况下, 一般略去记号中的参数集T.
14
随机过程还可依时间(参数)是连续或离散进 行分类. 当时间集T是有限或无限区间时, 称 {X(t), tT}为连续参数随机过程(以下如无特 别指明, "随机过程"总是指连续参数而言的). 如果T是离散集合, 例如T={0,1,2,...}, 则称 {X(t), tT}为离散参数随机过程或随机序列, 此时常记成{Xn, n=0,1,2,...}等, 如例5.
5
例1 抛掷一枚硬币试验, 样本空间是S={H,T}, 现藉此定义 cos t , 当出现H , X (t ) t ( -,), 当出现T , t, x(t) x=cos t O t1
t2
t
6
其中P(H)=P(T)=1/2. 对任意固定的t, X(t)是一 定义在S上的随机变量; 对不同的t, X(t)是不同 的随机变量, 所以{X(t), t(-, +)}是一族随 机变量, 即它是随机过程. 另一方面, 作一次试 验, 若出现H, 样本函数x1(t)=cos t; 若出现T, 样本函数为x2(t)=t, 所以该随机过程对应的一 族样本函数仅包含两个函数:{cos t, t}. 显然 这个随机过程的状态空间为(-, +).
7
例2 考虑 X(t)=a cos(wt+Q), t(-, ), (1.1) 式中a和w是正常数, Q是在(0,2)上服从均匀 分布的随机变量. x(t) x2(t), q2=3/2
O
t x1(t),q1=0
8
ห้องสมุดไป่ตู้
显然, 对于每一个固定的时刻t=t1, X(t1)=a cos(wt1+Q)是一个随机变量, 因而由 (1.1)式确定的X(t)是一个随机过程, 通常称它 为随机相位正弦波. 它的状态空间是[-a, a]. 在(0,2)内随机地取一数qi, 相应地即得这个 随机过程的一个样本函数 xi(t)=a cos(wt+qi), qi(0,2).
22
给定随机过程{X(t), tT}, 固定tT, X(t)是一 随机变量, 它的一切均值一般与t有关, 记为 mX(t)=E[X(t)], (2.1) 称mX(t)随机过程{X(t), tT}的均值函数. 注意, mX(t)是随机过程的所有样本函数在时刻 t的函数值的平均值, 通常称这种平均为集平 均或统计平均. 均值函数mX(t)表示了随机过程X(t)在各个时 刻的摆动中心.
20
当n充分大时, n维分布函数族能够近似地描 述随机过程的统计特性. 显然, n取得越大, 则 n维分布函数族描述随机过程的特性也越趋 完善. 一般, 可以指出(科尔莫戈罗夫定律):有 限维分布函数族, 即{FX(x1,x2,...,xn, n=1,2,...,t1, t2, ...,tn), tiT}完全地确定了随机过程的统计 特性.
13
随机过程的不同描述方式在本质上是一致的. 在理论分析时往往以随机变量族的描述方式 作为出发点, 而在实际测量和数据处理中往往 采用样本函数族的描述方式. 这两种描述方式 在理论和实际两方面是互为补充的. 随机过程可依其在任一时刻的状态是连续型 或离散型随机变量而分成连续型随机过程和 离散型随机过程. 热噪声电压, 例2和例3是连 续型随机过程, 例1, 例4和例5是离散型随机过 程.
21
(二) 随机过程的数字特征 随机过程的分布函 数族能完善地刻画随机过程的统计特性. 但是 人们在实际中, 根据观察往往只能得到随机过 程的部分资料(样本), 用它来确定有限维分布 函数族是困难的, 甚至是不可能的, 因而象引 入随机变量的数字特征那样, 有必要引入随机 过程的基本的数字特征-均值函数和相关函数 等. 将会看到, 这些数字特征在一定条件下是 便于测量的.
24
X(t)
mX(t)X(t)
x1(t)
mX(t)
t
x2(t) xi(t)
mX(t)-X(t)
25
又设任意t1,t2T, 把随机变量X(t1)和X(t2)的二 阶矩原点混合矩记作 RXX(t1,t2)=E[X(t1)X(t2)], (2.4) 并称它为随机过程{X(t),tT}的自相关函数, 简称相关函数. RXX也简记为RX(t1,t2). X(t1)和X(t2)的二阶混合中心矩记作 CXX(t1,t2)=Cov[X(t1),X(t2)] =E{[X(t1)-mX(t1)][X(t2)-mX(t2)]}, (2.5) 并称它为随机过程{X(t),tT}的自协方差函数, 简称协方差函数. CXX(t1,t2)也常简记为CX(t1,t2).
第十章 随机过程及其统计描述
§1 随机过程的概念
1
热噪声电压 电子元件或器件由于内部微观粒 子(如电子)的随机热骚动所引起的端电压称 为热噪声电压, 它在任一确定时刻t的值是一 随机变量, 记为V(t). 不同时刻对应不同的随 机变量, 当时间在某区间, 譬如[0,+)上推移 时, 热噪声电压表现为一族随机变量, 记为 (V(t), t0), 在无线电通讯技术中, 接收机在接 收信号时, 机内的热噪声电压要对信号产生持 续的干扰. 通过某种装置对元件两端的热噪声 电压进行长期测量, 并记录结果, 作为试验结 果, 得到一电压-时间函数.
29
例1 设随机变量A~N(0,1), B~U(0,2), A,B相互 独立, 求随机过程X(t)=At+B, tT=(-,)的均 值函数mX(t)和自相关函数RX(t1,t2). 解 由题意E(A)=0, E(A2)=1, E(B)=1, E(B2)=4/3, mX(t)=E[X(t)]=E[At+B]=tE[A]+E[B]=1, RX(t1,t2)=E[X(t1)X(t2)]=E[(At1+B)(At2+B)] =t1t2E[A2]+(t1+t2)E[AB]+E[B2] =t1t2+4/3, t1,t2T.
2
多次试验得到多个电压函数 v1(t) t v2(t) t vk(t) tj t
3
设T是一无限实数集, 把依赖于参数tT的一 族(无限多个)随机变量称为随机过程, 记为 {X(t), tT}, 这里对每一个tT, X(t)是一随机 变量. T叫做参数集. 常把t看作为时间, 称X(t) 为时刻t时过程的状态, 而X(t1)=x(实数)说成是 t=t1时过程处于状态x, 对于一切tT, X(t)所有 可能取的一切值的全体称为随机过程的状态 空间. 对随机过程{X(t), tT}进行一次试验, 其 结果是t的函数, 记为x(t), tT, 称它为随机过 程的一个样本函数或样本曲线. 所有不同的试 验结果构成一族样本函数.
16
参数t通常解释为时间, 但它也可以表示其它 的量, 诸如序号, 距离等. 例如, 在例5中, 我们 假定每隔一个单位时间抛掷骰子一次, 那么第 n次抛掷的骰子出现的点数Xn就相当于t=n时 骰子出现的点数.
17
§2 随机过程的统计描述
18
(一)随机过程的分布函数族 给定随机过程 {X(t), tT}. 对于每一个固定的tT, 随机变量 X(t)的分布函数一般与t有关, 记为 FX(x,t)=P{X(t)x}, xR, 称它为随机过程{X(t), tT}的一维分布函数, 而{FX(x,t), tT}称为一维分布函数族. 一维分布函数族刻画了随机过程在各个个别 时刻的统计特性.
10
例4 设某城市的120急救电话台迟早会接到用 户的呼叫, 以X(t)表示时间间隔(0,t]内接到的 呼叫次数, 它是一个随机变量, 且对于不同的 t0, X(t)是不同的随机变量. 于是, {X(t),t0}是 一随机过程. 且它的状态空间是{0,1,2,...}.
11
例5 考虑抛掷一颗骰子的试验. (i) 设Xn是第n 次(n1)抛掷的点数, 对于n=1,2,...的不同值, Xn是不同的随机变量, 因而{Xn, n1}构成一随 机过程, 称为伯努利过程或伯努利随机序列. (ii)设Xn是前n次抛掷中出现的最大点数, {Xn, n1}也是一随机过程. 它们的状态空间都是 {1,2,3,4,5,6}.
28
在实际中, 常遇到一种特殊的二阶矩过程-正 态过程. 随机过程{X(t), tT}称为正态过程, 如 果它的每一个有限维分布都是正态分布, 亦即 对任意整数n1及任意t1,t2,...,tnT, (X(t1), X(t2),..., X(tn))服从n维正态分布. 由第四章的 结论知, 正态过程的全部统计特性完全由它的 均值函数和自协方差函数(或自相关函数)所 确定.