电介质物理
电介质物理.
![电介质物理.](https://img.taocdn.com/s3/m/3ec44bf39ec3d5bbfd0a74f2.png)
65oC 276oC
50Hz 3×106 Hz
6×10-4 3×10-4
1×1010 3.5×106
1.4×1011 4×106
结论:
① 与 基本相当;
②高频(2×106 Hz)下,介质损耗也是电导损耗。
电介质的损耗
无机玻璃——以共价键结合为主, s
,g
0, tan
0 r
如食盐Nacl晶体,石英,云母等。
只有e和a,r n2 , g 0
损耗主要来自电导
tan 1.81010 1 ( 1 )
0 r
f r
电介质的损耗
Nacl晶体的tan,与计算值
温度
f
tan ( m) ( m)
低频 高频
电介质在电场作用下的往往会发生电能转变为其 它形式的能(如热能)的情况,即发生电能的损 耗。常将电介质在电场作用下,单位时间消耗的 电能叫介质损耗。
电介质的损耗
电介质的损耗
在电压U的作用下,电介质单位时间内消耗的能量
电导损耗
产生原因
松弛极化 典型的为偶极子转向极化
电介质的损耗
在直流电压作用下,介质中存在载流子,有泄露电流 I R
偶极子取向极化(Dipolar Polarizability)
Response is still slower
空间电荷极化(Space Charge Polarizability)
Response is quite slow, τ is large
4. 材料的介电性
4.2 电介质的极化
4. 材料的介电性
①瓷——较常用 绝缘子 ②玻璃
③有机——复合的 陶瓷:不均匀结构,含三相①结晶相,②玻璃相,③气隙
高中物理竞赛讲义-电介质
![高中物理竞赛讲义-电介质](https://img.taocdn.com/s3/m/456f4c72fab069dc5022018c.png)
电介质一、电介质(绝缘体)在外电场的作用下不易传导电流的物体叫绝缘体又叫电介质1、电介质的分类无外电场时,正负电荷等效中心不重合,叫做有极分子无外电场时,正负电荷等效中心重合,叫做无极分子2、电介质的极化对于有极分子,无外电场时,由于分子的热运动,分子的取向是杂乱无章的。
施加电场后,分子受到电场力作用排列变得规则。
在分子热运动和外电场的共同作用下,分子排列比较规则。
这种极化叫做有极分子的取向极化。
对于无极分子,无外电场时,分子内的正负电荷中心是重合的。
施加电场后,分子内的正负电荷受到电场力作用,各自的等效中心发生偏离。
这种极化叫做无极分子的位移极化。
对于有极分子,也会发生位移极化,只不过位移极化的效果远小于取向极化3、电介质极化的效果等效为电介质表面出现极化电荷(也叫束缚电荷),内部仍然为电中性。
表面的极化电荷会在电介质内产生与原电场方向相反的附加电场。
外加电场越强,附加电场也越强。
类比静电平衡中的导体0。
注意,电介质内部合场强不为0思考:附加电场的大小是否会超过外电场?答案:不会。
一般来说,物理反馈会减弱原来的变化,但不会出现反效果。
例如:勒沙特列原理(化学平衡的移动)、楞次定律(电磁感应)例1:解释:带电体能吸引轻小物体二、带电介质的平行板电容器1、带电介质对电容的影响假设电容器带电量Q 一定,电介质极化产生极化电荷,由于极化电荷会在电容内部产生附加电场E ’,会使得极板间电场E 0减小为合电场E= E 0 - E ’ ,从而使电势差U 减小,电容C 增加。
(若无特殊说明,默认为恒电量问题)假设电容器两板电势差U 一定,电介质极化产生极化电荷,由于极化电荷的感应效果,会使得极板上带电量Q 0增加为Q ,电容C 增加。
可见电介质极化使电容增大,增大的多少与极化的强弱有关。
2、介电常数介电常数ε反映了电介质极化的能力,也就反映了电容变化的程度。
真空的介电常数014kεπ= (利用这个恒等式可以将很多电学公式用ε0表示) 空气的介电常数114'4k k εππ=≈ 经常用相对介电常数εr 来表示:某物质的相对介电常数等于自身的介电常数与真空的比值(大于1)。
电介质物理学
![电介质物理学](https://img.taocdn.com/s3/m/309a2f4c852458fb770b5655.png)
电介质物理学绪论电介质(dielectric)是在电场作用下具有极化能力并能在其中长期存在电场的一种物质。
电介质具有极化能力和其中能够长期存在电场这种性质是电介质的基本属性.也是电介质多种实际应用(如储存静电能)的基础。
静电场中电介质内部能够存在电场这一事实,已在静电学中应用高斯定理得到了证明,电介质的这一特性有别于金属导体材料,因为在静电平衡态导体内部的电场是等于零的。
如果运用现代固体物理的能带理论来定义电介质,则可将电介质定义为这样一种物质:它的能级图中基态被占满.基态与第一激发态之间被比较宽的禁带隔开,以致电子从正常态激发到相对于导带所必须的能量,大到可使电介质变到破坏。
电介质的能带结构可以用图一示意,为了便于将电介质的能带结构和半导体、导体的能带结构相比较,图中分别画出了它们的能带结构示意图.电介质对电场的响应特性不同于金属导体。
金属的特点是电子的共有化,体内有自由载流子,从而决定了金属具有良好的导电件,它们以传导方式来传递电的作用和影响。
然而,在电介质体内,一股情况下只具有被束缚着的电荷。
在电场的作用下,将不能以传导方式而只能以感应的方式,即以正、负电荷受电场驱使形成正、负电荷中心不相重合的电极化方式来传递和记录电的影响。
尽管对不同种类的电介质,电极化的机制各不相同,然而,以电极化方式响应电场的作用,却是共同的。
正因为如此研究电介质在电场作用下发生极化的物理过程并导出相应的规律,是电介质物理的一个重要课题。
由上所述,电介质体内一般没有自由电荷,具有良好的绝缘性能。
在工程应用上,常在需要将电路中具有不同电势的导体彼此隔开的地方使用电介质材料,就是利用介质的绝缘特性,从这个意义上讲,电介质又可称为绝缘材料(Insulating material)或绝缘体(insulator)。
与理想电介质不同,工程上实际电介质在电场作用下存在泄漏电流相电能的耗散以及在强电场下还可能导致电介质的破坏。
因此,如果将电介质物理看成是一种技术物理,那么除要研究极化外,还要研究有关电介质的电导、损耗以及击穿特性,这些就是电介质物理需要研究的主要问题。
大学物理 电介质
![大学物理 电介质](https://img.taocdn.com/s3/m/5a6db0e2f90f76c661371acc.png)
χ = εr − 1 电极化率
令 ε r = (1 + χ e ) 为相对介电常量(相对电容率)
ε = ε 0ε r ~电介质的电容率
5
四、极化电荷与自由电荷的关系
E
=
E0
−
E'=
E0 εr
E'=
εr − 1 εr
E0
d
σ'=
εr − εr
1
σ
0
Q' =
εr − εr
即 D⇒ E ⇒ P ⇒σ′ ⇒q′
9
物理意义
E
单位试验电荷 的受力
单位体积内的 P 电偶极矩的矢
量和 无物理意义, D 只有一个数学 上的定义 D = ε0E + P
= ε 0ε r E
特点
真空中关于电场的讨论都 适用于电介质:高斯定律、 电势的定义、环路定理等
各向同性均匀电介质中
P = ε0χe E ,表面束缚电荷 σ ′ = P ⋅ n ,电介质中P ≠ 0
D = (1+ χ )ε0E
ε r = (1 + χ )
ε = ε rε 0
相对电容率或相对介电常量
电容率或介电常量
D=ε0ε r E = εE
•注意: D 是辅助矢量,描写电场性质的物理量仍为 E ,V
对于真空 χ e = 0 ε r = 1 ε = ε 0 则 D = ε 0 E
3、有电介质时的高斯定理的应用
在垂直于电场方向的两个表面上,将产生极化电荷。
4.极化电荷
在外电场中,均匀介质内部各处仍呈电中性,但在介质表 面要出现电荷,这种电荷不能离开电介质到其它带电体,也不 能在电介质内部自由移动。我们称它为束缚电荷或极化电荷。 它不象导体中的自由电荷能用传导方法将其引走。
电介质物理知识点总结
![电介质物理知识点总结](https://img.taocdn.com/s3/m/1d5c38414b7302768e9951e79b89680203d86ba6.png)
电介质物理知识点总结电介质是一类具有不良导电性能的材料,可用于电容器、绝缘体等应用中。
电介质物理是研究介质在电场作用下的电学性能的科学。
电介质物理是电磁场理论和介质物理学的重要组成部分。
下面我们将对电介质物理的相关知识点进行总结和展开。
1. 电介质的基本性质电介质是一种不良导电性能的材料,通常包括固体、液体和气体。
电介质的主要特点是在外电场作用下会发生极化现象。
极化是指介电极化,即在电场作用下使介质内部出现正负电偶极子的排列现象,从而使介质产生极化电荷。
常见的电介质包括空气、水、玻璃、塑料等。
2. 电介质的极化过程当电介质处于外电场中时,介质内部的正负电荷将发生位移,使介质被极化。
电介质的极化过程可分为定向极化和非定向极化两种类型。
其中,定向极化是指在介质中存在有定向的分子或离子,当外电场作用下,这些分子或离子会按照一定方向排列,这种极化过程被称为定向极化;非定向极化是指介质中的分子或离子并不具有固定的方向排列,当外电场作用下,这些分子或离子将发生不规则的排列,这种极化过程被称为非定向极化。
极化过程使介质产生极化电荷,从而改变了介质的电学性能。
3. 介质极化的类型根据介质极化的不同类型,可以将极化过程分为电子极化、离子极化和取向极化。
电子极化是指在电场的作用下,介质中的电子云将出现位移,从而使整个分子或原子产生极化;离子极化是指在外电场作用下,介质中的阴离子和阳离子将发生位移,产生极化现象;取向极化是指在电场作用下,具有一定取向的分子或离子将产生极化现象。
不同类型的极化过程会影响介质的电学性能。
4. 介质极化与介电常数介质的极化现象将改变介质的电学性能,其中介电常数是一个重要的参数。
介电常数是介质在外电场作用下的电极化能力的体现,介电常数越大,介质的电极化能力越强。
介电常数的大小将影响介质的导电性、电容性等电学性能。
5. 介电损耗介质在外电场作用下会产生能量损耗,这种现象被称为介电损耗。
介电损耗会导致介质内部的吸收能量和产生热量,从而影响介质的电学性能。
(大学物理ppt)第 4 章 静电场中的电介质
![(大学物理ppt)第 4 章 静电场中的电介质](https://img.taocdn.com/s3/m/0ec72e2bcfc789eb172dc8cc.png)
静电场中的电介质
一、电介质对电场的影响 二、电介质的极化 三、电极化强度
四、极化电荷
五、D 的高斯定律
六、电容器和它的电容
七、电容器的能量
一、电介质对电场的影响
电介质也即绝缘体
特点是分子中正负电荷束缚得很紧,内
部几乎没有自由电荷,不导电,但在电场中会
受到电场的影响,反过来也会影响原有电场的
P
pi
V
P np
其中 n 表示电介质单位体积内的分子数。
三、电极化强度
2. 电极化强度与电场的关系
对 各向同性 的电介质,当电场不太强时, 试验表明:
P 0 ( r 1) E 0 E
其中 r 1 叫做电介质的电极化率。
四、极化电荷
1. 面束缚电荷
在介质中取一斜柱,长为 l ,则穿过 dS 面 的总正电荷为
dq qndV qnldScos
而 故 p ql, np P dq PcosdS
-q
e n
l
dS +q
面束缚电荷密度 dq P cos P e n dS
E
四、极化电荷
2. 体束缚电荷
穿过 dS面的总正电荷为 PcosdS P dS dqout 穿过整个封闭面 S 向外的 电荷应为 d qout P dS qout
S S
-q
e n
l
S
dS +q
E
留在封闭面 S 内的体束缚电荷应为 q in - q out P dS
二、电介质的极化 在电介质内部的宏观微小的区域内,正负电
电介质物理基础习题答案
![电介质物理基础习题答案](https://img.taocdn.com/s3/m/2a9d7dca4b73f242326c5fc7.png)
参考答案第一章1. 电介质在电场作用下,在介质内部感应出偶极矩、介质表面出现束缚电荷的现象称为电介质的极化。
其宏观参数是介电系数ε。
2. 在电场作用下平板介质电容器的介质表面上的束缚电荷所产生的、与外电场方向相反的电场,起削弱外电场的作用,所以称为退极化电场。
退极化电场:平均宏观电场:充电电荷产生的电场:3. 计算氧的电子位移极化率:按式代入相应的数据进行计算。
4.氖的相对介电系数:单位体积的粒子数:,而所以:5.洛伦兹有效电场:εr与α的关系为:介电系数的温度系数为:6.时,洛伦兹有效电场可表示为:7. 克----莫方程赖以成立的条件:E”=0。
其应用范围:体心立方、面心立方,氯化钠型以及金刚石型结构的晶体;非极性及弱极性液体介质。
8.按洛伦兹有效电场计算模型可得:E”=0 时,所以9. 温度变化1度时, 介电系数的相对变化率称为介电系数的温度系数.10. 如高铝瓷, 其主要存在电子和离子的位移极化, 而掺杂的金红石和钛酸钙瓷除了含有电子和离子的位移极化以外, 还存在电子和离子的松弛极化。
极性介质在光频区将会出现电子和离子的位移极化, 在无线电频率区可出现松弛极化、偶极子转向极化和空间电荷极化。
11. 极化完成的时间在光频范围内的电子、离子位移极化都称为瞬间极化。
而在无线电频率范围内的松弛极化、自发式极化都称为缓慢式极化。
电子、离子的位移极化的极化完成的时间非常短,在秒的范围内,当外电场的频率在光频范围内时,极化能跟得上外电场交变频率的变化,不会产生极化损耗;而松弛极化的完成所需时间比较长,当外电场的频率比较高时,极化将跟不上交变电场的频率变化,产生极化滞后的现象,出现松弛极化损耗。
12.参照书中简原子结构模型中关于电子位移极化率的推导方法。
13.“-”表示了E ji的方向性。
14.参考有效电场一节。
15.求温度对介电系数的影响,可利用,对温度求导得出:。
由上式可知,由于电介质的密度减小,使得电子位移极化率及离子位移极化率所贡献的极化强度都减小,第一项为负值;但温度升高又使离子晶体的弹性联系减弱,离子位移极化加强,即第二项为正值;然而第二项又与第一项相差不多。
电介质物理课后答案
![电介质物理课后答案](https://img.taocdn.com/s3/m/68c3a52a0066f5335a812125.png)
答:在电场作用下平板电介质电容器的介质表面上的束缚电荷所产
的、与外电场方向相反的电场,起削弱外电场的作用,所以称为
退极化电场。
退极化电场:
平均宏观电场:
充电电荷所产生的电场:
1-3氧离子的半径为 ,计算氧的电子位移极化率。
提示:按公式 ,代入相应的数据进行计算。
1-4在标准状态下,氖的电子位移极化率为 。试求出氖的
解:在交变电场的作用下,由于电场的频率不同,介质的种类、所处
的温度不同,介质在电场作用下的介电行为也不同。
当介质中存在弛豫极化时,介质中的电感应强度D与电场强度E
在时间上有一个显著的相位差,D将滞后于E。 的简单表示式
不再适用了。并且电容器两个极板的电位于真实的电荷之间产生相位
差,对正弦交变电场来说,电容器的充电电流超前电压的相角小于
因素有关?关系如何?如何提高固体电介质的热击穿电压?
答:答案参考课本有关的章节。
3-14根据瓦格纳的热击穿电压的计算公式,解释能否利用增加固体电介质
的厚度来增加固体电介质的热击穿电压,为什么?
答:答案参考课本有关的章节。
3-15简要叙述瓦格纳的热击穿理论;瓦格纳的热击穿理论的实用性如何?
答:答案参考课本有关的章节。
少?
解:真空时:
介质中:
1-19一平行板介质电容器,其板间距离 , ,介电系数 =
2,外界 的恒压电源。求电容器的电容量C;极板上的自由电荷q;
束缚电荷 ;极化强度P;总电矩 ;真空时的电场 以及有效电场
。
解:
1-20边长为10mm、厚度为1mm的方形平板介质电容器,其电介质的相对
介电系数为2000,计算相应的电容量。若电容器外接 的电压,
物理学中的电介质物理学理论
![物理学中的电介质物理学理论](https://img.taocdn.com/s3/m/aec407c3951ea76e58fafab069dc5022aaea4629.png)
物理学中的电介质物理学理论电介质物理学理论是指在电学领域中,研究非金属材料在电场中的响应性质的学科,其研究的对象是电介质。
电介质是指在外界电场作用下,会将电能转换为其他形式的非导体材料。
电介质广泛应用于电子学、通信、电力等领域,是现代电子科技中不可或缺的一部分。
1. 电介质物理学理论的基础知识电介质在外界电场下会发生极化现象,也就是说,电介质中的电子、离子、偶极子等会产生相应的分布。
这种电荷分布会影响电介质中的电场分布,从而影响电介质物质的响应。
电介质分为线性电介质和非线性电介质,线性电介质遵循线性关系,而非线性电介质不遵循线性关系。
另外,电介质的极化可以分为自发极化和强制极化。
自发极化是指电介质中存在自发极化矢量,在无外界电场的作用下也会存在极化现象。
而强制极化是指电介质在受到外界电场的作用下,会出现新的极化矢量,这种极化是强制性的,与电介质自身性质无关。
2. 电介质的电容与介电常数对于一个电介质,其电容和介电常数是两个非常重要的参数。
电容指的是电荷与电势之间的比例关系,即电容等于电荷与电势的比值。
介电常数是电介质中电场强度与电位移密度之间的比值,介电常数越大,则电介质极化相对来说就越明显。
需要注意的是,电介质的介电常数会随着温度和频率的变化而变化。
在高温下介电常数通常会降低,而在频率高于1MHz时介电常数也会下降。
3. 非线性电介质的应用非线性电介质的特点是其电极化与电场的关系不是线性的,当电场强度超过一定阈值时,电介质中会出现非线性响应。
非线性电介质具有频率倍增与和谐倍频等非线性效应,被广泛用于激光技术、雷达通信以及图像处理等领域。
例如,二极管光谱翻转技术,通过在非线性晶体中将激光脉冲和稳态激光序列合并,可以生成高质量的超短脉冲。
4. 结语在科技不断进步的今天,电介质物理学理论正作为电子学、通信、电力等领域的重要组成部分,不断发掘和发展着。
通过系统而深入地学习电介质物理学理论,人们可以更好地理解各种电介质材料的性质,并将其应用于实际生活中的各种领域。
电介质物理 孙目珍 华南理工(缩印版)
![电介质物理 孙目珍 华南理工(缩印版)](https://img.taocdn.com/s3/m/b018698b680203d8cf2f2407.png)
电介质的极化:在外电场的作用下,电介质内部沿电场方向产生感应偶极矩,在电介质表面出现极化电荷的现象称为电介质的极化。
电介质的损耗:电介质在外电场的作用下,将一部分电能转变为热能的物理过程,称为电介质的损耗。
电介质电击穿:在电场直接作用下发生的电介质被破坏的现象称为电介质点击穿。
极化强度P:一种为了衡量电介质极化的强弱,用单位体积中电介质感应偶极矩的矢量和所表示的物理量。
单位是C/m2。
退极化电场:电介质极化以后,电介质表面的极化电荷将削弱极板上的自由电荷所形成的电场,所以由极化电荷所产生的场强被称为自发极化:在没有外电场的作用下,晶体的正、负电荷重心不重合而呈现电偶极矩的现象称为电介质的自发极化。
电介质热击穿:由于电介质内部热的不稳定过程所造成的击穿现象。
迁移率:单位电场作用下的载流子沿电场方向的平均漂移速度称为载流子的迁移率。
自持放电:在电场强度临界值E m点之后,即使将外界电离因素去掉,放电仍将继续维持的,称为自持放电。
居里温度:由顺电相向铁电相转变的温度。
以针-板电场(针极分别为正极和负极)为例分析不均匀电场中气体放电的极性效应答:当针尖为正时,正的空间电荷削弱了针尖附近的电场,加强了正空间电荷到极板之间的弱电场。
这种情况相当于高电场区从针尖移向板极,像是正电极向负电极延伸了一段距离,因此击穿电压比针尖为负时低。
当针尖为负时,正空间电荷包围了针电极,加强了针尖附近的电场,而削弱了正空间电荷到极板之间的电场,使极板附近原来就比较弱的电场更加减弱了,像是增加了针尖的曲率半径,电极间的距离虽然缩短了一些,但电场却均匀了,因此负针-板电极的击穿电压高于正针-板电极的击穿电压。
简述钛酸钡铁电晶体180°畴和90°畴极化反转特点答:180°畴特点:①畴壁生长速度约是声速1/10~1/5。
②侧向移动速度约是10-6~10-2cm/s。
③空间电荷对于畴壁移动的影响,阻碍电畴的反转。
电介质基本物理知识
![电介质基本物理知识](https://img.taocdn.com/s3/m/b5ef2f130b4e767f5acfcea2.png)
第一章电介质基本物理知识电介质(或称绝缘介质)在电场作用下的物理现象主要有极化、电导、损耗和击穿。
在工程上所用的电介质分为气体、液体和固体三类。
目前,对这些电介质物理过程的阐述,以气体介质居多,液体和固体介质仅有一些基本理论,还有不少问题难以给出量的分析,这样就在很大程度上要依靠试验结果和工作经验来进行解释和判断。
第一节电介质的极化一、极化的含义电介质的分子结构可分为中性、弱极性和极性的,但从宏观来看都是不呈现极性的。
当把电介质放在电场中,电介质就要极化,其极化形式大体可分为两种类型:第一种类型的极化为立即瞬态过程,极化的建立及消失都以热能的形式在介质中消耗而缓慢进行,这种方式称为松弛极化。
电子和离子极化属于第一种,为完全弹性方式,其余的属于松弛极化型。
(一)电子极化电子极化存在于一切气体,液体和固体介质中,形成极化所需的时间极短,约为1015 s。
它与频率无关,受湿度影响小,具有弹性,这种极化无能量损失。
(二)原子或离子的位移极化当无电场作用时,中性分子的正、负电荷作用中心重合,将它放在电场中时,其正负电荷作用中心就分离,形成带有正负极性的偶极子。
离子式结构的电介质(如玻璃、云母等),在电场作用下,其正负离子被拉开,从而使正负电荷作用中心分离,使分子呈现极性,形成偶极子,形成正负电荷距离。
原子中的电子和原子核之间,或正离子和负离子之间,彼此都是紧密联系的。
因此在电场作用下,电子或离子所产生的位移是有限的,且随电场强度增强而增大,电场以清失,它们立即就像弹簧以样很快复原,所以通称弹性极化,其特点是无能量损耗,极化时间约为1013-s。
(三)偶极子转向极化电介质含有固有的极性分子,它们本来就是带有极性的偶极子,它的正负电荷作用中心不重合。
当无电场作用时,它们的分布是混乱的,宏观的看,电介质不呈现极性。
在电场作用下,这些偶极子顺电场方向扭转(分子间联系比较紧密的),或顺电场排列(分子间联系比较松散的)。
电介质物理
![电介质物理](https://img.taocdn.com/s3/m/7f8976d5ba0d4a7302763a8d.png)
*有极分子的极化是由于分子偶极子在外电场
的作用下发生转向的结果
----转向极化
当电压加到两块中间是真空的平行金属板上时,板上 的电荷Q0和施加电压成正比,Q0=C0V, C0称为电容。如 果两板间放入介电材料,则在相同电压下,电荷增加了 Q1,Q0+Q1=CV,电介质引起了电容量的增加。 当电介质放入电场时,电荷不可能和导体一样传 递过去,但材料内带正负电荷的各质点受电场作用将 相互位移,形成许多电偶极矩,即极化作用,结果在 材料表面感应了异性电荷,它们束缚住板上一部分电 荷,来抵消介质中产生的电荷,故在同样条件下,增 加了电荷的容量。
固有电矩μ在外电场 E 中的势能为
u 0 Ei 0 Ei Cos
如不考虑动能,且极性分子 相互作用能与单个偶极子在 热运动平衡状态下所具有的 能量相比较很小,根据玻尔 兹曼统计,偶极子与电场的 夹角在θ和θ十dθ之间的 极性分子数dn 等于:
dn Aexp(
下面来考虑固有电矩在外电场作用下的转向,从而 求出其极化率αd,在这里的初步考虑中.将忽略固有 电矩的相互作用,实际上这只适用于稀疏情况下的气 体。 气体包含大量相同的分子,而每个分子的固有电矩 为μ。在没有外电场作用时.由于热运动.这些电偶 极子的排列是完全无规则的,因而就整个气体来看, 并不具有电矩,当加上外电场 Ei 后,每个电矩都受到 力矩的作用,趋于同外场平行,即起于有序化,另一 方面热运动使电矩无序化。可见同时存在有序化和无 序化相矛盾的两个方面。在一定的温度和一定的外场 Ei 下,两方面的作用达到暂时的互相平衡。
第六章 电介质物理
本章提要
本章主要对有关电介质的基本理论:电介 质的极化、电介质中的电荷转移、电介质的电 导、损耗及击穿特性等进行介绍,以达到对电 介质的最基本的物理性质——介电性,以及电 介质的分子结构和极化机理的了解。
大学物理电介质讲义省公开课获奖课件市赛课比赛一等奖课件
![大学物理电介质讲义省公开课获奖课件市赛课比赛一等奖课件](https://img.taocdn.com/s3/m/8b52733d0a1c59eef8c75fbfc77da26925c5968f.png)
( pi 0)
无外电场
F 1
( pi 0)
有电场取向极化
E 0
E
极化旳宏观效果总是在电介质表面出 现电荷分布, 称为极化电荷或束缚电荷。 E E0 E 0
3、电极化强度 (Polarization intensity)
V
— 表征电介质极化程度 宏观描述?
前
pi 极化后每个分子旳电偶极矩 取宏观上无限小
dWe dq
Q2
We
dW
dq
0 40R
8 0 R
例12.5 半径为R、相对介电常数为εr 旳
Q R
球均匀带电
Q
,求其电场能量。
r
解:
D dS
S
q0i内
i
D 4r 2 4 r 3
E1 r
E2
电荷体密度:
3 Q
4 R3 3
D 0 r E
取体积元 dV 4r2dr
在无外 正负电荷中心不重叠 正负电荷中心重叠 电场时 (水、有机玻璃等) (氢、甲烷、石蜡等)
2、电介质旳极化
——在外电场作用下,介质表面感生出束缚(极化) 电荷旳现象.
微观机制:
E
无极分子
E
0
0
-+
无外电场 有电场位移极化
有极分子
E 0
E
0F
E
1
+q ( p ql ) -q
F 2
lF 2
和束缚电荷
E0和E 叠加
共同产生
0
单独产生旳场强为
E0
σ0 ε0
0 0
E0
单独产生旳场强为 E σ
E
ε0
电介质物理》课件电介质的击穿
![电介质物理》课件电介质的击穿](https://img.taocdn.com/s3/m/82e253c9cd22bcd126fff705cc17552707225e1f.png)
电击穿机制
电场作用下电介质击穿
在强电场的作用下,电介质内部的自由电子被加速,与晶格原子发生碰撞,导致 电子能量降低并产生新的电子-空穴对,这些新的电子-空穴对进一步与晶格原子 发生碰撞,产生更多的电子-空穴对,最终导致电介质击穿。
隧道效应
在强电场的作用下,电子通过隧道效应穿过势垒,形成导电通道,导致电介质击 穿。
03
影响电介质击穿的因素
电场强度
总结词
电场强度是影响电介质击穿的最主 要因素之一。
详细描述
随着电场强度的增加,电介质中的 电场会变得更强,导致电子更容易 获得足够的能量来克服电介质中的
束缚力,从而引发电介质击穿。
总结词
高电场强度下,电介质更容易发生 击穿。
详细描述
在强电场的作用下,电介质内部的 电子会被加速,获得足够能量后能 够克服电介质中的束缚力,形成导 电通道,导致电介质击穿。
03
热击穿
电击穿
冲击击穿
在强电场的作用下,电介质内部的热量积 累导致温度升高,当温度达到一定程度时 ,发生热击穿。
在强电场的作用下,电子获得足够的能量 ,直接导致电介质分子中的电子跃迁,形 成导电通道。
在雷电或操作过电压的作用下,电介质内 部的电流迅速增加,产生强烈的冲击波, 导致电介质瞬间击穿。
02
电介质物理》课件电介质的 击穿
目录
• 电介质击穿的基本概念 • 电介质击穿的物理机制 • 影响电介质击穿的因素 • 电介质击穿的预防与控制 • 电介质击穿的实验研究方法
01
电介质击穿的基本概念
定义与Байду номын сангаас性
01
02
定义
特性
电介质击穿是指电介质在强电场的作用下,丧失其绝缘性能的现象。
大学物理:第 13 章 电介质
![大学物理:第 13 章 电介质](https://img.taocdn.com/s3/m/704851573b3567ec102d8a0b.png)
若点电荷 q0 处于q 的电场中,
静电能为:
把q0从P点移到无限远时 静电场力作的功,就是 “系统”的静电势能。 或:把q0从无限远移动到P点的过 程中,外力反抗静电力作的功。
* 对于点电荷体系(或连续带电体),系统的能 量可以有类似的定义: 把点电荷体系无限分离到彼此间相距无限远的 过程中静电场力作的功,叫作该系统时的静电势 能。 对连续带电体,可以把带电体看成是由无限多 电荷元组成的点电荷体系。这样,连续带电体的 静电能量的定义同上。
一、电介质的分类
1. 有极分子: 无外场时,分子等效正、负电荷中心 不重合分子固有电偶极矩。
O-H+
-q H+
+
H 2O
=
+q
2. 无极分子: 无外场时,分子等效正、负电荷中心 重合无分子பைடு நூலகம்有电偶极矩。
-
+
+
-
=
±
-
O2
二、电介质的极化
1. 无极分子的位移极化 O2
-
- +
-
- -
+
-
-
- + + - + -+ p
四、电容器储存的静电能量(带电 Q)
+q
A
B
-q
dq +
uAB
+
电容器的静电能:
1Q 1 1 2 QU CU 2 C 2 2
2
五、电场的能量,能量密度
设带电系统静电作用能量是以电场能量 的形式储存在电场中的。 以平板电容器为例:
其中:
电容器体积:V = Sd
电场的能量密度: 单位体积电场所具有的能量
电介质四个大类物理现象
![电介质四个大类物理现象](https://img.taocdn.com/s3/m/5d55c69832d4b14e852458fb770bf78a64293a76.png)
电介质四个大类物理现象
电介质是一种在电场中能够发生极化现象的物质。
电介质的四个大类物理现象包括:
1. 极化现象,当电介质置于外电场中时,其分子或原子会发生极化现象,即在电场的作用下,正负电荷分离,形成电偶极矩。
这种极化现象是电介质的基本特征之一。
2. 介质击穿,当电场强度达到一定数值时,电介质会发生击穿现象,即电介质内部的电阻突然减小,导致电流急剧增大,这种现象常常伴随着放电和火花的产生。
3. 介质损耗,在交流电场中,电介质会因为分子或原子在电场中的周期性运动而产生能量损耗,这种损耗称为介质损耗。
介质损耗会导致电介质加热,并且会影响电介质的电学性能。
4. 介质弛豫,当外电场发生变化时,电介质内部的极化现象不会立即跟随电场的变化而变化,而是有一定的滞后时间。
这种现象称为介质弛豫,其时间常数取决于电介质的性质和温度等因素。
以上是电介质的四个大类物理现象,它们展现了电介质在电场中的复杂而丰富的行为。
电介质物理_李翰如
![电介质物理_李翰如](https://img.taocdn.com/s3/m/57552994ec3a87c24028c46f.png)
李波
电子科技大学 微电子与固体电子学院
第一章 电介质的极化
1.1 静电学基本定律 1.2 介电常数与介质极化 1.3 有效内电场(Ei) 1.3 克劳修斯-莫索缔方程 1.4 翁萨格有效电场 1.5 电子位移极化 1.6 离子位移极化 1.7 转向极化 1.8 热离子极化 1.9 空间电荷极化 1.10 离子晶体电介质
−
1 R2
⎟⎟⎠⎞
C
=
Q V
=
4πε0ε r
R1R2 R2 − R1
15
(2)电容器的电容计算
③ 柱形电容器
设单位长度带电量为 q = Q L
在两极板之间 R1 < r < R2
-Q +Q
L
R1
E= q 2πε0ε rr
R2
∫ ∫ V = R2 Edr = R2 q dr = q ln R2
R1
R1 2πε0ε r r
+
-
+
-
+
-
+
-
+
-
C0
=
Q0 V
=
σ0S V
+
⊕Θ
-
⊕Θ
+
-
⊕
+
Θ
εr
⊕
Θ
-
⊕
+
Θ
⊕ Θ-
+⊕ Θ
⊕ Θ-
Q = Q0 + Q′ σ =σ0 +σ′
C = Q = Q0 + Q′ VV
C = (σ 0 + σ ′)S
V
(σ 0 + σ ′)S
ε=C = C0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.掌握固体电介质击穿的单电子近似理论和集合电子近似理论模型及特点;
6.掌握不均匀电介质的击穿规律,并能够运用其进行分析、计算。
参考书目:
《电介质物理》金维芳机械工业出版社1995
电介质的极化约20%
电介质的损耗约25%
电介质的电导约20%
电介质的基传约20%
题型比例:
1、名词解释及填空题约25%
2、简答题约40%
3、分析论述题约25%
4、计算题约10%
三、考试内容与要求
(一)电介质的微观结构
考试内容玻尔古典量子论、量子力学概论、统计力学概论及固体能带理论的基础知识。
考试要求
4.掌握固体电介质电子电导的肖特基模型及特点;
5.了解普尔-弗兰凯尔效应及隧道效应等。
(五)电介质的击穿
考试内容
电介质击穿的宏观、微观参数;不同击穿类型的特点及规律。
考试要求
1.了解电介质击穿的类型及相关特点和规律;
2.掌握气体放电的碰撞电离理论;
3.了解气体放电的流注理论、不均匀电场击穿德空间电荷效应等;
《电介质物理》考试大纲
适用专业名称:电介质工程
科目代码及名称
考试大纲
812电介质物理
一、考试目的ቤተ መጻሕፍቲ ባይዱ要求
考生应掌握电介质在电场作用下发生的极化、损耗、电导和击穿的基本物理过程,掌握由上述物理过程所决定的四大宏观电气参数的变化规律及其影响因素。
二、试卷结构(满分150分)
内容比例:
电介质的微观结构约15%
1.了解基本概念:玻尔假设、氢原子结构及相关参数、四个量子数等;
2.了解化学键的概念、泡利不相容原理、最小能量原理、洪特规则的;
3.掌握量子力学基本假设、波函数的物理概念及薛定锷方程等;
4.掌握三种统计规律及各自适用的范围、费米能级的概念等;
5.了解电子共有化运动的概念、能带形成及结构特点。
(二)电介质的极化
(三)电介质的损耗
考试内容
电介质损耗的概念、产生的原因;不同电介质中损耗各分量的组成;温度、频率等对介质损耗的影响。
考试要求
1.掌握电介质损耗产生的原因及表征参数;
2.掌握不同介质材料中介质损耗的特点及变化规律;
3.掌握介质损耗的影响因素、变化规律等;
4.了解松弛时间分布的概念及复介电常数的概念等;
考试内容
五种极化的微观机理及相关的宏观、微观参数。
考试要求
1.了解电介质的分类及特点;
2.掌握电子位移极化、离子位移极化、偶极子转向极化的微观机理及相关参数的表达式及特点、规律;
3.了解界面极化和热离子极化的机理及特点;
4.掌握内电场的概念及莫索蒂内电场模型,了解不同电介质中内电场各分量的组成及物理意义。
5.了解光频极化的特点、色散、介质吸收的概念等。
(四)电介质的电导
考试内容
电介质电导的宏观、微观参数;不同载流子电导的物理机制;不同电介质材料中电导的特点及规律。
考试要求
1.了解电介质电导分类的特点和规律;
2.掌握气体电介质离子电导的模型及j-E曲线的规律、物理含义;
3.掌握液体电介质离子电导的势垒模型及电导率变化规律、影响因素等;