0-1背包问题研究及算法策略比较分析

合集下载

两种算法解决0-1背包问题的比较

两种算法解决0-1背包问题的比较
量 W V j=0 1 2 3 4 5
wi
i=0 0 0 0 0 0 0
1 w1=2 v1=12
1 0 0 12 12 12 12
2 w2=1 v2=10 3 w3=3 v3=20
W=5 2 3
0 10 12 22 22 22 0 10 12 22 30 32
4 w4=2 v4=15
❖ 动态规划法求解01背包 分段:
动态规划法策略是将问题分成多个阶段,逐段推进计算, 后继实例解由直接前趋子实例解计算得到。对于01背包问题, 可利用减一技术和最优性原则,按物品数量和背包承重量分 段。 思路:根据最优子结构性质,根据前i-1件物品中最优子集的总 价值,计算前 i 件物品中最优子集的总价值,直到i=n为止。 核心技术:需要构建二维状态矩阵DP,来保存每一步的解,供 下一步计算使用。
阶段 n
求解算法
......
动态的含义:求解算法施加的状态是变化的。 当前状态只与其直接前趋状态有关,对其直接 前趋状态施加求解算法,成为当前状态。 最优性原则 (Principle of Optimality):
求解算法 一个最优问题任何实例的最优解,是由该实例
阶段 2
求解算法
阶段 1
的子实例的最优解组成的。对特定问题该原则 不一定满足(罕见),有必要检查其适用性。 子实例组成父实例,父实例分解为子实例。
计算过程是一级一级(一阶段一阶段)地向前推进,直到最终状态。
★ 动态规划法解01背包
❖ 问题描述 已知:n 个重量为weights[w1,...,wn]、价值为values[v1,...,vn ] 的物品和一个承重量W的背包。 要求:找出最有价值子集,且能装入背包中(不超重)。
物品重量、背包承重量、物品数量都是整数。

0-1背包问题

0-1背包问题

0/1背包问题一、问题描述已知一个容量为M的背包和n件物品,物品编号为0~n-1,第i件物品的重量为w i,若将其装入背包将获益p i。

这里w i>0, p i >0(0≤i<n)。

所谓的0/1背包问题,是指在物品只能整件装入或不装入的情况下,求一种使得总效益最大的装载方案。

上述问题可形式化描述为:给定M>0,w i>0, p i>0(0≤i<n),求一个n元向量x=(x0,x1,…,x n-1),x i∈{0,1}(0≤i<n)使得∑<≤ni0w i x i≤M且∑<≤nip i x i最大。

为了叙述方便将该问题简记为KNAP(0,n-1,M)。

二、递归法求解1.分析已知x i∈{0,1},0≤i<n,假定对x i 作决策的次序是x=(x n-1,x n-2,…,x0),在对x n-1作出决策时存在以下两种情况:(1)x n-1=1,将编号为n-1的物品装入包中,接着求解子问题KNAP(0,n-2,M-w n-1);(2)x n-1=0,不将编号为n-1的物品装入包中,接着求解子问题KNAP(0,n-2,M)。

设f(j,X)是当背包容量为X ,可供选择的物品为0,1,…,j 时的最优解(即最大总效益),那么f(n-1,M)可表示为:f(n-1,M)=max{f(n-2,M),f(n-2,M-w n-1)+p n-1}对于任意的j ,0≤j <n,有f(j,X)=max{f(j-1,X),f(j-1,X-w j )+p j } 若将物品j 装入包中,则f(j,X)= f(j-1,X-w j )+p j反之f(j,X)= f(j-1,X)2.算法(1)f(-1,X)=⎩⎨⎧≥<∞-)0(0)0(X X ;(2)f(j,X)= max{f(j-1,X),f(j-1,X-w j )+p j } 其中0≤j <n 。

3.考虑以下背包问题,n=3, (w 0,w 1,w 2)=(2,3,4),(p 0,p 1,p 2)=(1,2,5)和M=6。

0/1背包问题算法研究

0/1背包问题算法研究

0/1背包问题算法研究0/1背包问题是实际当中经常遇到的一类经典NP难组合优化问题之一.本文分别对贪心法、动态规划、回溯法这三种设计方法进行求解和算法分析,并通过公共测试数据集对各种算法的效果进行了对比,得出了0/1背包问题不同算法的适用范围,为该技术的推广应用奠定了基础。

标签:0/1背包问题;贪心法;动态规划;回溯法0 引言0/1背包问题[1](knapsack problem)是计算机学科中的一个经典的NP难组合优化问题之一.问题可以描述为:假设给定1个背包,背包内可以容纳n种物品(单个物品的重量是,价值为,),背包的总容量为.0/1背包问题就是求从这n 件物品中选择部分物品且对物品不能重复选择,满足所选择物品的总重量不超过且总价值最大.如果xi表示物品被选择的情况,.当时,表示物品不被选择;当时,表示物品被选择,物品只能被选择一次或者不选.根据问题描述,可以将该问题转化为如下的约束条件(1)(2)和目标函数(3):由式(1-3)可知,0/1背包问题可以转化为寻找在满足约束条件(1)(2)条件下,同时使得目标函数式(3)达到最大的解向量1.贪心法求解0/1背包问题0/1背包问题的三种贪心策略,每种策略都需要经过多个步骤来完成,每一步都要用贪心策略选择一个物品放入背包中.第一种是重量贪心策略,即从剩下的物品中选择重量最轻的装入背包中,一直下去,直到不满足约束条件;第二种是价值贪心策略;第三种是价值重量比vi/wi贪心策略本文对这三种贪心策略进行了测试,并比较了三种策略的优劣.算法步骤如下:(1)所有物品按重量从小到大排序(或按价值从大到小排序或计算每种物品的价值重量比vi/wi,然后按价值重量比从大到小排序);(2)若将某物品装入背包后,物品总重量不超过W,则选择重量次小的(或价值次高的或价值重量比次高的)物品装入背包.(3)以此策略一直进行下去,直到物品总重量超过W,最后一件物品不选择为止.(4)计算放入背包中的所有物品的总价值.2 动态规划求解0/1背包问题(4)根据计算最优值时得到的信息,构造一个最优解.3 回溯法求解0/1背包问题使用回溯法求解0/1背包问题的算法步骤为:(1)排序:将背包内物品按照价值重量比(vi/wi)的非增顺序进行排列.(2)初始化:将当前背包重量w的值设置为0,当前物品的总价值v设置为0,当前搜索深度i为0,当前解向量为x[i]=0,当前最优值v为0.(3)调用函数:调用限界函数.(4)如果返回的物品价值大于当前最优值v,则把物品i装入背包中,直至没有物品可装或装不下物品k为止,并生成部分解.转步骤(5);否则,转步骤(6).(5)如果选择的物品数量k大于或等于物品总数量n,则得到一个可行解,并把该可行解的值作为当前最优值,令i=n,转步骤(3),以便回溯搜索其他可行解;否则,令i=k+1,拒绝物品k,从物品k+1继续装入,转步骤(3).(6)当k>=0且x[k]=0时,令k=k-1,直至条件不成立.(7)如果k<0,算法结束;否则,转步骤8.(8)令x[k]=0,W=W-w[k],v=v-v[k],i=k+1,转步骤(3).4 实验结果及分析4.1实验结果。

(完整word版)0-1背包问题四种不同算法的实现.

(完整word版)0-1背包问题四种不同算法的实现.

兰州交通大学数理与软件工程学院题目0-1背包问题算法实现院系数理院专业班级信计09学生姓名雷雪艳学号200905130指导教师李秦二O一二年六月五日一、问题描述:1、0—1背包问题:给定n 种物品和一个背包,背包最大容量为M ,物品i 的重量是w i ,其价值是平P i ,问应当如何选择装入背包的物品,似的装入背包的物品的总价值最大? 背包问题的数学描述如下:2、要求找到一个n 元向量(x1,x2…xn),在满足约束条件:⎪⎩⎪⎨⎧≤≤≤∑10i i i x M w x 情况下,使得目标函数px ii ∑max ,其中,1≤i ≤n ;M>0;wi>0;pi>0。

满足约束条件的任何向量都是一个可行解,而使得目标函数达到最大的那个可行解则为最优解[1]。

给定n 种物品和1个背包。

物品i 的重量是wi ,其价值为pi ,背包的容量为M 。

问应如何装入背包中的物品,使得装人背包中物品的总价值最大?在选择装人背包的物品时,对每种物品i 只有两种选择,即装入背包、不装入背包。

不能将物品i 装人背包多次,也不能只装入部分的物品i 。

该问题称为0-1背包问题。

0-1背包问题的符号化表示是,给定M>0, w i >0, pi >0,1≤i ≤n ,要求找到一个n 元0-1向量向量(x1,x2…xn), X i =0 或1 , 1≤i ≤n, 使得Mwx ii≤∑ ,而且px ii∑达到最大[2]。

二、解决方案:方案一:贪心算法1、贪心算法的基本原理与分析贪心算法总是作出在当前看来是最好的选择,即贪心算法并不从整体最优解上加以考虑,它所作出的选择只是在某种意义上的局部最优解。

贪心算法不是对所有问题都能得到整体最优解,但对范围相当广的许多问题它能产生整体最优解。

在一些情况下,即使贪心算法不能得到整体最优解,但其最终结果却是最优解的很好近似解。

贪心算法求解的问题一般具有两个重要性质:贪心选择性质和最优子结构性质。

01背包实验报告

01背包实验报告

算法设计与分析实验报告0_1背包一.问题描述假设有n件物品,每件物品有各自的重量W1,W2,……,Wn和与之对应的价值V1,V2,……,Vn。

设背包的容量为c,在不超过背包容量的前提下,求出获得最大价值总和的方案。

(0-1背包的情况下物品不可分割,只能选择放入,或者不放入背包中)。

二.求解思路1.贪心策略问题开始阶段,将所有物品按价值从高到低排列,每一次往背包里放入不超过背包容量的价值最大的物品,直到没有物品可放入为止。

但事实证明,由于物品的不可分割性,0-1背包并不适合贪心策略。

例:假设背包的容量为50,共有三件物品(重量,价值):(10,60),(20,100),(30,120)。

若使用贪心策略,则会选择一个(30,120)和一个(20,100)。

得到的价值总和是220。

而稍加计算便可知选取两个(20,100)和一个(10,60)可以得到更大的价值总和260。

因此贪心策略不能给出0-1背包的最优解。

后话:即使是普通背包问题(物品可分割),每次选择价值最大的物品也不能得到最优解。

正确的贪心策略应是:每次选择单位重量下价值最大的物品。

由于本次实验主要讨论的是0-1背包问题,这里就不给出该贪心策略的证明。

2.动态规划(1)证明0-1背包问题具有最优子结构性质:假设(x1,x2,……,xn)是容量为c的背包的一组最优解,其中xi的取值为0或1,表示是否放入背包中。

则必有(x2,x3,……,xn)为如下子问题的一组最优解:sum{xi*wi} (2<=i<=n)<=c-x1*w1利用反证法证明,假设(y1,y2,……,yn)是该子问题的一组最优解而(x2,x3,……,xn)不是。

则sum{yi*vi} > sum{xi*vi} (2<=i<=n)那么就可得到:x1*v1+ sum{yi*vi} > x1*v1+ sum{xi*vi} (2<=i<=n)则(x1,y2,……,yn)是原问题的最优解,而(x1,x2,……,xn)不是,与假设矛盾。

动态规划之二维0-1背包问题(思考分析、解决、算法模板)

动态规划之二维0-1背包问题(思考分析、解决、算法模板)

动态规划之⼆维0-1背包问题(思考分析、解决、算法模板)⼀、问题描述
⼆维费⽤的背包问题是指对于每件物品,具有两种不同的费⽤,选择这件物品必须同时付出这两种代价,对于每种代价都有⼀个可付出的最⼤值(背包容量),求选择物品可以得到最⼤的价值。

设第i件物品所需的两种代价分别为v[i]和u[i],两种代价可付出的最⼤值(两种背包容量)分别为V和U,物品的价值为w[i]。

⼆、问题分析
与0-1背包问题⼀样,同样是选择或者不选择0-1的情况,区别在于多了⼀个维度来限制0-1的取值仅此⽽已。

拓展,倘若⼜多加了限定条件呢?同理,再加⼀维⽤来存放限定即可。

三、问题解决
设s[i][j][k]表⽰将前i件物品放⼊两种容量分别为j和k的背包时所能获得的最⼤价值,
则状态转移⽅程为s[i][j][k]=max{s[i-1][j][k], s[i-1][j-v[i]][k-u[i]]+w[i]},
递推边界为当i=0时 s[i][j][k]=0。

for (int i=0; i<=V; i++)
{
for (int j=0; j<=U; j++) s[i][j]=0; // 边界
}
for (int i=1; i<=N; i++)
{
for (int j=V; j>=v[i]; j--)
{
for (int k=U; k>=u[i]; k--)
s[j][k]=max(s[j][k], s[j-v[i]][k-u[i]]+w[i]);
}
}。

求解0—1背包问题算法综述

求解0—1背包问题算法综述

0-1背包问题是一种常见的动态规划问题,其目标是在给定背包容量和物品集合的情况下,选择某些物品放入背包,使得背包内物品的总价值最大。

以下是求解0-1背包问题的算法综述:
1. 定义变量和参数:
* 物品集合:包括每个物品的重量和价值。

* 背包容量:表示背包能够容纳的最大重量。

* dp数组:用于存储每个状态下的最大价值,dp[i][j]表示前i个物品、背包承重为j时的最大价值。

2. 初始化dp数组:
* 对于每个物品i和背包容量j,如果物品i能够装入背包,则令dp[i][j]为0;否则,令dp[i][j]为负无穷。

3. 递推计算dp数组:
* 对于每个物品i和背包容量j,如果物品i能够装入背包,则令dp[i][j]为当前物品的价值加上前i-1个物品、背包容量为j-w[i]时的最大价值,即dp[i][j] = dp[i-1][j-w[i]] + p[i];否则,
令dp[i][j]为前i-1个物品、背包容量为j时的最大价值,即dp[i][j] = dp[i-1][j]。

4. 返回dp数组的最后一个元素,即为所求的最大价值。

以上是求解0-1背包问题的算法综述,实际实现时可以根据具体情况进行优化,以提高算法的效率和性能。

0_1背包问题的多种解法

0_1背包问题的多种解法

、问题描述0/1背包问题:现有n种物品,对1<=i<=n,已知第i种物品的重量为正整数W,价值为正整数V,背包能承受的最大载重量为正整数V,现要求找出这n种物品的一个子集,使得子集中物品的总重量不超过W且总价值尽量大。

(注意:这里对每种物品或者全取或者一点都不取,不允许只取一部分)、算法分析根据问题描述,可以将其转化为如下的约束条件和目标函数:nw i x i Wi i ⑴X i {0,1(1 i n)nmax v i x (2)i 1于是,问题就归结为寻找一个满足约束条件( 1),并使目标函数式(2)达到最大的解向量首先说明一下0-1背包问题拥有最优解假设(X1, X2,X3,……,X n)是所给的问题的一个最优解,则 (X2,X3,……,X n)是下面问题的一个最优解:nWi 2X i {0,1}(2W1X1 maxi n) inv i X。

如果不是的话,设(y2> y3>....2..,y n)是这个问题的一个最优解,则n nV i y i V i X ii 2 i 2,且 W1X1n nW i y i W。

因此,V1X1 V i y ii 2 i 2n nV1X1V j X VX i,这说明i 2 i 1(X1,y2,y3, ....... , y n)是所给的0-1背包问题比(X1,X2,X3, ............ , X n)更优的解,从而与假设矛盾穷举法:用穷举法解决0-1背包问题,需要考虑给定n个物品集合的所有子集,找出所有可能的子集(总重量不超过背包重量的子集),计算每个子集的总重量,然后在他们中找到价值最大的子集。

由于精品(X1, X2,X3,……X n)。

程序过于简单,在这里就不再给出,用实例说明求解过程。

下面给出了4个物品和一个容量为10的背包,下图就是用穷举法求解0-1背包问题的过程。

(a)四个物品和一个容量为10的背包(b)用回溯法求解0-1背包问题的过程递归法:在利用递归法解决0-1背包问题时,我们可以先从第n个物品看起。

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析【摘要】本文主要介绍了0-1背包问题的算法决策分析。

在我们首先概述了背包问题的基本概念,指出了其在实际应用中的重要性。

同时强调了本文的研究意义。

接着在我们详细讨论了动态规划算法、贪心算法、分支界限算法和穷举法在解决背包问题中的应用方法。

通过比较不同算法在背包问题中的性能,得出了结论部分的结论,包括不同算法在不同情况下的应用、算法决策的重要性以及为背包问题提供不同解决方案的价值。

本文旨在为研究者和决策者提供背包问题解决方案的参考,帮助他们更好地应对实际问题。

【关键词】关键词:0-1背包问题,算法决策分析,动态规划算法,贪心算法,分支界限算法,穷举法,性能比较,算法应用,算法决策,解决方案。

1. 引言1.1 背包问题概述0-1背包问题指的是给定一个背包,容量为C,以及一组物品,每个物品有自己的重量w和价值v。

要求在不超过背包容量的前提下,选择一些物品放入背包,使得背包中物品的总价值最大。

这是一个经典的组合优化问题,在计算机科学和运筹学中有着广泛的应用。

背包问题的概念最早可以追溯到20世纪50年代,当时被提出和研究。

由于其简洁的描述和丰富的应用场景,背包问题一直备受关注并被广泛研究。

在实际生活中,背包问题可以应用于资源分配、投资决策、装箱问题等方面,对于提高资源利用率和解决实际问题具有重要意义。

在解决背包问题的过程中,算法的选择对于问题的解决效率和准确性起着关键作用。

不同的算法在不同情况下可能表现出不同的性能,因此需要对不同算法进行综合比较和评估,以找到最适合特定情况下的解决方案。

本文将探讨动态规划算法、贪心算法、分支界限算法和穷举法在解决背包问题中的应用及性能表现,从而为背包问题的解决提供更多选择和参考。

1.2 背包问题的重要性背包问题是一个在计算机科学和数学领域非常重要的经典优化问题。

在现实生活中,我们常常会面临类似于背包问题的决策情境,需要在有限的资源下做出最优选择。

0-1背包问题的算法与研究优化作业

0-1背包问题的算法与研究优化作业

0-1背包问题的算法与研究优化作业0-1背包问题算法分析背包问题又称子集合问题,最早是由Dantzing 于20世纪50年代首次提出的,已成为计算机学科中一个经典的NP 问题 . 0-1背包问题在很多领域都有广泛的应用,很多实际问题都可转换为0-1背包问题,例如下料问题,贷款组合优化决策问题等,0-l 整数线性规划问题可以归结为0-1背包问题,而整数线性规划问题都可以转化为0-l 整数线性规划问题。

所以,对0-1背包问题求解方法的研究无论是在理论上还是在实践中都具有一定的意义。

一 0-1 背包问题的数学模型及其分类0-1 背包问题的数学模型如下:假设n 个物件,其重量用w i 表示,价值为p i (i =1,2,…, n ),背包的最大容纳重量为c,当物件i 被选入背包时,定义变量 x i =1,否则 x i =0。

现在考虑 n 个物件的选择与否,则背包内 n 个物件总重量为Σw i x i ,物件的总价值为Σp i x i ,如何决定变量x i (i =1,2,…,n )的值(即确定一个物件组合)使背包内物件总价值为最大,其数学模型表示如下:{ 0..max 11≤∑∑==i n i i i n i i x w t s x p到目前为止,求解0-1背包问题的方法很多,精确算法有分支限界法,动态规划法等,近似算法有贪婪方法、蚁群算法等。

一般来说,精确算法不能在较短时间内求解大规模0-1背包问题,使其实用性受到限制。

而近似算法只能求解问题的近似解,有时所得的近似解质量很低。

本文主要针对常见的求解0-1背包问题的算法设计方法进行阐述.二算法思想描述及其性能分析1 分支界限法第一个基于分支界限法的背包问题求解是由Horowit znd Sahni,Nauss and Martello and T oth 于20世纪70年代提出.分支界限法的基本思想是对有约束条件的最优化问题的所有可行解(数目有限)空间进行搜索.该算法在具体执行时,把全部可行的解空间不断分割为越来越小的子集(成为分支),并为每个子集内的解的值计算一个下界或上界(称为定界).在每次分支后,对凡是界限超出已知可行解值的那些子集不再做进一步分支.这样,解的许多子集(即搜索树上的许多结点)就可以不予考虑了,从而缩小了搜索范围.这一过程一直进行到找出可行解为止,该可行解的值不大于任何子集的界限,因此这种算法一般可以求得最优解.分支界限法是组合优化问题的有效求解方法,对于0-1背包问题,其计算步骤如下所述:(1) 计算每个节点即解集中部分物品的重量和。

0 1背包实验报告

0 1背包实验报告

0 1背包实验报告0-1背包实验报告引言:0-1背包问题是在计算机科学中经典的组合优化问题之一。

该问题的目标是在给定一组物品和一个固定容量的背包下,选择一些物品放入背包中,使得放入的物品总价值最大化,同时不能超过背包的容量限制。

本实验旨在通过实际操作和数据分析,深入理解0-1背包问题的求解方法和优化策略。

实验设计:本实验采用Python编程语言进行0-1背包问题的求解。

首先,我们设计了一个物品类(Item),每个物品具有重量(weight)和价值(value)两个属性。

然后,我们生成了一组具有不同重量和价值的物品,这些物品将作为输入数据用于求解0-1背包问题。

接下来,我们实现了两种常见的求解方法:动态规划和贪心算法,并对它们的性能进行了对比分析。

实验过程:1. 生成输入数据:我们使用随机数生成器生成了一组具有不同重量和价值的物品。

为了方便观察和分析,我们限定了物品的数量为10个,重量范围为1到10,价值范围为1到100。

2. 动态规划求解:动态规划是解决0-1背包问题的经典方法之一。

我们设计了一个动态规划函数,通过填充一个二维数组来求解最优解。

具体步骤如下:- 初始化一个二维数组dp,其中dp[i][j]表示在前i个物品中选择总重量不超过j的物品的最大总价值。

- 通过递推公式dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]] + value[i])求解dp数组。

- 根据dp数组的最后一行最后一列的值,反推出背包中放入的物品。

3. 贪心算法求解:贪心算法是另一种常见的求解0-1背包问题的方法。

它的基本思想是每次选择具有最大单位价值的物品放入背包中,直到背包无法再放入任何物品为止。

具体步骤如下:- 计算每个物品的单位价值(value/weight)。

- 按照单位价值从大到小的顺序对物品进行排序。

- 依次选择单位价值最大的物品放入背包中,直到背包无法再放入任何物品。

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析【摘要】0-1背包问题是一个经典的组合优化问题,在计算机领域有着广泛的应用。

本文将对0-1背包问题的算法决策进行深入分析。

首先介绍了背包问题的概述和算法决策的重要性,接着分别探讨了贪心算法、动态规划算法和回溯算法在0-1背包问题中的应用。

随后对比了不同算法在解决该问题时的表现,并讨论了影响算法选择的决策因素。

提出了最优算法选择的建议,并探讨了未来研究方向。

通过这篇文章的分析,读者可以更好地理解不同算法在0-1背包问题中的应用和选择合适算法的决策因素。

【关键词】0-1背包问题、算法决策、贪心算法、动态规划、回溯算法、算法表现对比、算法选择、最优算法、未来研究、决策因素、引言、正文、结论、总结1. 引言1.1 背包问题概述背包问题,即0-1背包问题,是一种经典的组合优化问题,通常用于描述在有限的容量下如何选择物品以获得最大的价值。

具体而言,给定一个背包的容量C和n个物品,每个物品有一个重量wi和一个价值vi,每个物品可以选择装入或不装入背包,但不能分割。

背包问题的目标是在不超过背包容量的前提下,选择物品使得背包中物品的总价值最大。

背包问题是一个NP难题,即没有多项式时间内的确定性算法可以解决。

研究者们为了寻找高效的解决方案,提出了各种算法并进行了比较和分析。

常见的解决背包问题的算法主要有贪心算法、动态规划算法和回溯算法。

每种算法都有其特点和适用情况,因此在选择算法时需要考虑问题的规模、性质和具体要求。

1.2 算法决策的重要性算法决策在解决0-1背包问题中扮演着至关重要的角色。

在面对限定容量下的物品选择时,选择适用的算法决策可以直接影响到问题的解决效率和解的质量。

不同的算法在解决背包问题时所需要的时间复杂度和空间复杂度各不相同,因此在选择算法时需要综合考虑问题的规模、约束条件和性能要求。

正确选择算法决策能够高效地解决问题,提高计算效率,降低计算成本。

贪心算法适用于一些简单情况下的背包问题,可以获得较快的解决速度;动态规划算法适用于大规模、复杂的背包问题,可以获得较优的解;回溯算法在一些特殊情况下也能发挥作用。

背包问题问题实验报告(3篇)

背包问题问题实验报告(3篇)

第1篇一、实验目的1. 理解背包问题的基本概念和分类。

2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。

3. 分析背包问题的复杂度,比较不同算法的效率。

4. 通过实验验证算法的正确性和实用性。

二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

求将哪些物品装入背包,使得背包内物品的总价值最大。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。

c. 返回dp[n][C],即为最大价值。

2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。

c. 返回dp[C],即为最大价值。

3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。

每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。

(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。

b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。

c. 返回dp[C],即为最大价值。

四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。

算法设计与分析——0-1背包问题(动态规划)

算法设计与分析——0-1背包问题(动态规划)

算法设计与分析——0-1背包问题(动态规划)⼀、问题描述有N件物品和⼀个最多能被重量为W 的背包。

第i件物品的重量是weight[i],得到的价值是value[i] 。

每件物品只能⽤⼀次,求解将哪些物品装⼊背包⾥物品价值总和最⼤。

⼆、问题分析2.1 确定dp数组以及下标的含义对于背包问题,有⼀种写法,是使⽤⼆维数组,即dp[i][j] 表⽰从下标为[0-i]的物品⾥任意取,放进容量为j的背包,价值总和最⼤是多少。

2.2 确定递推公式再回顾⼀下dp[i][j]的含义:从下标为[0-i]的物品⾥任意取,放进容量为j的背包,价值总和最⼤是多少。

那么可以有两个⽅向推出来dp[i][j],由dp[i - 1][j]推出,即背包容量为j,⾥⾯不放物品i的最⼤价值,此时dp[i][j]就是dp[i - 1][j]由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最⼤价值,那么dp[i - 1][j -weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最⼤价值所以递归公式:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);2.3 dp数组如何初始化关于初始化,⼀定要和dp数组的定义吻合,否则到递推公式的时候就会越来越乱。

⾸先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],⽆论是选取哪些物品,背包价值总和⼀定为0。

如图再看其他情况。

状态转移⽅程 dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]); 可以看出i 是由 i-1 推导出来,那么i为0的时候就⼀定要初始化。

dp[0][j],即:i为0,存放编号0的物品的时候,各个容量的背包所能存放的最⼤价值。

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析0-1背包问题是一个经典的组合优化问题,也是计算机科学和数学领域中的一个重要问题。

在实际应用中,0-1背包问题通常用于优化问题的求解,比如资源分配、货物装载等方面。

在这篇文章中,我们将对0-1背包问题的算法决策进行分析,并探讨不同算法的优缺点。

0-1背包问题的描述很简单,假设有n件物品和一个容量为W的背包。

每件物品的重量为w[i],价值为v[i]。

现在需要选择一些物品装入背包,使得背包中的物品价值最大,同时不能超过背包的容量。

这个问题可以用一个0-1的决策变量来表示,即选择物品装入背包或者不选择。

这个问题被称为0-1背包问题。

对于0-1背包问题,有多种解法和算法可以求解。

常见的算法包括贪心算法、动态规划算法、回溯算法等。

在下面的内容中,我们将对这些算法进行具体的分析和比较。

贪心算法贪心算法是一种简单而有效的算法,它通过每一步的局部最优选择来构建全局最优解。

在0-1背包问题中,可以使用贪心算法按物品的单位价值(即每单位重量所能获得的价值)从大到小的顺序选择物品放入背包。

贪心算法的优点是简单、高效,时间复杂度低。

贪心算法并不一定能够得到最优解。

因为贪心算法只关注当前的局部最优解,而忽略了全局最优解的可能性。

在某些情况下,贪心算法无法得到最优解。

动态规划算法动态规划算法是求解0-1背包问题的经典算法之一。

动态规划算法将问题分解为子问题,并使用递推的方式求解子问题,最终得到全局最优解。

在0-1背包问题中,可以使用动态规划算法构建一个二维数组dp[i][j],表示前i件物品在背包容量为j时所能获得的最大价值。

动态规划算法的优点是能够得到最优解,并且在一定程度上能够减小时间复杂度。

动态规划算法的空间复杂度较高,且在某些情况下需要额外的优化。

动态规划算法需要注意状态转移方程和边界条件的设计,需要一定的技巧和功底。

回溯算法回溯算法是一种穷举搜索算法,它通过遍历所有可能的解空间来求解问题。

0-1背包问题研究及算法策略比较分析

0-1背包问题研究及算法策略比较分析

数学与物理科学学院《算法分析与设计》课程考查论文题目0-1背包问题研究及算法策略比较分析专业班级学号姓名任课教师完成日期2011/5/24背包问题是一个在运筹学领域里常见的典型NP-C难题,也是算法设计分析中的经典问题,对该问题的求解方法的研究无论是在理论上,还是在实践中都具有重要意义。

对这个问题的求解已经研究出了不少的经典方法,对该问题的探索和应用研究一直在进行。

在先进理论指导下,求解0-1背包问题具有科学、高效、经济、灵活、方便等显著特点。

那么要解决背包问题,首要的前提就是设计出好的算法,想求得背包问题的解,就要先设计出算法,本文采用回溯法对背包问题、0-1背包问题及简单0-1背包问题进行算法设计和时间复杂度分析,给出具体算法设计和实现过程。

并以具体实例详细描述不同方法求解问题解时算法基本思想,然后就解决0-1背包问题对这四种算法进行详细的比较,总结这种方法实现的优缺点并得出结论。

如何将背包问题应用于实际问题中,有针对性地设计适合求解实际0-1背包问题的算法,并很好地解决实际问题,是计算机工作者不断思索、研究的一个领域。

摘要 (2)一、绪论 (4)1.1问题的研究及意义 (4)1.20-1背包问题的算法研究与分析 (4)1.3课题的主要研究内容 (4)二、0-1背包问题在动态规划中的实现 (5)2.1动态规划的基本原理与分析 (5)2.20-1背包问题的实现 (5)三、0-1背包问题在分枝-限界法中的实现 (7)3.1分枝-限界法的基本原理与分析 (7)3.20-1背包问题的实现 (7)四、0-1背包问题在遗传算法中的实现 (9)4.1遗传算法的基本原理与分析 (9)4.20-1背包问题的实现 (10)五、0-1背包问题在回溯法中的实现 (11)5.1回溯法的基本原理与分析 (11)5.20-1背包问题的实现 (11)5.30-1背包问题在回溯法中的算法描述 (12)5.4算法效率 (14)5.5运行结果 (15)六、四种算法的比较与分析 (15)七、附录 (17)一、绪论1.1问题的研究及意义0-1背包问题是计算机科学中的一个非常经典的优化问题。

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析

0-1背包问题的算法决策分析1. 引言1.1 背包问题简介背包问题是一个经典的组合优化问题,通常用于描述在给定一定容量的背包和一组物品的情况下,如何选择装入背包中的物品,使得背包内物品的总价值最大或总重量最小。

这种问题在实际生活中有着广泛的应用,比如在物流配送、资源分配等领域都能见到类似的问题。

背包问题通常包括01背包、完全背包、多重背包等不同变种,其中最为经典和常见的是01背包问题。

在01背包问题中,每种物品只能选择装入或不装入背包,不能将物品进行切割。

为了解决背包问题,通常采用动态规划算法或贪心算法。

动态规划算法通过递推的方式计算出最优解,具有较高的时间复杂度但能够保证全局最优解;贪心算法则通过选择局部最优解的方式逐步构建全局最优解,具有较低的时间复杂度但不能保证一定得到最优解。

在实际应用中,对于不同规模和要求的背包问题,需要根据具体情况选择适用的算法来求解。

背包问题的解决思路可以帮助我们更好地理解和应用算法解决实际问题。

1.2 算法决策的重要性在解决0-1背包问题时,算法决策的重要性不可忽视。

背包问题是一个经典的组合优化问题,其在实际生活中有着广泛的应用。

在面对不同的背包问题时,选择合适的算法决策可以大大提高问题的解决效率和准确性。

通过精心选择算法,可以避免不必要的计算和浪费,节省时间和资源。

在动态规划和贪心算法两种经典算法中,不同的问题可能更适合不同的解决方案。

算法决策的重要性体现在如何根据问题的性质和约束条件选择最合适的算法,以达到最优的解决方案。

在实际应用中,算法决策的重要性更加凸显。

对于大规模背包问题,合理选择算法可以极大地提高问题的求解效率,节约资源和时间成本。

而对于特定场景下的背包问题,例如物流配送、资源分配等,算法决策的准确性直接影响到问题的实际应用效果和经济效益。

因此,对于0-1背包问题的解决来说,算法决策的重要性不言而喻。

只有通过深入理解不同算法的特点和适用条件,才能更好地选择合适的解决方案,从而达到最优解并取得较好的求解效果。

0-1背包问题解说

0-1背包问题解说

0-1背包问题:有N件物品和一个容量为V的背包。

第i件物品的费用是c[i],价值是w[i]。

求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

这个问题的特点是:每种物品只有一件,可以选择放或者不放。

算法基本思想:利用动态规划思想,子问题为:f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。

其状态转移方程是:f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]} //这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。

解释一下上面的方程:“将前i件物品放入容量为v的背包中”这个子问题,如果只考虑第i 件物品放或者不放,那么就可以转化为只涉及前i-1件物品的问题,即1、如果不放第i件物品,则问题转化为“前i-1件物品放入容量为v的背包中”;2、如果放第i件物品,则问题转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”(此时能获得的最大价值就是 f [i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i])。

则f[i][v]的值就是1、2中最大的那个值。

(注意:f[i][v]有意义当且仅当存在一个前i件物品的子集,其费用总和为v。

所以按照这个方程递推完毕后,最终的答案并不一定是f[N] [V],而是f[N][0..V]的最大值。

)优化空间复杂度:以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。

上面f[i][v]使用二维数组存储的,可以优化为一维数组f[v],将主循环改为:for i=1..Nfor v=V..0f[v]=max{f[v],f[v-c[i]]+w[i]};即将第二层循环改为从V..0,逆序。

解释一下:假设最大容量M=10,物品个数N=3,物品大小w{3,4,5},物品价值p{4,5,6}。

当进行第i次循环时,f[v]中保存的是上次循环产生的结果,即第i-1次循环的结果(i>=1)。

0-1背包问题的算法决策分析.docx

0-1背包问题的算法决策分析.docx

0-1背包问题的算法决策分析.docx0-1 背包问题是一种常见的多部分搜索问题,其基本思想是:给定一组物品,各有其大小、重量和价值,求解将哪些物品放入背包可使背包重量不超过限制,并使其价值最大化。

在 0-1 背包问题中,一个典型的决策是选择第 i 件物品放入背包或不放入,此决策可用 0-1 矩阵表示。

例如如果物品 i 放入背包,则矩阵中第 i 行、第 0 列元素置为“ 1”,否则置为“ 0”。

求解背包最大价值,即从这个 0-1 矩阵中找出一组值为 1 的元素,使得它们构成的物品集合满足背包重量限制要求,并使物品价值总和最大。

在决策分析中,可以采用动态规划的方法求解 0-1 背包问题。

因此,同样的物品可以求解出最优解,而无需考虑物品顺序。

该方法可以利用子问题的重叠性,用最优子结构表示全局最优解,并通过某种有用的搜索策略将状态空间划分为若干子空间来解决问题。

动态规划法主要从两个方面分析背包问题,一个是贪心算法,另一个是动态规划法,其基本方法类似,但使用不同的思想。

对于贪心算法,首先将所有物品按照单位重量的价值从大到小排序,然后每次选择最有价值的物品放入背包,直至不能容纳为止。

这样可以保证在贪心算法得到的最优解中价值最高,但不能保证最优解是最优解,因此贪心算法只是单纯形式上的一种解决方案而不是最优解。

而动态规划法是一种有效的求解 0-1 背包问题的方法,它利用子问题的重叠性和最优子结构特性,以空间换时间,使问题的复杂度降低,以达到得到全局最优解的目的。

如果使用动态规划法,首先需要建立一个二维表,第一维表示背包存放的物品数量,第二维表示背包重量,在每个位置用表示当前情况下能获得的最大价值,然后采用递归的思想,按照物品价值最大、重量最小的原则,逐个求解出所有子问题,得到最有价值的价值最大的子结构。

最后根据子结构可得到最优解。

0-1背包问题

0-1背包问题

0-1背包问题一.实验内容分别编程实现动态规划算法和贪心法求0-1背包问题的最优解,分析比较两种算法时间复杂度并验证分析结果。

二.实验目的1、掌握动态规划算法和贪心法解决问题的一般步骤,学会使用动态规划和贪心法解决实际问题;2、理解动态规划算法和贪心法的异同及各自的适用范围。

三.算法描述1、动态规划求0-1背包问题时最重要的就是状态转换公式,如下:(1)V(i,0)=V(0,j)=0(2)1.V(i,j)=V(i-1,j) j<wi2.V(i,j)=max{V(i-1,j) ,V(i-1,j-wi)+vi) } j>wiA:如果第i个物品的重量大于背包的容量,则前i个和前i-1个的最大值相同,物品i不能装入背包;B:如果第i个物品的重量小于背包的容量,会有两种情况:(a)如果把第i个物品装入背包,第i-1个物品没有装wi重量物品的价值加上vi;所以x-pk,否则就会超过背包容量(b)如果第i个物品没有装入背包,则背包中物品价值就等于把前i-1个物品装入容量为j的背包中所取得的价值。

然后取a和b中的最大值。

3、利用贪心算法就是先将个物品按其单位重量的价值排序,然后逐个挑选直到背包所剩容量无法再放任何一个物品为止。

贪的是平均价值最高的,设计算法时用到了快速排序。

四.算法实现(一)动态规划实现0-1背包1.数据结构及函数说明const int a=100;//背包容量。

const int 表示不可改变数值的int常量const int b=200;//物品数量int pk[b+1];//物体重量int wt[b+1];//物体价值int m[b+1][a+1];//记录动态规划表,记录最优值2.源程序代码#include<stdio.h>#include<string.h>#include<time.h>const int a=100;//背包容量。

const int 表示不可改变数值的int常量const int b=200;//物品数量int pk[b+1];//物体重量int wt[b+1];//物体价值int m[b+1][a+1];//记录动态规划表void do0_1(){memset(m,0,sizeof(m));for(int i=1;i<=b;i++)for(int x=1;x<=a;x++){if(x<pk[i]||m[i-1][x]>(m[i-1][x-pk[i]]+wt[i])) m[i][x]=m[i-1][x];else m[i][x]=m[i-1][x-pk[i]]+wt[i];}}int main(){freopen("din.txt","r",stdin);freopen("dout1.txt","w",stdout);for(int j=0;j<20;j++){for(int i=1;i<=b;i++)scanf("%d%d",&pk[i],&wt[i]);//第一个数为pk[i],第二个数为wt[1]do0_1();printf("第%d组累计时间:%lf\n",j+1,(double)clock()/CLOCKS_PER_SEC);printf("总价值:%d\n",m[b][a]);}return 0;}(二)贪心法实现0-1背包问题1.数据结构及函数说明#define g 200//物体个数using namespace std;struct package{int w;//重量int v;//价值double perv;//单位价值};物品结构体2.源程序代码#include<cstdio>#include<algorithm>#include<iostream>#include<ctime>#define g 200using namespace std;struct package{int w;//重量int v;//价值double perv;//单位价值};int totalw;int totalv;package f[g];bool cmp(const package &a,const package &b) {return a.perv>b.perv;}//降序排序void do0_1 (int q){totalw=100;//背包容量totalv=0;sort(f,f+g,cmp);int i=0;while(totalw&&i<g){if(f[i].w>totalw){i++;continue;}totalw-=f[i].w;totalv+=f[i].v;//背包问题和0-1背包问题的区别:背包问题可以把一个物品拆分,最后的total 可能大于等于0,而0-1背包不允许拆分i++;}printf("第%d组累计时间:%lf\n",q,(double)clock()/CLOCKS_PER_SEC);cout<<"总价值:"<<totalv<<endl;}int main(){freopen("din.txt","r",stdin);freopen("dout2.txt","w",stdout);for(int j=0;j<20;j++){for(int i=0;i<g;i++){cin>>f[i].w>>f[i].v;f[i].perv=(double)f[i].v/(double)f[i].w;}do0_1(j+1);}return 0;}(三)样例产生程序rand.cpp#include<stdio.h>#include<math.h>#include<stdlib.h>int main(){freopen("din.txt","w",stdout);for(int i=0;i<20;i++) {//一共20组数据for(int j=0;j<400;j++){printf("%d ",rand()%100+1); //每组数据200个样例,每个样例的范围是1-100}printf("\n");}return 0;}五.程序运行结果上图为动态规划法实现0-1背包程序的运行结果,不过本窗口的代表着程序运行成功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学与物理科学学院《算法分析与设计》课程考查论文题目0-1背包问题研究及算法策略比较分析专业班级学号姓名任课教师完成日期2011/5/24背包问题是一个在运筹学领域里常见的典型NP-C难题,也是算法设计分析中的经典问题,对该问题的求解方法的研究无论是在理论上,还是在实践中都具有重要意义。

对这个问题的求解已经研究出了不少的经典方法,对该问题的探索和应用研究一直在进行。

在先进理论指导下,求解0-1背包问题具有科学、高效、经济、灵活、方便等显著特点。

那么要解决背包问题,首要的前提就是设计出好的算法,想求得背包问题的解,就要先设计出算法,本文采用回溯法对背包问题、0-1背包问题及简单0-1背包问题进行算法设计和时间复杂度分析,给出具体算法设计和实现过程。

并以具体实例详细描述不同方法求解问题解时算法基本思想,然后就解决0-1背包问题对这四种算法进行详细的比较,总结这种方法实现的优缺点并得出结论。

如何将背包问题应用于实际问题中,有针对性地设计适合求解实际0-1背包问题的算法,并很好地解决实际问题,是计算机工作者不断思索、研究的一个领域。

摘要 (2)一、绪论 (4)1.1问题的研究及意义 (4)1.20-1背包问题的算法研究与分析 (4)1.3课题的主要研究内容 (4)二、0-1背包问题在动态规划中的实现 (5)2.1动态规划的基本原理与分析 (5)2.20-1背包问题的实现 (5)三、0-1背包问题在分枝-限界法中的实现 (7)3.1分枝-限界法的基本原理与分析 (7)3.20-1背包问题的实现 (7)四、0-1背包问题在遗传算法中的实现 (9)4.1遗传算法的基本原理与分析 (9)4.20-1背包问题的实现 (10)五、0-1背包问题在回溯法中的实现 (11)5.1回溯法的基本原理与分析 (11)5.20-1背包问题的实现 (11)5.30-1背包问题在回溯法中的算法描述 (12)5.4算法效率 (14)5.5运行结果 (15)六、四种算法的比较与分析 (15)七、附录 (17)一、绪论1.1问题的研究及意义0-1背包问题是计算机科学中的一个非常经典的优化问题。

它的主要思路是假定某人拥有大量物品,重量各不同。

通过秘密地选择一部分物品并将它们放到背包中来加密消息。

背包中的物品中重量是公开的,所有可能选择的物品也是公开的,但背包中的物品是保密的。

附加一定的限制条件,给出重量,而要列出可能的物品,在计算上是不可实现的。

背包问题是熟知的不可计算问题,背包体制以其加密,解密速度快而其人注目。

但是,大多数一次背包体制均被破译了,因此现在很少有人使用它。

围绕这个问题的求解方法很多,比如贪婪算法、动态规划、分枝限界、回溯法、遗传算法等等。

其中回溯法是常见的一种求解方法。

多年来,背包问题吸引了许多理论和实际工作者对此问题作深入的研究,在理论上,尽管背包问题的结构简单,但它却具有组合爆炸的性质,在实际应用中,许多工业问题都可以用背包问题来描述求解,如资金运算、货舱装载、存储分配等都是其典型的应用例子。

如何将背包问题应用于实际问题中,并很好地解决实际问题,是计算机工作者不断思索、研究的一个领域。

1.2 0-1背包问题的算法研究与分析0-1背包问题的算法研究主要是通过算法设计与分析知识,设计解决相关问题的尽可能高效的算法并程序实现,而且能够分析算法的复杂性,通过实验进一步领会各种算法设计技术的基本原理,掌握算法设计和分析方法,提高算法设计与分析的应用能力。

0-1背包是一类很典型的优化问题,研究它有很重要的实际意义,这不仅是由于它结构简洁,可以作为子问题为研究更复杂的问题奠定理论基础,有很高的理论研究价值,而且由于它是许多实际工程应用问题的种通用化描述,在很多实际问题当中有着非常广泛的应用背景,例如项目决策等。

他是最基本的背包问题,即对一个物体要么选用,要么就抛弃,不能将一个物体再继续细分的情况。

它包含了背包问题中设计状态、方程的最基本思想,在经济管理、资源分配、投资决策、装载设计等领域有着重要的应用价值。

在计算理论中属于NP-C 完全问题,其计算复杂度,传统上采用动态规划来求解。

背包问题就是在资源有限的条件下,追求总的最大收益的资源有效分配问题。

1.3课题的主要研究内容问题的一般描述是:旅行者背包登山,背包的最大承重为M ,现有n 个物品可供选择装入背包,第i 个物品莺量为wi ,价值为pi ,假定物品i 的一部分xi(0≤xi ≤1)放人背包,获得价值为xipi ,由于背包最大承重为M ,要求装入物品总质量不过超过M ,问旅行者应该如何选择物品装入背包,使得装入物品的价值总和达到最大值。

背包问题的数学描述如下:要求找到一个n 元向量(x1,x2…xn),在满足约束条件:⎪⎩⎪⎨⎧≤≤≤∑10i i i x M w x 情况下,使得目标函数p x ii ∑max ,其中,1≤i ≤n ;M>0;wi>0;pi>0。

满足约束条件的任何向量都是一个可行解,而使得目标函数达到最大的那个可行解则为最优解[1]。

给定n 种物品和1个背包。

物品i 的重量是wi ,其价值为pi ,背包的容量为M 。

问应如何装入背包中的物品,使得装人背包中物品的总价值最大?在选择装人背包的物品时,对每种物品i 只有两种选择,即装入背包、不装入背包。

不能将物品i 装人背包多次,也不能只装入部分的物品i 。

该问题称为0-1背包问题。

0-1背包问题的符号化表示是,给定M>0, w i >0, pi >0,1≤i ≤n ,要求找到一个n 元0-1向量向量(x1,x2…xn), X i =0 或1 , 1≤i ≤n, 使得 M w x i i ≤∑ ,而且p x i i ∑达到最大[2]。

二、0-1背包问题在动态规划中的实现2.1 动态规划的基本原理与分析动态规划算法的基本思想是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

但是经分解得到的子问题往往不是互相独立的。

不同子问题的数目常常只有多项式量级。

如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。

它把已知问题分为很多子问题,按顺序求解子问题,在每一种情况下,列出各种情况的局部解,按条件从中选取那些最有可能产生最佳的结果舍弃其余。

前一子问题为后面子问题提供信息,而减少计算量,最后一个子问题的解即为问题解。

采用此方法求解0-1背包问题的主要步骤如下:①分析最优解的结构:最有子结构性质;②建立递归方程;③计算最优值;④构造最优解[4]。

2.2 0-1背包问题的实现① 最优子结构性质0-1背包问题具有最优子结构性质。

设(y1,y2…yn)是所给0-1背包问题的一个最优解,则(y2,y3…yn)是下面相应子问题的一个最优解:∑=n i k kk x v max⎪⎩⎪⎨⎧≤≤∈≤∑=n k i x j x w k n i k k k },1,0{因若不然,设(z2,z3…zn)是上述问题的一个最优解,而(y2,y3…yn)不是它的最优解,由此可见>∑=n i 2∑=n i i i y v 2,且∑=+ni i i z w 2w1y1≤c 。

因此 >+∑=n i i i z v 2 v1y1∑=n i i i y v 1∑=+ni i i z w 2w1y1≤c这说明(y1,z2…zn)是所给0-1背包问题的一个更优解,从而(y1,y2…yn)不是所给0-1背包问题的最优解。

此为矛盾[1]。

② 递归关系设所给0-1背包问题的子问题∑=ni k kk x v max⎪⎩⎪⎨⎧≤≤∈≤∑=nk i x j x w k n i k k k },1,0{ 的最优值为m(i,j),即m(i,j)是背包容量为j ,可选择物品为i ,i+1,……,n 时0-1背包问题的最优值。

由0-1背包问题的最优子结构性质,可以建立计算m(i,j)的递归式如下:⎩⎨⎧<≤+≥+-++=wj j j i m wi j vi wi j i m j i m 0),,1(},),1(),),1(max{j)m(i, ⎩⎨⎧<≤≥=wnj wn vnj 0j)m(n, ③ 算法描述基于以上讨论,当wi(1≤i ≤n)为正整数时,用二维数组m[][]来存储m(i,j)的相应值,可设计解0-1背包问题的动态规划算法Knapsack 入下:template<class Type>void Knapsack(Type v,int w,int c,int n,Type* * m){int jMax=min(w[n]-1,c);for (int j=0;j<=jMax;j++)m[n][j]=0;for (int j=w[n];j<=c;j++)m[n][j]=v[n];for (int i=n-1;i>1;i--){jMax=min(w[i]-1,c);for (int j=0;j<=jMax;j++)m[i][j]=m[i+1][j];for(intj=w[i];j<=c;j++)m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]);}m[1][c]=m[2][c];if(c>=w[1]) m[1][c]=max(m[1][c],m[2][c-w[1]]+v[1]);}template<class Type>void Traceback(Type* * m,int w,int c,int n,int x){for (int i=1;i<=n;i++)if(m[i][c]==m[i+1][c]) x[i]=0;else {x[i] =1;c-= w[i];}x[n]=(m[n][c])?1:0;}[1]④计算复杂性分析利用动态规划求解0-1背包问题的复杂度为0(min{nc,2n}。

动态规划主要是求解最优决策序列,当最优决策序列中包含最优决策子序列时,可建立动态规划递归方程,它可以帮助高效地解决问题[8]。

三、0-1背包问题在分枝-限界法中的实现3.1分枝-限界法的基本原理与分析分枝限界发是另一种系统地搜索解空间的方法,它与回溯法的主要区别在于对E-结点(expansion node)的扩充方式。

每个活结点有且仅有一次会变成E-结点。

当一个结点变为E-结点时,则生成从该结点移动一步即可到达的所有新结点。

在生成的结点中,抛弃那些不可能导出(最优)可行解的结点,其余结点加人活结点表,然后从表中选择一个结点作为下一个E结点。

从活结点表中取出所选择的结点并进行扩充,直到找到解或活动表为空,扩充才结束。

相关文档
最新文档