第二章下 常用地图投影
3.2地图投影及其分类,3.3常用的地图投影解析PPT参考幻灯片
轴投影
5
§3 常用的地图投影
❖ 1.墨卡托投影(等角正圆柱投影) 投影原理:设想地球为一透明球体,球心置一点光
源,将圆柱投影面沿赤道与地球相切,地球上的经纬网格投 影到圆柱面上
6
墨卡托投影绘制的世界地图
§3 常用的地图投影
❖ (一)地图投影
利用一定的数学法则把地球表面上的经纬线网表 示到平面上
F(, ) f (x, y)
1
❖ 1. 地图投影的失真
由于地球椭球体表面是曲面,而地图通常是要绘制在平 面图纸上,因此制图时首先要把曲面展为平面,然而球 面是个不可展的曲面,即把它直接展为平面时,不可能 不发生破裂或褶皱。
为了保证地图的精度,采用分带投影方法,即将投 影范围的东西界加以限制,使其失真不超过一定的 限度,这样把许多带结合起来,可成为整个区域的 投影。
我国规定1:1 万、1:2.5 万、1:5 万、1:10万、 1:25 万、1:50 万比例尺地形图,均采用高斯克 -吕格投影。1:2.5 至1:50 万比例尺地形图采用 经差6 °分带,1:1 万比例尺地形图采用经差3° 分带。
绘制机场专用航图和涉及仪表飞行程序的基础用图; 国家大地测量和五十万分之一及更大比例尺的国家基本地形
图
13
❖ 高斯投影坐标网
经纬网(地理坐标网)
114°00 14
16
30° 202
40´
α
3396
94 -δ TH/TC
92
18 20 A( 20218 , 3394 )
90
TH/TC= α+(± δ)
地图投影第二章地图投影方法变形分类
1
2
a b=r2
3
4
CHENLI
a> r,b=r 5
a≠b≠r 6
23
CHENLI
24
三、投影变形的性质和大小
长度比和长度变形:
投影面上一微小线段(变形椭圆半径)和球 面上相应微小线段(球面上微小圆半径,已按规 定的比例缩小)之比。
m表示长度比, Vm表示长度变形
m ds' ds
Vm m 1
Q(0,0),球面上的各点便以新极点Q为原点,以方
位角和天顶距 Z 表示其位置,从而构成球面极坐标系。
CHENLI
32
球面极坐标系
第二节 地理坐标
在地图测制中是把地球表面作为旋转椭球面处理。 地球椭球面上各点的位置,是以地理坐标即经度 和纬度来确定。经纬度是一种绝对的坐标系统。
P,P1—北、南极
CHENLI
2
地图投影,简单的说就是将参考椭球面上的元素 (大地坐标、角度和边长)按一定的数学法则化 算到平面上的过程。
x y
ff12((LL,,BB))
CHENLI
3
二、投影方式: 1.平行投影
CHENLI
4
2.透视投影
CHENLI
5
3. 广义投影
CHENLI
6
三、地图投影实质: 建立平面上的点(用平面直角坐标或极坐标
CHENLI
16
2. 投影变形的概念 地图投影不能保持平面与球面之间在
长度(距离)、角度(形状)、面积等方 面完全不变。
地球仪上经纬线网格和地图上比较:
CHENLI
17
球面经纬网经过投影之后,其几何特征 受到扭曲——地图投影变形:长度(距离)、 角度(形状)、面积。
地理信息系统常用的地图投影
高斯投影6° 高斯投影 °和3°带分带 °
为了控制变形,我国地图采用分带方法。我国 : 为了控制变形,我国地图采用分带方法。我国1:1.25万—1:50万地形图均采 万 : 万地形图均采 度分带, : 万及更大比例尺地形图采用 度分带,以保证必要的精度。 万及更大比例尺地形图采用3度分带 用6度分带,1:1万及更大比例尺地形图采用 度分带,以保证必要的精度。 度分带 6度分带从格林威治零 度经线起,每6度分为一个投影带,该投影将地区划分为 度分带从格林威治零 度经线起, 度分为一个投影带, 度分带 度分为一个投影带 60个投影带,已被许多国家作为地形图的数字基础。一般从南纬度 到北纬度 个投影带, 个投影带 已被许多国家作为地形图的数字基础。一般从南纬度80到北纬度 84度的范围内使用该投 影。 度的范围内使用该投 3度分带法从东经 度30分算起,每3度为一带。这样分带的方法在于使 度带的 度分带法从东经 分算起, 度为一带。 度分带法从东经1度 分算起 度为一带 这样分带的方法在于使6度带的 中央经线均为3度带的中央经线 在高斯克吕格6度分带中中国处于第 带到23 度带的中央经线; 度分带中中国处于第13 中央经线均为 度带的中央经线;在高斯克吕格 度分带中中国处于第 带到 带共12个带之间 个带之间; 度分带中, 带到45带共 带之间。 带共 个带之间;在3度分带中,中国处于 带到 带共 带之间。 度分带中 中国处于24带到 带共22带之间
兰勃特投影的变性有任何变形 等变形和纬线一致, 等变形和纬线一致,即痛一条纬线上的变形处处 相等 在同一经线上,两标准纬线外侧为整变形( 在同一经线上,两标准纬线外侧为整变形(长度 比大于1),而两标准纬线之间为负变形( ),而两标准纬线之间为负变形 比大于 ),而两标准纬线之间为负变形(长度比 小于1)。变形比较均匀, )。变形比较均匀 小于 )。变形比较均匀,变形绝对值也比较小 同一纬线上等经差的线段长度相等, 同一纬线上等经差的线段长度相等,两条纬线间 的经纬线长度处处相等
地图学第二章之二
高斯-克吕格投影
——假设一个椭圆柱横套在地球椭球面上,使其与某 一条经线相切,将椭球面上的经纬线投影到椭圆柱面 上,然后将椭圆柱展成平面;
P
椭圆柱
A C
X P B D 赤道 Y
A C
B D
投影
P
P
投影特点:
投影特点
(1)中央经线和赤道被投影为互相垂直的直线,而 且是投影的对称轴; (2)投影后没有角度变形;
中国政区图,为能完整连续地表示,应选用斜轴方位。
教学用图,选择变形不大的任意投影,如等距投影。
出版方式影响
单幅图的投影选择比较简单; 系列图或图集中的一个图组,应选择同一变形性 质的投影,便于比较; 整个地图集,是由不同主题的图组所构成,在投 影选择上要有变化,应采用同一系统的投影,根 据情况,在变形性质上变化。
(3)中央经线上没有长度变形,离开中经越远变形 越大,最大变形在赤道上。
3.常用的圆锥投影
(1)等角圆锥投影 (2)高斯-克吕格投影
等角圆锥投影
投影条件:地图上没有角度变形,w=0;每一点上经线长度比 与纬线长度比相等,m = n。
a.等角切圆锥投影
1)相切的纬线没有变形,长度比为1。
2)纬线投影后为同心圆弧并且离开标准纬线越远,变形程度
总
结
方位投影的特点是:在投影平面上,由投影点
(平面与球面的切点)向各方向的方位角与实 地相等,其等变形线是以投影中心为圆心的同 心圆。
(2)圆柱投影
以圆柱面作为投影面,使圆柱面与球展为
平面而成。
正轴圆柱投影—圆柱的轴和地轴一致(最常用) ;
方法:假设将地球按比例缩小成一个透明的地球仪
般的球体,在球心、球面、或球外安置一个光源,
20种地图投影
20种地图投影通用横向墨卡托投影(U T M )通用横向墨卡托投影是横轴等角割圆柱投影,圆柱割地球于两条等高圈。
该投影将地球划分为60个投影带,每带经差为6度,已被许多国家作为地形图的数学基础。
一般从南纬度80到北纬度84度的范围内使用该投影,对于两极地区则采用UPS投影(通用球面极投影)。
亚尔伯斯等积圆锥投影亚尔伯斯等积圆锥投影即为双标准纬线投影,也即正轴等面积割圆锥投影。
该投影经纬网的经线为辐射直线,纬线为同心圆圆弧。
亚尔伯斯等积圆锥投影的应用在编制一些行政区划图,人口地图,地势图等方面应用较广。
如中国地势图,即是以Q1=25度,Q2=45度的亚尔伯斯等积圆锥投影。
兰伯特等角圆锥投影兰伯特等角圆锥投影也称兰勃脱正形圆锥投影,该投影的微分圆投影后仍为圆形。
经线为辐射直线,纬线为同心圆圆弧。
指定两条标准纬度线Q1,Q2,在这两条纬度线上没有长度变形,即M=N=1。
此种投影也叫等角割圆锥投影,可用来编制中,小比例尺地图。
等角圆锥投影有广泛的应用,特别适宜于作为中纬度处沿纬度线伸展的制图区域之投影,投影后经线为辐射直线,纬度线为同心圆圆弧。
我国的分省图,即为两条标准纬度线为Q1=25度,Q2=45度的兰伯特等角圆锥投影。
1962年以后,百万分一地图采用了等角圆锥投影(南纬度80度,北纬度84度),极区附近,采用等角方位投影(极球面投影)。
地图分幅为:纬度60以下,纬度差4 经差6度分幅纬度60-76,纬度差4 经差12度分幅纬度76-84,纬度差4 经差24度分幅纬度84-88,纬度差4 经差36度分幅88-90仍为一幅图每幅图内两条标准纬线的纬度:Q1=QS+40分(南纬度) Q2=QN-40分(北纬度)投影后经线是辐射直线,东西图幅可完全拼接,南北图幅有裂隙。
我国采用等角割圆锥,Q1=PHIS+35分Q2=PHIN-35分墨卡托投影(等角正圆柱投影)等角正圆柱投影也称墨卡托投影,经纬线投影为互相正交的平行直线。
常用地图投影
常用的几种地图投影世界地图常用投影一、墨卡托投影(等角正切圆柱投影)投影方法:圆柱投影。
经线彼此平行且间距相等。
纬线也彼此平行,但离极点越近,其间距越大。
不能显示极点。
应用:标准海上航线图(方向)。
其他定向使用:航空旅行、风向、洋流。
等角世界地图。
此投影的等角属性最适合用于赤道附近地区,例如,印尼和太平洋部分地区。
特点:形状等角。
由于该投影维持局部角度关系不变,所以能很好地描绘微小形状。
面积明显变形方向保持了方向和相互位置关系的正确距离沿赤道或沿割纬线的比例是真实的。
局限:在墨卡托投影上无法表示极点。
可以对所有经线进行投影,但纬度的上下限约为80° N 和80° S。
大面积变形使得墨卡托投影不适用于常规地理世界地图。
墨卡托投影坐标系:取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。
二、桑逊投影(正轴等积伪圆柱投影)应用:除用于编制世界地图外,更适合编制赤道附近南北延伸地区的地图,如非洲、南美洲地图等特点:该投影的纬线为间隔相等的平行直线,经线为对称于中央经线的正弦曲线,是等面积投影,赤道和中央经线是两条没有变形的线,离开这两条线越远,长度、角度变形越大。
因此,该投影中心部分变形较小。
三、摩尔维特投影(伪圆柱等积投影)投影方法:伪圆柱等积投影。
所有纬线都是直线,所有经线都是等间距的椭圆弧。
唯一例外的是中央子午线,中央子午线是直线。
极点是点。
应用:适用于绘制世界专题或分布地图,经常采用不连续的形式。
将其与正弦曲线投影组合使用可创造出古蒂等面积和博格斯投影。
属性:形状在中央子午线和40°44' N 与40°44' S 纬线的交点处,形状未发生变形。
向外离这些点越远,变形越严重,在投影边处变形严重。
面积等积。
方向仅在中央子午线和40°44' N 与40°44' S 纬线的交点处,局部角度才是真实的。
地图投影基础知识课件
Q1/1万地形图:将1/10 万图分8行、8列共64 张,编号 (1) 、 (2 ) 、--、 (64) 。
图号如:
J-50-144- (1)
3. 新编号系统
Qr. 分幅未变,编号体系变。 QS. r\r00万图原来列改称行,行称列。
(3) 变形规律
•切点或割线无变形 • 等变形线以投影中心为圆心呈同心圆分布。
(4) 常见投影及其用途
•正轴等积方位投影--南北两极图 •横轴等积方位投影--东西半球图
•斜轴等积方位投影--水陆半球图
•斜轴等距方位投影--航空图 等距:指从投影中心向各个方向长度变 形为零。
2 圆锥投影
(1) 经纬网的特征
半球地图的投影:东西半球有横轴等面积(等角)方位投 u 南北半球有正轴等面积(等角、等距离)方位投影。 u 各大洲地图的投影:各洲都选用了斜轴等面积方位投影, 外,亚洲和北美洲( 彭纳投影)、欧洲和大洋州(正轴等圆 锥投影)、南美洲(桑逊投影)。 u我国各种地图投影:全国地图(各种投影, lambert投影 多)、分省区地图(各种投影,高斯-克吕格投影最多)、 比例尺地形图(高斯-克吕格投影)。
Q1/25万:J-50-[1]
Q1/10万:将1/100万图 分为12行、12列共144 张1/10万地形图,编 号用1、2、- - -、144 。
直接加到1/100万图
后面。如:J-50-144
(5) .1/5万、1/2.5万、1/1万地形图分 幅编号
Q1/5万:把1/10万地形 图分为四幅。编号为 A、B、C、D 。方法如 下:J-50-144-A
(1) 经纬网的形状
常用的地图投影
常用的地图投影编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(常用的地图投影)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为常用的地图投影的全部内容。
第一节圆锥投影一、圆锥投影的基本概念1.圆锥投影的定义圆锥投影的概念可用图5-1来说明:设想将一个圆锥套在地球椭球上而把地球椭球上的经纬线网投影到圆锥面上,然后沿着某一条母线(经线)将圆锥面切开面展成平面,就得到圆锥投影。
2.圆锥投影的分类①按圆锥面与地球相对位置的不同,可分正轴、横轴、斜轴圆锥投影,见图5-2,但横轴、斜轴圆锥投影实际上很少应用。
所以凡在地图上注明是圆锥投影的,一般都是正轴圆锥投影。
②按标准纬线分为切圆锥投影和割圆锥投影切圆锥投影,视点在球心,纬线投影到圆锥面上仍是圆,不同的纬线投影为不同的圆,这些圆是互相平行的,经线投影为相交于圆锥顶点的一束直线,如果将圆锥沿一条母线剪开展为平面,则呈扇形,其顶角小于360度。
在平面上纬线不再是圆,而是以圆锥顶点为圆心的同心圆弧,经线成为由圆锥顶点向外放射的直线束,经线间的夹角与相应的经差成正比,但比经差小。
在割圆锥投影上,两条纬线投影后没有变形,是双标准纬线,两条割线符合主比例尺,离开这两条标准纬线向外投影变形逐渐增大,离开这两条标准纬线向里投影变形逐渐减小,凡是距标准纬线相等距离的地方,变形数量相等,因此圆锥投影上等变形线与纬线平行。
③圆锥投影按变形性质分为等角、等积和等距圆锥投影三种。
构成圆锥投影需确定纬线的半径ρ和经线间的夹角δ,ρ是纬度的函数用公式表示为。
δ是经差λ的函数.用公式表示为 ,对于不同的圆锥投影它是不同的。
测绘中常用的地图投影方法
测绘中常用的地图投影方法地图作为一种常见的信息呈现方式,在测绘工作中扮演着重要的角色。
而地图投影方法则是地图制作过程中不可或缺的一环。
地图投影是将地球表面的三维信息投射到二维平面上的过程,由于地球是一个近似于椭球体的三维地理模型,所以将其表现在平面上会引起一些形状、大小和方向的失真。
本文将介绍一些测绘中常用的地图投影方法。
一、等距投影法等距投影法是一种保持地球表面上各点距离不变的地图投影方法。
其中最著名的等距投影法是墨卡托投影法。
墨卡托投影法是一种圆柱投影法,即将地球投影到一个接触地球表面的圆柱体上,再展开成平面图。
墨卡托投影法具有以下特点:1. 在赤道附近地图形状保持几乎不变,适合用来制作大尺寸地图。
2. 北纬高于赤道的地区会呈现出纵向拉长的形状,而南纬高于赤道的地区则是纵向收缩。
二、等面积投影法等面积投影法是一种保持地球表面上各个区域面积比例不变的地图投影方法。
其中最常见的等面积投影法是兰勃托投影法。
该投影法将地球投影到一个接触地球表面的圆锥体上,再展开成平面图。
兰勃托投影法具有以下特点:1. 在地图上,各个区域的面积比例与实际相符,适合用来制作区域面积比例重要的地图。
2. 高纬度地区形状会发生压缩和形变。
三、正轴等距投影法正轴等距投影法是一种使某一点保持在地图上的位置与实际相符的地图投影方法。
其中最常见的正轴等距投影法是汇卢卓投影法。
该投影法将地球投影到一个接触地球表面的切平面上,再展开成平面图。
汇卢卓投影法具有以下特点:1. 在地图上,特定地点的位置保持不变。
2. 地图整体形状会产生扭曲和拉伸。
四、等经纬度投影法等经纬度投影法是一种直接将地球经纬线映射到平面图上的地图投影方法。
其中最常见的等经纬度投影法是正投影法。
该投影法将地球投影到一个与地球相切的平面上,使得地图上经纬线直线简单。
正投影法具有以下特点:1. 经纬线在地图上表现为直线。
2. 不同纬度上的东西向距离不同,形成等经线。
综上所述,地图投影方法在测绘工作中起到至关重要的作用。
2 第二章 地图投影
m
kl
a sin
(2.3)
m
sin 0 sin
tg
2
tg 0
2
k
(2.4)
NIM NUIST
三、极射赤面投影
极射赤面投影 是一种正形割投影, 其光源位于南极,映 像面为一与地球相割 于600N的平面,标 准纬度0 =600
P65-图2.6
NIM NUIST
NIM NUIST
投影后,在映像平 面上,经线为一组 由北极点向赤道辐 射的直线; 而纬线 为一组以北极点为 圆心的同心圆. 可 见投影后经纬线仍 然是正交的,它是 正形投影的一种特 例。
当 l , k 0 为正形圆锥投影的 极限情形。不能再 采用普遍的正形投 影中的关系式来对 之进行讨论,
而是从地图放大系 数的定义入手,来 求有关的表达式。
NIM NUIST
等经纬度网格,没反映麦卡托投影的 放大系数
NIM NUIST
高纬放大系数大
地球表面纬度为处,纬圈的长度为: Ls 2Rs 2a cos
P64-图2.5
1、地图放大系数m的计算
地球表面纬度为 处,纬圈的长度为: Ls 2 Rs 2 a cos
定义:k 为单位经度所张的圆锥角,它表
示了圆锥的几何特征,称之为圆锥常数, 故整个圆锥面张开所成的平面角为 2 k
纬度为 处的纬圈在映像平面上的长度为
: L 2 kl
( l 为映像平面上纬度为 的纬圈上任意
积分
l dl kd
l l0 0 sin
利用三角变换知识: sin 2sin( / 2)cos( / 2)
l dl cos( / 2)
l0
l
k
0
sin(
地图学第二章地图投影和应用
ds
长度比是变量,随位置和方向的变化而变化。
Vm表示长度变形
Vm m 1
= 0 不变 > 0 变大 < 0 变小
新编地图学教程 第2章 地图的数学基础
特别方向: 变形椭圆上相互垂直的两个方向及经向和纬向
长轴方向(极大值)a 最大长度比 短轴方向(极小值)b 最小长度比 经线方向 m ;经线长度比
新编地图学教程 第2章 地图的数学基础
新编地图学教程 第2章 地图的数学基础
1 投影变形的概念
上述比较表明,地图上的经纬网与地球的缩影 —地球仪并不完全相同。由球面向平面投影时 引起的经纬网几何特征的变化,称为地图投影 变形。
把地图上和地球仪上的经纬线网进行比较,可 以发现变形表现在长度、面积和角度三个方面 (等积、等角)
正轴圆锥投影经纬线形状:经线为放射状直线束, 纬线为同心圆弧
新编地图学教程 第2章 地图的数学基础
在切线和割线 上无任何变形, 离切线或割线 愈远,则变形 愈大; 在割线外侧的 变形为正,在 内侧的则为负。
新编地图学教程 第2章 地图的数学基础
新编地图学教程 第2章 地图的数学基础
(2)非几何投影: 根据某些条件,用数 学解析法确定球面与平面之间点与点的函 数关系。
新编地图学教程 第2章 地图的数学基础
复式比例尺 又称投影比例尺,是一种根据地图主比例尺和地
图投影长度变形分布规律设计的一种图解比例 尺。
新编地图学教程 第2章 地图的数学基础
④ 特殊比例尺
变比例尺 无级别比例尺
新编地图学教程 第2章 地图的数学基础
3.3 地图投影变形
a图投影在角度上未发生变化,经线按同一比例缩小,纬线未按 同一比例缩小,经纬网格面积产生了变化。 b图中央经线与各条纬线正交,其余经线与纬线均不正交,说明 投影后角度仅局部未变化,大部分去都产生了变化。 c图投影经线和纬线均未按同一比例缩小,在同一纬线上随经度 增大其纬线变化比例逐渐缩小,经线的变化比例由中央经线向 两边逐渐增大。
Ch2-3 常用地球投影及其判别和选择
距 离 最 短
1)何谓墨卡托投影?
∗2
2
墨卡托投影-正轴等角圆柱投影
• 即设想与地轴方向一致的圆柱与地球 相切或相割,将球面上的经纬网按等 角的条件投影到圆柱面上,然后把圆柱 面沿着一条母线剪开并展成平面。
2)经纬网形状及经纬距变化规律
2 3
• 经线和纬线是两组相互垂直的平行直线 • 经线间隔相等 • 纬线间隔由赤道向两极逐渐扩大
• 广义的多圆锥投影
•即指纬线为同轴圆弧的投影。
(1)普通多圆锥投影
4
8 • 投影条件:m0=1,n=1 • 经纬网特征: • 变形情况: • 属于任意投影,中央经线是一条没有变 形的线,离开中央经线愈远变形愈大。
• 用途:地球仪
(2)等差分纬线多圆锥投影
4
9 • 这是中国地图出版社于1963年设计的一种任意 性质的,不等分纬线的多圆锥投影。
– 中央经线为直线,其余的经线为椭圆曲线。 – 纬线是间隔不等的平行直线,其间隔从赤道向两极逐
渐减小。同一纬线上的经线间隔相等。 – 等积投影。
(3) 伪圆柱投影——摩尔威特投影
4
4 • 用途:世界地图、东西半球图、大洋图
(4) 伪圆柱投影——古德投影
4 5
• 设计思想:对摩尔维特等积伪圆柱投影进行“分瓣投
4 6
• 特点:海/陆完整(尽量
减少投影变形,而不惜
图面的连续性)
• 用途:世界地图
2. 多圆锥投影
4 7
• 狭义的多圆锥投影
•是指用多个不同锥顶角的圆锥与地 球相切,并获得若干以各标准纬线 为中心的投影带,然后将这些投影 带沿着某一经线连接起来。由于圆 锥顶点不是一个,所以纬线投影为 同轴圆弧。
地理信息系统常用的地图投影
地理信息系统常用的地图投影1、高斯-克吕格投影--------实质上是横轴切圆柱正形投影该投影是等角横切椭圆柱投影。
想象有一椭圆柱面横套在地球椭球体外面,并与某一条子午线(称中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定的投影方法将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。
高斯平面直角坐标系以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为 X轴,横坐标从中央经线起算,向东为正,向西为负,规定为Y轴。
所以,高斯-克吕格坐标系的X、Y轴正好对应一般GIS 软件坐标系中的Y和X。
高斯投影的条件和特点★中央经线和赤道投影后为互相垂直的直线,且为投影的对称轴高斯投影的条件★投影具有等角性质★中央经线投影后保持长度不变★中央子午线长度变形比为1,其他任何点长度比均大于1★在同一条经线上,长度变形随纬度的降低而增大,在赤道处为最大高斯投影的特点★在同一条纬线上,离中央经线越远,变形越大,最大值位于投影带边缘★投影属于等角性质,没有角度变形,面积比为长度比的平方★长度比的变形线平行于中央子午线高斯投影6°和3为了控制变形,我国地图采用分带方法。
我国1:1.25万—1:50万地形图均采用6度分带, 1:1万及更大比例尺地形图采用3度分带,以保证必要的精度。
6度分带从格林威治零度经线起,每6度分为一个投影带,该投影将地区划分为60个投影带,已被许多国家作为地形图的数字基础。
一般从南纬度80到北纬度84度的范围内使用该投影。
3度分带法从东经1度30分算起,每3度为一带。
这样分带的方法在于使6度带的中央经线均为3度带的中央经线;在高斯克吕格6度分带中中国处于第13 带到23带共12个带之间;在3度分带中,中国处于24带到45带共22带之间。
高斯--克吕格投影的优点:★等角性别适合系列比例尺地图的使用与编制;★径纬网和直角坐标的偏差小,便于阅读使用;★计算工作量小,直角坐标和子午收敛角值只需计算一个带。
常见地图投影
常见地图投影欧阳芳地图投影:按变形性质分类:等角投影,等积投影,任意投影按几何构成方法分类:方位投影,圆柱投影,圆锥投影按非几何构成方法分类:伪方位投影,伪圆柱投影,伪圆锥投影,多圆锥投影按照投影面积与地球相割或相切分类:割投影,切投影这里只介绍常见常用的地图投影。
1.常见的地图投影按变形性质分为:等角投影:定义为投影前后对应的微分面积保持图形相似,即角度变形为零,也称正形投影。
其在一点上任意方向的长度比都相等,但在不同地点长度比是不同,即不同地点上的变形椭圆大小不同。
等积投影:定义为即在投影平面上任意一块面积与椭球面上相应的面积相等,即面积变形等于零。
等距投影:在任意投影上,长度、面积和角度都有变形,它既不等角又不等积。
但是有一种比较常见的等距投影,定义为沿某一特定方向的距离,投影前后保持不变。
在这种投影图上并不是不存在长度变形,它只是在特定方向上没有长度变形。
等距投影的面积变形小于等角投影,角度变形小于等积投影。
其变形性质在微分圆上的表示列表对比为:名称特点适用范围等角投影无角度变形航海、空图、洋流图、风向图、气象图及军用地图等积投影无面积变形经济图,行政区图和人口图等距投影(属于任意投影的特殊情况)特定方向上无长度变形沿某一特定方向量测距离的地图、教学地图和交通地图2.常用的几何投影:方位投影:以平面作为投影面,使平面与球面相切或相割,将球面上的经纬线投影到平面上而成。
其中球心投影常用于航空及航海图,外心投影常用于空间透视投影。
圆柱投影:以圆柱面作为投影面,使圆柱面与球面相切或相割,将球面上的经纬线投影到圆柱面上,然后将圆柱面展为平面而成。
圆锥投影:以圆锥面作为投影面,使圆锥面与球面相切或相割,将球面上的经纬线投影到圆锥面上,然后将圆锥面展为平面而成。
圆锥投影,圆柱投影,以及方位投影的情况分别用图形表示为:方位投影,圆锥投影,圆柱投影的异同分析(此表格中不加特别说明则默认为正轴投影):名称方位投影圆柱投影圆锥投影投影面平面圆柱面圆锥面纬线投影特点同心圆平行直线同心圆圆弧经线投影特点同心圆的半径与纬线投影成的平行直线垂直的平行直线垂直于同心圆弧且相交于一点的直线束投影变形分析经线间的夹角与实地经度差相等,其等变形线为圆其变形只与纬度有关,与经差无关,同纬度上各点其变形只与纬度有关,与经差无关,同纬度上各点形的变形相同的变形相同适用范围具有圆形轮廓的区域和两极地区低纬度沿纬线伸展的区域中纬度处沿纬线伸展的区域习惯特殊投影方式及用途1.正轴等角方位投影:极球面2.等积方位投影:小比例尺地图,东西半球图3.正轴等距方位投影:南北极图4.横轴等距方位投影:东西半球图5.斜轴等距方位投影:航空中心站,地震观测中心,气象站等需满足到中心距离相等的勘测中心。
测量测绘学中的常用地图投影方法
测量测绘学中的常用地图投影方法地图是人类认识地球的重要工具之一,而地图投影则是将三维地球表面投影到二维平面上的过程。
在测量测绘学中,有许多常用的地图投影方法,每种方法都有其独特的特点和应用领域。
本文将介绍一些常见的地图投影方法,并简要探讨它们的优缺点。
一、等角地图投影方法等角地图投影方法是指在地图上体现出任意两点之间的角度等于真实地球上两点之间的角度。
常见的等角地图投影方法包括兰勃托投影、平展投影和乌德尔斯坦投影等。
这些方法在保持地图上各地点角度关系准确的同时,会出现面积、形状的变形。
例如,兰勃托投影是一种常见的等角地图投影方法,它以正圆柱面作为投影面,使得地球表面的经线和纬线在地图上呈现为直线。
然而,由于纬线的扩展,兰勃托投影在高纬度地区表现出了较大的形状变形。
因此在高纬度地区使用兰勃托投影时,需要注意形状变形对地图分析的影响。
二、等面积地图投影方法等面积地图投影方法是指在地图上面积比例与真实地球上相对应的区域面积比例相等。
根据等面积地图投影方法的不同,地图上的面积变形程度不同。
该类投影方法常用于需要准确表示地理区域面积的工作,如人口统计、土地利用等。
其中,墨卡托投影是一种常见的等面积地图投影方法,它以圆柱面作为投影面,使得地球表面上的每个小区域在地图上面积保持不变。
墨卡托投影在赤道附近呈现出较好的面积保持性,但随着纬度的增加,面积变形逐渐增大。
因此,在高纬度地区使用墨卡托投影时需要注意面积变形对数据分析的影响。
三、等距地图投影方法等距地图投影方法是指在地图上任意两点之间距离与真实地球上两点之间距离相等。
等距地图投影方法常用于海洋导航、飞行路径规划等应用领域,其优点在于能够准确表示地球上的距离。
兰托慧逊投影是一种常见的等距地图投影方法,它以正四面体作为投影体,使得地球上的大圆弧在地图上成为直线。
这使得兰托慧逊投影在导航、航海等领域具有重要的应用价值。
但由于等距投影方法的特点,形状和面积在兰托慧逊投影中会发生较大的变形。
3.4常用地图投影
适宜于低纬度沿纬线伸展的地区。 适宜于低纬度沿纬线伸展的地区。
1、墨卡托投影(Mercator Projection) 、墨卡托投影
• 墨卡托投影属于正轴等角圆柱投影,投影 的等角航线(斜航线)表现为直线。这一 特性对航海具有重要意义。
2、空间斜轴墨卡托投影(Space Oblique 、空间斜轴墨卡托投影 Mercator Projection) • 该投影是美国针对陆地卫星对地面扫描 图像的需要而设计的一种近似等角的投影。 是将空间圆柱面斜切于卫星地面轨迹,因 此,卫星地面轨迹成为该投影的无变形线, 其长度比近似等于1。这种投影,是设想空 间圆柱面为了保持与卫星地面轨迹相切, 必须随卫星的空间运动而摆动,并且根据 卫星轨道运动、地球自转等几种主要条件, 将 经 纬 网 投 影 到 圆 柱 表 面 上 。
2、摩尔维特投影(Mollweide Projection) 、摩尔维特投影 • 摩尔维特投影是一种经线为椭圆曲线的 正轴等积伪圆柱投影。该投影的的中央经 线为直线,离中央经线经差±900的经线为 一个圆,圆的面积等于地球面积的一半, 其余的经线为椭圆曲线。赤道长度是中央 经线的两倍。纬线是间隔不等的平行直线, 其间隔从赤道向两极逐渐减小。同一纬线 上的经线间隔相等。摩尔维特投影没有面 积变形。
等差分纬线多圆锥投影
3-1
2、等差分纬线多圆锥投影 等差分纬线多圆锥投影
• 该投影是1976年中国地图出版社拟定的 另外一种不等分纬线的多圆锥投影。该投 影属于角度变形不大的任意投影,角度无 变形点位于中央经线和纬度±44º的交点处, 从无变形点向赤道和东西方向角度变形增 大较慢,向高纬增长较快。面积等变形线 大致与纬线方向一致,我国的形状比较正 确,大陆部分最大角度变形均在6º以内;大 部分地区的面积变形在10%-20%以内。我 国 常 采 用 该 投 影 编 制 世 界 地 图
《地图投影》课件
随着实时数据处理技术的发展,动态地图投影将 成为未来的重要趋势,能够实时反映地理信息的 动态变化。
跨学科融合
地图投影将与计算机科学、物理学、数学等学科 进一步融合,推动地图投影技术的创新发展。
地图投影的挑战与机遇
数据处理和计算能力
01
随着地图投影的数据量不断增加,对数据处理和计算能力提出
02
地图投影在导航系统中的应用需 要考虑到地球的椭球形状和地球 的自转效应,以保证导航的准确 性和可靠性。
地图投影在城市规划中的应用
城市规划中需要使用地图投影来将地理坐标转换为城市平面坐标,以便进行城市 布局和规划设计。
城市规划中使用的地图投影需要考虑到城市规模、地形地貌和规划要求等因素, 以确保城市规划的科学性和合理性。
亚尔勃斯投影
总结词
等面积正圆锥投影
详细描述
亚尔勃斯投影是一种等面积正圆锥投影,它将地球视为一个正圆锥体,并沿经线 方向展开,保持面积不变。这种投影在制作世界地图时特别有用,因为它可以较 好地表现各大陆的面积比例。
兰勃特等面积投影
总结词
等面积方位投影
详细描述
兰勃特等面积投影是一种等面积方位投影,它将地球投影到一个椭球体上,并保持各方向上的面积相 等。这种投影在制作各种比例尺地图时非常有用,因为它可以较好地表现各区域的面积比例和相对位 置。
01
坐标系
介绍地理坐标系、投影坐标系等 概念,以及它们在地图投影中的 作用。
几何基础
02
03
坐标变换
阐述投影几何的基本原理,如平 行线、相似形等,以及它们在地 图投影中的应用。
介绍如何将地理坐标转换为投影 坐标,以及投影坐标与平面直角 坐标之间的关系。
地理信息系统2 地理空间参照系统与地图投影
地理空间既可以是具有属性描述的空间位置的集合(由 一系列的空间坐标值组成);也可以是具有空间属性特
征的实体的集合(由不同实体之间的空间关系构成)。
地理空间的表达是地理数据组织、存储、运算、分析的 理论基础。
地图—传统的地理信息表达方式
现实地理世界抽象模型
点(位置)
高程点, 控制点, 三角点, 地形特征点 水井位, 水泉位, 油井位, 钻井位 站台, 车站, 水文站, 气象站, 天文台, 地震台 乡镇驻地
常用的一些地图投影
各大洲地图投影
亚洲地图的投影:斜轴等面积方位投影、彭纳投影。
欧洲地图的投影:斜轴等面积方位投影、正轴等角圆锥 投影。 北美洲地图的投影:斜轴等面积方位投影、彭纳投影。 南美洲地图的投影:斜轴等面积方位投影、桑逊投影。
澳洲地图的投影:斜轴等面积方位投影、正轴等角圆锥 投影。
地理空间的概念
GIS中的空间概念常用“地理空间”来表达。
地理空间上至大气电离层、下至地幔莫霍面。它是人类活动频 繁发生的区域,是人地关系最为复杂、紧密的区域,是地球上 大气圈、水圈、生物圈、岩石圈和土壤圈交互作用的区域,地 球上最复杂的物理过程、化学过程、生物过程和生物地球化学 过程就发生在这里。
表面(场)
T(Xi ,Yj)
dT / dXi dT / dYj
地图描述地理信息的方式
符号和注记 空间关系隐含
基本地图比例尺
比例尺等级(有级) 1:100, 1:200, 1:500, 1:1 000, 1:2 000, 1:5 000 1:10 000, 1:50 000, 1:100 000, 1:200 000 1:500 000, 1:1000 000, 1:2000 000, 1:4000 000 1:8000 000, 1:10 000 000, 1:20 000 000, 1:50 000 000 1:100 00,通常称地
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)变形规律
切点没变形,离切点越远,变形越 大。 等变形线是以切点为圆心的同心圆。 切点向任意一点的方位角没变形。
斜轴等积方位投影
(3)用途
主要用于绘制水、陆半球,除非洲、南极洲以外的各 大洲(例如亚洲、欧洲、大洋洲、北美洲、南美洲)。 适合中高纬地区呈圆形区域的国家或地区。(例如包 含南海诸岛的中国全国)
(2)经纬线形状
纬线投影成一组平行直 线,经线投影成与纬线垂 直的平行直线。 纬线间距,从赤道向两极 放大,经线间距相等。
(3)变形特点
角度没有变形。 赤道没有变形,离赤道越远,面积变形越大。 等变形线是平行于纬线的直线。
(4)用途
常用于绘制世界时区图、世界交通图。 适合绘制赤道附近沿东西延伸的国家或地区 由于等角航线投影为直线,所以广泛用来绘制 海图。
2、正轴割圆锥投影(南海诸岛作插图的中国全图)
正轴等角割圆锥投影(Lambert conformal projection兰勃特) 正轴等积割圆锥投影(Albers projection亚尔勃斯)
(1)投影的几何概念
以圆锥投影作为投影面,使圆锥面与球面相割 (两条割线为标准线),按等角或等积条件将球面 上的经纬线投影到圆锥面上,然后将圆锥面展为平 面而成。
纬线投影为同心圆弧,经线投影为放射状直线。纬 线间隔从标准纬线向南向北是逐渐缩小的。
(3)变形规律
①两条标准线没有变形,离标 准线越远变形越大。 ②等变形线是平行于纬线的圆 弧。 ③在两条标准线之间,长度比 小于 1 ,为负变形;而在两 条标准线之外,长度比大于 1,为正变形。
中国地图(南海诸岛作插图)的标准线: ϕ 1=25°,ϕ 2=45/47°
双标准纬线正轴圆锥投影 双标准纬线正轴圆锥投影
有两条标准线,可以较好地控制变形,因而广泛用于中纬度地区 的分国地图和地区图。
(2)经纬网形状
正轴等角割圆锥投影 正轴等角割圆锥投影
纬线投影为同心圆弧,经线投影为放射状直线。纬 线间隔从标准纬线向南向北是逐渐增大的。
正轴等积割圆锥投影 正轴等积割圆锥投影
两幅图是斜轴等距离方位投影,经纬线均为曲线。投影中心 的选择(南北纬 500 ),使右图较集中地显示了地球上的陆 地,左图大部分为水部。
40°N,90°E
斜 轴 等 积 方 位 投 影
52.5°N,20°E
斜 轴 等 积 方 位 投 影
45°N,100°W
斜 轴 等 积 方 位 投 影
20°S,60°W
2.制图比例尺
不同比例尺地图,对精度要求不同,投影选择 不同。 以我国为例,大比例地形图,量算及精确定 位,选择各方面变形都较小的地图投影,如分带 投影的横轴等角椭圆柱投影;中小比例尺的省区 图,定位精度相对降低,选择正轴等角、等积、 等距圆锥投影。
3.地图的内容
根据表现的主题和内容不同,而选择不同的投影。 交通图,航海图,航空图—— 等角投影 自然地图和社会经济地图中的分布图,类型图,区划图— — 等积投影 世界时区图—— 经线投影成直线的正轴圆柱投影
2、横轴方位投影(transverse azimuthal projection)
(1)经纬线形状:
中央经线与赤道投影为互相垂直的直线,其它经纬线 分别投影为对称于中央经线和赤道的曲线,两极投影为点。
横轴方位投影又分为:
横轴等距方位投影:中央经线上的纬距相等, 赤道上的经距相等。 横轴等积方位投影:中央经线上的纬距从切点向外缩小, 赤道上的经距从切点向外缩小。 横轴等角方位投影:中央经线上的纬距从切点向外放大, 赤道上的经距从切点向外放大。
极地——正轴方位投影 赤道附近——横轴方位投影 中纬地区——正轴圆锥投影或斜轴方位投影
②制图区域形状直接制约地图投影的选择。
中纬度地区: 沿纬线方向延伸的长形区域—— 单标准纬线正轴圆锥投影 沿经线方向略窄,沿纬线方向略宽的长形区域——
双标准纬线正轴圆锥投影 沿经线方向南北延伸的长形区域—— 多圆锥投影
斜 轴 等 积 方 位 投 影
(三)绘制中国地图常用的投影
包括南海诸岛的中国地图,常用斜轴等积方位投影。
不包括南海诸岛的中国地图,常用正轴割圆锥投影。 » 正轴等角割圆锥投影(Lambert projection) » 正轴等积割圆锥投影(Albers projection)
1、斜轴等积方位投影(包含南海诸岛的中国全图)
¾
等角航线
等角航线:就是指地球表面上与经线交角都相同的曲线,或者 说是地球上两点间的一条等方位线。 就是说船只要按照等角航向航行,不用改变方位角就能从起点 到达终点。由于经线是收敛于两极的,所以地球表面上的等角航线 是除经线和纬线以外,以极点为渐近点的螺旋曲线。因墨卡托投影 是等角投影,而且经线投影为平行直线,那末两点间的那条等方位 螺旋线在投影中只能是连接该两点的一条直线。
1、正轴方位投影(azimuthal projection)
(1)经纬线形状: 纬线投影为同心圆,经线投影为放射状 直线,两条经线交角与经差相等。
正轴方位投影又分为:
正轴等距方位投影:同一条经线上纬距相等 正轴等积方位投影:同一条经线上纬距从极点向外缩小 正轴等角方位投影:同一条经线上纬距从极点向外放大
(4)用途
适合于我国编制世界地图
(5)正切差分纬线多圆锥投影
1976年中国地图出版社设计的一种投影。 这个投影的经线间隔,由中央经线向东西两侧按 与中央经线经差的正切函数递减 。 正切函数随角度增加递增速度越来越快。因此, 正切差分纬线多圆锥投影的经线间隔,在中央经 线附近变化较小,在远离中央经线的地方,变化 较大 。
(4)用途
正轴等角割圆锥投影 正轴等角割圆锥投影
编制全国1:400万、1:600万挂图,全国普通地图和专题 地图等。 我国1:100万地形图 各省(区)地图
正轴等积割圆锥投影 正轴等积割圆锥投影
编制要求面积无变形的中国地图:分布图、类型图、 区划图等。
经纬线形状(提问) ¾ 变形规律 ¾ 用途 ¾ 投影特点:
¾
该投影对于反映我国版国的全 貌、同四邻的关系位置以及正 确的面积对比都比较好。 投影中心为(30°N,105°E) 投影范围由赤道到北纬55°和 由东经70 °到140 °
斜 轴 等 积 方 位 投 影
斜 轴 等 积 方 位 投 影
圆形区域—— 斜轴方位投影 低纬赤道附近: 沿东西方向长条形区域—— 正轴圆柱投影 圆形区域—— 横轴方位投影
③制图区域的范围大小也影响地图投影的选择。
范围小时,无论什么投影方式都无太大变形差异; 对于区域广大的地图需要慎重的选择投影。
墨卡托投影:正轴等角切圆柱投影
编制世界时区图
横轴方位投影
斜轴等距方位投影
横轴等距方位投影
横轴等积方位投影
横轴等角方位投影
(2)变形规律
切点为没变形的点,离切点越远,变形越大。 等形线是以切点为圆心的同心圆。 切点向任意一点的方位角没变形。
横轴等积方位投影
(3)用途
用于绘制东西半球、非洲 绘制赤道附近呈圆形区域的国家或地区。
世 界 地 形
横轴等积方位投影
(3)经纬线形状:
纬线为平行直线,赤道和中央经线为垂直直线,经线 为对称于中央经线的椭圆曲线,两极投影为点。离中央经 椭圆曲线 o 线±90 的经线投影成圆,其面积等于地球面积的1/2,赤 道长度是中央经线的2倍。在赤道上经距相等,在中央经 线上纬距从赤道向两极缩小。
(4)变形特点
面积没有变形。 , ,, o 没变形的点是中央经线与南北纬40 44 11.8 的交点,离这点越远,角度变形越大。 等变形线是以赤道为对称的蚌形曲线。
等角航线在墨卡托投影图上表现为直线,这一点对于航海航空 具有重要意义。因为有这个特征,航行时,在墨卡托投影图上只要 将出发地和目的地连一直线,用量角器测出直线与经线的夹角,船 上的航海罗盘按照这个角度指示船只航行,就能达到目的地。
2、等差分纬线多圆锥投影(1963年中国出版社设计) (1)经纬线形状
(2)投影特点
中央经线取150°E,以突出我国在图幅中央的位置。 能完整地表现太平洋及其沿岸国家,利于显示我国 与邻国的水陆关系。 全球大陆不产生目视变形,同纬度带面积变形近似 相等,利于比较我国与同纬度国家面积的对比。
形 的点和线。 o 在南北纬45 之内,面积变形 不超过10%,是一种面积变形 较小的多圆锥投影。 等变形线的形状是对称于赤 道和中央经线的鼓形曲线。 在我国范围内各种变形值都 比较小。
(2)变形特点
切点或切线没变形,离切点或切线越远,变形 越大。 从切点向任何一点的方位角保持正确。 等变形线是与纬线一致的同心圆。
(3)用途
用于绘制南北半球、南极洲、北冰洋。 适合绘制两极地区的圆形区域。
南极洲 北冰洋
正轴等距方位投影
世 界 地 区 图
正 轴 等 积 方 位 投 影
第二章
地球体与地图投影
第一节 地球体 第二节 大地测量系统 第三节 地图投影
一、地图投影的定义 二、地图投影的变形 三、地图投影的类型 四、地图投影的选择依据 五、常用地图投影 六、地图投影的识别 七、地图投影的变换
四、 地图投影的选择依据
1.制图区域的范围、形状和地理位置
①制图区域的地理位置决定投影种类
非 洲 地 图
横 轴 等 积 方 位 投 影
3、斜轴方位投影(oblique azimuthal projection)
(1)经纬线形状:
中央经线投影为直线,其他经线为对称于中央经线 的曲线,纬线为向极弯曲的曲线。极点为一点,是各条 经线的汇合点。