《有理数的乘方》学案

合集下载

1.5《有理数的乘方》学案

1.5《有理数的乘方》学案

§1.5 有理数的乘方一、学习目标:1、在现实背景中,理解有理数的乘方的意义;掌握有理数的乘方运算;2、进一步掌握有理数的运算法则和运算律;3、能够熟练地按有理数运算顺序进行混合运算,培养运算能力; 二、学习重点:有理数的乘方的法则,正确地进行有理数的乘方运算. 三、学习难点:用乘方知识解决有关问题. 四、新知学习:(一)创设情境 引入课题 活动1:欲与山峰试比高珠穆朗玛峰是世界的最高峰,它的海拔高度约是8 844米.把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰吗? 猜猜看,你的答案是: (二)尝试发现 探索新知活动2:做一做.(三)例题引入 应用新知例1、指出下列乘方的底数、指数并计算:(1).4)3(- (2).52)(- (3).70 (4).321)(-活动3:智力闯关 第二关:计算=210 ==310 ==410 = 第三关:判断我是法官,我来判(对的画“√”,错的画“×”.) (1) 62332=⨯=; ( )(2)233-2-)()(=; ( ) (3)223-3-)(= ; ( )(4))()()()(22222-4-⨯-⨯-⨯-=; ( ) (5)323222=)( ; ( )议一议不计算下列各式的值,你能确定其符号吗?你能得到什么规律吗?说出你的根据. (1).51)2(- (2).502)(- (3).502 (4).512 (5).2013(6).20131归纳: 用一用你能迅速判断下列各幂的正负吗?(1).516 (2).425 (3).5)8(- (4).6)3(- (5).101)1(-(6).50)41(1、一个数的平方等于这个数本身,则这个数为 .2、若0)2(32=-++b a ,求b a +2的值.(四)知识延伸 想入非非活动4:生活链接把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰吗? 解:所以折叠30次后的厚度 (能/不能)超过珠穆朗玛峰的高度.(五)整理知识 反思所得 1、知识;2方法.(六)强化训练 分层作业1、必做题:教科书42——43页练习1、2、3题 2、选做题:棋盘上的故事:古代印度、中国、埃及和巴比伦是世界四大文明古国。

有理数的乘方教学设计教案

有理数的乘方教学设计教案

有理数的乘方教学设计-教案第一章:有理数乘方的概念介绍1.1 理解有理数的概念解释有理数的定义:有理数是可以表示为两个整数比的数,包括整数、分数和零。

强调有理数的分类:正有理数、负有理数和零。

1.2 引入乘方的概念解释乘方的意义:乘方表示将一个数连乘多次。

举例说明乘方的表达方式:2^3 表示2 乘以自己3 次,即2 ×2 ×2。

1.3 探究有理数乘方的规律引导学生通过计算理解有理数乘方的规律。

强调乘方的结果:正数的乘方结果仍为正数,负数的乘方结果仍为负数,零的乘方结果为零。

第二章:有理数的乘方运算规则2.1 复习有理数的乘法运算规则回顾乘法的交换律、结合律和分配律。

2.2 引入乘方运算的规则解释乘方运算的规则:同底数乘方相乘,指数相加;乘方与乘法相乘,先进行乘法再进行乘方。

2.3 举例讲解乘方运算的运用通过具体例题,演示乘方运算的步骤和计算方法。

强调乘方运算的关键点:注意底数和指数的关系,以及运算符的使用。

第三章:有理数的乘方练习题3.1 设计练习题设计不同难度的练习题,涵盖各种情况的有理数乘方运算。

3.2 解答练习题与学生一起解答练习题,引导学生运用乘方运算的规则。

强调解题过程中需要注意的细节:符号的判断、指数的计算等。

第四章:有理数的乘方应用4.1 引入有理数乘方的应用解释有理数乘方在实际问题中的应用,如计算利息、折扣等。

4.2 举例讲解有理数乘方的应用通过具体例子,展示有理数乘方在实际问题中的计算方法。

4.3 练习有理数乘方的应用设计实际问题的练习题,让学生运用有理数乘方进行计算。

5.2 强调有理数乘方的注意事项强调在运算中有理数乘方时需要注意的细节:底数和指数的准确性、运算符的正确使用等。

5.3 拓展有理数乘方的应用引导学生思考有理数乘方在其他领域的应用,如科学计算、数学问题解决等。

第六章:有理数的乘方练习题(续)6.1 设计练习题设计不同难度的练习题,涵盖各种情况的有理数乘方运算。

2.11_有理数的乘方_学案2

2.11_有理数的乘方_学案2

有理数的乘方(二)目的:1正确的进行有理数的乘方运算。

2.使学生了解什么是科学计数法,并会用科学计数法表示。

过程:一。

复习提问什么叫乘方?底数?指数?幂?1.把下列各式写成幂的形式:32323232⨯⨯⨯-,6.06.0⨯,)10()10(10-⨯-⨯-, )21()21()21(21-⨯-⨯-⨯ 2.计算:2)8(-,-8,,23,)24(,24,)8(2222⨯-⨯⨯-- 3. 平方是25的数是--------,立方是-27的数是---------4. 二。

新授:例一:计算分析:(1)一般可以利用有理数的乘法运算进行有理数的乘方运算(2)在乘方,乘除混合运算中,一般先乘方,再算乘除例二:计算:练习:计算定义:把一个数记成 的形式,其中a 是整数数位只有一位的数,这种计数的方法叫科学计数法说明:(1)应为a 是整数数位只有一位的小数,而a 是带有一个整数位的小数或一位整数。

即(1<=|a|< 10), (2)小于的有理数也可以用科学计数法表示例三:下列用科学计数法表示的数原来的各是什么数?例四:用科学计数法记下例各数:100000000,570000000说明:(1)科学计数法表示形式 ,其中1=<a<10, n 为整数(这里n 为正整数)(2)一个数的科学计数法中,n 的指数比原数的指数位少1.练习:P110:1,2三.小结:1混合运算中的运算顺序22242,22)511(,)28(,28,103,)103(,)103(,)23(--÷÷---⨯-7525243107.5)6(,10)96.6)(5(,107.5)4()1()4)(3(,3)92)(2(,)2(3)1(⨯-⨯-⨯-÷-⨯--⨯)94(312)75(32)5(,)8.0()32(3)4()]4(3)1)[(3(,)212()213)(2(,)4()3()1)(1(323332333-⨯+-⨯-÷-⨯--++-----++-746222431050002)6(,10)03.6)(5(,105.8)4()5(4)3)(3(,]4)5()3)[(2(,)3(6)1(÷⨯-⨯-++-+-+--⋅-1059.2,10001.6,1014.3,101425⨯⨯⨯⨯2.科学计数法的一般形式。

七年级数学《有理数的乘方》教案设计(最新5篇)

七年级数学《有理数的乘方》教案设计(最新5篇)

七年级数学《有理数的乘方》教案设计(最新5篇)七年级数学《有理数的乘方》教案设计篇一教学目标:1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算。

2.已知一个数,会求出它的正整数指数幂,渗透转化思想。

3.培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力。

教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算。

教学难点:准确理解底数、指数和幂三个概念,并能进行求幂的运算。

教学过程设计:(一)创设情境,导入新课提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2某2个,1.5小时后分裂成2某2某2个,…,5小时后要分裂10次,分裂成个,为了简便可将记作210.(二)合作交流,解读探究一般地,n个相同的因数a相乘,即,记作an,读作a的n次方。

求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

在an中,a 叫做底数,n叫做指数,当an看作a的n次方的结果时,也可读作a的n次幂。

说明:(1)举例94来说明概念及读法。

(2)一个数可以看作这个数本身的一次方,通常省略指数1不写。

(3)因为an就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算。

(4)乘方是一种运算,幂是乘方运算的结果。

(三)应用迁移,巩固提高(1)(-4)3;(2)(-2)4;(3)-24.点拨:(1)计算时仍然是要先确定符号,再确定绝对值。

(2)注意(-2)4与-24的区别。

有理数的乘方(1)(学案)浙教版数学七年级上册

有理数的乘方(1)(学案)浙教版数学七年级上册
有理数的乘方(学案)
课题
有理数的乘方
单元Байду номын сангаас
2
学科
数学
年级
七年级
知识目标
⒈在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算。
⒉培养学生观察、分析、比较、归纳、概括的能力,渗透转化的思想。
重点难点
重点:正确理解乘方的意义,掌握乘方的运算法则,进行有理数乘方运算。
难点:正确理解乘方、底数、指数的概念并合理运算。
结论:积的乘方,等于把积中的每一个因式分别乘方,再把所得的幂相乘.
(3)①(-0.125)2014×(-8)2014
=[(-0.125)×(-8)]2014=12014=1;
② × = × =(-1)2015=-1.
三、教材第49页
例1、(1) (-3)23(3) (4)
想一想:幂的符号与指数有怎样的关系?
四、教材第50页
例2 计算:
(1) (2)3× (3) (4)8÷
总结:
有理数的运算法则:。
自主尝试
1.式子(-2)5表示( )
A.5乘以(-2)的积 B.5个(-2)连乘的积
C.2个-5相乘的积 D.5个(-2)相加的和
8. 定义一种新的运算a﹠b=ab,如2﹠3=23=8,那么请试求(3﹠2)﹠2=.
9. 计算:(1) ;(2) ;(3)
10. 已知|x-2|+(y+3)2=0,求(x+y)2016和( )x的值.
11. (1)看一看下面两组式子:(3×5)2与32×52,[(- )×4]2与(- )2×42,每组两个算式的计算结果是否相等?
A.1个 B.2个 C.3个 D.4个
4.2615个位上的数字是 ( )

数学七年级上册第15课时《有理数的乘方(1)》导学案

数学七年级上册第15课时《有理数的乘方(1)》导学案

第15课时 第2章第7节 有理数的乘方(1)【学习目标】1、理解乘方的意义,会进行有理数乘方运算。

2、在学习有理数乘方法则的过程中,体会“特殊到一般”的数学思想。

【活动方案】活动一 问题引入手工拉面是我国的传统面食.制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条.你能算出拉扣6次后共有多少根面条吗?活动二 乘方的有关概念1.试一试:将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.2.你还能举出类似的实例吗?2×2×2×2×2×2记作26,读作“2的6次方”;7×7×7可记作73;读作“7的3次方”.3.归纳:一般地,n a a a a a ⋅⋅⋅⋅个记作a n ,读作“a 的n 次方”. 求相同因数的积的运算叫做乘方.乘方运算的结果叫幂.26、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的6次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数.4. 思考:(1).(-4)3的底数是什么?指数是什么?幂是多少?(2).23和32的意义相同吗?(3).(-2)3、-23、-(-2)3分别表示什么意义?(4).(-23 )4、-243分别表示什么意义? 活动三 实践应用1 计算:(1)①37;②73;③(-3)4;④(-4)3.(2)①(12 )5;②(35 )3;③(-23)4.2 计算并思考幂的符号如何确定:(1)52、0.23、(23)4; (2)(-4)3、(-23)5、(-1)7; (3)(-1)4、(-3)2、(-12)6.3. 口答(1)(-5)3; (2)(-12 )5; (3)(-13)4; (4)-53; (5)0.14; (6)18.4.如果你第1个月存2元.从第2个月起每个月的存款都是上个月的2倍.那么第6个月要存多少钱?第12个月呢?[检测反馈]1、(-3)4表示 ( )A.4个(-3)相乘的积B. -3乘4的积C.3个(-4) 相乘的积D. 4个(-3)相加的积2、关于式子(-3)4,正确的说法是 ( )A.(-3)是底数,4是幂B.3是底数,4是幂C.3是底数,4是指数D.(-3)是底数,4是指数3、 求 的运算叫做乘方,乘方的结果叫做4、 3)2(-的底数是 ,指数是 ,它表示 ,运算的结果是5、32-的底数是 ,指数是 ,它表示 ,运算的结果是6、把下列各式写成乘方运算的形式:6×6×6= (-3) (-3) (-3) (-3)=2.1×2.1×2.1×2.1×2.1= ⨯21⨯21⨯21⨯21⨯2121= 7、 把下列各式写成乘法运算的形式:34 = ,43=(-1)4= ,3)32(-=8、思考:(-2)3与 –23的意义相同么?为什么?9、计算:=-4)1( ,=-3)1( ,=-4)2( ,-24=(1)(-1 )10,(-1)7,(-21)4,(-21)5是正数还是负数? (2)负数的幂的符号如何确定?【巩固提升】1、()20063-是 ( )A.负数B.正数C.非负数D.以上都不对2、计算()20082007)1(1-+-的值是 ( )A.0B.-1C.1D.23、 下列各式中,不相等的是 ( )A 、(-3)2和-32B 、(-3)2和32C 、(-2)3和-23D 、|-2|3和|-23|4、任何一个数的偶次幂都是 ( )A.正数B.负数C.非正数D.非负数5、一根一米长的绳子,第一次截去一半,第二次截去剩下的一半,如此下去,第六次剩下的绳子的长度为 ( ) A.3)21(米 B.5)21(米 C. 6)21(米 D. 12)21(米6、如果n 为正整数,则=-n 2)1( ; 如果n 为非负整数,则12)1(+-n = .7、一个数的平方等于49 ,这个数是 。

七年级数学上册《有理数的乘方》教案、教学设计

七年级数学上册《有理数的乘方》教案、教学设计
2.针对学生运算能力的差异,设计不同难度的练习题,使学生在分层练习中逐步提高运算能力。
3.注重培养学生的观察、分析、总结能力,引导学生发现乘方的性质和规律,提高学生的数学思维能力。
4.考虑到学生的年龄特点,采用生动、有趣的教学方法,激发学生的学习兴趣,营造轻松愉快的学习氛围。
5.关注学生的学习情感,鼓励学生积极参与课堂讨论,培养合作精神,提高学生的自信心和自主学习能力。
(三)教学设想
1.创设情境,引入乘方概念
利用生活中的实例,如平方土地面积、立方体体积等,引导学生理解乘方的意义。通过实际操作,让学生感受乘方的产生过程,从而加深对乘方概念的理解。
2.分层教学,突破难点
针对学生的认知差异,设计不同层次的例题和练习题。对基础薄弱的学生,重点辅导乘方的基本运算;对中等程度的学生,引导他们发现乘方的性质,提高解题能力;对优秀学生,设置拓展题,培养他们的数学思维能力。
(2)学生回答:“边长乘以边长,即a×a。”
(3)教师继续提问:“如果这个正方体的体积怎么计算呢?如果边长为a,那么它的体积是多少呢?”
(4)学生回答:“边长的三次方,即a×a×a。”
通过这个实例,引出乘方的概念,让学生明白乘方是表示几个相同因数相乘的运算。( Nhomakorabea)讲授新知
1.教学内容:讲解有理数乘方的定义、运算方法以及乘方的性质。
教学过程:
(1)教师讲解有理数乘方的定义,让学生明白乘方是指数运算的一种形式,表示几个相同因数相乘。
(2)教师举例说明有理数乘方的运算方法,如:2^3=2×2×2,(-3)^2=(-3)×(-3)。
(3)引导学生发现乘方的性质,如:负数的奇数次幂是负数,偶数次幂是正数;零的任何正整数次幂都是零。
(4)教师通过例题,演示乘方运算的步骤和注意事项,如符号的处理、计算的准确性等。

有理数的乘方

有理数的乘方

有理数的乘方学案年级:七年级 学科:数学 执笔:吴达辉 审核:张秀梅内容:有理数的乘方 课型:新授 时间 :2012年 月 日【学习目标】1、理解有理数乘方的意义.2、掌握有理数乘方运算3、经历探索有理数乘方的运算,获得解决问题经验.【学习重点】有理数乘方的意义【学习难点】幂、底数、指数的概念极其表示【学习过程】一、无师自通:【阅读材料】张某是我县城关中学92届的毕业生,20年前,当他还是个中学生时,由于家庭困难,母校在初中6个学期里每周资助他8元钱,张某铭记在心,今年学业有成、事业成功的他决定回报母校,怎样做才能更有意义呢?张某想:6个学期里每周“欠”母校8元,那就捐(-8)6给母校当助学金吧,让母校利用这一笔钱去资助一些像20年前的我的学生,让他们成才。

张某共捐了多少钱呢?1、自学指导(一):阅读书本P57,思考下列问题:①什么叫乘方?乘方的结果叫什么?②在a n 中,a 叫( ),n 叫( ),a n 就是( )个( )相乘。

③94中底数是 ,指数 ;51中底数是 ,指数 (指数1通常 );43与34有何不同?④怎样用乘方来表示 ?)2()2()2(-⨯-⨯- ?32323232⨯⨯⨯当底数是分数或负数时,怎么写?⑤在(-2)4中指数是( ),底数是( ) ;在-24中, 指数是( ),底数是( );⑥(-2)4与-24相等吗?怎么读?(-2)3与-23呢?-a n 与(-a)n 的意义有什么不同?2、自学指导(二):填空:①计算:____105= ; ____24= ; ____323=⎪⎭⎫ ⎝⎛-;____2113=⎪⎭⎫ ⎝⎛-;()____43=- ;____)2(4=-; ____019=;____02008= ; ②你发现了什么规律?(有理数乘方的符号法则)负数的奇次数幂是 ,负数的偶次幂是 。

正数的任何次幂都 ,0的任何正整数次幂都是 。

(请与书本P58校对,你的结论一样吗?)3、拓展:底数为1-,0,1,10,0.1的幂的特性:(试填空)(1)n -=0n = (n 为正整数) 1n = (n 为整数)101000n =⋅⋅⋅⋅⋅⋅ (1后面有____个0), 0.1n =0.00…01 (1前面有______个0)二、【巩固练习】(一)、选择题1、118表示( )A 、11个8连乘B 、11乘以8C 、8个11连乘D 、8个别1相加2、下列各对数中,数值相等的是( )A 、 -32 与 -23B 、-23 与 (-2)3C 、-32 与 (-3)2D 、(-3×2)2与-3×223、一个数的立方是它本身,那么这个数是( )A 、 0B 、0或1C 、-1或1D 、0或1或-14、如果一个有理数的正偶次幂是非负数,那么这个数是( )A 、正数B 、负数C 、 非负数D 、任何有理数(二)、计算题1、()101-2、()71-3、()510-4、()35-5、31.06、421⎪⎭⎫ ⎝⎛- 7、()410- 8、(-8)6三、归纳总结:1.本节课学习的概念有哪些?2.易错点有哪些?怎样避免这些错误?四、显显身手:1、乘方结果为负的是( )A.正数的偶次幂;B.负数的偶次幂;C.正数的奇次幂;D.负数的奇次幂。

人教版初中七年级上册数学《有理数的乘方》导学案

人教版初中七年级上册数学《有理数的乘方》导学案

1.5 有理数的乘方1.5.1 乘方第1课时有理数的乘方一、新课导入1.课题导入:大家都见过拉面师傅拉面,一次小明看到拉面师傅拉了6次,一碗面就拉好了,你能列出算式,帮他算算这碗面共有多少根吗?这个问题就是这节课我们要学习的乘方(板书课题).2.三维目标:(1)知识与技能正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.(2)过程与方法①通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.②已知一个数,会求出它的正整数指数幂,渗透转化思想.(3)情感态度培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.3.学习重、难点:重点:知道有理数乘方的意义.难点:能合理地进行乘方运算.二、分层学习1.自学指导:(1)自学内容:教材第41页的内容.(2)自学时间:5分钟.(3)自学要求:注意积中各因数的特点,结合乘法算式,找出相同因数的个数与指数的关系.理解乘方、幂、底数、指数的意义.(4)自学参考提纲:①2×2×2×2×2应记作25,读作2的五次方;12×12×12×12×12应记作125,读作12的5次方;(-3)×(-3)×(-3)×(-3)应记作(-3)4,读作-3的4次方;(-0.3)×(-0.3)×(-0.3)应记作(-0.3)3,读作-0.3的3次方;猜想:a·a·a…a的结果?n个a②一般地,n个相同因数a相乘,即a·a·a…a,记作a n,读作a的n 次方.求n个相同因数的积的运算,叫作乘方,乘方的结果叫做幂.在a n中,a做底数,n叫作指数.当a n看作a的n次方的结果时,也可读作a的n 次幂.特别地,一个数也可以看作这个数本身的一次方,如5就是5的一次方,即5=51,指数为1,通常省略不写.③-24与(-2)4相等吗?为什么?不相等,虽然绝对值相等,但符号不同.④你能解决之前的“拉面问题”吗?其结果是多少?26=642.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生在自学中存在的问题和疑点.a.负数和分数的乘方的记法;b.-24与(-2)4的区别.②差异指导:对学习有困难的学生进行学法指导.(2)生助生:学生相互交流帮助解决一些自学中的疑难问题.4.强化:(1)有理数乘方意义的理解:①乘方是一种运算(乘法运算的特例),即求n个相同因数的积的简便算式;②幂是乘方的结果,它不能单独存在,即没有乘方就无所谓幂;③乘方具有双重含义:既表示一种乘法运算,又表示乘方运算的结果;④书写格式:若底数是负数、分数或含运算关系的式子时,必须要用括号把底数括起来,以体现底数的整体性.(2)在-(-2)5中,底数是-2 ,指数是5,计算的结果是32.1.自学指导:(1)自学内容:教材第42页的例1、例2.(2)自学时间:5分钟.(3)自学要求:观察例1的计算过程和结果,相互交流自己的收获.(4)自学参考提纲:①例1的计算依据是什么?乘方的定义②完成思考并填空.③底数为-1,0,1,10,0.1的幂的特性:0n=0(n为正整数);1n=1(n为整数);10n=100……0(1后面有n个0);0.1n=0.00…01(小数部分1前面有n-1个0)④由②、③可得乘方的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.⑤试确定下列算式的结果是正还是负?a.(-3)×(-3)×…×(-3)共100个(-3)b.(-2)11 c.-(-1)153正;负;正.⑥仿例2用计算器作乘方运算:a.(-11)3 b.(-0.52)4-1331;0.07311616.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生在自学中存在的问题.②差异指导:指导学生的自学方法,帮助学困生解决学习中的疑难问题.(2)生助生:学生通过交流探讨相互帮助解决一些自学疑难问题.4.强化:(1)乘方的符号法则.(2)练习:)4;-(-2)3①计算:(-1);83;(-5)3;0.13;(-10)4;-32;(-12;8.解:1;512;-125;0.001;10000;-9;116②已知n是正整数,那么(-1)2n=1 ,(-1)2n+1=-1.三、评价1.学生的自我评价(围绕三维目标):谈自己在本节学习中的收获和存在的不足之处.2.教师对学生的评价:(1)表现性评价:对本节课学习中大家的态度、方法和成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时宜从现实生活里的具体事例出发,引导学生探究理解乘方的意义,在教学过程中采用“自主——合作——讨论——探究——交流”的教学方法,教师始终起着引领学生探寻方向的作用,即遵循“引导——帮助——点拨”的原则,真正做到数学教师由单纯的知识传递者转变为学生学习的组织者、引导者和合作者.这种方式可使学生在动手实践、自主探索、合作交流中主动发展知识,在合作学习及相互交流中形成协作意识.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(15分)在(-2)5中,底数是-2,指数是5,结果是-32.2.(15分)在-24中,底数是2,指数是4,结果是-16.3.(20分)下列各数相等的是(C)A.-33与-23B.32与-23C.-32与-(-3)2D. (-3)2与-324.(20分)计算.(1)(-3)3(2)(-2)4(3)(-1.7)2(4)(-43)3(5)-(-2)3(6)(-2)2×(-3)2 (7)-353(8)-32×(-2)3解:(1)-27;(2)16;(3)2.89;(4)-6427;(5)8;(6)36;(7)-1253;(8)72.二、综合应用(每题15分,共30分)5.(10分)平方等于9的数是几?立方等于27的数是几?解:±3;36.(10分)(1)计算0.12,12,102,1002,观察这些结果,底数的小数点向左(或右)移动一位时,平方数的小数点有什么移动规律?(2)计算0.13,13,103,1003,观察这些结果,底数的小数点向左(或右)移动一位时,立方数的小数点有什么移动规律?解:(1)平方数的小数点向左(向右)移动2位.(2)立方数的小数点向左(向右)移动3位.三、拓展延伸(20分)7.(10分)计算:(-2)2,22,(-2)3,23联系这类具体的数的乘方,你认为当a<0时,下列各式是否成立?(1)a2>0;(2)a2=(-a)2;(3)a2=-a2;(4)a3=-a3.解:4;4;-8;8.(1)(2)成立,(3)(4)不成立.作者留言:非常感谢!您浏览到此文档。

1.5.1有理数的乘方(1)(导学案)

1.5.1有理数的乘方(1)(导学案)
(1) ;
((1) ;
(2) ;

当堂测试
1、填空:
(1) 的底数是,指数是,结果是 ;
(2) 的底数是,指数是,结果是;
(3) 的底数是,指数是,结果是。
2、填空:
(1) ; ;
; ;
(2) ; ;
; 。
(3) ; ;
; .
3、计算:
(1) (2)
课后反思
学案
备注栏

自主学习
教师导学
1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!
请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包。
负数的奇次幂是数,负数的偶次幂是数,
正数的任何次幂都是数,0的任何正整次幂都是;
3、思考:(—2)4和—24意义一样吗?为什么?
4、自学例2(教师指导)
课堂练习完成P42页1,2.
【要点归纳】:

学生展示
教师激励
1、我们已经学习了五种运算,请把下表补充完整:
运算




乘方
运算结果

2、用乘方的意义计算下列各式:
3)从运算上看式子an,可以读作,从结果上看式子an,可以读作;
2、新知应用
1、将下列各式写成乘方(即幂)的形式:
(1)(-2)×(-2)×(-2)×(-2)=.
(2)、(— )×(— )×(— )×(— )=;
(3) • •• ••……• (2010个)=
2、例题,P41例1师生共同完成

【有理数的乘方教案(精选多篇)】

【有理数的乘方教案(精选多篇)】

【有理数的乘方教案(精选多篇)】第一篇:七年级数学上册有理数的乘方教案人教版有理数的乘方教学目的:知识与才能:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算;过程与方法:培养学生观察、分析^p 、比拟、归纳、概括的才能,浸透转化的思想;情感态度与价值观:培养学生勤思,认真,勇于探究的精神,并联络实际,加强理解,体会数学给我们的生活带来的便利。

教学重点:正确理解乘方的意义,掌握乘方的运算法那么,进展有理数乘方运算。

教学难点:正确理解乘方、底数、指数的概念并合理运算。

教材分析^p :本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,容有关联的是后面“科学计数法”、“有理数的混合运算”等局部内容。

教学方法:教法:引导探究法、尝试指导法,充分表达学生主体地位;学法:学生观察考虑,自主探究,合作交流。

教学用具:电脑多媒体。

课时安排:一课时板书设计:有理数的乘方底数a幂规律:正数的任何次幂都是正数负数的奇数次幂是负数负数的偶数次幂是正数n教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学形式。

整个教学过程从考虑问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、考虑、交流归纳的才能。

缺乏之处:在练习的讲评上,应给学生一个较为自由的空间,让学生互相启发,互相交流。

第二篇:第一章有理数乘方(2)教案第周第节§1.5.1有理数乘方〔2〕教案备课人:李冶学习目的:1、掌握有理数混合运算的顺序,能正确的进展有理数的加,减,乘除,乘方的混合运算。

2、培养学生观察,归纳,猜测,推理的才能。

重点:能正确的进展有理数的混合运算。

难点:灵敏的运用运算律,使计算简单。

教学过程:一课前提问:1、我们已经学习了哪几种有理数的运算?2、有理数的乘方的意义是什么?3、以下的算式里有哪些运算?应按照怎样的顺序运算?3+50÷22×〔-15〕-1二、新课探究:有理数混合运算的顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进展;3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进展;三、例题精析:例1 、计算:〔1〕2?(?3)34(3)15〔2〕(?2)3(3)[(?4)22]?(?3)2(2)例2、观察下面三行数:-2 ,4 ,-8,16,-32,64,…;0,6,-6,18,-30,66,…;-1 ,2,-4, 8,-16,32,…。

有理数的乘方 导学案

有理数的乘方    导学案

有理数的乘方导学案1. 知道什么是乘方.2.会熟练地进行乘方的运算.重点:理解乘方的意义难点:掌握有理数的混合运算法则1.乘方的定义:一般地,我们把n个相同因数a相乘的积记作:其中a是相同的因数,n是相乘因数的个数.这种求几个相同因数的积的运算叫做乘方,乘方的结果叫幂.一、新知探究探究1 有理数的乘方的意义请你仿照上面的记数方法表示下列各式:(1)5×5×5记作______,3×3×3×3记作______. (2)(-4)×(-4)×(-4)×(-4)记作______,(3)111______.222⎛⎫⎛⎫⎛⎫-⨯-⨯-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭记作(一)探索新知:解:小结:乘方式与乘积式的互化是理解乘方意义的关键;乘方是一种特殊的乘法运算(因数相同);在将各个因数都相同的乘积式改为乘方式时,当这个相同因数是负数、分数,作底数时,要用括号括起来. (二)典题精练1、指出下列各式表示的意义:()104310414,3,5,,5.3⎛⎫-- ⎪⎝⎭探究2 有理数的乘方运算 (一)探索新知 1.计算,填表.2. 上表中计算结果的符号有什么规律?小结:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数; 0的任何整数次幂都是0.解:小结:(1)两个互为相反数的数的偶次幂相等,奇次幂仍然互为相反数;(2)任意数的偶次幂都是非负数;(3)1的任何次幂都是1;-1的偶次幂是1,-1的奇次幂是-1. (二)典题精练解:小结:非负数之和等于0,每个非负数都为0.(三)典题精讲小试牛刀:探究3:有理数的混合运算考一考: 目前已学过几种运算有理数的运算法则:对于有理数的混合运算,应先算乘方,后算乘除,再算加减;有括号时,先算小括号里面的运算,再算中括号,后算大括号.(一)典题精讲(计算下列各题)(二)小试牛刀(计算下列各题.解:课后作业:书本P9第28-31、34题.学后反思:。

有理数的乘方的教案(优秀6篇)-最新

有理数的乘方的教案(优秀6篇)-最新

有理数的乘方的教案(优秀6篇)作为一名辛苦耕耘的教育工作者,常常要写一份优秀的教案,编写教案助于积累教学经验,不断提高教学质量。

那么应当如何写教案呢?下面是整理的6篇《有理数的乘方的教案》,在大家参考的同时,也可以分享一下给您的好友哦。

有理数的乘方教案篇一一、学习目标1.能确定有理数加、减、乘、除、乘方混合运算的顺序;2.掌握含乘方的有理数的混合运算顺序,并掌握简便运算技巧;3.偶次幂的非负性的应用。

二、知识回顾1.在2+ ×(-6)这个式子中,存在着3种运算。

2.上面这个式子应该先算乘方、再算2 、最后加法。

三、新知讲解1.偶次幂的非负性若a是任意有理数,则(n为正整数),特别地,当n=1时,有。

2.有理数的混合运算顺序①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

四、典例探究1.有理数混合运算的顺序意识【例1】计算:-1-3×(-2)3+(-6)÷总结:做有理数的混合运算时,应注意以下运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

练1计算:-2×(-4)2+3-(-8)÷ +2.有理数混合运算的转化意识【例2】计算:(-2)3÷(-1 )2+3 ×(- )-0.25总结:将算式中的除法转化为乘法,减法转化成加法,乘方转化为乘法,有时还要将带分数转化为假分数,小数转化为分数等,再进行计算。

练2计算:3.有理数混合运算的符号意识【例3】计算:-42-5×(-2)× -(-2)3总结:在有理数运算中,最容易出错的就是符号。

符号“-”即可以表示运算符号,即减号;又可以表示性质符号,即负号;还可以表示相反数。

要结合具体情况,弄清式中每个“-”的具体含义,养成先定符号,再算绝对值的良好习惯。

1.11 有理数的乘方(教案)华东师大版(2024)数学七年级上册

1.11 有理数的乘方(教案)华东师大版(2024)数学七年级上册

1.11 有理数的乘方第1课时 乘方及其运算1.使学生理解有理数乘方的概念,掌握有理数乘方的运算;2.培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神;3.渗透分类讨论思想.重点有理数乘方的运算.难点有理数乘方运算的符号法则.一、导入新课1.计算:(1)(-934 )÷3;(2)(-6)÷(-4)÷(-115 ).2.在小学我们已经学习过a·a ,记作a 2,读作a 的平方(或a 的2次方);a·a·a 记作a 3,读作a 的立方(或a 的3次方);那么a·a·a·a 可以记作什么?读作什么?a·a·a·a·a 呢?a ·a ·a ·…·a,\s\do4(n 个)) (n 为正整数)呢?例如,2×2×2=23;(-2)(-2)(-2)(-2)=(-2)4.这种求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.2.在a n 中,a 叫做底数,n 叫做指数,a n 读作a 的n 次方,a n 可看作是a 的n 次方的结果时,也可读作a 的n 次幂.例如,23中,底数是2,指数是3,23读作2的3次方,或2的3次幂.3.一个数可以看作这个数本身的一次方,例如8就是81,通常指数为1时省略不写.二、探究新知1.计算:(1)(-2)3;(2)(-2)4;(3)(-2)5.解:(1)原式=(-2)(-2)(-2)=-8;(2)原式=(-2)(-2)(-2)(-2)=16;(3)原式=(-2)(-2)(-2)(-2)(-2)=-32.小结:根据上面的计算,你能总结出有理数乘方运算的符号法则吗?(1)根据有理数乘法运算法则,我们有:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.(2)你能把上述的结论用数学符号语言表示吗?当a>0时,a n >0(n 是正整数);当a<0时,⎩⎪⎨⎪⎧a n >0(n 是偶数),a n <0(n 是奇数); 当a =0时,a n =0(n 是正整数).(以上为有理数乘方运算的符号法则)a 2n =(-a)2n (n 为正整数);a 2n -1=-(-a)2n -1(n 为正整数);a 2n ≥0(a 是有理数,n 是正整数).三、课堂练习1.(-4)5读作什么?其中-4叫做什么数?5叫做什么数?(-4)5是正数还是负数?2.计算:(1)(-1)3; (2)(-1)10; (3)(0.1)3;(4)(32 )4; (5)(-2)3×(-2)2;(6)(-12 )3×(-12 )5; (7)103; (8)105.四、课堂小结1.乘方的有关概念(1)求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数.(2)a n 读作a 的n 次方,a n 看作是a 的n 次方的结果时,也可读作a 的n 次幂.(3)一个数可以看作这个数本身的一次方.2.有理数乘方运算的符号法则正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数.要注意括号的作用.五、课后作业教材课后练习第1题,习题2.11第1,2题.有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点,所以我在这一节课的教学中从有理数乘方的意义、有理数乘方的符号法则、有理数乘方运算顺序、有理数乘方书写格式、有理数乘方常见错误等五个方面来教学.在每一个知识点的讲授时,结合具体的实际例子来进行讲解,及时进行总结,形成方法.有理数的乘方中反映出来的数学思想主要是分类讨论思想,在教学中要加以引导,逐步渗透这一思想.第2课时科学记数法1.复习和巩固有理数乘方的概念,掌握有理数乘方的运算;2.使学生了解科学记数法的意义,并会用科学记数法表示比较大的数.重点正确运用科学记数法表示较大的数.难点正确掌握10的幂指数特征.一、导入新课同学们,你们能够迅速地读出和记住下列数字吗?1.光的速度约是300 000 000 m/s,它相当于速度为6 m/s的自行车的速度的多少倍?2.全世界人口数大约是7 400 000 000人;3.第五次人口普查时,中国人口约为1 300 000 000人;4.中国的国土面积约为9 600 000平方千米;5.我国信息工业总产值将达到383 000 000 000元.这样的数,读和写都不方便,接下来,让我们一起来探究一种科学的记数方法吧.二、探究新知1.10n的特征(1)计算102,103,104,…并讨论102表示什么,指数与运算结果中的0的个数有什么关系,与运算结果的位数有什么关系.小结:0的个数和指数相同,整数位数比指数多1.(2)练习:①把下面各数写成10的幂的形式:1000,10 000 000,10 000 000 000.②指出下列各数各是几位数:102,105,1012,1025.2科学记数法定义综上所述,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数法叫做科学记数法.三、课堂练习1.设n是一个正整数,则10n+1是()A.n个10相乘所得的积B.是一个n+1位的整数C.10后面有n+1个0的整数D.是一个n+2位的整数2.用科学记数法表示下列各数:(1)100 000;(2)378 000;(3)-112 000; (4)2945;(5)1346.30.3.已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104; (2)6.070×103;(3)104; (4)-2.24×103.四、课堂小结1.什么是科学记数法?一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n 是正整数,这种记数法叫做科学记数法.2.用科学记数法表示一个数时,10的指数与原数的整数位数有什么关系?10的指数比原数的整数位数少1.五、课后作业教材习题2.12第1,2,3题.在上一节课中,学生已学习了有理数乘方的概念,知道了有理数乘方的意义,会利用有理数乘方法则进行有理数乘方运算.本节课在复习上节课内容的基础上,使学生进一步理解乘方的意义,并能用科学记数法表示大于10的数,本节课的重点和难点都是科学记数法.为此,通过实例,引入了科学记数法,而通过例题的讲授,使学生知道怎样用科学记数法表示绝对值大于10的数,在表示中应重点注意10的指数与原数的整数位数的关系.。

《有理数的乘方》 导学案

《有理数的乘方》 导学案

《有理数的乘方》导学案一、学习目标1、理解有理数乘方的意义。

2、掌握有理数乘方的运算。

3、能熟练进行有理数的乘方运算,并能解决实际问题。

二、学习重点1、有理数乘方的意义。

2、有理数乘方的运算。

三、学习难点1、负数和分数的乘方运算。

2、乘方运算的符号确定。

四、知识回顾1、乘法运算:几个相同的数相加可以用乘法来简便计算,例如:5 + 5 + 5 = 5×3。

2、乘法的运算律:交换律 a×b = b×a,结合律(a×b)×c = a×(b×c),分配律 a×(b + c) = a×b + a×c 。

五、新课导入同学们,我们已经学习了有理数的加法、减法、乘法和除法运算。

今天,我们要一起来学习一种新的运算——有理数的乘方。

想象一下,如果有一张厚度为 01 毫米的纸,将它对折 1 次,它的厚度变为 02 毫米;对折 2 次,厚度变为 04 毫米;对折 3 次,厚度变为 08 毫米……那么对折 20 次,它的厚度会是多少呢?这就需要用到我们今天要学习的有理数的乘方知识来解决。

六、知识讲解1、乘方的概念一般地,n 个相同的因数 a 相乘,即,记作,读作“a 的 n 次方”。

其中,a 叫做底数,n 叫做指数,的结果叫做幂。

例如,,读作“2 的 5 次方”,其中 2 是底数,5 是指数,32 是幂。

特别地,当时,,一个数的 1 次方等于它本身。

2、乘方的运算(1)正数的任何次幂都是正数。

例如,,。

(2)负数的奇次幂是负数,负数的偶次幂是正数。

例如,,。

(3)0 的任何正整数次幂都是 0。

例如,。

3、有理数的乘方运算顺序先确定幂的符号,再计算幂的绝对值。

七、例题讲解例 1:计算(1);(2);(3)。

解:(1);(2);(3)。

例 2:用计算器计算(1);(2)。

解:(1)在计算器上依次按键:,显示结果为 243。

(2)在计算器上依次按键:,显示结果为-128。

《2.11有理数的乘方》学案

《2.11有理数的乘方》学案

《2.11有理数的乘方》学案设计:姚栋祥一教学目标:1、使学生了解乘方的意义和幂的意义。

2、知道正数和负数的乘方有何特征。

3、能够把几个相同因数的积写成乘方的形式。

二、复习导学:看下列问题:1、边长为3的正方形的面积是 (只列式子)2、棱长为3的立方体的体积是 (只列式子)3、如果棱长为3的立方体,每单位质量为3克,那么物体的质量是多少? (只列式子)三、课堂研讨:我们在小学已经学过:3×3=32 可读作3的平方(3的2次方)。

3×3×3=33 可读作3的立方(3的3次方)。

那么,3×3×3×3= 可读作3的 次方 。

n 个相同的因数a 相乘,可记作即求几个相同因数的积的运算,叫 ,乘方的结果叫做 。

n a a a ⨯⨯⨯na n n a a a a =⨯⨯⨯填一填:3)在-8中,底数是,指数是。

一个数可以看成这个数本身的一次方。

想一想:1、23与32有什么不同?2、(-2)3与-23的意义是否相同??它门的底数和指数各是什么?运算结果是否相等?3、(-2)4与-24呢?4、正数的任何次幂都是____数。

当指数是____数时,负数的幂是____数,当指数是____数时,负数的幂是____数。

四、课堂练习:一、把下列乘法式子写成乘方的形式:1、1×1×1×1×1×1×1=();2、3×3×3×3×3=();3、(-3)×(-3)×(-3)×(-3)=();二、思考:用乘方式子怎么表示的相反数?五、小结:正数的任何次幂都是____数。

负数的____幂是____数,负数的____幂是____数。

六、课后反思:?323222有区别吗和⎪⎭⎫⎝⎛33。

2.7《有理数的乘方》教案

2.7《有理数的乘方》教案
另外,我发现学生们在分组讨论和实践活动中表现得相当积极,他们能够将乘方的知识应用到解决实际问题中,这让我感到很欣慰。不过,我也注意到,在小组讨论的过程中,有些学生参与度不高,可能是由于他们对乘方的知识掌握得不够牢固,导致在讨论中缺乏自信。因此,我计划在下一节课前,对这部分学生进行一些额外的辅导和鼓励,帮助他们建立起信心。
1.数学抽象:通过有理数乘方的学习,使学生能够从具体实例中抽象出乘方的概念,理解数学表达式的内涵,发展数学抽象能力。
2.逻辑推理:引导学生运用已知的数学性质和定理,推理出有理数乘方的相关性质,培养逻辑思维和推理能力。
3.数学建模:结合实际例题,培养学生运用乘方知识建立数学模型,解决现实问题的能力,增强数学应用意识。
(1)有理数乘方的定义:理解有理数乘方的概念,掌握乘方的表示方法,如a^n(a为有理数,n为整数)。
举例:教师可以通过具体的实例,如2的3次方(2^3),让学生理解乘方的意义,即2自乘3次。
(2)有理数乘方的性质:掌握负数的奇数次幂和偶数次幂的性质,以及非零有理数的零次幂等于1。
举例:教师可引导学生通过计算-2的奇数次幂(如-2^3)和偶数次幂(如-2^4),让学生发现性质并加以总结。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘方》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相同数的连乘的情况?”比如,计算一块正方体木块的体积,就需要用到2的3次方。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘方的奥秘。
在今天《有理数的乘方》这节课的教学过程中,我注意到了几个值得反思的地方。首先,学生们对于乘方的概念理解整体上是顺利的,但仍有部分学生在具体的运算过程中出现了混淆。特别是在处理负数的奇数次幂和偶数次幂时,一些学生还是容易犯错。这让我意识到,在今后的教学中,我需要更多地将理论讲解与实际例题结合起来,通过具体案例来加深学生对乘方性质的理解。

人教版七年级上数学:1.5.1《有理数的乘方(1)》学案(人教版七年级上)(附模拟试卷含答案)

人教版七年级上数学:1.5.1《有理数的乘方(1)》学案(人教版七年级上)(附模拟试卷含答案)

数学:1.5.1《有理数的乘方(1)》学案(人教版七年级上)【学习目标】:1、理解有理数乘方的意义;2、掌握有理数乘方运算;3、经历探索有理数乘方的运算,获得解决问题经验;【重点难点】:有理数乘方的运算。

【导学指导】一、知识链接1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。

他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包。

2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合次后,就可以拉出32根面条.二、合作探究1、分小组合作学习P41页内容,然后再完成好下面的问题1)叫乘方,叫做幂,在式子an中 ,a叫做,n叫做2)式子an表示的意义是3)从运算上看式子an,可以读作,从结果上看式子an,可以读作;2、新知应用1、将下列各式写成乘方(即幂)的形式:(1)(-2)×(-2)×(-2)×(-2)=.(2)、(—14)×(—14)×(—14)×(—14)=;(3)x•x•x•……•x(2010个)=2、例题,P41例1师生共同完成从例题1 可以得出:负数的奇次幂是数,负数的偶次幂是数,正数的任何次幂都是数,0的任何正整次幂都是;3、思考:(—2)4和—24意义一样吗?为什么? 4、自学例2 (教师指导)【课堂练习】完成P42页1,2.【要点归纳】:【拓展训练】1、我们已经学习了五种运算,请把下表补充完整:2、用乘方的意义计算下列各式: (1)42-;(2)323⎛⎫- ⎪⎝⎭; (3)223-;3.计算(1) 2221(2)2(10)4----⨯-; (2) 3212(0.5)(2)(8)2⎛⎫-⨯-⨯-⨯- ⎪⎝⎭;【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,点A 、B 在线段EF 上,点M 、N 分别是线段EA 、BF 的中点,EA :AB :BF =1:2:3,若MN =8cm ,则线段EF 的长是( )A.10 cmB.11 cmC.12 cmD.13 cm2.下列关于角的说法正确的是( ) A.两条射线组成的图形叫做角 B.角的大小与这个角的两边的长短无关 C.延长一个角的两边D.角的两边是射线,所以角不可度量3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒4.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( )天. A.10B.20C.30D.255.今年某月的月历上圈出了相邻的三个数a 、b 、c ,并求出了它们的和为39,这三个数在月历中的排布不可能是( )A. B. C. D.6.下列说法正确的是( )A.3xy5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式D.2x x 1--的常数项是17.﹣3x 2y+12x 2y 的结果为( )A .﹣52 x 4y 2B .52x 4y 2C .﹣52x 2y D .52x 2y 8.下列计算中,正确的是( ) A .x+x 2=x 3B .2x 2﹣x 2=1C .x 2y ﹣xy 2=0D .x 2﹣2x 2=﹣x 29.下列根据等式的性质变形正确的是( ) A.若3x+2=2x ﹣2,则x =0B.若12x =2,则x =1 C.若x =3,则x 2=3x D.若213x +﹣1=x ,则2x+1﹣1=3x 10.若与互为相反数,则的值为( )A .-bB .C .-8D .811.已知a 是有理数,则下列结论正确的是( )A .a≥0B .|a|>0C .﹣a <0D .|a|≥0 12.若2(1)210x y -++=,则x+y 的值为( ).A.12B.12-C.32D.32-二、填空题13.如图,∠AOB=72︒,射线OC 将∠AOB 分成两个角,且∠AOC:∠BOC=1:2,则∠BOC=_____.14.下列说法:①若a 与b 互为相反数,则a+b=0;②若ab=1,则a 与b 互为倒数;③两点之间,直线最短;④若∠α+∠β=90°,且β与γ互余,则∠α与∠γ互余;⑤若∠α为锐角,且∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ=90°.其中正确的有________.(填序号) 15.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =_____. 16.如果23x +与5互为相反数,那么x 等于___________. 17.化简:2(-a b )-(23a b +)= ____________.18.已知一列数-1,2,-1,2,2,-1,2,2,2,-1,…其中相邻的两个-1被2隔开,第n 对-1之问有n 个2,则第21个数是______,这一列数的前2019个数的和为______. 19.若m、n满足()2320m n -+-=,则()2007m n -的值等于_________.20.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_______种.三、解答题21.(1)如图,点C、D在线段AB上,点C为线段AB的中点,若AC=5cm,BD=2cm,求线段CD的长.(2)如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.22.列代数式或方程:(1)a与b的平方和;(2)m的2倍与n的差的相反数;(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?(设男生人数为x人)23.甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?24.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.25.已知多项式A、B,其中,某同学在计算A+B时,由于粗心把A+B看成了A-B求得结果为,请你算出A+B的正确结果。

有理数的乘方教学设计教案

有理数的乘方教学设计教案

有理数的乘方教学设计-教案第一章:导入1.1 教学目标让学生了解有理数乘方的概念。

让学生掌握有理数乘方的运算规则。

1.2 教学内容引入有理数乘方的概念,解释乘方的意义。

通过实际例子,讲解有理数乘方的运算规则。

1.3 教学方法通过生活实例引入有理数乘方的概念,激发学生兴趣。

使用PPT展示有理数乘方的运算规则,让学生跟随讲解。

提供例题,让学生分组讨论和解答,加深理解。

1.4 教学评估通过提问方式检查学生对有理数乘方概念的理解。

设计练习题,让学生独立完成,评估学生对运算规则的掌握。

第二章:有理数的乘方运算规则2.1 教学目标让学生掌握有理数乘方的运算规则。

让学生能够运用运算规则进行有理数的乘方运算。

2.2 教学内容讲解有理数乘方的运算规则,包括正数乘方、负数乘方和零的乘方。

提供实际例子,让学生理解和运用运算规则。

使用PPT展示有理数乘方的运算规则,让学生跟随讲解。

提供例题,让学生分组讨论和解答,加深理解。

设计练习题,让学生独立完成,巩固运算规则。

2.4 教学评估通过提问方式检查学生对有理数乘方运算规则的理解。

设计练习题,让学生独立完成,评估学生对运算规则的掌握。

第三章:有理数的乘方运算练习3.1 教学目标让学生能够运用有理数乘方的运算规则进行计算。

提高学生的运算速度和准确性。

3.2 教学内容提供一系列有理数乘方的练习题,包括不同难度的题目。

指导学生运用运算规则,进行计算和解答。

3.3 教学方法引导学生独立完成练习题,提供必要的帮助和指导。

鼓励学生互相交流和讨论,共同解决问题。

通过PPT展示正确答案,让学生核对和纠正错误。

3.4 教学评估通过提问方式检查学生对有理数乘方运算的掌握情况。

评估学生的运算速度和准确性,及时给予反馈和指导。

第四章:有理数的乘方应用让学生理解有理数乘方在实际问题中的应用。

培养学生解决实际问题的能力。

4.2 教学内容提供实际问题,让学生运用有理数乘方的运算规则进行解决。

讲解实际问题中的数量关系和运算步骤。

有理数乘方

有理数乘方

有理数乘方学案一、学习目标:1、理解有理数乘方的意义;2、掌握有理数乘方运算;3、经历探索有理数乘方的运算,获得解决问题经验;二、重点:有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。

三、难点:有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解。

导学指导案 1.知识链接拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合 次后,就可以拉出32根面条.如果一个人把一条短信发给另外两个人,每个接收到信息的人都分别给另外两个人发送这条信息,如此重复下去,循环到第10次发送短信息时,多少人会同时收到短信息?共有多少人接收到短信息?2. 预习检测:① 求n 个相同因数的积的运算,叫做_______,乘方的结果叫做_______。

在a n 中a 叫做_______,n 叫做_______。

a n 看作a 的n 次方的结果时,也可以读作a 的n 次____。

②负数的奇次幂是______,负数的偶次幂是______。

正数的任何次幂都是______,0的任何正整数次幂都是______。

③在24中,底数是______,指数是______,读作______。

在(21)4中底数是______,指数是______,读作______。

在10n 中底数是______,指数是______,读作______。

④ 5有没有指数,如果有,是多少?我的疑惑是: ____________________________________________________________________合作探究案: 探究一、1、用乘方的意义计算下列各式(1) (-4)3 (2) 23 (3) 09 (4) (-2)4 (5) -24(6)323⎛⎫- ⎪⎝⎭(7)223-;说说:(—2)4与—24的区别,他们分别表示什么意义练习:计算:(-5)4=___; -54=____; (-2×3)2=____; -2×32=____;-(-2)3=____; -(-3)2=____ 探究二:完成表格②当指数是___时,负数的幂是___数. 当指数是___时,负数的幂是___数. 练习:1、当n 为正整数时,(1)(-a)2n =___a 2n ,(2)(-a )2n -1=___a 2n -1,(3)10n 展开后1后面有___个0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档