胡运权《运筹学教程》(第5版)配套题库-章节题库(第一~六章)【圣才出品】
《运筹学教程》胡云权-第五版-运筹学复习
x6
10
[2]
-5
1
0
-1
1
5
3M+2
3-4M
2M-5
0
-M
0
-z
-M
x4
2
0
[7/2 ]
1/2
1
1/2
-1/2
4/7
2
x1
5
1
-5/2
1/2
0
-1/2
1/2
-
0
7M/2+8
M/2-6
0
M/2+1
-3M/2-1
-z
3
x2
4/7
0
1
1/7
2/7
1/7
-1/7
2
x1
45/7
1
0
6/7
5/7
-1/7
1/7
✓ 右端项非负
解的重要概念
可行解(或可行点):满足所有约束条件的向量 x ( x1 , x 2 , x n )
可行域:所有的可行解的全体
D { x Ax b, x 0}
最优解:在可行域中目标函数值最大(或最小)的可行解,最优解的全体
称为最优解集合
O {x D c x c y, y D }
0
x3
0
x4
0
x5
9
4
3
4
5
[ 10 ]
1
0
0
0
1
0
0
0
1
90
40
30
7
12
0
0
0
1
90
bi
360
第六章 图与网络最小支撑树问题运筹学基础及其应用胡运权第五版
Minimum Spanning Tree Problem 2020年2月28日星期五 Page 1 of 5
树、支撑树:
无圈的连通图称为树; 若G1是G2的一个支撑子图并且是一棵树, 则称G1是G2的一棵支撑树。
图6-2(a)、6-2(b)都不是树。想一想,为什么?
求最小树是在一个赋权无向连通图G中求一棵最小支撑树。 求最小树问题的应用: • 电信网络(计算机网络、电话专用线网络、有线电视网络等等) 的设计 • 低负荷运输网络的设计,使得网络中提供链接的部分(如铁路、 公路等 等)的总成本最小 • 高压输电线路网络的设计 电器设备线路网络(如数字计算机系统)的设计,使得线路总长 度最短 • 连接多个场所的管道网络设计
2、树图也是最脆弱的连通图。
§6.2 最小支撑树问题 Ch6 Graph and Network
Minimum Spanning Tree Problem 2020年2月28日星期五 Page 3 of 5
2-2 图的最小支撑树
定义:设G=[V,E,W]是一个赋权无向图,对每一条边ei∈E有 一个权重W(ei) ≥0,G的任意支撑树T各条边的权重之和称为树 T的权重,记为W(T)。权重最小的支撑树称为最小树。
图6-3(a)是一棵树,图6-3(b)是图6-1的一棵支撑树。
v2
e1
e2 e4 v1 e3
e5
v3
e2 v1 v2
e3
e2
v3 v2
v1
v3
e6
e7
e8
e6
e7
e8
v4
v5
图6-1
v5 v4
v5
胡运权《运筹学教程》(第5版)配套题库-考研真题精选及课后习题(第一~三章)【圣才出品】
2.μ是关于可行流 f 的一条增广链,则在μ上有:对一切(i,j)∈μ-,有 fij>0。( ) [暨南大学 2019 研]
【答案】√ 【解析】由增广链定义可知,当边(i,j)属于μ的反向边集时,该条边的流量大于 0。
3.事件 j 的最早时间 TE(j)是指以事件 j 为开工事件的工序最迟必须开工时间。( ) [暨南大学 2019 研]
零元素的最少直线数目的集合。结果如下:
4 / 113
圣才电子书 十万种考研考证电子书、题库视频学习平台
(4)在未被覆盖的元素中找最小元素,未被覆盖的行分别减去该最小元素,在出现负
数的列上整列加上最小元素,得到新矩阵 C′:
0 2 6 1 0 0 4
表 1-1-1
解:(1)先对各行减去本行的最小元素,再对各列减去本列最小元素,得到矩阵 C 如
下:
0 2 6 9
C 1 4 4 0 1 0 0 3 2 3 6 0
(2)确定独立零元素,对 C 加圈,得到
◎ 2 6 9
C
1
1
4 ◎
4
◎ 3
2
3
6
(3)由于只有 3 个独立零元素,少于系数矩阵阶数 n=4,故需要确定能够覆盖所有
A.没有无穷多最优解 B.没有最优解 C.有无界解 D.有最优解 【答案】B 【解析】有最优解的前提是有可行解,该题无可行解,则也无最优解。
2.如果某种资源的影子价格大于其市场价格,则说明( )。[暨南大学 2019 研] A.该资源稀缺 B.该资源过剩 C.企业应尽快处理该资源 D.企业应充分利用该资源,开辟新的生产途径 【答案】A 【解析】当资源的影子价格不为 0 时,表明该种资源在生产中已耗费完毕;且若影子 价格大于其市场价格,说明企业应买进该种资源,该种资源稀缺。
运筹学第五版习题答案
运筹学第五版习题答案运筹学是一门研究如何优化决策的学科,它涉及到数学、统计学和计算机科学等多个领域。
运筹学的应用范围非常广泛,包括生产调度、物流管理、供应链优化等等。
而《运筹学第五版》是一本经典的教材,它提供了大量的习题供学生练习和巩固所学知识。
本文将为大家提供《运筹学第五版》习题的答案,希望对学习者有所帮助。
第一章:引论1. 运筹学的定义是什么?运筹学是一门研究如何优化决策的学科,它利用数学和统计学的方法来解决实际问题。
2. 运筹学的应用领域有哪些?运筹学的应用领域包括生产调度、物流管理、供应链优化、金融风险管理等。
3. 运筹学方法的基本步骤是什么?运筹学方法的基本步骤包括问题建模、模型求解、解的验证和实施。
第二章:线性规划模型1. 什么是线性规划模型?线性规划模型是一种数学模型,它描述了一种目标函数和一组线性约束条件下的最优化问题。
2. 如何确定线性规划模型的最优解?线性规划模型的最优解可以通过线性规划算法来求解,如单纯形法、内点法等。
3. 什么是对偶问题?对偶问题是与原始线性规划模型相对应的另一个线性规划模型,它可以用来计算原始问题的下界。
第三章:网络优化模型1. 什么是网络优化模型?网络优化模型是一种描述网络结构的数学模型,它可以用来解决最短路径、最小生成树、最大流等问题。
2. 最短路径问题如何求解?最短路径问题可以通过迪杰斯特拉算法或弗洛伊德算法来求解。
3. 最大流问题如何求解?最大流问题可以通过Ford-Fulkerson算法或Edmonds-Karp算法来求解。
第四章:整数规划模型1. 什么是整数规划模型?整数规划模型是一种线性规划模型的扩展,它要求决策变量取整数值。
2. 整数规划问题如何求解?整数规划问题可以通过分支定界法或割平面法来求解。
3. 什么是混合整数规划模型?混合整数规划模型是一种整数规划模型的扩展,它要求部分决策变量取整数值,部分决策变量取连续值。
第五章:动态规划模型1. 什么是动态规划模型?动态规划模型是一种描述决策过程的数学模型,它将问题划分为一系列的阶段,并通过递推关系求解最优解。
运筹学(胡运权)第五版课后答案-运筹作业
运筹学(胡运权)第五版课后答案-运筹作业47页1.1b用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解47页1.1d无界解1 2 3 454321-1-6 -5 -4 -3 -2X2X12x1--2x1+3x1 2 3 44321X12x1+x2=23x1+4x2=X1.2(b)约束方程的系数矩阵A= 1 2 3 42 1 1 2P1 P2 P3 P4基基解是否可行解目标函数值X1 X2 X3 X4P1 P2 -4 11/2 0 0 否P1 P3 2/5 0 11/5 0 是43/5 P1 P4 -1/3 0 0 11/6 否P2 P3 0 1/2 2 0 是 5 P2 P4 0 -1/2 0 2 否P3 P4 0 0 1 1 是 5最优解A=(0 1/2 2 0)T和(0 0 1 1)T49页13题设Xij为第i月租j个月的面积minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x1 3 +6000x23+7300x14s.t.x11+x12+x13+x14≥15x12+x13+x14+x21+x22+x23≥10x13+x14+x22+x23+x31+x32≥20x14+x23+x32+x41≥12Xij≥0用excel求解为:( )用LINDO求解:LP OPTIMUM FOUND AT STEP 3 OBJECTIVE FUNCTION V ALUE1) 118400.0V ARIABLE V ALUE REDUCED COSTZ 0.000000 1.000000X11 3.000000 0.000000X21 0.000000 2800.000000X31 8.000000 0.000000X41 0.000000 1100.000000X12 0.000000 1700.000000X22 0.000000 1700.000000X32 0.000000 0.000000X13 0.000000 400.000000X23 0.0000001500.000000X14 12.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -2800.0000003) 2.000000 0.0000004) 0.000000 -2800.0000005) 0.000000 -1700.000000NO. ITERATIONS= 3答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,50页14题设a1,a2,a3, a4, a5分别为在A1, A2, B1, B2, B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1, A2, B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。
运筹学(第五版) 习题答案
当所有非基变量为负数,人工变量 =0.5,所以原问题无可行解。
两阶段法(略)
(4)解法一:大M法
单纯形法,(表略)非基变量 的检验数大于零,此线性规划问题有无界解。
两阶段法略
1.7求下述线性规划问题目标函数z的上界和下界;
Max z= +
其中: , , , , , , ,
解:
求Z的上界
班次时间所需人数16点到10点60210点到14点70314点到18点60418点到22点50522点到2点2062点到6点30设司机和乘务人员分别在各时间区段一开始时上班并连续上班8小时问该公交线路至少配备多少司机和乘务人员
运筹学习题答案
第一章(39页)
1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
以( , )为基,基解 =(0,0,1,1 是 =-3;
最大值为 =43/5;最优解为 =(2/5,0,11/5,0 。
1.4分别用图解法和单纯形法求解下列线性规划问题,并指出单纯形迭代每一步相当于图形的哪一点。
(1)max z=2 +
3 +5 15
6 +2 24
, 0
(2)max z=2 +5
4
2 12
1
0
0
0
14
-M
2
-2
[3]
-1
2
-2
0
-1
1
0
2/3
-
4M
3-6M
4M-4
2-3M
3M-5
5-3M
0
-M
0
0
(2)解:加入人工变量 , , ,… ,得:
《运筹学教程》胡云权第五版第五章图与网络分析
最小支撑树问题
1、树
连通且无圈的无向图
判断下面图形哪个是树:
(A)
(B)
(C)
树的性质: 1、树中任两点中有且仅有一条链; 2、树任删去一边则不连通,故树是使图保持连通且具有最 少边数的一种图形。
3、边数 = 顶点数 – 1。
最小支撑树问题
2、图的支撑树
若一个图 G =(V , E)的支撑子 图 T=(V , E´) 构成树,则称 T 为 G的支撑树,又称生成树、部分树。
v1
v3 7.5 v4
v5 v3
v4
最小支撑树问题
3、最小支撑树问题 问题:求网络的支撑树,使其权和最小。 v 5
2
v1
3 4 2
3.5
v5
算法1(避圈法):把边按权从小到大依次 5.5 添入图中,若出现圈,则删去其中最大边, 直至填满n-1条边为止(n为结点数) 。 【例】 求上例中的最小支撑树 5
第五章 图论与网络分析
学习目标
图的基本概念
图论起源——哥尼斯堡七桥问题
A C B D C A D
B
问题:一个散步者能否从任一块陆地出发,走过七 座桥,且每座桥只走过一次,最后回到出发点?
结论:每个结点关联的边数均为偶数。
图的基本概念
哈密尔顿回路问题:环球旅行遊戏
13 2 12 15 11 16 10 3 9 4 17 7 8 14 1 20 19 18 6 5
6
v2
2
1
v5
2
v8
6
3
v1
1
3
2
v3 v4
6
4
10
3
v9 v7
4
10
v6
(完整版)运筹学胡运权第五版课件(第1章)
(3)L.P. 的顶点与基可行解一一对应。
§1.3 单纯形法(Simplex Method)原理
3-1 预备知识:凸集与顶点
(1)凸集:对于集合C中任意两点连线段上的点,若全在C内, 则称集合C为凸集。
直观特征:图形从内部向外部凸出。
凸集
非凸集
(2)顶点:凸集中不在任意两点的连线段内部的点。
X1
转化为
(2)若约束条件为不等式,
则依次引入松弛变量或剩余变量(统称为松弛变量),
转化为等式约束条件。
约束为≥不等式,减去松弛变量,化为等式约束条件;
多 退
约束为≤不等式,加上松弛变量,化为等式约束条件。
少 补
注意:松弛变量在目标函数中系数全为0。
例:max z=2 x1+3 x2
2 x1+2 x2 12
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令
运筹学学习题(胡运权版)
A B C 单位利润(元) I 1 10 2 10 II 1 4 2 6 III 1 5 6 4 设备能力(台时) 100 600 300
(1)求获利最大的产品生产计划; (2)产品III每件的利润增加到多大时才值得安排生产; (3)如有一种新产品,加工一件需设备A、B、C的台时各为1, 4,3小时,预期每件的利润为8元,是否值得安排生产。 14
ci b
i
xB
x1 x m x m 1 x n
1 0 0 1 a1, m 1 a m , m 1 a1n amn
n
i
1
Hale Waihona Puke c1 cmx1 xm
m
检验数
z cib cB B b
练习2:
已知下列线性规划问题,求: (1)用单纯形法求解,并指出问题属于哪一类解; (2)写出该问题的对偶问题,并求出对偶问题的最优解;
m a xz 6 x1 3 x 2 3 x 3 3 x1 x 2 x 3 6 0 2 x1 2 x 2 4 x 3 2 0 s .t . 3 x1 3 x 2 3 x 3 6 0 x , x , x 0 1 2 3
x4
1 0 0 0 1 0 0 0 5/3 -2/3 -2
x5
0 1 0 0 -0.1 0.1 -0.2 -1 -1/6 1/6 0
x6
0 0 1 0 0 0 1 0 0 0 1 0
100 60 150 200/3 150 150
胡运权《运筹学教程》习题答案(第一章)[1]
第一章习题解答1.1 用图解法求解下列线性规划问题。
并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。
+=32min 21x x Z +=23max 21x x Z ⎪⎩⎪⎨⎧≥≥+≥+0,422664.)1(212121x x x x x x st ⎪⎩⎪⎨⎧≥≥+≤+0,124322.)2(212121x x x x x x st ⎪⎩⎪⎨⎧≤≤≤≤≤++=85105120106.max )3(212121x x x x st x x Z ⎪⎩⎪⎨⎧≥≤+−≥−+=0,23222.65max )4(21212121x x x x x x st x x Z 第一章习题解答无穷多最优解,,422664.32min )1(21212121⎪⎩⎪⎨⎧≥≥+≥++=x x x x x x st x x Z 是一个最优解3,31,121===Z x x 该问题无解⎪⎩⎪⎨⎧≥≥+≤++=0,124322.23max )2(21212121x x x x x x st x x Z 第一章习题解答85105120106.max )3(212121⎪⎩⎪⎨⎧≤≤≤≤≤++=x x x x st x x Z 唯最优解16,6,1021===Z x x 唯一最优解,该问题有无界解⎪⎩⎪⎨⎧≥≤+−≥−+=0,23222.65max )4(21212121x x x x x x st x x Z 第一章习题解答1.2 将下述线性规划问题化成标准形式。
1422245243min )1(432143214321⎪⎪⎧≤+−+−=−+−+−+−=x x x x x x x x x x x x Z .,0,,23243214321⎪⎪⎩⎨≥≥−++−无约束x x x x x x x x st ⎪⎩⎪⎨⎧≥≤≤−+−=++−+−=无约束321321321321,0,0624322min )2(x x x x x x x x x st x x x Z 第一章习题解答.2321422245243min )1(4321432143214321⎪⎪⎪⎨⎧≥−++−≤+−+−=−+−+−+−=x x x x x x x x x x x x st x x x x Z ,0,,4321⎪⎩≥无约束x x x x ⎪⎪⎩⎪⎪⎨⎧≥=−+−++−=+−+−+=−+−+−+−+−=0,,,,,232142222455243max 64241321642413215424132142413214241321x x x x x x x x x x x x x x x x x x x x x x x st x x x x x Z 第一章习题解答⎪⎪⎨⎧≥≤≤−+−=++−+−=无约束321321321321,0,0624322min)2(x x x x x x x x x st x x x Z ⎩⎪⎩⎪⎨⎧≥=++−+=−++−+−+=0,,,,6243322max 43231214323121323121323121x x x x x x x x x x x x x x st x x x x Z第一章习题解答634334max )3(3212121⎪⎪⎧=−+=++=x x x x x st x x Z 517,0,1,59,524,,1,0424321421=====⎪⎪⎩⎨=≥=++Z x x x x j x x x x j 该题是唯一最优解:)("第一章习题解答⎪⎧≤++−≤++++=151565935121510max 321321x x x x x x x x x Z 该题无可行解。
(完整word版)运筹学(胡运权)第五版课后答案,运筹作业
47页1.1b羅蕿用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解薅47页1。
1d蒂无界解(b)衿1.2蕿约束方程的系数矩阵A=1234莇2112蚄P1P2P3P4,运筹作业肀最优解A=(01/220)T和(0011)T页13题肆49膃设Xij为第i月租j个月的面积羄minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13+6000x23+7300x 14螁s.t.聿x11+x12+x13+x14≥15膃x12+x13+x14+x21+x22+x23≥10膀x13+x14+x22+x23+x31+x32≥20艿x14+x23+x32+x41≥12袇Xij≥0芃用excel求解为:薁用LINDO求解:羁LPOPTIMUMFOUNDATSTEP3薆OBJECTIVEFUNCTIONVALUE 蚇1)118400.0羂VARIABLEVALUEREDUCEDCOST 荿Z0.0000001。
000000虿X113.0000000。
000000螇X210。
0000002800。
000000莃X318。
0000000.000000肁X410.0000001100。
000000莈X120.0000001700.000000袆X220.0000001700。
000000螄X320.0000000。
000000蕿X130.000000400.000000膇X230。
0000001500。
000000袆X1412.0000000.000000袁ROWSLACKORSURPLUSDUALPRICES芁2)0。
000000—2800。
000000羆3)2.0000000.000000羆4)0。
000000—2800.000000节5)0。
000000-1700.000000蝿NO。
ITERATIONS=3罿答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,页14题肆50蚃设a1,a2,a3,a4,a5分别为在A1,A2,B1,B2,B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1,A2,B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。
胡运权运筹学第五版第一章习题讲解
1.3 答案:
●单纯形法:
Cj CB 0 0 基 x3 x4 Cj-Zj 0 x3
10
x1
Cj-Zj
8/5
1
0
2/5
1 1
0
0 5/14
1/5
-2 -3/14
5
x2
3/2
0
10
x1
Cj-Zj
1
1
0
0
0
-1/7
-5/14
2/7
-25/14
Return
课后题答案
z' -3x1 x 2 'x 2 ' '-2x 3 '0x 4 0x 5 - Mx6 - Mx7
台时 限制 6000 1000 0 4000 7000 4000
单位台 时费用 0.05 0.03 0.06 0.11 0.05
6 4 7 0.25 0.36 0.25 0.44 0.25 0.35
6 4 7 0.21 0.36 0.21 0.44 0.21 0.77
8
8 11
0.5 0.48
0.27 0.48
课后题答案
1.1(a)答案: 该问题有无穷多最优解。 取特殊值:(1.5,0) 计算目标函数最优值 得:min z=3。
1.1(a)
1.1(b)答案: 由图可知:该Lp问题没 有可行域,即可得出: 该问题无可行解
1.1(b)
Return
课后题答案
1.2(b)答案:
基解 基
x1 P2 P3 P4 P3 -4 2/5 -113 ) 10 x211 6000 7( x x x ) 9 x 12 x 121 122 123 221 322 10000 6( x111 x121 ) 8( x211 x221 ) 4000 s.t. 4( x112 x122 ) 11x322 7000 7( x113 x123 ) 4000 x111 , x112 , x113 , x121 , x122 , x123 , x211 , x221 , x322 0
运筹学(第五版) 习题答案
非基变量 的检验数 =0,所以有无穷多最优解。
(3)解:大M法
加入人工变量,化成标准型:
Max z=10 +15 +12 +0 +0 +0 -M
s.t. 5 +3 + + =9
-5 +6 +15 + =15
2 + + - + =5
, , , , , , 0
当 0,目标函数在原点最大值。
k= 时, , 同号。
当 0时,目标函数在BC线断上任一点有最大值
当 0时,目标函数在原点最大值。
k=0时, =0
当 0时,目标函数在A点有最大值
当 0,目标函数在OC线断上任一点有最大值
(2)当 =0时,max z=
0时,目标函数在C点有最大值
0时,目标函数在OA线断上任一点有最大值
(i=1,2,3…,n)
0, 0, (i=1,2,3…n; k=1,2….,m)
M是任意正整数
初始单纯形表:
-M
-M
…
-M
…
…
…
b
…
…
…
…
-M
1
1
0
…
0
1
1
…
…
0
0
…
0
-M
1
0
1
…
0
0
…
…
0
0
…
0
…
…
…
…
…
…
…
…
…
…
…
…
…
《运筹学(胡运权)》第五版课后习题答案
用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解
47页1.1d
无界解
1.2(b)
约束方程的系数矩阵A= 1 2 3 4
2 1 1 2
P1 P2 P3 P4
基
基解
是否可行解
目标函数值
X1 X2 X3 X4
P1 P2
-4 11/2 0 0
否
P1 P3
2/5 0 11/5 0
是
43/5
程序法
6.4a
破圈法
避圈法
最小部分树16
6.4b
最小部分树32
172页6.11
红色曲线为使用一年卖出
蓝色曲线为使用两年卖出
绿色曲线为使用三年卖出
紫色曲线为使用四年卖出
最短路程为3.7万元,路径为v0-v1-v4或v0-v2-v4或v0-v1-v2-v4
三种方案分别为:第一年年初买新车,年末卖掉再买新车,一直用到第四年年末卖掉;
x2≤4+(1-y2)M
y1+y2=1
y1,y2=0或1
e)设yi= 1第i组条件起作用
0第i组条件不起作用i=1,2则
x1+x2≤5-(1-y1)M
x1≤2-(1-y2)M
x3≥2+(1-y3)M
x3+x4≥6+(1-y4)M
y1+y2+y3+y4≥2
y1,y2,y3,y4=1或0
4.2
minz=
d)
maxz=3x1+x2+4x3-0.4y
s.t.
6x1+3x2+5x3≤45
3x1+4x2+5x3-y≤30
(完整版)运筹学胡运权第五版课件(第1章)
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令
x
j
xj
且
x
j
0
…
am1x1+am2x2+…+amnxn≤(=,≥) bm
x1 , x2, …, xn≥0
(3)其他形式: 连加形式
1-3 线性规划问题的标准形式
1、标准形式
或
2、条件
目标函数求极大值 约束条件全是等式(线性方程组) 决策变量全非负 右端常数全非负
3、标准化方法
(1)若目标函数求极小值,即
则令 z z
即求目标函数在若干约束条件下的最值。
3、规划问题数学模型的三要素
(1)决策变量:决策者为实现规划目标采取的方案、措施, 是问题中要确定的未知量。用x1,x2,…,xn表示。
(2)目标函数:问题要达到的目标要求,表示为决策变量的 函数。用 z=f(x1,x2,…,xn)表示。 (3)约束条件:决策变量取值时受到的各种可用资源的限制, 表示为含决策变量的等式或不等式。
运筹学
( Operations Research )
绪论
一、古代朴素的运筹学思想
例如:田忌赛马
二、运筹学的起源
国外 英文原名 Operations Research 简称“O.R.” 直译为:运用研究或作业研究 正式出现于1938年7月英国一份关于防空作战 系统运行的研究报告中
运筹学基础及应用第五版胡运权第一章
xi 0
aij
aLj
xL 0
i
∴ P1 , P2,······,PL-1, PL+1,······ Pm, Pj 线性无关。
∴ X1 也为基本可行解。
四、最优性检验和解的判别
令
,其中 随基的改变而改变
X1 = (x1 0- a1j ,x2 0- a2j ,···,xm 0- amj ,0,···,,···,0)T
必要性:X非基本可行解 X非凸集顶点 不失一般性,设X=(x1,x2,······,xm,0,0,······,0)T,为非基本可行解, ∵ X为可行解,
证:等价于 X非基本可行解X非凸集顶点
又 X是非基本可行解, ∴ P1,P2,······,Pm线性相关,即有 1P1+2P2+······+mPm=0, 其中1,2,······,m不全为0,两端同乘≠0,得 1P1+2P2+······+mPm=0,······(2)
∵ >0, 1->0 ,当xj=0, 必有yj=zj=0
∴
pjyj =
j=1
n
pjyj=b ······(1)
j=1
r
pjzj =
j=1
n
pjzj=b ······(2)
清华大学《运筹学教程》胡运权主编课后习题答案(第一章)
2)c=0
3)c>0
d<0 d=0 d>0
0
c 3 d 4
A1点 A1点 A3点
A2A3线段
3 c 5 4 d 2
c 5 d 2 c 5 d 2
c 3 d 4
A2点
A1A2线段 A1点
l.6 考虑下述线性规划问题:
max Z c1 x1 c2 x2 a11 x1 a12 x2 b1 st .a21 x1 a22 x2 b2 x1 , x2 0
-1
x2
0
x3
0
x4
-M
x5
-M
x6
CB
xB
x5
x6
x4
i
-M -M 0
3 6 4
[3] 4 1
1 3 2
0 -1 0
0 0 1
1 0 0
0 1 0 0
1 3/2 4 3 6/5 9/5
cj zj
7M-4
1 2 3 1 0 0 0
4M-1
1/3 [5/3] 5/3
5M/3+1/3
-M
0 -1 0 -M
0
0 0 1 0
0
1/3 -4/3 -1/3
-7M/3+4/3
-4 -M 0
x1
0
1 0 0
x6
x4
cj zj
cj
x6
是否基 可行解
Z
(x1,x2,x3)
(x1,x2,x4) (x1,x2,x5) (x1,x2,x6)
0
0 0 7/4
61/3
10 3 -4
-7/6
0 0 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解。
3.(多选)线性规划的最优解有以下几种可能?( )[中山大学 2008 研] A.唯一最优解 B.多个最优解 C.没有最优解,因为目标函数无界 D.没有最优解,因为没有可行解 【答案】ABCD 【解析】线性规划问题的每个基可行解对应可行域的一个顶点,若现行规划问题有最优 解,必在某个顶点上得到,当该顶点唯一时,有唯一最优解;当目标函数在多个顶点上达到 最大值时,则该问题有无限多个最优解;目标函数无界,称线性规划问题具有无界解,此时 无最优解;使目标函数达到最大的可行解称为最优解,故没有可行解就没有最优解。
2.当极大化线性规划模型达到最优时,某非基变量 xj 的检验数为σj,当价格系数为 cj 的变化量为∆cj 时,原线性规划问题最优解保持不变的条件是______。[武汉大学 2005 研]
【答案】σj+∆cj≤0 【解析】xj 为非基变量,其价格系数变化∆cj 后,其检验数变为σj′=σj+∆cj ,极大化 线性规划模型最优解保持不变的条件是σj′=σj+∆cj ≤0。
3 / 94
圣才电子书 十万种考研考证电子书、题库视频学习平台
【解析】若 B=(P1,P2,…,Pm)为 A 中 m 个线性无关的列向量,此时令非基变量 xm+1=xm+2=…=xn=0,这时变量的个数等于线性方程组的个数,用高斯消去法,可求得 对应于基 B 的基可行解为 X=(x1,x2,…,xm,0,…,0)T 。由最优解的判别定理,若 对于一切 j=m+1,…,n,有σj≤0,则所求得的基可行解为最优解。
3.若 X 为某极大化线性规划问题的一个基可行解,用非基变量表达其目标函数的形式
为 Z Z0 j X j 则 X 为该 LP 最优解的条件是:______。[武汉大学 2006 研] jJ 【答案】σj≤0 【解析】求极大化问题,则当所有非基变量的检验数均为非正时,即得最优解。线性规
划最优时要求非基变量检验数小于等于 0,所以σj≤0。
1 / 94
圣才电子书 十万种考研考证电子书、题库视频学习平台划问题的最优解,其中λ1、λ2 为正的实数。( )[北京交通大学 2010 研] 【答案】× 【解析】必须规定λ1+λ2=1,且λ1,λ2≥0。当某一线性规划问题存在两个最优解时,
则它一定存在无数个最优解,最优解为 x=λ1x(1)+λ2x(2)且λ1+λ2=1,λ1,λ2≥0。
2.(多选)线性规划可行域为封闭的有界区域,最优解可能是( )。[中山大学 2007 研] A.唯一的最优解 B.一个以上的最优解
2 / 94
圣才电子书
C.目标函数无界
十万种考研考证电子书、题库视频学习平台
D.没有可行解
【答案】AB
【解析】可行域非空,故有可行解;可行域封闭,故目标函数有界,有一个或多个最优
圣才电子书
十万种考研考证电子书、题库视频学习平台
第三部分 章节题库
第一章 线性规划及单纯形法
一、判断题 1.线性规划问题的每一个基解对应可行域的一个顶点。( )[北京交通大学 2010 研] 【答案】× 【解析】基解不一定是可行解,基可行解一一对应着可行域的顶点。
2.若线性规划问题的可行解为最优解,则该可行解必定是基可行解。( )[南京航 空航天大学 2011 研]
二、选择题 1.单纯形法中,关于松弛变量和人工变量,以下说法正确的是( )。[中山大学 2008 研] A.在最后的解中,松弛变量必须为 0,人工变量不必为 0 B.在最后的解中,松弛变量不必为 0,人工变量必须为 0 C.在最后的解中,松弛变量和人工变量都必须为 0 D.在最后的解中,松弛变量和人工变量都不必为 0 【答案】B 【解析】松弛变量是在约束不等式号的左端加入的,在最后的解中,其值可以不必为 0; 人工变量是在原约束条件为等式的情况下加入的,只有基变量中不再含有非零的人工变量 时,原问题才有解,所有最后的解中人工变量必须为 0。如果人工变量不为 0,则原问题无 可行解。
四、简答题 简述目标规划单纯形法求解的基本思想。[南京航空航天大学 2009 研] 答:目标规划单纯形法求解的基本思想为: (1)建立初始单纯形表,在表中将检验数行按优先因子个数分别列成 K 行,置 k=1; (2)检查该行中是否存在负数,且对应的前 k-1 行的系数是零。若有负数取其中最 小者对应的变量为换入变量,转第(3)步。若无负数。则转第(5)步; (3)按最小比值规则确定换出变量,当存在两个和两个以上相同的最小比值时,选取 具有较高优先级别的变量为换出变量; (4)按单纯形法进行基变换运算,建立新的计算表,返回第(2)步; (5)当 k=K 时,计算结束。表中的解即为满意解。否则置 k=k+1,返回到第(2) 步。
三、填空题 1.对于线性规划问题:Max Z=CX;AX≤b,X≥0,若 B=(P1,P2,…,Pm)为 A 中 m 个线性无关的列向量,且为该 LP 的一个可行基,则对应于基 B 的基可行解为:______, 该基可行解为最优解的条件是:______。[武汉大学 2005 研] 【答案】X=(x1,x2,…,xm,0,…,0)T;对于一切 j=m+1,…,n,有σj≤0
【答案】√ 【解析】基解且可行才有可能是最优解。
3.如果线性规划问题无最优解,则它也一定没有基可行解。( )[东北财经大学 2008 研]
【答案】× 【解析】当问题的可行域是无界的,因而有无界的可行解。此时该问题无有限最优解, 但是存在基可行解。
4.若 x(1)、x(2)分别是某一线性规划问题的最优解,则 x=λ1x(1)+λ2x(2)也是该
4.两阶段法中,若第一阶段目标函数最优值不为 0,则原问题______。[北京科技大学 2011 研]
【答案】无可行解 【解析】第一阶段目标函数值不是 0,则说明最优解的基变量中含有非零的人工变量, 表明原线性规划问题无可行解。
4 / 94
圣才电子书 十万种考研考证电子书、题库视频学习平台