胡运权《运筹学教程》(第5版)配套题库-章节题库(第一~六章)【圣才出品】

合集下载

《运筹学教程》胡云权-第五版-运筹学复习

《运筹学教程》胡云权-第五版-运筹学复习

x6
10
[2]
-5
1
0
-1
1
5
3M+2
3-4M
2M-5
0
-M
0
-z
-M
x4
2
0
[7/2 ]
1/2
1
1/2
-1/2
4/7
2
x1
5
1
-5/2
1/2
0
-1/2
1/2
-
0
7M/2+8
M/2-6
0
M/2+1
-3M/2-1
-z
3
x2
4/7
0
1
1/7
2/7
1/7
-1/7
2
x1
45/7
1
0
6/7
5/7
-1/7
1/7
✓ 右端项非负
解的重要概念
可行解(或可行点):满足所有约束条件的向量 x ( x1 , x 2 , x n )
可行域:所有的可行解的全体
D { x Ax b, x 0}
最优解:在可行域中目标函数值最大(或最小)的可行解,最优解的全体
称为最优解集合
O {x D c x c y, y D }
0
x3
0
x4
0
x5

9
4
3
4
5
[ 10 ]
1
0
0
0
1
0
0
0
1
90
40
30
7
12
0
0
0
1
90
bi
360

第六章 图与网络最小支撑树问题运筹学基础及其应用胡运权第五版

第六章 图与网络最小支撑树问题运筹学基础及其应用胡运权第五版
§6.2 最小支撑树问题 Ch6 Graph and Network
Minimum Spanning Tree Problem 2020年2月28日星期五 Page 1 of 5
树、支撑树:
无圈的连通图称为树; 若G1是G2的一个支撑子图并且是一棵树, 则称G1是G2的一棵支撑树。
图6-2(a)、6-2(b)都不是树。想一想,为什么?
求最小树是在一个赋权无向连通图G中求一棵最小支撑树。 求最小树问题的应用: • 电信网络(计算机网络、电话专用线网络、有线电视网络等等) 的设计 • 低负荷运输网络的设计,使得网络中提供链接的部分(如铁路、 公路等 等)的总成本最小 • 高压输电线路网络的设计 电器设备线路网络(如数字计算机系统)的设计,使得线路总长 度最短 • 连接多个场所的管道网络设计
2、树图也是最脆弱的连通图。
§6.2 最小支撑树问题 Ch6 Graph and Network
Minimum Spanning Tree Problem 2020年2月28日星期五 Page 3 of 5
2-2 图的最小支撑树
定义:设G=[V,E,W]是一个赋权无向图,对每一条边ei∈E有 一个权重W(ei) ≥0,G的任意支撑树T各条边的权重之和称为树 T的权重,记为W(T)。权重最小的支撑树称为最小树。
图6-3(a)是一棵树,图6-3(b)是图6-1的一棵支撑树。
v2
e1
e2 e4 v1 e3
e5
v3
e2 v1 v2
e3
e2
v3 v2
v1
v3
e6
e7
e8
e6
e7
e8
v4
v5
图6-1
v5 v4
v5

胡运权《运筹学教程》(第5版)配套题库-考研真题精选及课后习题(第一~三章)【圣才出品】

胡运权《运筹学教程》(第5版)配套题库-考研真题精选及课后习题(第一~三章)【圣才出品】

2.μ是关于可行流 f 的一条增广链,则在μ上有:对一切(i,j)∈μ-,有 fij>0。( ) [暨南大学 2019 研]
【答案】√ 【解析】由增广链定义可知,当边(i,j)属于μ的反向边集时,该条边的流量大于 0。
3.事件 j 的最早时间 TE(j)是指以事件 j 为开工事件的工序最迟必须开工时间。( ) [暨南大学 2019 研]
零元素的最少直线数目的集合。结果如下:
4 / 113
圣才电子书 十万种考研考证电子书、题库视频学习平台

(4)在未被覆盖的元素中找最小元素,未被覆盖的行分别减去该最小元素,在出现负
数的列上整列加上最小元素,得到新矩阵 C′:
0 2 6 1 0 0 4
表 1-1-1
解:(1)先对各行减去本行的最小元素,再对各列减去本列最小元素,得到矩阵 C 如
下:
0 2 6 9
C 1 4 4 0 1 0 0 3 2 3 6 0
(2)确定独立零元素,对 C 加圈,得到
◎ 2 6 9
C
1
1
4 ◎
4
◎ 3
2
3
6
(3)由于只有 3 个独立零元素,少于系数矩阵阶数 n=4,故需要确定能够覆盖所有
A.没有无穷多最优解 B.没有最优解 C.有无界解 D.有最优解 【答案】B 【解析】有最优解的前提是有可行解,该题无可行解,则也无最优解。
2.如果某种资源的影子价格大于其市场价格,则说明( )。[暨南大学 2019 研] A.该资源稀缺 B.该资源过剩 C.企业应尽快处理该资源 D.企业应充分利用该资源,开辟新的生产途径 【答案】A 【解析】当资源的影子价格不为 0 时,表明该种资源在生产中已耗费完毕;且若影子 价格大于其市场价格,说明企业应买进该种资源,该种资源稀缺。

运筹学第五版习题答案

运筹学第五版习题答案

运筹学第五版习题答案运筹学是一门研究如何优化决策的学科,它涉及到数学、统计学和计算机科学等多个领域。

运筹学的应用范围非常广泛,包括生产调度、物流管理、供应链优化等等。

而《运筹学第五版》是一本经典的教材,它提供了大量的习题供学生练习和巩固所学知识。

本文将为大家提供《运筹学第五版》习题的答案,希望对学习者有所帮助。

第一章:引论1. 运筹学的定义是什么?运筹学是一门研究如何优化决策的学科,它利用数学和统计学的方法来解决实际问题。

2. 运筹学的应用领域有哪些?运筹学的应用领域包括生产调度、物流管理、供应链优化、金融风险管理等。

3. 运筹学方法的基本步骤是什么?运筹学方法的基本步骤包括问题建模、模型求解、解的验证和实施。

第二章:线性规划模型1. 什么是线性规划模型?线性规划模型是一种数学模型,它描述了一种目标函数和一组线性约束条件下的最优化问题。

2. 如何确定线性规划模型的最优解?线性规划模型的最优解可以通过线性规划算法来求解,如单纯形法、内点法等。

3. 什么是对偶问题?对偶问题是与原始线性规划模型相对应的另一个线性规划模型,它可以用来计算原始问题的下界。

第三章:网络优化模型1. 什么是网络优化模型?网络优化模型是一种描述网络结构的数学模型,它可以用来解决最短路径、最小生成树、最大流等问题。

2. 最短路径问题如何求解?最短路径问题可以通过迪杰斯特拉算法或弗洛伊德算法来求解。

3. 最大流问题如何求解?最大流问题可以通过Ford-Fulkerson算法或Edmonds-Karp算法来求解。

第四章:整数规划模型1. 什么是整数规划模型?整数规划模型是一种线性规划模型的扩展,它要求决策变量取整数值。

2. 整数规划问题如何求解?整数规划问题可以通过分支定界法或割平面法来求解。

3. 什么是混合整数规划模型?混合整数规划模型是一种整数规划模型的扩展,它要求部分决策变量取整数值,部分决策变量取连续值。

第五章:动态规划模型1. 什么是动态规划模型?动态规划模型是一种描述决策过程的数学模型,它将问题划分为一系列的阶段,并通过递推关系求解最优解。

运筹学(胡运权)第五版课后答案-运筹作业

运筹学(胡运权)第五版课后答案-运筹作业

运筹学(胡运权)第五版课后答案-运筹作业47页1.1b用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解47页1.1d无界解1 2 3 454321-1-6 -5 -4 -3 -2X2X12x1--2x1+3x1 2 3 44321X12x1+x2=23x1+4x2=X1.2(b)约束方程的系数矩阵A= 1 2 3 42 1 1 2P1 P2 P3 P4基基解是否可行解目标函数值X1 X2 X3 X4P1 P2 -4 11/2 0 0 否P1 P3 2/5 0 11/5 0 是43/5 P1 P4 -1/3 0 0 11/6 否P2 P3 0 1/2 2 0 是 5 P2 P4 0 -1/2 0 2 否P3 P4 0 0 1 1 是 5最优解A=(0 1/2 2 0)T和(0 0 1 1)T49页13题设Xij为第i月租j个月的面积minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x1 3 +6000x23+7300x14s.t.x11+x12+x13+x14≥15x12+x13+x14+x21+x22+x23≥10x13+x14+x22+x23+x31+x32≥20x14+x23+x32+x41≥12Xij≥0用excel求解为:( )用LINDO求解:LP OPTIMUM FOUND AT STEP 3 OBJECTIVE FUNCTION V ALUE1) 118400.0V ARIABLE V ALUE REDUCED COSTZ 0.000000 1.000000X11 3.000000 0.000000X21 0.000000 2800.000000X31 8.000000 0.000000X41 0.000000 1100.000000X12 0.000000 1700.000000X22 0.000000 1700.000000X32 0.000000 0.000000X13 0.000000 400.000000X23 0.0000001500.000000X14 12.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -2800.0000003) 2.000000 0.0000004) 0.000000 -2800.0000005) 0.000000 -1700.000000NO. ITERATIONS= 3答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,50页14题设a1,a2,a3, a4, a5分别为在A1, A2, B1, B2, B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1, A2, B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。

运筹学(第五版) 习题答案

运筹学(第五版)  习题答案
单纯形表计算略
当所有非基变量为负数,人工变量 =0.5,所以原问题无可行解。
两阶段法(略)
(4)解法一:大M法
单纯形法,(表略)非基变量 的检验数大于零,此线性规划问题有无界解。
两阶段法略
1.7求下述线性规划问题目标函数z的上界和下界;
Max z= +
其中: , , , , , , ,
解:
求Z的上界
班次时间所需人数16点到10点60210点到14点70314点到18点60418点到22点50522点到2点2062点到6点30设司机和乘务人员分别在各时间区段一开始时上班并连续上班8小时问该公交线路至少配备多少司机和乘务人员
运筹学习题答案
第一章(39页)
1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。
以( , )为基,基解 =(0,0,1,1 是 =-3;
最大值为 =43/5;最优解为 =(2/5,0,11/5,0 。
1.4分别用图解法和单纯形法求解下列线性规划问题,并指出单纯形迭代每一步相当于图形的哪一点。
(1)max z=2 +
3 +5 15
6 +2 24
, 0
(2)max z=2 +5
4
2 12
1
0
0
0
14
-M
2
-2
[3]
-1
2
-2
0
-1
1
0
2/3
-
4M
3-6M
4M-4
2-3M
3M-5
5-3M
0
-M
0
0
(2)解:加入人工变量 , , ,… ,得:

《运筹学教程》胡云权第五版第五章图与网络分析

《运筹学教程》胡云权第五版第五章图与网络分析

最小支撑树问题
1、树
连通且无圈的无向图
判断下面图形哪个是树:
(A)
(B)
(C)
树的性质: 1、树中任两点中有且仅有一条链; 2、树任删去一边则不连通,故树是使图保持连通且具有最 少边数的一种图形。
3、边数 = 顶点数 – 1。
最小支撑树问题
2、图的支撑树
若一个图 G =(V , E)的支撑子 图 T=(V , E´) 构成树,则称 T 为 G的支撑树,又称生成树、部分树。
v1
v3 7.5 v4
v5 v3
v4
最小支撑树问题
3、最小支撑树问题 问题:求网络的支撑树,使其权和最小。 v 5
2
v1
3 4 2
3.5
v5
算法1(避圈法):把边按权从小到大依次 5.5 添入图中,若出现圈,则删去其中最大边, 直至填满n-1条边为止(n为结点数) 。 【例】 求上例中的最小支撑树 5
第五章 图论与网络分析
学习目标
图的基本概念
图论起源——哥尼斯堡七桥问题
A C B D C A D
B
问题:一个散步者能否从任一块陆地出发,走过七 座桥,且每座桥只走过一次,最后回到出发点?
结论:每个结点关联的边数均为偶数。
图的基本概念
哈密尔顿回路问题:环球旅行遊戏
13 2 12 15 11 16 10 3 9 4 17 7 8 14 1 20 19 18 6 5
6
v2
2
1
v5
2
v8
6
3
v1
1
3
2
v3 v4
6
4
10
3
v9 v7
4
10
v6

(完整版)运筹学胡运权第五版课件(第1章)

(完整版)运筹学胡运权第五版课件(第1章)
四运筹学研究的基本特点?系统的整体优化?多学科的配合?模型方法的应用五五运筹学研究的基本步骤运筹学研究的基本步骤?分析与表述问题?建立数学模型?对问题求解?对模型和模型导出的解进行检验?建立对解的有效控制?方案的实施第一章线性规划及单纯形法linearprogrammingandsimplexmethodggp11一般线性规划问题的数学模型11问题的提出例1用一块边长为a的正方形铁皮做一个无盖长方体容器应如何裁剪可使做成的容器的容积最大
(3)L.P. 的顶点与基可行解一一对应。
§1.3 单纯形法(Simplex Method)原理
3-1 预备知识:凸集与顶点
(1)凸集:对于集合C中任意两点连线段上的点,若全在C内, 则称集合C为凸集。
直观特征:图形从内部向外部凸出。
凸集
非凸集
(2)顶点:凸集中不在任意两点的连线段内部的点。
X1
转化为
(2)若约束条件为不等式,
则依次引入松弛变量或剩余变量(统称为松弛变量),
转化为等式约束条件。
约束为≥不等式,减去松弛变量,化为等式约束条件;
多 退
约束为≤不等式,加上松弛变量,化为等式约束条件。
少 补
注意:松弛变量在目标函数中系数全为0。
例:max z=2 x1+3 x2
2 x1+2 x2 12
s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令

运筹学学习题(胡运权版)

运筹学学习题(胡运权版)
某工厂生产I、II、III三种产品,分别经过A、B、C三种设备 加工。已知生产单位各种产品所需的设备台时、设备的现 有加工能力及每件产品的预期利润见下表:
A B C 单位利润(元) I 1 10 2 10 II 1 4 2 6 III 1 5 6 4 设备能力(台时) 100 600 300
(1)求获利最大的产品生产计划; (2)产品III每件的利润增加到多大时才值得安排生产; (3)如有一种新产品,加工一件需设备A、B、C的台时各为1, 4,3小时,预期每件的利润为8元,是否值得安排生产。 14
ci b
i
xB
x1 x m x m 1 x n
1 0 0 1 a1, m 1 a m , m 1 a1n amn
n
i
1
Hale Waihona Puke c1 cmx1 xm
m
检验数
z cib cB B b
练习2:
已知下列线性规划问题,求: (1)用单纯形法求解,并指出问题属于哪一类解; (2)写出该问题的对偶问题,并求出对偶问题的最优解;
m a xz 6 x1 3 x 2 3 x 3 3 x1 x 2 x 3 6 0 2 x1 2 x 2 4 x 3 2 0 s .t . 3 x1 3 x 2 3 x 3 6 0 x , x , x 0 1 2 3
x4
1 0 0 0 1 0 0 0 5/3 -2/3 -2
x5
0 1 0 0 -0.1 0.1 -0.2 -1 -1/6 1/6 0
x6
0 0 1 0 0 0 1 0 0 0 1 0
100 60 150 200/3 150 150

胡运权《运筹学教程》习题答案(第一章)[1]

胡运权《运筹学教程》习题答案(第一章)[1]

第一章习题解答1.1 用图解法求解下列线性规划问题。

并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。

+=32min 21x x Z +=23max 21x x Z ⎪⎩⎪⎨⎧≥≥+≥+0,422664.)1(212121x x x x x x st ⎪⎩⎪⎨⎧≥≥+≤+0,124322.)2(212121x x x x x x st ⎪⎩⎪⎨⎧≤≤≤≤≤++=85105120106.max )3(212121x x x x st x x Z ⎪⎩⎪⎨⎧≥≤+−≥−+=0,23222.65max )4(21212121x x x x x x st x x Z 第一章习题解答无穷多最优解,,422664.32min )1(21212121⎪⎩⎪⎨⎧≥≥+≥++=x x x x x x st x x Z 是一个最优解3,31,121===Z x x 该问题无解⎪⎩⎪⎨⎧≥≥+≤++=0,124322.23max )2(21212121x x x x x x st x x Z 第一章习题解答85105120106.max )3(212121⎪⎩⎪⎨⎧≤≤≤≤≤++=x x x x st x x Z 唯最优解16,6,1021===Z x x 唯一最优解,该问题有无界解⎪⎩⎪⎨⎧≥≤+−≥−+=0,23222.65max )4(21212121x x x x x x st x x Z 第一章习题解答1.2 将下述线性规划问题化成标准形式。

1422245243min )1(432143214321⎪⎪⎧≤+−+−=−+−+−+−=x x x x x x x x x x x x Z .,0,,23243214321⎪⎪⎩⎨≥≥−++−无约束x x x x x x x x st ⎪⎩⎪⎨⎧≥≤≤−+−=++−+−=无约束321321321321,0,0624322min )2(x x x x x x x x x st x x x Z 第一章习题解答.2321422245243min )1(4321432143214321⎪⎪⎪⎨⎧≥−++−≤+−+−=−+−+−+−=x x x x x x x x x x x x st x x x x Z ,0,,4321⎪⎩≥无约束x x x x ⎪⎪⎩⎪⎪⎨⎧≥=−+−++−=+−+−+=−+−+−+−+−=0,,,,,232142222455243max 64241321642413215424132142413214241321x x x x x x x x x x x x x x x x x x x x x x x st x x x x x Z 第一章习题解答⎪⎪⎨⎧≥≤≤−+−=++−+−=无约束321321321321,0,0624322min)2(x x x x x x x x x st x x x Z ⎩⎪⎩⎪⎨⎧≥=++−+=−++−+−+=0,,,,6243322max 43231214323121323121323121x x x x x x x x x x x x x x st x x x x Z第一章习题解答634334max )3(3212121⎪⎪⎧=−+=++=x x x x x st x x Z 517,0,1,59,524,,1,0424321421=====⎪⎪⎩⎨=≥=++Z x x x x j x x x x j 该题是唯一最优解:)("第一章习题解答⎪⎧≤++−≤++++=151565935121510max 321321x x x x x x x x x Z 该题无可行解。

(完整word版)运筹学(胡运权)第五版课后答案,运筹作业

(完整word版)运筹学(胡运权)第五版课后答案,运筹作业

47页1.1b羅蕿用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解薅47页1。

1d蒂无界解(b)衿1.2蕿约束方程的系数矩阵A=1234莇2112蚄P1P2P3P4,运筹作业肀最优解A=(01/220)T和(0011)T页13题肆49膃设Xij为第i月租j个月的面积羄minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x13+6000x23+7300x 14螁s.t.聿x11+x12+x13+x14≥15膃x12+x13+x14+x21+x22+x23≥10膀x13+x14+x22+x23+x31+x32≥20艿x14+x23+x32+x41≥12袇Xij≥0芃用excel求解为:薁用LINDO求解:羁LPOPTIMUMFOUNDATSTEP3薆OBJECTIVEFUNCTIONVALUE 蚇1)118400.0羂VARIABLEVALUEREDUCEDCOST 荿Z0.0000001。

000000虿X113.0000000。

000000螇X210。

0000002800。

000000莃X318。

0000000.000000肁X410.0000001100。

000000莈X120.0000001700.000000袆X220.0000001700。

000000螄X320.0000000。

000000蕿X130.000000400.000000膇X230。

0000001500。

000000袆X1412.0000000.000000袁ROWSLACKORSURPLUSDUALPRICES芁2)0。

000000—2800。

000000羆3)2.0000000.000000羆4)0。

000000—2800.000000节5)0。

000000-1700.000000蝿NO。

ITERATIONS=3罿答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,页14题肆50蚃设a1,a2,a3,a4,a5分别为在A1,A2,B1,B2,B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1,A2,B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。

胡运权运筹学第五版第一章习题讲解

胡运权运筹学第五版第一章习题讲解

1.3 答案:
●单纯形法:
Cj CB 0 0 基 x3 x4 Cj-Zj 0 x3
10
x1
Cj-Zj
8/5
1
0
2/5
1 1
0
0 5/14
1/5
-2 -3/14
5
x2
3/2
0
10
x1
Cj-Zj
1
1
0
0
0
-1/7
-5/14
2/7
-25/14
Return

课后题答案
z' -3x1 x 2 'x 2 ' '-2x 3 '0x 4 0x 5 - Mx6 - Mx7
台时 限制 6000 1000 0 4000 7000 4000
单位台 时费用 0.05 0.03 0.06 0.11 0.05
6 4 7 0.25 0.36 0.25 0.44 0.25 0.35
6 4 7 0.21 0.36 0.21 0.44 0.21 0.77
8
8 11
0.5 0.48
0.27 0.48

课后题答案
1.1(a)答案: 该问题有无穷多最优解。 取特殊值:(1.5,0) 计算目标函数最优值 得:min z=3。
1.1(a)
1.1(b)答案: 由图可知:该Lp问题没 有可行域,即可得出: 该问题无可行解
1.1(b)
Return

课后题答案
1.2(b)答案:
基解 基
x1 P2 P3 P4 P3 -4 2/5 -113 ) 10 x211 6000 7( x x x ) 9 x 12 x 121 122 123 221 322 10000 6( x111 x121 ) 8( x211 x221 ) 4000 s.t. 4( x112 x122 ) 11x322 7000 7( x113 x123 ) 4000 x111 , x112 , x113 , x121 , x122 , x123 , x211 , x221 , x322 0

运筹学(第五版) 习题答案

运筹学(第五版)  习题答案
第二阶段最优解(4/5,9/5,0,0,0,0 min z=7
非基变量 的检验数 =0,所以有无穷多最优解。
(3)解:大M法
加入人工变量,化成标准型:
Max z=10 +15 +12 +0 +0 +0 -M
s.t. 5 +3 + + =9
-5 +6 +15 + =15
2 + + - + =5
, , , , , , 0
当 0,目标函数在原点最大值。
k= 时, , 同号。
当 0时,目标函数在BC线断上任一点有最大值
当 0时,目标函数在原点最大值。
k=0时, =0
当 0时,目标函数在A点有最大值
当 0,目标函数在OC线断上任一点有最大值
(2)当 =0时,max z=
0时,目标函数在C点有最大值
0时,目标函数在OA线断上任一点有最大值
(i=1,2,3…,n)
0, 0, (i=1,2,3…n; k=1,2….,m)
M是任意正整数
初始单纯形表:
-M
-M

-M



b




-M
1
1
0

0
1
1


0
0

0
-M
1
0
1

0
0


0
0

0












《运筹学(胡运权)》第五版课后习题答案

《运筹学(胡运权)》第五版课后习题答案
47页1.1b
用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解
47页1.1d
无界解
1.2(b)
约束方程的系数矩阵A= 1 2 3 4
2 1 1 2
P1 P2 P3 P4

基解
是否可行解
目标函数值
X1 X2 X3 X4
P1 P2
-4 11/2 0 0

P1 P3
2/5 0 11/5 0

43/5
程序法
6.4a
破圈法
避圈法
最小部分树16
6.4b
最小部分树32
172页6.11
红色曲线为使用一年卖出
蓝色曲线为使用两年卖出
绿色曲线为使用三年卖出
紫色曲线为使用四年卖出
最短路程为3.7万元,路径为v0-v1-v4或v0-v2-v4或v0-v1-v2-v4
三种方案分别为:第一年年初买新车,年末卖掉再买新车,一直用到第四年年末卖掉;
x2≤4+(1-y2)M
y1+y2=1
y1,y2=0或1
e)设yi= 1第i组条件起作用
0第i组条件不起作用i=1,2则
x1+x2≤5-(1-y1)M
x1≤2-(1-y2)M
x3≥2+(1-y3)M
x3+x4≥6+(1-y4)M
y1+y2+y3+y4≥2
y1,y2,y3,y4=1或0
4.2
minz=
d)
maxz=3x1+x2+4x3-0.4y
s.t.
6x1+3x2+5x3≤45
3x1+4x2+5x3-y≤30

(完整版)运筹学胡运权第五版课件(第1章)

(完整版)运筹学胡运权第五版课件(第1章)

s.t.
4x1
16
5 x2 15
x10, x2 0
标准化
max z 2x1 3x2 0x3 0x4 0x5
2x1 2x2 x3
12
s.t.
4
x1
5 x2
x4 16 x5 15
x1, x2 , x3, x4 , x5 0
(3)若决策变量xj≤0,则令
x
j
xj

x
j
0

am1x1+am2x2+…+amnxn≤(=,≥) bm
x1 , x2, …, xn≥0
(3)其他形式: 连加形式
1-3 线性规划问题的标准形式
1、标准形式

2、条件
目标函数求极大值 约束条件全是等式(线性方程组) 决策变量全非负 右端常数全非负
3、标准化方法
(1)若目标函数求极小值,即
则令 z z
即求目标函数在若干约束条件下的最值。
3、规划问题数学模型的三要素
(1)决策变量:决策者为实现规划目标采取的方案、措施, 是问题中要确定的未知量。用x1,x2,…,xn表示。
(2)目标函数:问题要达到的目标要求,表示为决策变量的 函数。用 z=f(x1,x2,…,xn)表示。 (3)约束条件:决策变量取值时受到的各种可用资源的限制, 表示为含决策变量的等式或不等式。
运筹学
( Operations Research )
绪论
一、古代朴素的运筹学思想
例如:田忌赛马
二、运筹学的起源
国外 英文原名 Operations Research 简称“O.R.” 直译为:运用研究或作业研究 正式出现于1938年7月英国一份关于防空作战 系统运行的研究报告中

运筹学基础及应用第五版胡运权第一章

运筹学基础及应用第五版胡运权第一章
问题的提出 某企业计划生产Ⅰ、Ⅱ两种产品。这两种产品都要分别在A、B、C、D四种不同设备上加工。生产每件产品Ⅰ需占用各设备分别为2、1、4、0h,生产每件产品Ⅱ,需占用各设备分别为2、2、0、4h。已知各设备计划期内用于生产这两种产品的能力分别为12、8、16、12h,又知每生产一件产品Ⅰ企业能获得2元利润,每生产一件产品Ⅱ企业能获得3元利润,问企业应安排生产两种产品各多少件,使总的利润收入为最大。
xi 0
aij
aLj
xL 0
i
∴ P1 , P2,······,PL-1, PL+1,······ Pm, Pj 线性无关。
∴ X1 也为基本可行解。
四、最优性检验和解的判别

,其中 随基的改变而改变
X1 = (x1 0- a1j ,x2 0- a2j ,···,xm 0- amj ,0,···,,···,0)T
必要性:X非基本可行解 X非凸集顶点 不失一般性,设X=(x1,x2,······,xm,0,0,······,0)T,为非基本可行解, ∵ X为可行解,
证:等价于 X非基本可行解X非凸集顶点
又 X是非基本可行解, ∴ P1,P2,······,Pm线性相关,即有 1P1+2P2+······+mPm=0, 其中1,2,······,m不全为0,两端同乘≠0,得 1P1+2P2+······+mPm=0,······(2)
∵ >0, 1->0 ,当xj=0, 必有yj=zj=0

pjyj =
j=1
n
pjyj=b ······(1)
j=1
r
pjzj =
j=1
n
pjzj=b ······(2)

清华大学《运筹学教程》胡运权主编课后习题答案(第一章)

清华大学《运筹学教程》胡运权主编课后习题答案(第一章)

2)c=0
3)c>0
d<0 d=0 d>0
0
c 3 d 4
A1点 A1点 A3点
A2A3线段
3 c 5 4 d 2
c 5 d 2 c 5 d 2
c 3 d 4
A2点
A1A2线段 A1点
l.6 考虑下述线性规划问题:
max Z c1 x1 c2 x2 a11 x1 a12 x2 b1 st .a21 x1 a22 x2 b2 x1 , x2 0
-1
x2
0
x3
0
x4
-M
x5
-M
x6
CB
xB
x5
x6
x4
i
-M -M 0
3 6 4
[3] 4 1
1 3 2
0 -1 0
0 0 1
1 0 0
0 1 0 0
1 3/2 4 3 6/5 9/5
cj zj
7M-4
1 2 3 1 0 0 0
4M-1
1/3 [5/3] 5/3
5M/3+1/3
-M
0 -1 0 -M
0
0 0 1 0
0
1/3 -4/3 -1/3
-7M/3+4/3
-4 -M 0
x1
0
1 0 0
x6
x4
cj zj
cj
x6
是否基 可行解
Z
(x1,x2,x3)
(x1,x2,x4) (x1,x2,x5) (x1,x2,x6)
0
0 0 7/4
61/3
10 3 -4
-7/6
0 0 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解。
3.(多选)线性规划的最优解有以下几种可能?( )[中山大学 2008 研] A.唯一最优解 B.多个最优解 C.没有最优解,因为目标函数无界 D.没有最优解,因为没有可行解 【答案】ABCD 【解析】线性规划问题的每个基可行解对应可行域的一个顶点,若现行规划问题有最优 解,必在某个顶点上得到,当该顶点唯一时,有唯一最优解;当目标函数在多个顶点上达到 最大值时,则该问题有无限多个最优解;目标函数无界,称线性规划问题具有无界解,此时 无最优解;使目标函数达到最大的可行解称为最优解,故没有可行解就没有最优解。
2.当极大化线性规划模型达到最优时,某非基变量 xj 的检验数为σj,当价格系数为 cj 的变化量为∆cj 时,原线性规划问题最优解保持不变的条件是______。[武汉大学 2005 研]
【答案】σj+∆cj≤0 【解析】xj 为非基变量,其价格系数变化∆cj 后,其检验数变为σj′=σj+∆cj ,极大化 线性规划模型最优解保持不变的条件是σj′=σj+∆cj ≤0。
3 / 94
圣才电子书 十万种考研考证电子书、题库视频学习平台

【解析】若 B=(P1,P2,…,Pm)为 A 中 m 个线性无关的列向量,此时令非基变量 xm+1=xm+2=…=xn=0,这时变量的个数等于线性方程组的个数,用高斯消去法,可求得 对应于基 B 的基可行解为 X=(x1,x2,…,xm,0,…,0)T 。由最优解的判别定理,若 对于一切 j=m+1,…,n,有σj≤0,则所求得的基可行解为最优解。
3.若 X 为某极大化线性规划问题的一个基可行解,用非基变量表达其目标函数的形式
为 Z Z0 j X j 则 X 为该 LP 最优解的条件是:______。[武汉大学 2006 研] jJ 【答案】σj≤0 【解析】求极大化问题,则当所有非基变量的检验数均为非正时,即得最优解。线性规
划最优时要求非基变量检验数小于等于 0,所以σj≤0。
1 / 94
圣才电子书 十万种考研考证电子书、题库视频学习平台划问题的最优解,其中λ1、λ2 为正的实数。( )[北京交通大学 2010 研] 【答案】× 【解析】必须规定λ1+λ2=1,且λ1,λ2≥0。当某一线性规划问题存在两个最优解时,
则它一定存在无数个最优解,最优解为 x=λ1x(1)+λ2x(2)且λ1+λ2=1,λ1,λ2≥0。
2.(多选)线性规划可行域为封闭的有界区域,最优解可能是( )。[中山大学 2007 研] A.唯一的最优解 B.一个以上的最优解
2 / 94
圣才电子书

C.目标函数无界
十万种考研考证电子书、题库视频学习平台
D.没有可行解
【答案】AB
【解析】可行域非空,故有可行解;可行域封闭,故目标函数有界,有一个或多个最优
圣才电子书

十万种考研考证电子书、题库视频学习平台
第三部分 章节题库
第一章 线性规划及单纯形法
一、判断题 1.线性规划问题的每一个基解对应可行域的一个顶点。( )[北京交通大学 2010 研] 【答案】× 【解析】基解不一定是可行解,基可行解一一对应着可行域的顶点。
2.若线性规划问题的可行解为最优解,则该可行解必定是基可行解。( )[南京航 空航天大学 2011 研]
二、选择题 1.单纯形法中,关于松弛变量和人工变量,以下说法正确的是( )。[中山大学 2008 研] A.在最后的解中,松弛变量必须为 0,人工变量不必为 0 B.在最后的解中,松弛变量不必为 0,人工变量必须为 0 C.在最后的解中,松弛变量和人工变量都必须为 0 D.在最后的解中,松弛变量和人工变量都不必为 0 【答案】B 【解析】松弛变量是在约束不等式号的左端加入的,在最后的解中,其值可以不必为 0; 人工变量是在原约束条件为等式的情况下加入的,只有基变量中不再含有非零的人工变量 时,原问题才有解,所有最后的解中人工变量必须为 0。如果人工变量不为 0,则原问题无 可行解。
四、简答题 简述目标规划单纯形法求解的基本思想。[南京航空航天大学 2009 研] 答:目标规划单纯形法求解的基本思想为: (1)建立初始单纯形表,在表中将检验数行按优先因子个数分别列成 K 行,置 k=1; (2)检查该行中是否存在负数,且对应的前 k-1 行的系数是零。若有负数取其中最 小者对应的变量为换入变量,转第(3)步。若无负数。则转第(5)步; (3)按最小比值规则确定换出变量,当存在两个和两个以上相同的最小比值时,选取 具有较高优先级别的变量为换出变量; (4)按单纯形法进行基变换运算,建立新的计算表,返回第(2)步; (5)当 k=K 时,计算结束。表中的解即为满意解。否则置 k=k+1,返回到第(2) 步。
三、填空题 1.对于线性规划问题:Max Z=CX;AX≤b,X≥0,若 B=(P1,P2,…,Pm)为 A 中 m 个线性无关的列向量,且为该 LP 的一个可行基,则对应于基 B 的基可行解为:______, 该基可行解为最优解的条件是:______。[武汉大学 2005 研] 【答案】X=(x1,x2,…,xm,0,…,0)T;对于一切 j=m+1,…,n,有σj≤0
【答案】√ 【解析】基解且可行才有可能是最优解。
3.如果线性规划问题无最优解,则它也一定没有基可行解。( )[东北财经大学 2008 研]
【答案】× 【解析】当问题的可行域是无界的,因而有无界的可行解。此时该问题无有限最优解, 但是存在基可行解。
4.若 x(1)、x(2)分别是某一线性规划问题的最优解,则 x=λ1x(1)+λ2x(2)也是该
4.两阶段法中,若第一阶段目标函数最优值不为 0,则原问题______。[北京科技大学 2011 研]
【答案】无可行解 【解析】第一阶段目标函数值不是 0,则说明最优解的基变量中含有非零的人工变量, 表明原线性规划问题无可行解。
4 / 94
圣才电子书 十万种考研考证电子书、题库视频学习平台

相关文档
最新文档