灰色系统理论总结
灰色系统理论在环境评估中的应用分析
灰色系统理论在环境评估中的应用分析引言:随着环境污染和资源浪费的日益严重,环境评估成为我们认识、改善和保护环境的重要手段之一。
在环境评估过程中,我们需要对各种因素进行全面、准确的分析与评价。
灰色系统理论作为一种新颖的分析方法,具有适用于不确定和不完全信息的特点,逐渐引起环境评估领域的关注与应用。
本文将通过分析灰色系统理论在环境评估中的应用,探讨其优势和局限性,并展望未来的发展。
一、灰色系统理论概述灰色系统理论是由我国科学家陈纳言教授于1982年提出的,是一种处理灰色信息的系统方法。
灰色信息是指知识、数据或信息不完全、不确定的情况下所获得的信息。
灰色系统理论通过数学和统计方法,将灰色信息转化为可分析的模型,从而实现对信息的预测、决策和优化。
灰色系统理论具有简单、快速、灵活、经济等特点,被广泛应用于工程、经济、环境、社会等领域。
二、灰色系统理论在环境评估中的应用1. 环境质量评估环境质量评估是对某一特定环境区域内的污染状况进行全面评估的过程。
灰色系统理论可以有效地处理环境质量评估中存在的不完全信息和不确定性。
通过对已知的环境因素进行建模和分析,可以预测环境变量的发展趋势,评估环境质量的变化情况,并提出预警措施。
例如,在城市环境质量评估中,可以利用灰色系统理论预测空气质量、水质指标等,并为城市管理部门提供决策依据。
2. 环境风险评估环境风险评估是对自然环境或人类活动可能引发的危害和风险进行定量评估的过程。
灰色系统理论可以有效地处理环境风险评估中的不确定性和复杂性。
通过对已知的环境影响因素进行建模和分析,可以预测环境风险的发展趋势,并进行等级评估。
例如,在土壤污染风险评估中,可以利用灰色系统理论分析土壤样本中的有害物质含量、地下水流动速度等因素,评估土壤污染的程度和风险,并制定相应的修复和监控对策。
3. 环境绩效评估环境绩效评估是对某一特定组织、企业或行业在环境保护和可持续发展方面的表现进行评估的过程。
灰色系统理论简介
通过灰色关联分析等法,研究社会问题的内在关联和影响因素,为解决社会 问题提供思路。
环境领域
气候变化预测
利用灰色系统理论对气候数据进行处理和分析,预测未来气候变化趋势,为应对气候变化提供依据。
环境污染评估
通过构建灰色预测模型,评估环境质量状况和污染发展趋势,为环境治理提供参考。
农业领域
行预测,为空气污染防治提供决策支持。
案例三:灰色系统理论在农业生产中的应用
总结词
利用灰色关联分析和灰色预测模型指导农业生产,提 高农业产量和经济效益。
详细描述
农业生产是一个复杂的系统,受到多种因素的影响, 而灰色系统理论可以为农业生产提供有效的指导。通 过灰色关联分析和灰色预测模型,可以分析农业系统 中各因素之间的关联程度和未来发展趋势,为农业生 产提供科学依据。例如,在农作物种植中,可以利用 灰色系统理论分析气候、土壤等因素对农作物生长的 影响,制定合理的种植计划,提高农业产量和经济效 益。
灰色关联分析的优势在于 它能够处理不完全信息, 对数据量要求不高,且计 算简单。
ABCD
它通过比较各因素之间的 相似度,量化它们之间的 关联程度,从而为决策提 供依据。
在实际应用中,灰色关联 分析广泛应用于经济、社 会、工程等多个领域。
灰色预测模型
01
灰色预测模型是灰色系统理论中 用于预测未来发展趋势的方法。
发展历程
灰色系统理论经过多年的研究和发展,已经广泛应用于各个领域, 包括经济、管理、社会、环境等。
未来展望
随着信息技术和大数据的不断发展,灰色系统理论将会在更广泛的 领域得到应用和发展,同时也将面临更多的挑战和机遇。
02
灰色系统理论的核心概 念
灰色关联分析
灰色系统理论概述
灰色系统理论概述一、本文概述本文旨在对灰色系统理论进行全面的概述和探讨。
灰色系统理论,作为一种专门研究信息不完全、不明确、不确定系统的新兴学科,自其诞生以来,已经在众多领域,如经济管理、预测决策、生态环保等,展现出其独特的优势和强大的应用价值。
本文首先简要介绍了灰色系统理论的基本概念、发展历程和主要特点,然后详细阐述了灰色系统理论的核心内容,包括灰色预测、灰色决策、灰色关联分析等方面。
本文还将对灰色系统理论的应用领域和前景进行展望,以期能够为广大读者提供一个全面、深入的灰色系统理论概述,并激发更多学者和研究人员对该领域的兴趣和探索。
二、灰色系统理论的基本原理灰色系统理论是一种专门研究信息不完全、不明确的系统的理论。
它的基本原理主要包括灰色关联分析、灰色预测模型和灰色决策等。
这些原理的核心思想是利用已知信息,通过灰色理论的处理方法,挖掘系统的内在规律,从而实现对系统的有效描述和预测。
灰色关联分析是灰色系统理论中的一种重要方法。
它通过计算系统中各因素之间的关联度,揭示因素之间的内在联系和动态变化过程。
这种方法对于处理信息不完全、数据不规则的系统尤为有效,能够帮助我们更好地理解系统的结构和行为。
灰色预测模型是灰色系统理论的另一个核心原理。
它利用少量的、不完全的信息,通过建立灰色微分方程或灰色差分方程,实现对系统发展趋势的预测。
灰色预测模型具有预测精度高、计算简便等优点,广泛应用于经济、社会、工程等多个领域。
灰色决策是灰色系统理论在决策领域的应用。
它通过分析决策问题中的灰色信息,结合灰色关联分析和灰色预测模型等方法,为决策者提供科学、合理的决策依据。
灰色决策注重决策过程的系统性和整体性,有助于提高决策的科学性和准确性。
灰色系统理论的基本原理包括灰色关联分析、灰色预测模型和灰色决策等。
这些原理为我们提供了一种全新的视角和方法来理解和处理信息不完全、不明确的系统。
通过运用这些原理,我们可以更好地揭示系统的内在规律,实现对系统的有效描述和预测,为决策和实践提供有力支持。
灰色系统理论介绍
灰色系统理论介绍1)两个概念:累加法生成数(AGO )和累减法生成数(IAGO )(1)累加法生成数1-AGO 指一次累加生成。
记原始序列为{}(0)(0)(0)(0)(1),(2),...,()X x x x n = 一次累加生成序列为 {}(1)(1)(1)(1)(1),(2),...,()X x x x n =其中, (1)(0)(1)(0)0()()(1)()k i x k x i x k x k ===-+∑(2)累减生成数(IAGO )是累加生成的逆运算。
记原始序列为{}(1)(1)(1)(1)(1),(2),...,()X x x x n = 一次累减生成序列为 {}(0)(0)(0)(0)(1),(2),...,()X x x x n = 其中, (0)(1)(1)()()(1)x k x k x k =--规定(1)(0)0x = 2)GM (1,1)模型符号的含义:表示一阶、一个变量的灰色系统模型。
令(0)X表示需要建模的序列,(1)X 为(0)X 的1-AGO 序列,则有(1)(0)0()()k i x k x i ==∑ 定义(1)Z 为(1)X 的紧邻均值(MEAN )生成序列:(1)(1)(1)()(1)()2x k x k z k +-=则可建立如下灰微分方程:(0)(1)()()x k az k b += 记(,)Ta b a ∧=,则灰微分方程的最小乘估计参数列满足下式:1()T T n B B B Y a∧-=其中,(1)(1)(1)(2)1(3)1()1z B z z n ⎛⎫- ⎪=- ⎪ ⎪-⎝⎭ (1)(1)(1)(2)(3)...(4)n x x Y x ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ 称(1)(1)dx ax b dt +=为微分方程(0)(1)()()x k az k b +=的白化方程,也称为影子方程。
综上所述,则有(1)白化方程(1)(1)dx ax bdt +=的解也称为时间响应函数:(1)(1)()((0))at b b t x e a a x ∧-=-+(2)GM (1,1)灰色微方程(0)(1)()()x k az k b +=的时间相应序列为(1)(1)(1)(0)ak b b k x e a a x ∧-⎡⎤+=-+⎢⎥⎣⎦,k=1,2,3…n (3)取(1)(0)(0)(1)x x =,则有 (1)(0)(1)(1)ak b b k x e a a x∧-⎡⎤+=-+⎢⎥⎣⎦,k=1,2,3…n (4)将值还原得到 (0)(1)(1)(1)(1)()k k k x x x ∧∧∧+=+- 上式即为预测方程。
灰色系统理论及其应用学习心得
灰色系统理论及其应用学习心得1.灰色系统理论的产生现代科学技术在高度分化的基础上又呈现了高度综合的大趋势,导致了具有方法论意义的系统科学学科群的出现。
系统科学揭示了事物之间更为深刻、更具本质性的内在联系,大大促进了科学技术的整体化进程;许多科学领域中长期难以解决的复杂问题随着系统科学新学科的出现迎刃而解;人们对自然界和客观事物演化规律的认识也由于系统科学新学科的出现而逐步深化。
20 世纪 40 年代末诞生的系统论、信息论、控制论,产生于20 世纪60 年代末、70 年代初的耗散结构理论、协同学、突变论、分形理论以及 70 年代中后期相继出现的超循环理论、动力系统理论、泛系理论等都是具有横向性、交叉性的系统科学新学科。
在系统研究中,由于内外扰动的存在和认识水平的局限,人们所得到的信息往往带有某种不确定性。
随着科学技术的发展和人类社会的进步,人们对各类系统不确定性的认识逐步深化,不确定性系统的研究也日益深入。
20 世纪后半叶,在系统科学和系统工程领域,各种不确定性系统理论和方法的不断涌现形成一大景观。
如扎德(L. A. Zadeh)教授于60年代创立的模糊数学,邓聚龙教授于 80 年代创立的灰色系统理论,帕拉克(Z. Pawlak)教授于 80 年代创立的粗糙集理论(Rough Sets Theory)和王光远教授于 90年代创立的未确知数学等,都是不确定性系统研究的重要成果。
这些成果从不同角度、不同侧面论述了描述和处理各类不确定性信息的理论和方法。
1982年,中国学者邓聚龙教授创立的灰色系统理论,是一种研究少数据、贫信息不确定性问题的新方法。
灰色系统理论以“部分信息已知,部分信息未知”的“小样本”、“贫信息”不确定性系统为研究对象,主要通过对“部分”已知信息的生成、开发,提取有价值的信息,实现对系统运行行为、演化规律的正确描述和有效监控。
社会、经济、农业、工业、生态、生物等许多系统,是按照研究对象所属的领域和范围命名的,而灰色系统确是按颜色命名的。
[数学]灰色系统理论
灰色系统理论进行关联分析的两种方法:一 根 据数据的几何关系分析法;二 利用关联公式分析法
生成数的生成方法
生成方法 一次累加
应用相关 时间
一次累减
时间
均值生成
得 Xˆ 0 ( Xˆ 0 (1), Xˆ 0 (2), Xˆ 0 (3), Xˆ 0 (4), Xˆ 0 (5))
(2.8740, 3.2320, 3.3545, 3.4817, 3.6136)
对比原数据
X0=( x0(1), x0(2), x0(3), x0(4), x0(5) )
=( 2.874, 3.278, 3.337, 3.390, 3.679 )
3.检验预测值
4.预测预报 由模型 GM(1,1)所得到的指定时区内的预测值,
根据实际问题的需要,给出相应的预测预报。
定义 设原始数据序列
X 0 ( x0 (1), x0 (2), , x0 (n))
相应的预测模型模拟序列:
X0
x0
1 , x0
2,
残差序列:
x0
n
0 0 1 , 0 2 , 0 n
b a
85.276151e0.0372k
82.402151
第五步:求X1的模拟值
X 1 (x1 (1), x1 (2), x1 (3), x1 (4), x1 (5)) (2.8704,6.1060,9.4605,12.9422,16.5558)
第六步:还原出 X0 的模拟值,由 Xˆ0(k) Xˆ1(k) Xˆ1(k 1)
主要内容
灰色系统理论及其应用
5 灰色模型
5.1 GM(1,1) 模型
将时刻 k 2,3,, n 视为连续变量t 则数列 x(1) 就可视为时间 t 的函数,x(1) x(1) (t) GM(1,1) 的白化型为:
dx(1) ax(1) (t) b dt
5 灰色模型
5.2 GM(1, N)模型
GM (1, N) :模型是一阶的,包含N个变量的灰色模型
x(1) 的灰导数为: d (k) x(0) (k) x(1) (k) x(1) (k 1), k 2,3,, n
5 灰色模型
5.1 GM(1,1) 模型
x(1) 的紧邻均值序列为: z(1) (z(1) (2), z(1) (3),, z(1) (n))
z(1) (k) 0.5x(1) (k) 0.5x(1) (k 1), k 2,3,, n
1 n
n
( k
k 1
)2
6 灰色预测
6.2 灰色预测的步骤
(5)小误差概率合格模型: 小误差概率为:
p P k 0.67445S1
给定 p0 0, p p0 称模型为小误差概率合格模型
6 灰色预测
6.2 灰色预测的步骤
常用精度等级:
6 灰色预测
6.3 Verhulst GM (2,1) DGM
2 2
可容覆盖区域:(e n1 , e n2 )
2 2
(k ) (e n1 , e n2 )
6 灰色预测
6.2 灰色预测的步骤
1.数据的检验与处理:
2 2
(k ) (e n1 , e n2 )
2 2
(k ) (e n1 , e n2 )
数据列可用为模型的预测数据 数据列需进行变换处理
平移变换
灰色系统理论及其应用
灰色预测的步骤
灰色预测实例
预测对象:特种机器人研究室周总结 与计划未交人数。 周次 未交 人数 1 18 2 13 3 6 4 10 5 6
(8.1-8.15) (8.16-8.31) (9.1-9.15) (9.15-9.27) (9.28-10.11)
第一步 数据的检验与处理
x
(0)
(18,13, 6,10, 6)
六、灰色系统的应用
1、灰色系统在爬绳机器人上的应用 作为高空作业机器人,为了保证其运行可靠性,从 安全的角度要求对其气压系统工作可靠性进行预测, 确保系统安全。由于爬绳机器人工作过程状态可靠 性(主要对气源压力变化状态)具有一定的模糊灰色性, 采用传统预测方法很难对其进行较好的评价。
拟利用模糊灰色理论方 法对爬绳机器人工作可靠性 (主要对气源压力变化状态) 进行预测,即通过对系统气体 压力变化速率的分析, 通过置信度对系统可靠 性进行预测,根据气压变化对 空气压缩机进行控制,以保证 机械手与绳索之间有可靠夹 紧力。
7、关联分析: 灰色理论提出的灰关联度分析方法,是基于行 为因子序列的微观或宏观几何接近,以分析和确定 因子间的影响程度或因子对甚主行为的贡献测度而 进行的一种分析方法。灰关联是指事物之间的不确 定性关联,或系统因子与主行为因子的不确定性关 联,它根据因素之间发展态势的相似或相异程度来 衡量因素间的关联程度。由于关联度分析是按发展 趋势作分析,因而对样本量的大小没有太高的要求。 分析时也不需要典型的分布规律。而且分析的结果 一般与定性分析相吻合,具有广泛的实用价值。
五、识无穷尽公理,灰性不灭原理,自性相对原理, 解的非唯一性、信息可补充性等。 灰生成: 如层次转换,互补规律引用,内涵显露与转化、量化。 灰关联: 建立整体比较机制,克服两两比较的局限性。吸收 距离空间的量化特性,吸收点集拓扑空间的整体比较内 涵,升华成为灰关联空间。在灰关联空间中,可辨别系统 因子的权重,确定因子的序化关系,划分系统主行为。
第6章 灰色系统理论
为
因素 X i 的行为序列, D4 为序列算子,且
X i D4 ( xi (1)d4 , xi (2)d4 , , xi (n)d4 )
其中
xi (k )d4 1 xi (k ); k 1,2,, n
则称 D4 为逆化算子, X i D4 为 X i 在逆化算子 ,简称逆化像。
D4 下的像
, z (1) n
1 (1) (1) z k x (k ) x (k 1) 2
(1)
例
对于
X
(0)
(1,1,1,1,1) ,有
AGO X (0) X (1) (1, 2,3, 4,5)
Z (1) z (1) (1), z (1) (2), z (1) (3), z (1) (4)
xi (k )d1 xi (k ) / xi (1); k 1,2, , n
则称 D1 为初值化算子, X i 为原像,X i3.1.3 设
X i ( xi (1), xi (2),
, xi (n))
为因素 X i
的行为序列, D2 为序列算子,且
概率统计 随机不确定 康托集 映射 频率统计 典型分布 内涵 历史统计规律 大样本
模糊数学 认知不确定 模糊集 映射 截集 隶属度可知 外延 认知表达 凭经验
模糊数学着重研究“认知不确定”问题,其 研究对象具有“内涵明确,外延不明确”的特点。 主要凭借经验,借助于隶属函数进行处理。 概率统计研究的是“随机不确定”现象的历 史统计规律,考察具有多种可能发生的结果之 “随机不确定”现象中每一种结果发生的可能性 的大小,其出发点是,大样本,且对象服从某种 典型分布。 灰色系统研究的是“部分信息明确,部分信 息未知”的“小样本,贫信息”不确定性系统, 它通过对已知“部分”信息的生成去开发了解、 认识现实世界。着重研究“外延明确,内涵不明 确”的对象。例如:2050年中国人口控制在15亿 到16亿之间、树高在20米至30米。
灰色系统理论
灰色系统理论简单介绍灰色系统法理论就是某一个系统内部各个因素之间的关系不是非常的明确。
例如:在农业生产中,生产作物的生长情况与农药、土壤以及气候等条件之间的关系。
我们对于这一系统内这些因素之间的关系不是非常的了解,所以这就叫作一个灰色系统。
灰色系统理论提出了一种新的分析方法—关联度分析方法,即根据因素之间发展态势的相似或相异程度来衡量因素间关联的程度,它揭示了事物动态关联的特征与程度。
由于以发展态势为立足点,因此对样本量的多少没有过分的要求,也不需要典型的分布规律,计算量少到甚至可用手算,且不致出现关联度的量化结果与定性分析不一致的情况。
灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。
通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。
但是,离散模型只能对客观系统的发展做短期分析,适应不了从现在起做较长远的分析、规划、决策的要求。
尽管连续系统的离散近似模型对许多工程应用来讲是有用的,但在某些研究领域中,人们却常常希望使用微分方程模型。
事实上,微分方程的系统描述了我们所希望辨识的系统内部的物理或化学过程的本质。
相关理论对因素间关联度的分析:对数据进行变换取消数据的纲量,使数据具有可比性,以保证建模的质量。
对数据变换的方法有:1、初值化变换 f(x(k))==y(k), k=1,2,…,n ()(1)x k x 2、均值化变换 f(x(k))=1()1(),()nk x k y k x x k n x===∑3、百分比变换 ()(())()()max kx k f x k y k x k ==4、倍数变换 ()(())(),()0()min min k kx k f x k y k x k x k ==≠5、归一化变换 其中x 为大于零的某个值0()(())()x k f x k y k x ==06、极差最大之化变换 ()(())()min ()max ()k kx k f x k y k x k x k -==7、区间之化变换 ()(())()min ()max ()min ()k k k x k f x k y k x k x k x k -==-某一时刻的比较数列为x =i {}()1,2,...,((1),(2),...,()),1,2,...,i i i ix k k n x x x n i m ===参考书列为x =o {}0000()1,2,...,((1),(2),...,())x k k n x x x n ==称 (1)式 000()()()()()()()()()maxmax minmin maxmax o s s s t s tii ss tx t x t x t x t k x k x k x t x t ρξρ-+-=-+-为比较数列x 对参考数列x 在时刻k 的关联系数,其中为分辨系数。
灰色系统基本原理
灰色系统基本原理
灰色系统理论是一种用于处理不确定性和模糊性问题的方法,它的基本原理包括以下几个方面:
1. 灰色性:灰色系统理论认为,系统中的信息部分已知、部分未知,这种介于白色(完全已知)和黑色(完全未知)之间的状态被称为灰色。
2. 灰色关联分析:通过计算系统中各因素之间的灰色关联度,可以分析它们之间的相互关系和影响程度。
灰色关联分析用于确定因素间的相似性或相关性,常用于因素筛选、预测和决策等方面。
3. 灰色建模:灰色系统理论提供了多种建模方法,如灰色预测模型、灰色决策模型等。
这些模型基于灰色系统的特征和数据,通过对历史数据的分析和挖掘,对系统的未来发展进行预测或决策。
4. 灰色聚类:灰色聚类是一种基于灰色关联度的聚类方法,它根据各样本之间的相似程度进行分类或分组。
5. 灰色决策:灰色决策方法用于在不确定和模糊的环境下做出决策。
它考虑了多种因素和不同方案的影响,通过综合评价和比较,选择最优的决策方案。
6. 数据预处理:在应用灰色系统理论之前,通常需要对数据进行预处理,如数据归一化、灰色生成等,以使数据符合灰色系统的要求。
总的来说,灰色系统理论提供了一种处理不确定性和模糊性问题的方法,它通过对系统中部分已知信息的分析和利用,推测和预测系统的整体行为和发展趋势。
需要注意的是,灰色系统理论并非适用于所有情况,具体应用时需要根据问题的特点进行选择和调整。
灰色系统理论
灰色系统理论及其在农业上的应用1、灰色系统1.1:灰色系统理论的概念1.2:灰色系统理论的基本原理1.3:灰色系统理论的主要内容 1.1、灰色系统理论的概念及研究对象灰色系统是按颜色的深浅形容信息的明确程度。
我们用“黑”表示信息未知,用“白”表示信息完全明确,用“灰”表示部分信息明确、表示部分信息不明确。
相应地,信息完全明确的系统称为白色系统,信息未知的系统称为黑色系统,部分信息明确、部分信息不明确的系统称为灰色系统。
灰色系统理论的研究对象是“部分信息已知,部分信息未知”的“贫信息”不确定性系统,它通过对“部分” 已知信息的生成、开发,实现对现实世界的确切描述和认识。
1.2、灰色系统理论的基本原理公理1—差异信息原理:“差异”是信息,凡信息必有差异。
公理差异信息原理:差异信息原理公理2—解的非唯一性原理:信息不完全、不确定的解是非解的非唯一性原理:公理解的非唯一性原理唯一的。
公理3—最少信息原理:灰色系统理论的特点是充分开发利最少信息原理:公理最少信息原理用已占有的“最少信息”。
公理4—认知根据原理:信息是认知的根据。
认知根据原理:公理认知根据原理公理5—新信息优先原理:新信息认知的根据。
新信息优先原理:公理新信息优先原理公理6—灰性不灭原理:“信息不完全”(灰)是绝对的。
灰性不灭原理:公理灰性不灭原理 1.3、灰色系统理论的主要内容灰色系统理论经过10多年的发展,已基本建立起一门新兴学科的结构体系。
其主要内容包括以灰色朦胧集为基础的理论体系,以灰色关联空间为依托的分析体系,以灰色序列生成为基础的方法体系,以灰色模型为核心的模型体系,以系统分析、评估、建模、预测、决策、控制、优化为主体的技术体系,下面展开讨论灰色关联分析。
2、灰色关联分析及其农业应用2.1:灌溉用水量变化趋势的灰色关联分析2.2:多目标决策灰色关联投影法在水利工程开发中的应用 2.3:用灰色关联法对制造业信息化投入产出进行分析2.1、灌溉用水量变化趋势的灰色关联分析众所周知,灌溉用水量是反映灌区经营管理水平的一个主要经济指标,它的变化一方面说明了气候因素的影响,另一方面又是灌区作物种类及其种植面积变化的具体体现,还是政府农业政策的“晴雨表”。
灰色系统理论简介
灰色系統理論簡介一、什麼是灰色系統二、什麼是灰色系統理論三、灰色系統理論建立的歷史背景四、灰色系統理論的主要內容五、灰色系統理論的兩條基本原理六、灰色系統的應用範疇七、灰色系統的優點八、灰色系統的應用實例一、什麼是灰色系統(Grey System)灰色分析全名為灰色系統理論分析(Grey System Theory),是由中國鄧聚龍教授於1982年在國際經濟學會議上提出,該理論主要是針對系統模型之不明確性,資訊之不完整性之下,進行關於系統的關聯分析(Relational Analysis)、模型建構(Constructing A Model)、借由預測(Prediction)及決策(Decision)之方法來探討及瞭解系統。
自然界對人類社會來講不是白色的(全部都知道),也不是黑色的(一無所知),而是灰色的(半知半解)。
人類的思考、行為也是灰色的,人類其實是生存在一個高度的灰色信息關係空間之中,例如:人體系統、糧食生產系統等。
部分信息已知,部分信息未知的系統,稱為灰色系統。
控制論中主要以顏色命名,常以顏色之深淺表示研究者對內部信息(information)和對系統本身的了解及認識程度之多寡,黑色,表示信息缺乏;白色,表示信息充足;而介於白色(W)系統與黑色(B)系統之間,其信息部份已知,信息部分未知的這類系統便稱之為灰色(G)系統。
二、什麼是灰色系統理論灰色系統理論是研究灰色系統分析、建模、預測、決策和控制的理論。
它把一般系統論、信息論及控制論的觀點和方法延伸到社會、經濟和生態等抽象系統,並結合數學方法,發展出一套解決信息不完全系統(灰色系統)的理論和方法。
灰色系統理論分析具有溝通社會科學及自然科學的作用,可將抽象的系統加以實體化、量化、模型化及做最佳化。
三、灰色系統理論建立的歷史背景1948年,美國數學家申農提出『信息論』,學者維納(Weiner)發表『控制論』一書。
1951年,巴黎舉行了第一屆國際會議,確認了控制論是一們新興的學科。
灰色系统理论及其在决策分析中的应用
灰色系统理论及其在决策分析中的应用随着社会的不断发展和科技的不断进步,决策分析已成为企业等组织科学管理的必要手段。
而面对越来越多的信息和数据,如何通过分析来做出科学决策也成为人们亟待解决的问题。
灰色系统理论作为一种新的分析方法,受到了越来越多的关注。
一、灰色系统理论概念灰色系统理论是由我国科学家李学凌研究提出的一种新型理论,包括灰色系统动力学、灰色系统模型、灰色关联分析、灰色综合评价等方法。
所谓灰色,是指存在一定程度不确定性的事物,即信息或知识不完备的系统。
而灰色系统理论意在通过对这些灰色系统的分析,揭示其内在机理,预测其发展趋势,从而进行科学决策。
二、灰色系统理论方法灰色系统理论方法包括:1. 灰色关联分析方法:通过相似性比较,建立变量间的关联关系模型,从而揭示变量之间的影响机理。
例如,企业的销售额与广告投入、市场容量等因素之间的关系可以通过灰色关联分析找到。
2. 灰色综合评价方法:将多个因素的影响情况综合考虑,通过建立评价模型进行分析。
例如,对于一个新产品的推广,可以通过灰色综合评价方法综合考虑市场需求、产品特点、市场竞争等因素,来评估该产品的推广前景。
3. 灰色系统预测方法:对于一个未来发展趋势不确定的系统,通过建立预测模型,预测其未来的发展情况。
例如,对于一个企业的销售额,可以通过灰色系统预测方法建立销售额的预测模型,预测未来销售额的变化情况。
三、灰色系统理论在决策分析中的应用灰色系统理论在决策分析中的应用可以大致分为以下三个方面:1. 风险预测:灰色系统理论方法可以将多个因素的影响情况综合考虑,对未来可能发生的风险进行评估和预测。
例如,在做企业投资决策时,可以通过灰色系统理论方法对风险进行预测,从而有效减少投资风险。
2. 绩效评价:灰色系统理论方法可以对多因素进行综合评价,从而对某个绩效进行客观评价。
例如,在对企业销售绩效进行评价时,可以将销售额、市场份额、用户满意度等因素进行灰色综合评价,从而得出该企业销售绩效的客观评价结果。
灰色系统理论及其应用
灰色系统理论及其应用
灰色系统理论及其应用是一个重要的研究要点。
它是一种系统化
的解决实际问题的技术。
它是应用松弛确定和比较方法来研究具有不
确定性的实际系统的技术。
灰色系统理论主要有五个内容:一是灰色系统的建模方法,二是
相关性分析技术,三是灰色关联分析,四是灰色回归建模,五是模糊
优化建模。
它的应用主要是在能源和经济领域。
灰色系统理论在能源领域的应用可以解决能源供应系统和使用系
统的不确定性问题,使能源供求平衡,从而实现节能减排。
在经济领域,它可以作为效率测度、预测分析、价格测度以及投资评估等决策的技术,正确估计企业的发展趋势,有助于企业的成功。
灰色系统理论及其应用是一个重要的研究要点,它有效利用了弱
规则、模糊逻辑和时滞等技术,使我们能够更加深入地研究和分析不
确定性的实际问题,把不同的概念结合起来,有可能为解决现代实际
问题提供新思路。
灰色系统理论
灰色系统理论[25、26]是华中科技大学教授邓聚龙教授于20世纪70年代末至80年代初提出,并于1997年,苏叶庆提出一种灰色神经网络,将GM (1,1)和神经元网络结合。
同时,翁庆昌提出用基因算法辨识模糊灰色系统。
灰色理论的应用研究渗透到控制工程、机器学习等领域。
灰理论的特点是:1)它的基础是灰朦胧集,与概率论和模糊数学不同,它可以兼容0与1,也可以兼容[1,0],并具有演变动态的集。
它的依据是用一组信息去包容、覆盖给定命题。
2)它研究的手段是灰生成,即通过对数据的处理和信息加工为灰分析、灰建模、灰预测、灰决策等提供可比、合理的同极性的数据,达到发现数据中隐含的规律的目的。
3)灰动态模型的少数据可以少到4个数据,灰关联分析可以少到3个数据,灰决策可以少到3个样本。
4)灰色理论允许数据为非典型分布[27,28]。
建立GM (1,1)模型的实质是对原始序列做一次累加生成使生成的序列呈现一定的规律,然后建立一阶线性微分方程模型,求得拟合曲线对系统进行预测。
(1)GM (1,1)预测模型[29]设有原始数列{})()0(i X , i=1,2,…,n(3-1)将其累加生成新数列{})()1(i X , i=1,2,…,n (3-2) 其中,)()1(i X=∑=ij j X 1)0()(相应的微分方程为dt dX )1(+a )1(X =u (3-3)累加矩阵为B=[][][]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡++-+-1X 1)-(n X 211(3)X (2)X 211)2()1(2111(1)1()1()1( )()()- X X (3-4) 常数向量为n Y =[]T(0)(0)(0)(n)X ,(3),X (2),X (3-5)用最小二乘法求得解的系数得n T T Y B B B u a a 1)(-=⎥⎦⎤⎢⎣⎡= (3-6)并代入微分方程的解,得到时间函数a u e a u X t X at +⎪⎭⎫ ⎝⎛-=-)0()()1()1( (3-7)若)1()0()0()1(X X =则 aue a u X t X at +-=+-))1(()1()0()1(^ (3-8)再求导还原得 at e auX a t X---=+))1(()1()0()0(^ (3-9)从(3-25)式可以看出GM (1,1)的实质就是用指数函数作为拟合函数对等时距数据序列进行拟合的。
计算机软件及应用灰色系统理论
X(1) =(1,4,6,11,14.5)的一阶累减生成序列为X(0) =(1,3,2,5,3.5).
(3) 始点零化算子
设序列X (x(1), x(2), , x(n)), 令X1 D1X , 其中 x1(k)=x(k) x(1), k 1, 2, , n, 则称D1为始点零化算子, X1称为X的始点零化像.
一、灰色系统理论简介
• 1982年,北荷兰出版公司出版的《系统与 控制通讯》杂志刊载了我国学者邓聚龙教 授的第一篇灰色系统理论论文”灰色系统 的控制问题”,同年,《华中工学院学报》 发表邓聚龙教授的第一篇中文论文《灰色 控制系统》,这两篇论文的发表标志着灰 色系统这一学科诞生。
• 1985灰色系统研究会成立,灰色系统相关 研究发展迅速。
参考书
1、邓聚龙. 灰色预测与灰决策. 武汉:华中科 技大学出版社,2002.
2、沈继红等. 数学建模. 哈尔滨: 哈尔滨工 业大学出版社,1998.
二、几种不确定方法的比较
概率统计,模糊数学和灰色系统理论是三 种最常用的不确定系统研究方法。其研究对 象都具有某种不确定性,是它们共同的特点。 也正是研究对象在不确定性上的区别,才派 生了这三种各具特色的不确定学科。
例 设X (x(1), x(2), x(3), x(4))=(1,3,5,7),则X的始点零化像 为X1 (0, 2, 4,6).
4 邻值均值生成序列
设序列X(1)=((x(1) (1), x(1) (2), , x(1) (k 1), x(1) (k), , x(1) (n)), 则称x(1) (k 1), x(1) (k)为序列X(1)的邻值,x(1) (k 1)为后邻值,x(1) (k) 为前邻值.
灰色系统理论及其应用
灰色系统理论及其应用一、灰色系统理论概述灰色系统理论,是一种研究不确定性问题的方法。
它起源于20世纪80年代,由中国学者邓聚龙教授提出。
灰色系统理论认为,现实世界中的许多问题并非非黑即白,而是介于黑白之间的灰色地带。
这种理论为我们处理复杂、模糊、不确定性问题提供了一种新的视角。
灰色系统理论的核心思想是通过对部分已知信息的挖掘和加工,实现对整个系统行为的合理预测和控制。
它将系统分为白色系统、黑色系统和灰色系统。
白色系统是指信息完全已知的系统,黑色系统是指信息完全未知的系统,而灰色系统则是介于两者之间的系统,部分信息已知,部分信息未知。
二、灰色系统理论的基本原理1. 灰灰是灰色系统理论的基础,它通过对原始数据进行处理,具有规律性的序列。
常见的灰方法有累加(AGO)、累减(IGO)和均值等。
2. 灰关联分析灰关联分析是灰色系统理论的重要方法,用于分析系统中各因素之间的关联程度。
通过对系统各因素发展变化的相似度进行比较,揭示系统内部因素之间的联系。
3. 灰预测灰预测是灰色系统理论在实际应用中的重要手段,它通过对部分已知信息的挖掘,建立灰色模型,对系统未来发展趋势进行预测。
三、灰色系统理论的应用领域1. 经济管理灰色系统理论在经济学和管理学领域具有广泛的应用,如企业竞争力分析、市场预测、投资决策等。
通过灰关联分析,可以找出影响企业发展的关键因素,为企业制定发展战略提供依据。
2. 工程技术在工程技术领域,灰色系统理论可用于设备故障预测、质量控制、能源消耗分析等。
例如,通过对设备运行数据的分析,建立灰色预测模型,提前发现潜在故障,确保设备安全运行。
3. 社会科学4. 生态环境在生态环境领域,灰色系统理论可以用于水资源评价、环境污染预测、生态平衡分析等。
通过对生态环境数据的挖掘,有助于我们更好地了解和把握生态环境的发展态势。
四、灰色系统理论的优势与局限性优势:1. 对小样本数据的适用性:灰色系统理论不需要大量数据即可进行建模和分析,这对于样本量有限的情况尤其有价值。
7.2灰色理论和安全系统解析
7.3 灰色理论和安全系统(续4)
1〕灰色关联分析与安全系统 作为灰色关联分析在安全系统中的典型应用实例,下面
分析月均千人负伤率的影响因素。就此类问题来说,重要的 前提是通过定性分析找出主要的影响因素,然后进展定量分 析。否则,关联度的定量分析就会变得毫无意义。
对于一个企业来说,事故伤亡率是安全系统的主行为。 定性分析说明:影响事故伤亡率的因素主要有全员培训率、 岗位变化率、安全治理机构的业务力量、安全投资等。全员 培训率指某年承受岗位培训的人数与同一年在册职工总数之 比。岗位变化率用类似的方法计算。安全治理机构的业务力 量包括安全机构是否健全、安全规章制度是否完善等,取某 年的数据为1,其他年份与这一年比较确定。这项工作承受专 家评分法完成。安全投资指安全整改、人员培训等费用。定 性分析后,即可进展定量计算。
安全系统工程
7.3 灰色理论和安全系统(续1)
1〕灰色关联分析与安全系统 灰色关联分析包括系统因素分析和系统行为分析。
对影响系统主行为的作用因素进展分析称为系统因素分 析,对不同系统的行为进展量化比照,则称为系统行为 分析。
比方对人-机-环境系统来说,影响其安全性的因素 包括人的生理与心理特征、操作技能、安康状况等,也 包括机器的牢靠性、修理保养状况、新旧程度等,还包 括温度与湿度、噪声与振动等环境因素,那么,要分析 哪些因素是主要的,哪些因素是次要的,这就是系统安 全的因素分析。
0.16
0.0088
0.440
0.20
0.0034
0.460
0.24
0.0020
0.520
0.19
0.0010
0.500
0.22
0.0047
表1 某机修厂局部统计数据
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2道路交通事故Verhulst预测模型
在实际问题中,常遇到原始数据本身呈S形的过程,这时,可取原始数据为x(1),其一次累减生成(1—IAGO)为x(0),建立Verhulst模型,直接对x(1)进行预测(模拟)。现以中国道路交通事故死亡人数为例,建立交通事故死亡人数Verhualst预测模型。
倍数变换
归一化变换
极差最大值化变换
区间值化变换
2.2关联分析
关联系数
分辨系数
关联度
例1通过对某健将级女子铅球运动员的跟踪调查,获得其1982年至1986年每年最好成绩及16项专项素质和身体素质的时间序列资料,见表2,试对此铅球运动员的专项成绩进行因素分析。
§3优势分析
当参考数列不止一个,被比较的因素也不止一个时,则需进行优势分析。
§1灰色系统概论
灰色系统理论提出了一种新的分析方法—关联度分析方法,即根据因素之间发展态势的相似或相异程度来衡量因素间关联的程度,它揭示了事物动态关联的特征与程度。
灰色系统理论建模的主要任务是根据具体灰色系统的行为特征数据,充分开发并利用不多的数据中的显信息和隐信息,寻找因素间或因素本身的数学关系。通常的办法是采用离散模型,建立一个按时间作逐段分析的模型。
加等等。这里主要介绍累加生成。
4.2累减生成
4.3均值生成
§5灰色模型GM
灰色系统理论是基于关联空间、光滑离散函数等概念定义灰导数与灰微分方程,进而用离散数据列建立微分方程形式的动态模型,由于这是本征灰色系统的基本模型,而且模型是近似的、非唯一的,故这种模型为灰色模型,记为GM(Grey Model),即灰色模型是利用离散随机数经过生成变为随机性被显著削弱而且较有规律的生成数,建立起的微分方程形式的模型,这样便于对其变化过程进行研究和描述。
6.4灰色预测计算实例
例4北方某城市1986~1992年道路交通噪声平均声级数据见表6
表6市近年来交通噪声数据[dB(A)]
§7 SARS疫情对某些经济指标影响问题
7.1问题的提出
试根据这些历史数据建立预测评估模型,评估2003年SARS疫情给该市的商品零
售业、旅游业和综合服务业所造成的影响。
7.2模型的分析与假设
§2关联分析
作为一个发展变化的系统,关联分析实际上是动态过程发展态势的量化比较分析。所谓发展态势比较,也就是系统各时期有关统计数据的几何关系的比较。
2.1数据变换技术
为保证建模的质量与系统分析的正确结果,对收集来的原始数据必须进行数据变换和处理,使其消除量纲和具有可比性。
初值化变换
均值化变换
百分比变换
10.1 GM(1, N)模型
10.2 GM(0, N)模型
§11总结
灰色预测法与传统统计方法的比较见表22。
表22传统统计方法与灰色预测法的比较
江枫渔火 8:50:23 PM
灰色模型主要用于少量数据的预测,多了就误差很大;这与迭代误差传播有关只能预测较近的数据。
做预测的时候,预测的时间长了,误差就大。
7.3建立灰色预测模型GM(1,1)
7.4模型的求解
7.5模型的结果分析
§8道路交通事故灰色Verhulst预测模型[43]
灰色预测是通过原始数据的处理和灰色模型的建立,发现和掌握系统发展规律,对系统的未来状态作出科学的定量预测。目前应用较多的灰色预测模型是GM(1,1)模型、灰色马尔可夫预测模型等,可用于预测交通事故发生次数、死亡人数、受伤人数和财产损失等指标。GM(1,1)模型适用于具有较强指数规律的序列,只能描述单调的变化过程。但是道路交通系统是一个动态的时变系统,道路交通事故作为道路系统的行为特征量,具有一定的随机波动性,它的发展呈现某种变化趋势的非平稳随机过程,因此可建立交通事故灰色马尔可夫预测模型,以提高预测精度。但灰色马尔可夫预测模型的应用难点是如何进行状态划分,故对于非单调的摆动发展序列或具有饱和状态的S形序列,Verhulst模型,GM(2,1)模型等更适用。Verhulst模型主要用来描述具有饱和状态的过程,即S形过程,常用于人口预测、生物生长、繁殖预测及产品经济寿命预测等。今年来中国道路交通事故表现为具有饱和状态的S形过程,故可采用Verhulst模型对其进行预测。
灰色系统理论及其应用
客观世界的很多实际问题,其内部的结构、参数以及特征并未全部被人们了解,人们不可能象研究白箱问题那样将其内部机理研究清楚,只能依据某种思维逻辑与推断来构造模型。对这类部分信息已知而部分信息未知的系统,我们称之为灰色系统。本章介绍的方法是从灰色系统的本征灰色出发,研究在信息大量缺乏或紊乱的情况下,如何对实际问题进行分析和解决。
§9 GM(2,1)和DGM模型
GM(1,1)模型适用于具有较强指数规律的序列,只能描述单调的变化过程,对于非单调的摆动发展序列或有饱和的S形序列,可以考虑建立GM(2,1),DGM和Verhulst模型。
9.1 GM(2,1)模型
9.2 DGM(2,1)模型
§10 GM(1, N)和GM(0, N)模型
灰色预测在工业、农业、商业等经济领域,以及环境、社会和军事等领域中都有广泛的应用。特别是依据目前已有的数据对未来的发展趋势做出预测分析。
6.1灰色预测的方法
6.2灰色预测的步骤
1.数据的检验与处理
2.建立模型
3.检验预测值
(1)残差检验
(2)级比偏差值检验
4.预测预报
6.3灾变预测
上限灾变数列、下限灾变数列
5.1 GM(1,1)模型
5.2 GM(1, N)模型
§6灰色预测
灰色预测是指利用GM模型对系统行为特征的发展变化规律进行பைடு நூலகம்计预测,同时也可以对行为特征的异常情况发生的时刻进行估计计算,以及对在特定时区内发生事件的未来时间分布情况做出研究等等。这些工作实质上是将“随机过程”当作“灰色过程”,“随机变量”当作“灰变量”,并主要以灰色系统理论中的GM(1,1)模型来进行处理。
得到一个关联矩阵R,然后进行分析。
§4生成数
4.1累加生成
灰色系统理论把一切随机量都看作灰色数—即在指定范围内变化的所有白色数的
全体。对灰色数的处理不是找概率分布或求统计规律,而是利用数据处理的办法去寻找
数据间的规律。通过对数列中的数据进行处理,产生新的数列,以此来挖掘和寻找数的
规律性的方法,叫做数的生成。数的生成方式有多种:累加生成、累减生成以及加权累
(7)模型精度检验。一个灰色模型要经过检验才能判定其是否合理。只有通过检
验的模型才能用来进行预测。检验方法有以下几种。
1残差合格模型
②关联度合格模型
③均方差比合格模型
④小误差概率合格模型
8.3预测结果比较
8.4结语
道路交通安全系统是一个灰色系统,可以应用灰色系统理论进行研究和分析,其中灰色预测模型和方法简便易用,在交通事故预测中得到了较多应用。GM(1,1)模型适用于具有较强指数规律的序列,只能描述单调的变化过程,而Verhulst模型则适用于非单调的摆动发展序列或具有饱和状态的S形序列。